summaryrefslogtreecommitdiff
path: root/libgfortran/generated/matmul_l8.c
blob: 2fe0983076089554d0030138817c43e920cccea0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/* Implementation of the MATMUL intrinsic
   Copyright 2002, 2005, 2006 Free Software Foundation, Inc.
   Contributed by Paul Brook <paul@nowt.org>

This file is part of the GNU Fortran 95 runtime library (libgfortran).

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING.  If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */

#include "config.h"
#include <stdlib.h>
#include <assert.h>
#include "libgfortran.h"

#if defined (HAVE_GFC_LOGICAL_8)

/* Dimensions: retarray(x,y) a(x, count) b(count,y).
   Either a or b can be rank 1.  In this case x or y is 1.  */

extern void matmul_l8 (gfc_array_l8 * const restrict, 
	gfc_array_l1 * const restrict, gfc_array_l1 * const restrict);
export_proto(matmul_l8);

void
matmul_l8 (gfc_array_l8 * const restrict retarray, 
	gfc_array_l1 * const restrict a, gfc_array_l1 * const restrict b)
{
  const GFC_LOGICAL_1 * restrict abase;
  const GFC_LOGICAL_1 * restrict bbase;
  GFC_LOGICAL_8 * restrict dest;
  index_type rxstride;
  index_type rystride;
  index_type xcount;
  index_type ycount;
  index_type xstride;
  index_type ystride;
  index_type x;
  index_type y;
  int a_kind;
  int b_kind;

  const GFC_LOGICAL_1 * restrict pa;
  const GFC_LOGICAL_1 * restrict pb;
  index_type astride;
  index_type bstride;
  index_type count;
  index_type n;

  assert (GFC_DESCRIPTOR_RANK (a) == 2
          || GFC_DESCRIPTOR_RANK (b) == 2);

  if (retarray->data == NULL)
    {
      if (GFC_DESCRIPTOR_RANK (a) == 1)
        {
          retarray->dim[0].lbound = 0;
          retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
          retarray->dim[0].stride = 1;
        }
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
        {
          retarray->dim[0].lbound = 0;
          retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
          retarray->dim[0].stride = 1;
        }
      else
        {
          retarray->dim[0].lbound = 0;
          retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
          retarray->dim[0].stride = 1;
          
          retarray->dim[1].lbound = 0;
          retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
          retarray->dim[1].stride = retarray->dim[0].ubound+1;
        }
          
      retarray->data
	= internal_malloc_size (sizeof (GFC_LOGICAL_8) * size0 ((array_t *) retarray));
      retarray->offset = 0;
    }

  abase = a->data;
  a_kind = GFC_DESCRIPTOR_SIZE (a);

  if (a_kind == 1 || a_kind == 2 || a_kind == 4 || a_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
     || a_kind == 16
#endif
     )
    abase = GFOR_POINTER_TO_L1 (abase, a_kind);
  else
    internal_error (NULL, "Funny sized logical array");

  bbase = b->data;
  b_kind = GFC_DESCRIPTOR_SIZE (b);

  if (b_kind == 1 || b_kind == 2 || b_kind == 4 || b_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
     || b_kind == 16
#endif
     )
    bbase = GFOR_POINTER_TO_L1 (bbase, b_kind);
  else
    internal_error (NULL, "Funny sized logical array");

  dest = retarray->data;


  if (GFC_DESCRIPTOR_RANK (retarray) == 1)
    {
      rxstride = retarray->dim[0].stride;
      rystride = rxstride;
    }
  else
    {
      rxstride = retarray->dim[0].stride;
      rystride = retarray->dim[1].stride;
    }

  /* If we have rank 1 parameters, zero the absent stride, and set the size to
     one.  */
  if (GFC_DESCRIPTOR_RANK (a) == 1)
    {
      astride = a->dim[0].stride * a_kind;
      count = a->dim[0].ubound + 1 - a->dim[0].lbound;
      xstride = 0;
      rxstride = 0;
      xcount = 1;
    }
  else
    {
      astride = a->dim[1].stride * a_kind;
      count = a->dim[1].ubound + 1 - a->dim[1].lbound;
      xstride = a->dim[0].stride;
      xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
    }
  if (GFC_DESCRIPTOR_RANK (b) == 1)
    {
      bstride = b->dim[0].stride * b_kind;
      assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
      ystride = 0;
      rystride = 0;
      ycount = 1;
    }
  else
    {
      bstride = b->dim[0].stride * b_kind;
      assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
      ystride = b->dim[1].stride;
      ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
    }

  for (y = 0; y < ycount; y++)
    {
      for (x = 0; x < xcount; x++)
        {
          /* Do the summation for this element.  For real and integer types
             this is the same as DOT_PRODUCT.  For complex types we use do
             a*b, not conjg(a)*b.  */
          pa = abase;
          pb = bbase;
          *dest = 0;

          for (n = 0; n < count; n++)
            {
              if (*pa && *pb)
                {
                  *dest = 1;
                  break;
                }
              pa += astride;
              pb += bstride;
            }

          dest += rxstride;
          abase += xstride;
        }
      abase -= xstride * xcount;
      bbase += ystride;
      dest += rystride - (rxstride * xcount);
    }
}

#endif