summaryrefslogtreecommitdiff
path: root/gcc/tree-vrp.cc
blob: 7f03f54cdd715700e091470449de867cd94c03a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
/* Support routines for Value Range Propagation (VRP).
   Copyright (C) 2005-2023 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "basic-block.h"
#include "bitmap.h"
#include "sbitmap.h"
#include "options.h"
#include "dominance.h"
#include "function.h"
#include "cfg.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "cfganal.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-into-ssa.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-ssa-propagate.h"
#include "domwalk.h"
#include "vr-values.h"
#include "gimple-array-bounds.h"
#include "gimple-range.h"
#include "gimple-range-path.h"
#include "value-pointer-equiv.h"
#include "gimple-fold.h"
#include "tree-dfa.h"
#include "tree-ssa-dce.h"

// This class is utilized by VRP and ranger to remove __builtin_unreachable
// calls, and reflect any resulting global ranges.
//
// maybe_register_block () is called on basic blocks, and if that block
// matches the pattern of one branch being a builtin_unreachable, register
// the resulting executable edge in a list.
//
// After all blocks have been processed, remove_and_update_globals() will
// - check all exports from registered blocks
// - ensure the cache entry of each export is set with the appropriate range
// - rewrite the conditions to take the executable edge
// - perform DCE on any feeding instructions to those rewritten conditions
//
// Then each of the immediate use chain of each export is walked, and a new
// global range created by unioning the ranges at all remaining use locations.

class remove_unreachable {
public:
  remove_unreachable (gimple_ranger &r) : m_ranger (r) { m_list.create (30); }
  ~remove_unreachable () { m_list.release (); }
  void maybe_register_block (basic_block bb);
  bool remove_and_update_globals (bool final_p);
  vec<std::pair<int, int> > m_list;
  gimple_ranger &m_ranger;
};

// Check if block BB has a __builtin_unreachable () call on one arm, and
// register the executable edge if so.

void
remove_unreachable::maybe_register_block (basic_block bb)
{
  gimple *s = gimple_outgoing_range_stmt_p (bb);
  if (!s || gimple_code (s) != GIMPLE_COND)
    return;

  edge e0 = EDGE_SUCC (bb, 0);
  basic_block bb0 = e0->dest;
  bool un0 = EDGE_COUNT (bb0->succs) == 0
	     && gimple_seq_unreachable_p (bb_seq (bb0));
  edge e1 = EDGE_SUCC (bb, 1);
  basic_block bb1 = e1->dest;
  bool un1 = EDGE_COUNT (bb1->succs) == 0
	     && gimple_seq_unreachable_p (bb_seq (bb1));

  // If the 2 blocks are not different, ignore.
  if (un0 == un1)
    return;

  if (un0)
    m_list.safe_push (std::make_pair (e1->src->index, e1->dest->index));
  else
    m_list.safe_push (std::make_pair (e0->src->index, e0->dest->index));
}

// Process the edges in the list, change the conditions and removing any
// dead code feeding those conditions.  Calculate the range of any
// names that may have been exported from those blocks, and determine if
// there is any updates to their global ranges..
// FINAL_P indicates all builtin_unreachable calls should be removed.
// Return true if any builtin_unreachables/globals eliminated/updated.

bool
remove_unreachable::remove_and_update_globals (bool final_p)
{
  if (m_list.length () == 0)
    return false;

  // Ensure the cache in SCEV has been cleared before processing
  // globals to be removed.
  scev_reset ();

  bool change = false;
  tree name;
  unsigned i;
  bitmap_iterator bi;
  auto_bitmap all_exports;
  for (i = 0; i < m_list.length (); i++)
    {
      auto eb = m_list[i];
      basic_block src = BASIC_BLOCK_FOR_FN (cfun, eb.first);
      basic_block dest = BASIC_BLOCK_FOR_FN (cfun, eb.second);
      if (!src || !dest)
	continue;
      edge e = find_edge (src, dest);
      gimple *s = gimple_outgoing_range_stmt_p (e->src);
      gcc_checking_assert (gimple_code (s) == GIMPLE_COND);
      bool lhs_p = TREE_CODE (gimple_cond_lhs (s)) == SSA_NAME;
      bool rhs_p = TREE_CODE (gimple_cond_rhs (s)) == SSA_NAME;
      // Do not remove __builtin_unreachable if it confers a relation, or
      // that relation will be lost in subsequent passes.  Unless its the
      // final pass.
      if (!final_p && lhs_p && rhs_p)
	continue;
      // If this is already a constant condition, don't look either
      if (!lhs_p && !rhs_p)
	continue;
      // Do not remove addresses early. ie if (x == &y)
      if (!final_p && lhs_p && TREE_CODE (gimple_cond_rhs (s)) == ADDR_EXPR)
	continue;
      bool dominate_exit_p = true;
      FOR_EACH_GORI_EXPORT_NAME (m_ranger.gori (), e->src, name)
	{
	  // Ensure the cache is set for NAME in the succ block.
	  Value_Range r(TREE_TYPE (name));
	  Value_Range ex(TREE_TYPE (name));
	  m_ranger.range_on_entry (r, e->dest, name);
	  m_ranger.range_on_entry (ex, EXIT_BLOCK_PTR_FOR_FN (cfun), name);
	  // If the range produced by this __builtin_unreachacble expression
	  // is not fully reflected in the range at exit, then it does not
	  // dominate the exit of the function.
	  if (ex.intersect (r))
	    dominate_exit_p = false;
	}

      // If the exit is dominated, add to the export list.  Otherwise if this
      // isn't the final VRP pass, leave the call in the IL.
      if (dominate_exit_p)
	bitmap_ior_into (all_exports, m_ranger.gori ().exports (e->src));
      else if (!final_p)
	continue;

      change = true;
      // Rewrite the condition.
      if (e->flags & EDGE_TRUE_VALUE)
	gimple_cond_make_true (as_a<gcond *> (s));
      else
	gimple_cond_make_false (as_a<gcond *> (s));
      update_stmt (s);
    }

  if (bitmap_empty_p (all_exports))
    return false;
  // Invoke DCE on all exported names to eliminate dead feeding defs.
  auto_bitmap dce;
  bitmap_copy (dce, all_exports);
  // Don't attempt to DCE parameters.
  EXECUTE_IF_SET_IN_BITMAP (all_exports, 0, i, bi)
    if (!ssa_name (i) || SSA_NAME_IS_DEFAULT_DEF (ssa_name (i)))
      bitmap_clear_bit (dce, i);
  simple_dce_from_worklist (dce);

  // Loop over all uses of each name and find maximal range. This is the
  // new global range.
  use_operand_p use_p;
  imm_use_iterator iter;
  EXECUTE_IF_SET_IN_BITMAP (all_exports, 0, i, bi)
    {
      name = ssa_name (i);
      if (!name || SSA_NAME_IN_FREE_LIST (name))
	continue;
      Value_Range r (TREE_TYPE (name));
      Value_Range exp_range (TREE_TYPE (name));
      r.set_undefined ();
      FOR_EACH_IMM_USE_FAST (use_p, iter, name)
	{
	  gimple *use_stmt = USE_STMT (use_p);
	  if (is_gimple_debug (use_stmt))
	    continue;
	  if (!m_ranger.range_of_expr (exp_range, name, use_stmt))
	    exp_range.set_varying (TREE_TYPE (name));
	  r.union_ (exp_range);
	  if (r.varying_p ())
	    break;
	}
      // Include the on-exit range to ensure non-dominated unreachables
      // don't incorrectly impact the global range.
      m_ranger.range_on_entry (exp_range, EXIT_BLOCK_PTR_FOR_FN (cfun), name);
      r.union_ (exp_range);
      if (r.varying_p () || r.undefined_p ())
	continue;
      if (!set_range_info (name, r))
	continue;
      change = true;
      if (dump_file)
	{
	  fprintf (dump_file, "Global Exported (via unreachable): ");
	  print_generic_expr (dump_file, name, TDF_SLIM);
	  fprintf (dump_file, " = ");
	  gimple_range_global (r, name);
	  r.dump (dump_file);
	  fputc ('\n', dump_file);
	}
    }
  return change;
}

/* VR_TYPE describes a range with minimum value *MIN and maximum
   value *MAX.  Restrict the range to the set of values that have
   no bits set outside NONZERO_BITS.  Update *MIN and *MAX and
   return the new range type.

   SGN gives the sign of the values described by the range.  */

enum value_range_kind
intersect_range_with_nonzero_bits (enum value_range_kind vr_type,
				   wide_int *min, wide_int *max,
				   const wide_int &nonzero_bits,
				   signop sgn)
{
  if (vr_type == VR_ANTI_RANGE)
    {
      /* The VR_ANTI_RANGE is equivalent to the union of the ranges
	 A: [-INF, *MIN) and B: (*MAX, +INF].  First use NONZERO_BITS
	 to create an inclusive upper bound for A and an inclusive lower
	 bound for B.  */
      wide_int a_max = wi::round_down_for_mask (*min - 1, nonzero_bits);
      wide_int b_min = wi::round_up_for_mask (*max + 1, nonzero_bits);

      /* If the calculation of A_MAX wrapped, A is effectively empty
	 and A_MAX is the highest value that satisfies NONZERO_BITS.
	 Likewise if the calculation of B_MIN wrapped, B is effectively
	 empty and B_MIN is the lowest value that satisfies NONZERO_BITS.  */
      bool a_empty = wi::ge_p (a_max, *min, sgn);
      bool b_empty = wi::le_p (b_min, *max, sgn);

      /* If both A and B are empty, there are no valid values.  */
      if (a_empty && b_empty)
	return VR_UNDEFINED;

      /* If exactly one of A or B is empty, return a VR_RANGE for the
	 other one.  */
      if (a_empty || b_empty)
	{
	  *min = b_min;
	  *max = a_max;
	  gcc_checking_assert (wi::le_p (*min, *max, sgn));
	  return VR_RANGE;
	}

      /* Update the VR_ANTI_RANGE bounds.  */
      *min = a_max + 1;
      *max = b_min - 1;
      gcc_checking_assert (wi::le_p (*min, *max, sgn));

      /* Now check whether the excluded range includes any values that
	 satisfy NONZERO_BITS.  If not, switch to a full VR_RANGE.  */
      if (wi::round_up_for_mask (*min, nonzero_bits) == b_min)
	{
	  unsigned int precision = min->get_precision ();
	  *min = wi::min_value (precision, sgn);
	  *max = wi::max_value (precision, sgn);
	  vr_type = VR_RANGE;
	}
    }
  if (vr_type == VR_RANGE || vr_type == VR_VARYING)
    {
      *max = wi::round_down_for_mask (*max, nonzero_bits);

      /* Check that the range contains at least one valid value.  */
      if (wi::gt_p (*min, *max, sgn))
	return VR_UNDEFINED;

      *min = wi::round_up_for_mask (*min, nonzero_bits);
      gcc_checking_assert (wi::le_p (*min, *max, sgn));
    }
  return vr_type;
}

/* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
   otherwise.  We only handle additive operations and set NEG to true if the
   symbol is negated and INV to the invariant part, if any.  */

static tree
get_single_symbol (tree t, bool *neg, tree *inv)
{
  bool neg_;
  tree inv_;

  *inv = NULL_TREE;
  *neg = false;

  if (TREE_CODE (t) == PLUS_EXPR
      || TREE_CODE (t) == POINTER_PLUS_EXPR
      || TREE_CODE (t) == MINUS_EXPR)
    {
      if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
	{
	  neg_ = (TREE_CODE (t) == MINUS_EXPR);
	  inv_ = TREE_OPERAND (t, 0);
	  t = TREE_OPERAND (t, 1);
	}
      else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
	{
	  neg_ = false;
	  inv_ = TREE_OPERAND (t, 1);
	  t = TREE_OPERAND (t, 0);
	}
      else
        return NULL_TREE;
    }
  else
    {
      neg_ = false;
      inv_ = NULL_TREE;
    }

  if (TREE_CODE (t) == NEGATE_EXPR)
    {
      t = TREE_OPERAND (t, 0);
      neg_ = !neg_;
    }

  if (TREE_CODE (t) != SSA_NAME)
    return NULL_TREE;

  if (inv_ && TREE_OVERFLOW_P (inv_))
    inv_ = drop_tree_overflow (inv_);

  *neg = neg_;
  *inv = inv_;
  return t;
}

/* Compare two values VAL1 and VAL2.  Return

   	-2 if VAL1 and VAL2 cannot be compared at compile-time,
   	-1 if VAL1 < VAL2,
   	 0 if VAL1 == VAL2,
	+1 if VAL1 > VAL2, and
	+2 if VAL1 != VAL2

   This is similar to tree_int_cst_compare but supports pointer values
   and values that cannot be compared at compile time.

   If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
   true if the return value is only valid if we assume that signed
   overflow is undefined.  */

int
compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
{
  if (val1 == val2)
    return 0;

  /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
     both integers.  */
  gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
	      == POINTER_TYPE_P (TREE_TYPE (val2)));

  /* Convert the two values into the same type.  This is needed because
     sizetype causes sign extension even for unsigned types.  */
  if (!useless_type_conversion_p (TREE_TYPE (val1), TREE_TYPE (val2)))
    val2 = fold_convert (TREE_TYPE (val1), val2);

  const bool overflow_undefined
    = INTEGRAL_TYPE_P (TREE_TYPE (val1))
      && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
  tree inv1, inv2;
  bool neg1, neg2;
  tree sym1 = get_single_symbol (val1, &neg1, &inv1);
  tree sym2 = get_single_symbol (val2, &neg2, &inv2);

  /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
     accordingly.  If VAL1 and VAL2 don't use the same name, return -2.  */
  if (sym1 && sym2)
    {
      /* Both values must use the same name with the same sign.  */
      if (sym1 != sym2 || neg1 != neg2)
	return -2;

      /* [-]NAME + CST == [-]NAME + CST.  */
      if (inv1 == inv2)
	return 0;

      /* If overflow is defined we cannot simplify more.  */
      if (!overflow_undefined)
	return -2;

      if (strict_overflow_p != NULL
	  /* Symbolic range building sets the no-warning bit to declare
	     that overflow doesn't happen.  */
	  && (!inv1 || !warning_suppressed_p (val1, OPT_Woverflow))
	  && (!inv2 || !warning_suppressed_p (val2, OPT_Woverflow)))
	*strict_overflow_p = true;

      if (!inv1)
	inv1 = build_int_cst (TREE_TYPE (val1), 0);
      if (!inv2)
	inv2 = build_int_cst (TREE_TYPE (val2), 0);

      return wi::cmp (wi::to_wide (inv1), wi::to_wide (inv2),
		      TYPE_SIGN (TREE_TYPE (val1)));
    }

  const bool cst1 = is_gimple_min_invariant (val1);
  const bool cst2 = is_gimple_min_invariant (val2);

  /* If one is of the form '[-]NAME + CST' and the other is constant, then
     it might be possible to say something depending on the constants.  */
  if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
    {
      if (!overflow_undefined)
	return -2;

      if (strict_overflow_p != NULL
	  /* Symbolic range building sets the no-warning bit to declare
	     that overflow doesn't happen.  */
	  && (!sym1 || !warning_suppressed_p (val1, OPT_Woverflow))
	  && (!sym2 || !warning_suppressed_p (val2, OPT_Woverflow)))
	*strict_overflow_p = true;

      const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
      tree cst = cst1 ? val1 : val2;
      tree inv = cst1 ? inv2 : inv1;

      /* Compute the difference between the constants.  If it overflows or
	 underflows, this means that we can trivially compare the NAME with
	 it and, consequently, the two values with each other.  */
      wide_int diff = wi::to_wide (cst) - wi::to_wide (inv);
      if (wi::cmp (0, wi::to_wide (inv), sgn)
	  != wi::cmp (diff, wi::to_wide (cst), sgn))
	{
	  const int res = wi::cmp (wi::to_wide (cst), wi::to_wide (inv), sgn);
	  return cst1 ? res : -res;
	}

      return -2;
    }

  /* We cannot say anything more for non-constants.  */
  if (!cst1 || !cst2)
    return -2;

  if (!POINTER_TYPE_P (TREE_TYPE (val1)))
    {
      /* We cannot compare overflowed values.  */
      if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
	return -2;

      if (TREE_CODE (val1) == INTEGER_CST
	  && TREE_CODE (val2) == INTEGER_CST)
	return tree_int_cst_compare (val1, val2);

      if (poly_int_tree_p (val1) && poly_int_tree_p (val2))
	{
	  if (known_eq (wi::to_poly_widest (val1),
			wi::to_poly_widest (val2)))
	    return 0;
	  if (known_lt (wi::to_poly_widest (val1),
			wi::to_poly_widest (val2)))
	    return -1;
	  if (known_gt (wi::to_poly_widest (val1),
			wi::to_poly_widest (val2)))
	    return 1;
	}

      return -2;
    }
  else
    {
      if (TREE_CODE (val1) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
	{
	  /* We cannot compare overflowed values.  */
	  if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
	    return -2;

	  return tree_int_cst_compare (val1, val2);
	}

      /* First see if VAL1 and VAL2 are not the same.  */
      if (operand_equal_p (val1, val2, 0))
	return 0;

      fold_defer_overflow_warnings ();

      /* If VAL1 is a lower address than VAL2, return -1.  */
      tree t = fold_binary_to_constant (LT_EXPR, boolean_type_node, val1, val2);
      if (t && integer_onep (t))
	{
	  fold_undefer_and_ignore_overflow_warnings ();
	  return -1;
	}

      /* If VAL1 is a higher address than VAL2, return +1.  */
      t = fold_binary_to_constant (LT_EXPR, boolean_type_node, val2, val1);
      if (t && integer_onep (t))
	{
	  fold_undefer_and_ignore_overflow_warnings ();
	  return 1;
	}

      /* If VAL1 is different than VAL2, return +2.  */
      t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
      fold_undefer_and_ignore_overflow_warnings ();
      if (t && integer_onep (t))
	return 2;

      return -2;
    }
}

/* Compare values like compare_values_warnv.  */

int
compare_values (tree val1, tree val2)
{
  bool sop;
  return compare_values_warnv (val1, val2, &sop);
}

/* Helper for overflow_comparison_p

   OP0 CODE OP1 is a comparison.  Examine the comparison and potentially
   OP1's defining statement to see if it ultimately has the form
   OP0 CODE (OP0 PLUS INTEGER_CST)

   If so, return TRUE indicating this is an overflow test and store into
   *NEW_CST an updated constant that can be used in a narrowed range test.

   REVERSED indicates if the comparison was originally:

   OP1 CODE' OP0.

   This affects how we build the updated constant.  */

static bool
overflow_comparison_p_1 (enum tree_code code, tree op0, tree op1,
			 bool reversed, tree *new_cst)
{
  /* See if this is a relational operation between two SSA_NAMES with
     unsigned, overflow wrapping values.  If so, check it more deeply.  */
  if ((code == LT_EXPR || code == LE_EXPR
       || code == GE_EXPR || code == GT_EXPR)
      && TREE_CODE (op0) == SSA_NAME
      && TREE_CODE (op1) == SSA_NAME
      && INTEGRAL_TYPE_P (TREE_TYPE (op0))
      && TYPE_UNSIGNED (TREE_TYPE (op0))
      && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
    {
      gimple *op1_def = SSA_NAME_DEF_STMT (op1);

      /* Now look at the defining statement of OP1 to see if it adds
	 or subtracts a nonzero constant from another operand.  */
      if (op1_def
	  && is_gimple_assign (op1_def)
	  && gimple_assign_rhs_code (op1_def) == PLUS_EXPR
	  && TREE_CODE (gimple_assign_rhs2 (op1_def)) == INTEGER_CST
	  && !integer_zerop (gimple_assign_rhs2 (op1_def)))
	{
	  tree target = gimple_assign_rhs1 (op1_def);

	  /* If we did not find our target SSA_NAME, then this is not
	     an overflow test.  */
	  if (op0 != target)
	    return false;

	  tree type = TREE_TYPE (op0);
	  wide_int max = wi::max_value (TYPE_PRECISION (type), UNSIGNED);
	  tree inc = gimple_assign_rhs2 (op1_def);
	  if (reversed)
	    *new_cst = wide_int_to_tree (type, max + wi::to_wide (inc));
	  else
	    *new_cst = wide_int_to_tree (type, max - wi::to_wide (inc));
	  return true;
	}
    }
  return false;
}

/* OP0 CODE OP1 is a comparison.  Examine the comparison and potentially
   OP1's defining statement to see if it ultimately has the form
   OP0 CODE (OP0 PLUS INTEGER_CST)

   If so, return TRUE indicating this is an overflow test and store into
   *NEW_CST an updated constant that can be used in a narrowed range test.

   These statements are left as-is in the IL to facilitate discovery of
   {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline.  But
   the alternate range representation is often useful within VRP.  */

bool
overflow_comparison_p (tree_code code, tree name, tree val, tree *new_cst)
{
  if (overflow_comparison_p_1 (code, name, val, false, new_cst))
    return true;
  return overflow_comparison_p_1 (swap_tree_comparison (code), val, name,
				  true, new_cst);
}

/* Handle
   _4 = x_3 & 31;
   if (_4 != 0)
     goto <bb 6>;
   else
     goto <bb 7>;
   <bb 6>:
   __builtin_unreachable ();
   <bb 7>:

   If x_3 has no other immediate uses (checked by caller), var is the
   x_3 var, we can clear low 5 bits from the non-zero bitmask.  */

void
maybe_set_nonzero_bits (edge e, tree var)
{
  basic_block cond_bb = e->src;
  gcond *cond = safe_dyn_cast <gcond *> (*gsi_last_bb (cond_bb));
  tree cst;

  if (cond == NULL
      || gimple_cond_code (cond) != ((e->flags & EDGE_TRUE_VALUE)
				     ? EQ_EXPR : NE_EXPR)
      || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
      || !integer_zerop (gimple_cond_rhs (cond)))
    return;

  gimple *stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
  if (!is_gimple_assign (stmt)
      || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
      || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
    return;
  if (gimple_assign_rhs1 (stmt) != var)
    {
      gimple *stmt2;

      if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
	return;
      stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
      if (!gimple_assign_cast_p (stmt2)
	  || gimple_assign_rhs1 (stmt2) != var
	  || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
	  || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
			      != TYPE_PRECISION (TREE_TYPE (var))))
	return;
    }
  cst = gimple_assign_rhs2 (stmt);
  if (POINTER_TYPE_P (TREE_TYPE (var)))
    {
      struct ptr_info_def *pi = SSA_NAME_PTR_INFO (var);
      if (pi && pi->misalign)
	return;
      wide_int w = wi::bit_not (wi::to_wide (cst));
      unsigned int bits = wi::ctz (w);
      if (bits == 0 || bits >= HOST_BITS_PER_INT)
	return;
      unsigned int align = 1U << bits;
      if (pi == NULL || pi->align < align)
	set_ptr_info_alignment (get_ptr_info (var), align, 0);
    }
  else
    set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var),
					    wi::to_wide (cst)));
}

/* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
   that includes the value VAL.  The search is restricted to the range
   [START_IDX, n - 1] where n is the size of VEC.

   If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
   returned.

   If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
   it is placed in IDX and false is returned.

   If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
   returned. */

bool
find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
{
  size_t n = gimple_switch_num_labels (stmt);
  size_t low, high;

  /* Find case label for minimum of the value range or the next one.
     At each iteration we are searching in [low, high - 1]. */

  for (low = start_idx, high = n; high != low; )
    {
      tree t;
      int cmp;
      /* Note that i != high, so we never ask for n. */
      size_t i = (high + low) / 2;
      t = gimple_switch_label (stmt, i);

      /* Cache the result of comparing CASE_LOW and val.  */
      cmp = tree_int_cst_compare (CASE_LOW (t), val);

      if (cmp == 0)
	{
	  /* Ranges cannot be empty. */
	  *idx = i;
	  return true;
	}
      else if (cmp > 0)
	high = i;
      else
	{
	  low = i + 1;
	  if (CASE_HIGH (t) != NULL
	      && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
	    {
	      *idx = i;
	      return true;
	    }
	}
    }

  *idx = high;
  return false;
}

/* Searches the case label vector VEC for the range of CASE_LABELs that is used
   for values between MIN and MAX. The first index is placed in MIN_IDX. The
   last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
   then MAX_IDX < MIN_IDX.
   Returns true if the default label is not needed. */

bool
find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
		       size_t *max_idx)
{
  size_t i, j;
  bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
  bool max_take_default = !find_case_label_index (stmt, i, max, &j);

  if (i == j
      && min_take_default
      && max_take_default)
    {
      /* Only the default case label reached.
         Return an empty range. */
      *min_idx = 1;
      *max_idx = 0;
      return false;
    }
  else
    {
      bool take_default = min_take_default || max_take_default;
      tree low, high;
      size_t k;

      if (max_take_default)
	j--;

      /* If the case label range is continuous, we do not need
	 the default case label.  Verify that.  */
      high = CASE_LOW (gimple_switch_label (stmt, i));
      if (CASE_HIGH (gimple_switch_label (stmt, i)))
	high = CASE_HIGH (gimple_switch_label (stmt, i));
      for (k = i + 1; k <= j; ++k)
	{
	  low = CASE_LOW (gimple_switch_label (stmt, k));
	  if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
	    {
	      take_default = true;
	      break;
	    }
	  high = low;
	  if (CASE_HIGH (gimple_switch_label (stmt, k)))
	    high = CASE_HIGH (gimple_switch_label (stmt, k));
	}

      *min_idx = i;
      *max_idx = j;
      return !take_default;
    }
}

/* Given a SWITCH_STMT, return the case label that encompasses the
   known possible values for the switch operand.  RANGE_OF_OP is a
   range for the known values of the switch operand.  */

tree
find_case_label_range (gswitch *switch_stmt, const irange *range_of_op)
{
  if (range_of_op->undefined_p ()
      || range_of_op->varying_p ())
    return NULL_TREE;

  size_t i, j;
  tree op = gimple_switch_index (switch_stmt);
  tree type = TREE_TYPE (op);
  unsigned prec = TYPE_PRECISION (type);
  signop sign = TYPE_SIGN (type);
  tree tmin = wide_int_to_tree (type, range_of_op->lower_bound ());
  tree tmax = wide_int_to_tree (type, range_of_op->upper_bound ());
  find_case_label_range (switch_stmt, tmin, tmax, &i, &j);
  if (i == j)
    {
      /* Look for exactly one label that encompasses the range of
	 the operand.  */
      tree label = gimple_switch_label (switch_stmt, i);
      tree case_high
	= CASE_HIGH (label) ? CASE_HIGH (label) : CASE_LOW (label);
      wide_int wlow = wi::to_wide (CASE_LOW (label));
      wide_int whigh = wi::to_wide (case_high);
      int_range_max label_range (type,
				 wide_int::from (wlow, prec, sign),
				 wide_int::from (whigh, prec, sign));
      if (!types_compatible_p (label_range.type (), range_of_op->type ()))
	range_cast (label_range, range_of_op->type ());
      label_range.intersect (*range_of_op);
      if (label_range == *range_of_op)
	return label;
    }
  else if (i > j)
    {
      /* If there are no labels at all, take the default.  */
      return gimple_switch_label (switch_stmt, 0);
    }
  else
    {
      /* Otherwise, there are various labels that can encompass
	 the range of operand.  In which case, see if the range of
	 the operand is entirely *outside* the bounds of all the
	 (non-default) case labels.  If so, take the default.  */
      unsigned n = gimple_switch_num_labels (switch_stmt);
      tree min_label = gimple_switch_label (switch_stmt, 1);
      tree max_label = gimple_switch_label (switch_stmt, n - 1);
      tree case_high = CASE_HIGH (max_label);
      if (!case_high)
	case_high = CASE_LOW (max_label);
      int_range_max label_range (TREE_TYPE (CASE_LOW (min_label)),
				 wi::to_wide (CASE_LOW (min_label)),
				 wi::to_wide (case_high));
      if (!types_compatible_p (label_range.type (), range_of_op->type ()))
	range_cast (label_range, range_of_op->type ());
      label_range.intersect (*range_of_op);
      if (label_range.undefined_p ())
	return gimple_switch_label (switch_stmt, 0);
    }
  return NULL_TREE;
}

struct case_info
{
  tree expr;
  basic_block bb;
};

// This is a ranger based folder which continues to use the dominator
// walk to access the substitute and fold machinery.  Ranges are calculated
// on demand.

class rvrp_folder : public substitute_and_fold_engine
{
public:

  rvrp_folder (gimple_ranger *r) : substitute_and_fold_engine (),
				   m_unreachable (*r),
				   m_simplifier (r, r->non_executable_edge_flag)
  {
    m_ranger = r;
    m_pta = new pointer_equiv_analyzer (m_ranger);
    m_last_bb_stmt = NULL;
  }

  ~rvrp_folder ()
  {
    delete m_pta;
  }

  tree value_of_expr (tree name, gimple *s = NULL) override
  {
    // Shortcircuit subst_and_fold callbacks for abnormal ssa_names.
    if (TREE_CODE (name) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
      return NULL;
    tree ret = m_ranger->value_of_expr (name, s);
    if (!ret && supported_pointer_equiv_p (name))
      ret = m_pta->get_equiv (name);
    return ret;
  }

  tree value_on_edge (edge e, tree name) override
  {
    // Shortcircuit subst_and_fold callbacks for abnormal ssa_names.
    if (TREE_CODE (name) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
      return NULL;
    tree ret = m_ranger->value_on_edge (e, name);
    if (!ret && supported_pointer_equiv_p (name))
      ret = m_pta->get_equiv (name);
    return ret;
  }

  tree value_of_stmt (gimple *s, tree name = NULL) override
  {
    // Shortcircuit subst_and_fold callbacks for abnormal ssa_names.
    if (TREE_CODE (name) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
      return NULL;
    return m_ranger->value_of_stmt (s, name);
  }

  void pre_fold_bb (basic_block bb) override
  {
    m_pta->enter (bb);
    for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
	 gsi_next (&gsi))
      m_ranger->register_inferred_ranges (gsi.phi ());
    m_last_bb_stmt = last_nondebug_stmt (bb);
  }

  void post_fold_bb (basic_block bb) override
  {
    m_pta->leave (bb);
    if (cfun->after_inlining)
      m_unreachable.maybe_register_block (bb);
  }

  void pre_fold_stmt (gimple *stmt) override
  {
    m_pta->visit_stmt (stmt);
    // If this is the last stmt and there are inferred ranges, reparse the
    // block for transitive inferred ranges that occur earlier in the block.
    if (stmt == m_last_bb_stmt)
      m_ranger->register_transitive_inferred_ranges (gimple_bb (stmt));
  }

  bool fold_stmt (gimple_stmt_iterator *gsi) override
  {
    bool ret = m_simplifier.simplify (gsi);
    if (!ret)
      ret = m_ranger->fold_stmt (gsi, follow_single_use_edges);
    m_ranger->register_inferred_ranges (gsi_stmt (*gsi));
    return ret;
  }

  remove_unreachable m_unreachable;
private:
  DISABLE_COPY_AND_ASSIGN (rvrp_folder);
  gimple_ranger *m_ranger;
  simplify_using_ranges m_simplifier;
  pointer_equiv_analyzer *m_pta;
  gimple *m_last_bb_stmt;
};

/* Main entry point for a VRP pass using just ranger. This can be called
  from anywhere to perform a VRP pass, including from EVRP.  */

unsigned int
execute_ranger_vrp (struct function *fun, bool warn_array_bounds_p,
		    bool final_p)
{
  loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
  rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
  scev_initialize ();
  calculate_dominance_info (CDI_DOMINATORS);

  set_all_edges_as_executable (fun);
  gimple_ranger *ranger = enable_ranger (fun, false);
  rvrp_folder folder (ranger);
  folder.substitute_and_fold ();
  // Remove tagged builtin-unreachable and maybe update globals.
  folder.m_unreachable.remove_and_update_globals (final_p);
  if (dump_file && (dump_flags & TDF_DETAILS))
    ranger->dump (dump_file);

  if ((warn_array_bounds || warn_strict_flex_arrays) && warn_array_bounds_p)
    {
      // Set all edges as executable, except those ranger says aren't.
      int non_exec_flag = ranger->non_executable_edge_flag;
      basic_block bb;
      FOR_ALL_BB_FN (bb, fun)
	{
	  edge_iterator ei;
	  edge e;
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    if (e->flags & non_exec_flag)
	      e->flags &= ~EDGE_EXECUTABLE;
	    else
	      e->flags |= EDGE_EXECUTABLE;
	}
      scev_reset ();
      array_bounds_checker array_checker (fun, ranger);
      array_checker.check ();
    }

  disable_ranger (fun);
  scev_finalize ();
  loop_optimizer_finalize ();
  return 0;
}

namespace {

const pass_data pass_data_vrp =
{
  GIMPLE_PASS, /* type */
  "vrp", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_VRP, /* tv_id */
  PROP_ssa, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
};

const pass_data pass_data_early_vrp =
{
  GIMPLE_PASS, /* type */
  "evrp", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_EARLY_VRP, /* tv_id */
  PROP_ssa, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  ( TODO_cleanup_cfg | TODO_update_ssa | TODO_verify_all ),
};

static int vrp_pass_num = 0;
class pass_vrp : public gimple_opt_pass
{
public:
  pass_vrp (gcc::context *ctxt, const pass_data &data_)
    : gimple_opt_pass (data_, ctxt), data (data_), warn_array_bounds_p (false),
      my_pass (vrp_pass_num++)
  {}

  /* opt_pass methods: */
  opt_pass * clone () final override { return new pass_vrp (m_ctxt, data); }
  void set_pass_param (unsigned int n, bool param) final override
    {
      gcc_assert (n == 0);
      warn_array_bounds_p = param;
    }
  bool gate (function *) final override { return flag_tree_vrp != 0; }
  unsigned int execute (function *fun) final override
    {
      // Early VRP pass.
      if (my_pass == 0)
	return execute_ranger_vrp (fun, /*warn_array_bounds_p=*/false, false);

      return execute_ranger_vrp (fun, warn_array_bounds_p, my_pass == 2);
    }

 private:
  const pass_data &data;
  bool warn_array_bounds_p;
  int my_pass;
}; // class pass_vrp

const pass_data pass_data_assumptions =
{
  GIMPLE_PASS, /* type */
  "assumptions", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_ASSUMPTIONS, /* tv_id */
  PROP_ssa, /* properties_required */
  PROP_assumptions_done, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_end */
};

class pass_assumptions : public gimple_opt_pass
{
public:
  pass_assumptions (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_assumptions, ctxt)
  {}

  /* opt_pass methods: */
  bool gate (function *fun) final override { return fun->assume_function; }
  unsigned int execute (function *) final override
    {
      assume_query query;
      if (dump_file)
	fprintf (dump_file, "Assumptions :\n--------------\n");

      for (tree arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
	{
	  tree name = ssa_default_def (cfun, arg);
	  if (!name || !gimple_range_ssa_p (name))
	    continue;
	  tree type = TREE_TYPE (name);
	  if (!Value_Range::supports_type_p (type))
	    continue;
	  Value_Range assume_range (type);
	  if (query.assume_range_p (assume_range, name))
	    {
	      // Set the global range of NAME to anything calculated.
	      set_range_info (name, assume_range);
	      if (dump_file)
		{
		  print_generic_expr (dump_file, name, TDF_SLIM);
		  fprintf (dump_file, " -> ");
		  assume_range.dump (dump_file);
		  fputc ('\n', dump_file);
		}
	    }
	}
      if (dump_file)
	{
	  fputc ('\n', dump_file);
	  gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
	  if (dump_flags & TDF_DETAILS)
	    query.dump (dump_file);
	}
      return TODO_discard_function;
    }

}; // class pass_assumptions

} // anon namespace

gimple_opt_pass *
make_pass_vrp (gcc::context *ctxt)
{
  return new pass_vrp (ctxt, pass_data_vrp);
}

gimple_opt_pass *
make_pass_early_vrp (gcc::context *ctxt)
{
  return new pass_vrp (ctxt, pass_data_early_vrp);
}

gimple_opt_pass *
make_pass_assumptions (gcc::context *ctx)
{
  return new pass_assumptions (ctx);
}