summaryrefslogtreecommitdiff
path: root/gcc/tree-switch-conversion.c
blob: def6f5d3e1afeeb2c56cc9d55bbb70122fd7ed2e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
/* Switch Conversion converts variable initializations based on switch
   statements to initializations from a static array.
   Copyright (C) 2006, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
   Contributed by Martin Jambor <jamborm@suse.cz>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

/*
     Switch initialization conversion

The following pass changes simple initializations of scalars in a switch
statement into initializations from a static array.  Obviously, the values
must be constant and known at compile time and a default branch must be
provided.  For example, the following code:

        int a,b;

        switch (argc)
	{
         case 1:
         case 2:
                a_1 = 8;
                b_1 = 6;
                break;
         case 3:
                a_2 = 9;
                b_2 = 5;
                break;
         case 12:
                a_3 = 10;
                b_3 = 4;
                break;
         default:
                a_4 = 16;
                b_4 = 1;
		break;
        }
	a_5 = PHI <a_1, a_2, a_3, a_4>
	b_5 = PHI <b_1, b_2, b_3, b_4>


is changed into:

        static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
        static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
                                 16, 16, 10};

        if (((unsigned) argc) - 1 < 11)
          {
	    a_6 = CSWTCH02[argc - 1];
            b_6 = CSWTCH01[argc - 1];
	  }
	else
	  {
	    a_7 = 16;
	    b_7 = 1;
          }
	a_5 = PHI <a_6, a_7>
	b_b = PHI <b_6, b_7>

There are further constraints.  Specifically, the range of values across all
case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
eight) times the number of the actual switch branches. */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "line-map.h"
#include "params.h"
#include "flags.h"
#include "tree.h"
#include "basic-block.h"
#include "tree-flow.h"
#include "tree-flow-inline.h"
#include "tree-ssa-operands.h"
#include "output.h"
#include "input.h"
#include "tree-pass.h"
#include "gimple-pretty-print.h"
#include "tree-dump.h"
#include "timevar.h"
#include "langhooks.h"

/* The main structure of the pass.  */
struct switch_conv_info
{
  /* The expression used to decide the switch branch.  */
  tree index_expr;

  /* The following integer constants store the minimum and maximum value
     covered by the case labels.  */
  tree range_min;
  tree range_max;

  /* The difference between the above two numbers.  Stored here because it
     is used in all the conversion heuristics, as well as for some of the
     transformation, and it is expensive to re-compute it all the time.  */
  tree range_size;

  /* Basic block that contains the actual GIMPLE_SWITCH.  */
  basic_block switch_bb;

  /* Basic block that is the target of the default case.  */
  basic_block default_bb;

  /* The single successor block of all branches out of the GIMPLE_SWITCH,
     if such a block exists.  Otherwise NULL.  */
  basic_block final_bb;

  /* The probability of the default edge in the replaced switch.  */
  int default_prob;

  /* The count of the default edge in the replaced switch.  */
  gcov_type default_count;

  /* Combined count of all other (non-default) edges in the replaced switch.  */
  gcov_type other_count;

  /* Number of phi nodes in the final bb (that we'll be replacing).  */
  int phi_count;

  /* Array of default values, in the same order as phi nodes.  */
  tree *default_values;

  /* Constructors of new static arrays.  */
  VEC (constructor_elt, gc) **constructors;

  /* Array of ssa names that are initialized with a value from a new static
     array.  */
  tree *target_inbound_names;

  /* Array of ssa names that are initialized with the default value if the
     switch expression is out of range.  */
  tree *target_outbound_names;

  /* The first load statement that loads a temporary from a new static array.
   */
  gimple arr_ref_first;

  /* The last load statement that loads a temporary from a new static array.  */
  gimple arr_ref_last;

  /* String reason why the case wasn't a good candidate that is written to the
     dump file, if there is one.  */
  const char *reason;

  /* Parameters for expand_switch_using_bit_tests.  Should be computed
     the same way as in expand_case.  */
  unsigned int uniq;
  unsigned int count;
};

/* Collect information about GIMPLE_SWITCH statement SWTCH into INFO.  */

static void
collect_switch_conv_info (gimple swtch, struct switch_conv_info *info)
{
  unsigned int branch_num = gimple_switch_num_labels (swtch);
  tree min_case, max_case;
  unsigned int count, i;
  edge e, e_default;
  edge_iterator ei;

  memset (info, 0, sizeof (*info));

  /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
     is a default label which is the first in the vector.  */
  gcc_assert (CASE_LOW (gimple_switch_label (swtch, 0)) == NULL_TREE);

  /* Collect the bits we can deduce from the CFG.  */
  info->index_expr = gimple_switch_index (swtch);
  info->switch_bb = gimple_bb (swtch);
  info->default_bb =
    label_to_block (CASE_LABEL (gimple_switch_label (swtch, 0)));
  e_default = find_edge (info->switch_bb, info->default_bb);
  info->default_prob = e_default->probability;
  info->default_count = e_default->count;
  FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
    if (e != e_default)
      info->other_count += e->count;

  /* See if there is one common successor block for all branch
     targets.  If it exists, record it in FINAL_BB.  */
  FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
    {
      if (! single_pred_p (e->dest))
	{
	  info->final_bb = e->dest;
	  break;
	}
    }
  if (info->final_bb)
    FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
      {
	if (e->dest == info->final_bb)
	  continue;

	if (single_pred_p (e->dest)
	    && single_succ_p (e->dest)
	    && single_succ (e->dest) == info->final_bb)
	  continue;

	info->final_bb = NULL;
	break;
      }

  /* Get upper and lower bounds of case values, and the covered range.  */
  min_case = gimple_switch_label (swtch, 1);
  max_case = gimple_switch_label (swtch, branch_num - 1);

  info->range_min = CASE_LOW (min_case);
  if (CASE_HIGH (max_case) != NULL_TREE)
    info->range_max = CASE_HIGH (max_case);
  else
    info->range_max = CASE_LOW (max_case);

  info->range_size =
    int_const_binop (MINUS_EXPR, info->range_max, info->range_min);

  /* Get a count of the number of case labels.  Single-valued case labels
     simply count as one, but a case range counts double, since it may
     require two compares if it gets lowered as a branching tree.  */
  count = 0;
  for (i = 1; i < branch_num; i++)
    {
      tree elt = gimple_switch_label (swtch, i);
      count++;
      if (CASE_HIGH (elt)
	  && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
	count++;
    }
  info->count = count;
 
  /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
     block.  Assume a CFG cleanup would have already removed degenerate
     switch statements, this allows us to just use EDGE_COUNT.  */
  info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
}

/* Checks whether the range given by individual case statements of the SWTCH
   switch statement isn't too big and whether the number of branches actually
   satisfies the size of the new array.  */

static bool
check_range (struct switch_conv_info *info)
{
  gcc_assert (info->range_size);
  if (!host_integerp (info->range_size, 1))
    {
      info->reason = "index range way too large or otherwise unusable";
      return false;
    }

  if ((unsigned HOST_WIDE_INT) tree_low_cst (info->range_size, 1)
      > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
    {
      info->reason = "the maximum range-branch ratio exceeded";
      return false;
    }

  return true;
}

/* Checks whether all but the FINAL_BB basic blocks are empty.  */

static bool
check_all_empty_except_final (struct switch_conv_info *info)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
    {
      if (e->dest == info->final_bb)
	continue;

      if (!empty_block_p (e->dest))
	{
	  info->reason = "bad case - a non-final BB not empty";
	  return false;
	}
    }

  return true;
}

/* This function checks whether all required values in phi nodes in final_bb
   are constants.  Required values are those that correspond to a basic block
   which is a part of the examined switch statement.  It returns true if the
   phi nodes are OK, otherwise false.  */

static bool
check_final_bb (struct switch_conv_info *info)
{
  gimple_stmt_iterator gsi;

  info->phi_count = 0;
  for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple phi = gsi_stmt (gsi);
      unsigned int i;

      info->phi_count++;

      for (i = 0; i < gimple_phi_num_args (phi); i++)
	{
	  basic_block bb = gimple_phi_arg_edge (phi, i)->src;

	  if (bb == info->switch_bb
	      || (single_pred_p (bb) && single_pred (bb) == info->switch_bb))
	    {
	      tree reloc, val;

	      val = gimple_phi_arg_def (phi, i);
	      if (!is_gimple_ip_invariant (val))
		{
		  info->reason = "non-invariant value from a case";
		  return false; /* Non-invariant argument.  */
		}
	      reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
	      if ((flag_pic && reloc != null_pointer_node)
		  || (!flag_pic && reloc == NULL_TREE))
		{
		  if (reloc)
		    info->reason
		      = "value from a case would need runtime relocations";
		  else
		    info->reason
		      = "value from a case is not a valid initializer";
		  return false;
		}
	    }
	}
    }

  return true;
}

/* The following function allocates default_values, target_{in,out}_names and
   constructors arrays.  The last one is also populated with pointers to
   vectors that will become constructors of new arrays.  */

static void
create_temp_arrays (struct switch_conv_info *info)
{
  int i;

  info->default_values = XCNEWVEC (tree, info->phi_count * 3);
  info->constructors = XCNEWVEC (VEC (constructor_elt, gc) *, info->phi_count);
  info->target_inbound_names = info->default_values + info->phi_count;
  info->target_outbound_names = info->target_inbound_names + info->phi_count;
  for (i = 0; i < info->phi_count; i++)
    info->constructors[i]
      = VEC_alloc (constructor_elt, gc, tree_low_cst (info->range_size, 1) + 1);
}

/* Free the arrays created by create_temp_arrays().  The vectors that are
   created by that function are not freed here, however, because they have
   already become constructors and must be preserved.  */

static void
free_temp_arrays (struct switch_conv_info *info)
{
  XDELETEVEC (info->constructors);
  XDELETEVEC (info->default_values);
}

/* Populate the array of default values in the order of phi nodes.
   DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch.  */

static void
gather_default_values (tree default_case, struct switch_conv_info *info)
{
  gimple_stmt_iterator gsi;
  basic_block bb = label_to_block (CASE_LABEL (default_case));
  edge e;
  int i = 0;

  gcc_assert (CASE_LOW (default_case) == NULL_TREE);

  if (bb == info->final_bb)
    e = find_edge (info->switch_bb, bb);
  else
    e = single_succ_edge (bb);

  for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple phi = gsi_stmt (gsi);
      tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
      gcc_assert (val);
      info->default_values[i++] = val;
    }
}

/* The following function populates the vectors in the constructors array with
   future contents of the static arrays.  The vectors are populated in the
   order of phi nodes.  SWTCH is the switch statement being converted.  */

static void
build_constructors (gimple swtch, struct switch_conv_info *info)
{
  unsigned i, branch_num = gimple_switch_num_labels (swtch);
  tree pos = info->range_min;

  for (i = 1; i < branch_num; i++)
    {
      tree cs = gimple_switch_label (swtch, i);
      basic_block bb = label_to_block (CASE_LABEL (cs));
      edge e;
      tree high;
      gimple_stmt_iterator gsi;
      int j;

      if (bb == info->final_bb)
	e = find_edge (info->switch_bb, bb);
      else
	e = single_succ_edge (bb);
      gcc_assert (e);

      while (tree_int_cst_lt (pos, CASE_LOW (cs)))
	{
	  int k;
	  for (k = 0; k < info->phi_count; k++)
	    {
	      constructor_elt *elt;

	      elt = VEC_quick_push (constructor_elt,
				    info->constructors[k], NULL);
	      elt->index = int_const_binop (MINUS_EXPR, pos,
					    info->range_min);
	      elt->value = info->default_values[k];
	    }

	  pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
	}
      gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));

      j = 0;
      if (CASE_HIGH (cs))
	high = CASE_HIGH (cs);
      else
	high = CASE_LOW (cs);
      for (gsi = gsi_start_phis (info->final_bb);
	   !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple phi = gsi_stmt (gsi);
	  tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
	  tree low = CASE_LOW (cs);
	  pos = CASE_LOW (cs);

	  do
	    {
	      constructor_elt *elt;

	      elt = VEC_quick_push (constructor_elt,
				    info->constructors[j], NULL);
	      elt->index = int_const_binop (MINUS_EXPR, pos, info->range_min);
	      elt->value = val;

	      pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
	    } while (!tree_int_cst_lt (high, pos)
		     && tree_int_cst_lt (low, pos));
	  j++;
	}
    }
}

/* If all values in the constructor vector are the same, return the value.
   Otherwise return NULL_TREE.  Not supposed to be called for empty
   vectors.  */

static tree
constructor_contains_same_values_p (VEC (constructor_elt, gc) *vec)
{
  unsigned int i;
  tree prev = NULL_TREE;
  constructor_elt *elt;

  FOR_EACH_VEC_ELT (constructor_elt, vec, i, elt)
    {
      if (!prev)
	prev = elt->value;
      else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
	return NULL_TREE;
    }
  return prev;
}

/* Return type which should be used for array elements, either TYPE,
   or for integral type some smaller integral type that can still hold
   all the constants.  */

static tree
array_value_type (gimple swtch, tree type, int num,
		  struct switch_conv_info *info)
{
  unsigned int i, len = VEC_length (constructor_elt, info->constructors[num]);
  constructor_elt *elt;
  enum machine_mode mode;
  int sign = 0;
  tree smaller_type;

  if (!INTEGRAL_TYPE_P (type))
    return type;

  mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type)));
  if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode))
    return type;

  if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
    return type;

  FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt)
    {
      double_int cst;

      if (TREE_CODE (elt->value) != INTEGER_CST)
	return type;

      cst = TREE_INT_CST (elt->value);
      while (1)
	{
	  unsigned int prec = GET_MODE_BITSIZE (mode);
	  if (prec > HOST_BITS_PER_WIDE_INT)
	    return type;

	  if (sign >= 0
	      && double_int_equal_p (cst, double_int_zext (cst, prec)))
	    {
	      if (sign == 0
		  && double_int_equal_p (cst, double_int_sext (cst, prec)))
		break;
	      sign = 1;
	      break;
	    }
	  if (sign <= 0
	      && double_int_equal_p (cst, double_int_sext (cst, prec)))
	    {
	      sign = -1;
	      break;
	    }

	  if (sign == 1)
	    sign = 0;

	  mode = GET_MODE_WIDER_MODE (mode);
	  if (mode == VOIDmode
	      || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type)))
	    return type;
	}
    }

  if (sign == 0)
    sign = TYPE_UNSIGNED (type) ? 1 : -1;
  smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
  if (GET_MODE_SIZE (TYPE_MODE (type))
      <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
    return type;

  return smaller_type;
}

/* Create an appropriate array type and declaration and assemble a static array
   variable.  Also create a load statement that initializes the variable in
   question with a value from the static array.  SWTCH is the switch statement
   being converted, NUM is the index to arrays of constructors, default values
   and target SSA names for this particular array.  ARR_INDEX_TYPE is the type
   of the index of the new array, PHI is the phi node of the final BB that
   corresponds to the value that will be loaded from the created array.  TIDX
   is an ssa name of a temporary variable holding the index for loads from the
   new array.  */

static void
build_one_array (gimple swtch, int num, tree arr_index_type, gimple phi,
		 tree tidx, struct switch_conv_info *info)
{
  tree name, cst;
  gimple load;
  gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
  location_t loc = gimple_location (swtch);

  gcc_assert (info->default_values[num]);

  name = make_ssa_name (SSA_NAME_VAR (PHI_RESULT (phi)), NULL);
  info->target_inbound_names[num] = name;

  cst = constructor_contains_same_values_p (info->constructors[num]);
  if (cst)
    load = gimple_build_assign (name, cst);
  else
    {
      tree array_type, ctor, decl, value_type, fetch, default_type;

      default_type = TREE_TYPE (info->default_values[num]);
      value_type = array_value_type (swtch, default_type, num, info);
      array_type = build_array_type (value_type, arr_index_type);
      if (default_type != value_type)
	{
	  unsigned int i;
	  constructor_elt *elt;

	  FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt)
	    elt->value = fold_convert (value_type, elt->value);
	}
      ctor = build_constructor (array_type, info->constructors[num]);
      TREE_CONSTANT (ctor) = true;
      TREE_STATIC (ctor) = true;

      decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
      TREE_STATIC (decl) = 1;
      DECL_INITIAL (decl) = ctor;

      DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
      DECL_ARTIFICIAL (decl) = 1;
      TREE_CONSTANT (decl) = 1;
      TREE_READONLY (decl) = 1;
      varpool_finalize_decl (decl);

      fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
		      NULL_TREE);
      if (default_type != value_type)
	{
	  fetch = fold_convert (default_type, fetch);
	  fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
					    true, GSI_SAME_STMT);
	}
      load = gimple_build_assign (name, fetch);
    }

  SSA_NAME_DEF_STMT (name) = load;
  gsi_insert_before (&gsi, load, GSI_SAME_STMT);
  update_stmt (load);
  info->arr_ref_last = load;
}

/* Builds and initializes static arrays initialized with values gathered from
   the SWTCH switch statement.  Also creates statements that load values from
   them.  */

static void
build_arrays (gimple swtch, struct switch_conv_info *info)
{
  tree arr_index_type;
  tree tidx, sub, tmp, utype;
  gimple stmt;
  gimple_stmt_iterator gsi;
  int i;
  location_t loc = gimple_location (swtch);

  gsi = gsi_for_stmt (swtch);

  /* Make sure we do not generate arithmetics in a subrange.  */
  utype = TREE_TYPE (info->index_expr);
  if (TREE_TYPE (utype))
    utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
  else
    utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);

  arr_index_type = build_index_type (info->range_size);
  tmp = create_tmp_var (utype, "csui");
  add_referenced_var (tmp);
  tidx = make_ssa_name (tmp, NULL);
  sub = fold_build2_loc (loc, MINUS_EXPR, utype,
			 fold_convert_loc (loc, utype, info->index_expr),
			 fold_convert_loc (loc, utype, info->range_min));
  sub = force_gimple_operand_gsi (&gsi, sub,
				  false, NULL, true, GSI_SAME_STMT);
  stmt = gimple_build_assign (tidx, sub);
  SSA_NAME_DEF_STMT (tidx) = stmt;

  gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
  update_stmt (stmt);
  info->arr_ref_first = stmt;

  for (gsi = gsi_start_phis (info->final_bb), i = 0;
       !gsi_end_p (gsi); gsi_next (&gsi), i++)
    build_one_array (swtch, i, arr_index_type, gsi_stmt (gsi), tidx, info);
}

/* Generates and appropriately inserts loads of default values at the position
   given by BSI.  Returns the last inserted statement.  */

static gimple
gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
{
  int i;
  gimple assign = NULL;

  for (i = 0; i < info->phi_count; i++)
    {
      tree name
	= make_ssa_name (SSA_NAME_VAR (info->target_inbound_names[i]), NULL);

      info->target_outbound_names[i] = name;
      assign = gimple_build_assign (name, info->default_values[i]);
      SSA_NAME_DEF_STMT (name) = assign;
      gsi_insert_before (gsi, assign, GSI_SAME_STMT);
      update_stmt (assign);
    }
  return assign;
}

/* Deletes the unused bbs and edges that now contain the switch statement and
   its empty branch bbs.  BBD is the now dead BB containing the original switch
   statement, FINAL is the last BB of the converted switch statement (in terms
   of succession).  */

static void
prune_bbs (basic_block bbd, basic_block final)
{
  edge_iterator ei;
  edge e;

  for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
    {
      basic_block bb;
      bb = e->dest;
      remove_edge (e);
      if (bb != final)
	delete_basic_block (bb);
    }
  delete_basic_block (bbd);
}

/* Add values to phi nodes in final_bb for the two new edges.  E1F is the edge
   from the basic block loading values from an array and E2F from the basic
   block loading default values.  BBF is the last switch basic block (see the
   bbf description in the comment below).  */

static void
fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
	       struct switch_conv_info *info)
{
  gimple_stmt_iterator gsi;
  int i;

  for (gsi = gsi_start_phis (bbf), i = 0;
       !gsi_end_p (gsi); gsi_next (&gsi), i++)
    {
      gimple phi = gsi_stmt (gsi);
      add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION);
      add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION);
    }
}

/* Creates a check whether the switch expression value actually falls into the
   range given by all the cases.  If it does not, the temporaries are loaded
   with default values instead.  SWTCH is the switch statement being converted.

   bb0 is the bb with the switch statement, however, we'll end it with a
       condition instead.

   bb1 is the bb to be used when the range check went ok.  It is derived from
       the switch BB

   bb2 is the bb taken when the expression evaluated outside of the range
       covered by the created arrays.  It is populated by loads of default
       values.

   bbF is a fall through for both bb1 and bb2 and contains exactly what
       originally followed the switch statement.

   bbD contains the switch statement (in the end).  It is unreachable but we
       still need to strip off its edges.
*/

static void
gen_inbound_check (gimple swtch, struct switch_conv_info *info)
{
  tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
  tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
  tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
  gimple label1, label2, label3;
  tree utype, tidx;
  tree bound;

  gimple cond_stmt;

  gimple last_assign;
  gimple_stmt_iterator gsi;
  basic_block bb0, bb1, bb2, bbf, bbd;
  edge e01, e02, e21, e1d, e1f, e2f;
  location_t loc = gimple_location (swtch);

  gcc_assert (info->default_values);

  /* Make no effort to update the post-dominator tree.  It is actually not
     that hard for the transformations we have performed, but it is not
     supported by iterate_fix_dominators.
     Freeing post-dominance info is dome early to avoid pointless work in
     create_basic_block, which is called when we split SWITCH_BB.  */
  free_dominance_info (CDI_POST_DOMINATORS);

  bb0 = gimple_bb (swtch);

  tidx = gimple_assign_lhs (info->arr_ref_first);
  utype = TREE_TYPE (tidx);

  /* (end of) block 0 */
  gsi = gsi_for_stmt (info->arr_ref_first);
  gsi_next (&gsi);

  bound = fold_convert_loc (loc, utype, info->range_size);
  cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
  gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
  update_stmt (cond_stmt);

  /* block 2 */
  label2 = gimple_build_label (label_decl2);
  gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
  last_assign = gen_def_assigns (&gsi, info);

  /* block 1 */
  label1 = gimple_build_label (label_decl1);
  gsi_insert_before (&gsi, label1, GSI_SAME_STMT);

  /* block F */
  gsi = gsi_start_bb (info->final_bb);
  label3 = gimple_build_label (label_decl3);
  gsi_insert_before (&gsi, label3, GSI_SAME_STMT);

  /* cfg fix */
  e02 = split_block (bb0, cond_stmt);
  bb2 = e02->dest;

  e21 = split_block (bb2, last_assign);
  bb1 = e21->dest;
  remove_edge (e21);

  e1d = split_block (bb1, info->arr_ref_last);
  bbd = e1d->dest;
  remove_edge (e1d);

  /* flags and profiles of the edge for in-range values */
  e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
  e01->probability = REG_BR_PROB_BASE - info->default_prob;
  e01->count = info->other_count;

  /* flags and profiles of the edge taking care of out-of-range values */
  e02->flags &= ~EDGE_FALLTHRU;
  e02->flags |= EDGE_FALSE_VALUE;
  e02->probability = info->default_prob;
  e02->count = info->default_count;

  bbf = info->final_bb;

  e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
  e1f->probability = REG_BR_PROB_BASE;
  e1f->count = info->other_count;

  e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
  e2f->probability = REG_BR_PROB_BASE;
  e2f->count = info->default_count;

  /* frequencies of the new BBs */
  bb1->frequency = EDGE_FREQUENCY (e01);
  bb2->frequency = EDGE_FREQUENCY (e02);
  bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);

  /* Tidy blocks that have become unreachable.  */
  prune_bbs (bbd, info->final_bb);

  /* Fixup the PHI nodes in bbF.  */
  fix_phi_nodes (e1f, e2f, bbf, info);

  /* Fix the dominator tree, if it is available.  */
  if (dom_info_available_p (CDI_DOMINATORS))
    {
      VEC (basic_block, heap) *bbs_to_fix_dom;

      set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
      set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
      if (! get_immediate_dominator(CDI_DOMINATORS, bbf))
	/* If bbD was the immediate dominator ...  */
	set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);

      bbs_to_fix_dom = VEC_alloc (basic_block, heap, 4);
      VEC_quick_push (basic_block, bbs_to_fix_dom, bb0);
      VEC_quick_push (basic_block, bbs_to_fix_dom, bb1);
      VEC_quick_push (basic_block, bbs_to_fix_dom, bb2);
      VEC_quick_push (basic_block, bbs_to_fix_dom, bbf);

      iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
      VEC_free (basic_block, heap, bbs_to_fix_dom);
    }
}

/* The following function is invoked on every switch statement (the current one
   is given in SWTCH) and runs the individual phases of switch conversion on it
   one after another until one fails or the conversion is completed.
   Returns NULL on success, or a pointer to a string with the reason why the
   conversion failed.  */

static const char *
process_switch (gimple swtch)
{
  struct switch_conv_info info;

  /* Degenerate case with only a default label should never happen.  */
  gcc_checking_assert (gimple_switch_num_labels (swtch) > 1);

  collect_switch_conv_info (swtch, &info);

  /* No error markers should reach here (they should be filtered out
     during gimplification).  */
  gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);

  /* If there is no common successor, we cannot do the transformation.  */
  if (! info.final_bb)
    return "no common successor to all case label target blocks found";

  if (info.uniq <= 2)
    {
      if (expand_switch_using_bit_tests_p (info.index_expr, info.range_size,
					   info.uniq, info.count))
	return "expanding as bit test is preferable";
    }

  /* Check the case label values are within reasonable range:  */
  if (!check_range (&info))
    {
      gcc_assert (info.reason);
      return info.reason;
    }

  /* For all the cases, see whether they are empty, the assignments they
     represent constant and so on...  */
  if (! check_all_empty_except_final (&info))
    {
      gcc_assert (info.reason);
      return info.reason;
    }
  if (!check_final_bb (&info))
    {
      gcc_assert (info.reason);
      return info.reason;
    }

  /* At this point all checks have passed and we can proceed with the
     transformation.  */

  create_temp_arrays (&info);
  gather_default_values (gimple_switch_label (swtch, 0), &info);
  build_constructors (swtch, &info);

  build_arrays (swtch, &info); /* Build the static arrays and assignments.   */
  gen_inbound_check (swtch, &info);	/* Build the bounds check.  */

  /* Cleanup:  */
  free_temp_arrays (&info);
  return NULL;
}

/* The main function of the pass scans statements for switches and invokes
   process_switch on them.  */

static unsigned int
do_switchconv (void)
{
  basic_block bb;

  FOR_EACH_BB (bb)
  {
    const char *failure_reason;
    gimple stmt = last_stmt (bb);
    if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
      {
	if (dump_file)
	  {
	    expanded_location loc = expand_location (gimple_location (stmt));

	    fprintf (dump_file, "beginning to process the following "
		     "SWITCH statement (%s:%d) : ------- \n",
		     loc.file, loc.line);
	    print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	    putc ('\n', dump_file);
	  }

	failure_reason = process_switch (stmt);
	if (! failure_reason)
	  {
	    if (dump_file)
	      {
		fputs ("Switch converted\n", dump_file);
		fputs ("--------------------------------\n", dump_file);
	      }
	  }
	else
	  {
	    if (dump_file)
	      {
		fputs ("Bailing out - ", dump_file);
		fputs (failure_reason, dump_file);
		fputs ("\n--------------------------------\n", dump_file);
	      }
	  }
      }
  }

  return 0;
}

/* The pass gate. */

static bool
switchconv_gate (void)
{
  return flag_tree_switch_conversion != 0;
}

struct gimple_opt_pass pass_convert_switch =
{
 {
  GIMPLE_PASS,
  "switchconv",				/* name */
  switchconv_gate,			/* gate */
  do_switchconv,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_SWITCH_CONVERSION,		/* tv_id */
  PROP_cfg | PROP_ssa,	                /* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_update_ssa 
  | TODO_ggc_collect | TODO_verify_ssa  /* todo_flags_finish */
 }
};