summaryrefslogtreecommitdiff
path: root/libgfortran/generated/dotprod_i4.c
blob: c0d67264c41acde2b32074ea0077e8381d1c1de1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
/* Implementation of the DOT_PRODUCT intrinsic
   Copyright 2002 Free Software Foundation, Inc.
   Contributed by Paul Brook <paul@nowt.org>

This file is part of the GNU Fortran 95 runtime library (libgfor).

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with libgfor; see the file COPYING.LIB.  If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include <stdlib.h>
#include <assert.h>
#include "libgfortran.h"

typedef GFC_ARRAY_DESCRIPTOR(GFC_MAX_DIMENSIONS, char) char_array;

extern GFC_INTEGER_4 __dot_product_i4 (gfc_array_i4 * a, gfc_array_i4 * b);
export_proto_np(__dot_product_i4);

/* Both parameters will already have been converted to the result type.  */
GFC_INTEGER_4
__dot_product_i4 (gfc_array_i4 * a, gfc_array_i4 * b)
{
  GFC_INTEGER_4 *pa;
  GFC_INTEGER_4 *pb;
  GFC_INTEGER_4 res;
  index_type count;
  index_type astride;
  index_type bstride;

  assert (GFC_DESCRIPTOR_RANK (a) == 1
          && GFC_DESCRIPTOR_RANK (b) == 1);

  if (a->dim[0].stride == 0)
    a->dim[0].stride = 1;
  if (b->dim[0].stride == 0)
    b->dim[0].stride = 1;

  astride = a->dim[0].stride;
  bstride = b->dim[0].stride;
  count = a->dim[0].ubound + 1 - a->dim[0].lbound;
  res = 0;
  pa = a->data;
  pb = b->data;

  while (count--)
    {
      res += *pa * *pb;
      pa += astride;
      pb += bstride;
    }

  return res;
}