summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-phiopt.c
blob: 87aa28cbffff0dd9a4e1f663308767c5d220c6c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
/* Optimization of PHI nodes by converting them into straightline code.
   Copyright (C) 2004-2013 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "hash-table.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "flags.h"
#include "tm_p.h"
#include "basic-block.h"
#include "gimple.h"
#include "gimple-ssa.h"
#include "tree-cfg.h"
#include "tree-phinodes.h"
#include "ssa-iterators.h"
#include "tree-ssanames.h"
#include "tree-dfa.h"
#include "tree-pass.h"
#include "langhooks.h"
#include "pointer-set.h"
#include "domwalk.h"
#include "cfgloop.h"
#include "tree-data-ref.h"
#include "gimple-pretty-print.h"
#include "insn-config.h"
#include "expr.h"
#include "optabs.h"
#include "tree-scalar-evolution.h"

#ifndef HAVE_conditional_move
#define HAVE_conditional_move (0)
#endif

static unsigned int tree_ssa_phiopt (void);
static unsigned int tree_ssa_phiopt_worker (bool, bool);
static bool conditional_replacement (basic_block, basic_block,
				     edge, edge, gimple, tree, tree);
static int value_replacement (basic_block, basic_block,
			      edge, edge, gimple, tree, tree);
static bool minmax_replacement (basic_block, basic_block,
				edge, edge, gimple, tree, tree);
static bool abs_replacement (basic_block, basic_block,
			     edge, edge, gimple, tree, tree);
static bool cond_store_replacement (basic_block, basic_block, edge, edge,
				    struct pointer_set_t *);
static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
static struct pointer_set_t * get_non_trapping (void);
static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
static void hoist_adjacent_loads (basic_block, basic_block,
				  basic_block, basic_block);
static bool gate_hoist_loads (void);

/* This pass tries to replaces an if-then-else block with an
   assignment.  We have four kinds of transformations.  Some of these
   transformations are also performed by the ifcvt RTL optimizer.

   Conditional Replacement
   -----------------------

   This transformation, implemented in conditional_replacement,
   replaces

     bb0:
      if (cond) goto bb2; else goto bb1;
     bb1:
     bb2:
      x = PHI <0 (bb1), 1 (bb0), ...>;

   with

     bb0:
      x' = cond;
      goto bb2;
     bb2:
      x = PHI <x' (bb0), ...>;

   We remove bb1 as it becomes unreachable.  This occurs often due to
   gimplification of conditionals.

   Value Replacement
   -----------------

   This transformation, implemented in value_replacement, replaces

     bb0:
       if (a != b) goto bb2; else goto bb1;
     bb1:
     bb2:
       x = PHI <a (bb1), b (bb0), ...>;

   with

     bb0:
     bb2:
       x = PHI <b (bb0), ...>;

   This opportunity can sometimes occur as a result of other
   optimizations.


   Another case caught by value replacement looks like this:

     bb0:
       t1 = a == CONST;
       t2 = b > c;
       t3 = t1 & t2;
       if (t3 != 0) goto bb1; else goto bb2;
     bb1:
     bb2:
       x = PHI (CONST, a)

   Gets replaced with:
     bb0:
     bb2:
       t1 = a == CONST;
       t2 = b > c;
       t3 = t1 & t2;
       x = a;

   ABS Replacement
   ---------------

   This transformation, implemented in abs_replacement, replaces

     bb0:
       if (a >= 0) goto bb2; else goto bb1;
     bb1:
       x = -a;
     bb2:
       x = PHI <x (bb1), a (bb0), ...>;

   with

     bb0:
       x' = ABS_EXPR< a >;
     bb2:
       x = PHI <x' (bb0), ...>;

   MIN/MAX Replacement
   -------------------

   This transformation, minmax_replacement replaces

     bb0:
       if (a <= b) goto bb2; else goto bb1;
     bb1:
     bb2:
       x = PHI <b (bb1), a (bb0), ...>;

   with

     bb0:
       x' = MIN_EXPR (a, b)
     bb2:
       x = PHI <x' (bb0), ...>;

   A similar transformation is done for MAX_EXPR.


   This pass also performs a fifth transformation of a slightly different
   flavor.

   Adjacent Load Hoisting
   ----------------------

   This transformation replaces

     bb0:
       if (...) goto bb2; else goto bb1;
     bb1:
       x1 = (<expr>).field1;
       goto bb3;
     bb2:
       x2 = (<expr>).field2;
     bb3:
       # x = PHI <x1, x2>;

   with

     bb0:
       x1 = (<expr>).field1;
       x2 = (<expr>).field2;
       if (...) goto bb2; else goto bb1;
     bb1:
       goto bb3;
     bb2:
     bb3:
       # x = PHI <x1, x2>;

   The purpose of this transformation is to enable generation of conditional
   move instructions such as Intel CMOVE or PowerPC ISEL.  Because one of
   the loads is speculative, the transformation is restricted to very
   specific cases to avoid introducing a page fault.  We are looking for
   the common idiom:

     if (...)
       x = y->left;
     else
       x = y->right;

   where left and right are typically adjacent pointers in a tree structure.  */

static unsigned int
tree_ssa_phiopt (void)
{
  return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
}

/* This pass tries to transform conditional stores into unconditional
   ones, enabling further simplifications with the simpler then and else
   blocks.  In particular it replaces this:

     bb0:
       if (cond) goto bb2; else goto bb1;
     bb1:
       *p = RHS;
     bb2:

   with

     bb0:
       if (cond) goto bb1; else goto bb2;
     bb1:
       condtmp' = *p;
     bb2:
       condtmp = PHI <RHS, condtmp'>
       *p = condtmp;

   This transformation can only be done under several constraints,
   documented below.  It also replaces:

     bb0:
       if (cond) goto bb2; else goto bb1;
     bb1:
       *p = RHS1;
       goto bb3;
     bb2:
       *p = RHS2;
     bb3:

   with

     bb0:
       if (cond) goto bb3; else goto bb1;
     bb1:
     bb3:
       condtmp = PHI <RHS1, RHS2>
       *p = condtmp;  */

static unsigned int
tree_ssa_cs_elim (void)
{
  unsigned todo;
  /* ???  We are not interested in loop related info, but the following
     will create it, ICEing as we didn't init loops with pre-headers.
     An interfacing issue of find_data_references_in_bb.  */
  loop_optimizer_init (LOOPS_NORMAL);
  scev_initialize ();
  todo = tree_ssa_phiopt_worker (true, false);
  scev_finalize ();
  loop_optimizer_finalize ();
  return todo;
}

/* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */

static gimple
single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
{
  gimple_stmt_iterator i;
  gimple phi = NULL;
  if (gimple_seq_singleton_p (seq))
    return gsi_stmt (gsi_start (seq));
  for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
    {
      gimple p = gsi_stmt (i);
      /* If the PHI arguments are equal then we can skip this PHI. */
      if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
				       gimple_phi_arg_def (p, e1->dest_idx)))
	continue;

      /* If we already have a PHI that has the two edge arguments are
	 different, then return it is not a singleton for these PHIs. */
      if (phi)
	return NULL;

      phi = p;
    }
  return phi;
}

/* The core routine of conditional store replacement and normal
   phi optimizations.  Both share much of the infrastructure in how
   to match applicable basic block patterns.  DO_STORE_ELIM is true
   when we want to do conditional store replacement, false otherwise.
   DO_HOIST_LOADS is true when we want to hoist adjacent loads out
   of diamond control flow patterns, false otherwise.  */
static unsigned int
tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
{
  basic_block bb;
  basic_block *bb_order;
  unsigned n, i;
  bool cfgchanged = false;
  struct pointer_set_t *nontrap = 0;

  if (do_store_elim)
    /* Calculate the set of non-trapping memory accesses.  */
    nontrap = get_non_trapping ();

  /* Search every basic block for COND_EXPR we may be able to optimize.

     We walk the blocks in order that guarantees that a block with
     a single predecessor is processed before the predecessor.
     This ensures that we collapse inner ifs before visiting the
     outer ones, and also that we do not try to visit a removed
     block.  */
  bb_order = single_pred_before_succ_order ();
  n = n_basic_blocks - NUM_FIXED_BLOCKS;

  for (i = 0; i < n; i++)
    {
      gimple cond_stmt, phi;
      basic_block bb1, bb2;
      edge e1, e2;
      tree arg0, arg1;

      bb = bb_order[i];

      cond_stmt = last_stmt (bb);
      /* Check to see if the last statement is a GIMPLE_COND.  */
      if (!cond_stmt
          || gimple_code (cond_stmt) != GIMPLE_COND)
        continue;

      e1 = EDGE_SUCC (bb, 0);
      bb1 = e1->dest;
      e2 = EDGE_SUCC (bb, 1);
      bb2 = e2->dest;

      /* We cannot do the optimization on abnormal edges.  */
      if ((e1->flags & EDGE_ABNORMAL) != 0
          || (e2->flags & EDGE_ABNORMAL) != 0)
       continue;

      /* If either bb1's succ or bb2 or bb2's succ is non NULL.  */
      if (EDGE_COUNT (bb1->succs) == 0
          || bb2 == NULL
	  || EDGE_COUNT (bb2->succs) == 0)
        continue;

      /* Find the bb which is the fall through to the other.  */
      if (EDGE_SUCC (bb1, 0)->dest == bb2)
        ;
      else if (EDGE_SUCC (bb2, 0)->dest == bb1)
        {
	  basic_block bb_tmp = bb1;
	  edge e_tmp = e1;
	  bb1 = bb2;
	  bb2 = bb_tmp;
	  e1 = e2;
	  e2 = e_tmp;
	}
      else if (do_store_elim
	       && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
	{
	  basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;

	  if (!single_succ_p (bb1)
	      || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
	      || !single_succ_p (bb2)
	      || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
	      || EDGE_COUNT (bb3->preds) != 2)
	    continue;
	  if (cond_if_else_store_replacement (bb1, bb2, bb3))
	    cfgchanged = true;
	  continue;
	}
      else if (do_hoist_loads
		 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
	{
	  basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;

	  if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
	      && single_succ_p (bb1)
	      && single_succ_p (bb2)
	      && single_pred_p (bb1)
	      && single_pred_p (bb2)
	      && EDGE_COUNT (bb->succs) == 2
	      && EDGE_COUNT (bb3->preds) == 2
	      /* If one edge or the other is dominant, a conditional move
		 is likely to perform worse than the well-predicted branch.  */
	      && !predictable_edge_p (EDGE_SUCC (bb, 0))
	      && !predictable_edge_p (EDGE_SUCC (bb, 1)))
	    hoist_adjacent_loads (bb, bb1, bb2, bb3);
	  continue;
	}
      else
	continue;

      e1 = EDGE_SUCC (bb1, 0);

      /* Make sure that bb1 is just a fall through.  */
      if (!single_succ_p (bb1)
	  || (e1->flags & EDGE_FALLTHRU) == 0)
        continue;

      /* Also make sure that bb1 only have one predecessor and that it
	 is bb.  */
      if (!single_pred_p (bb1)
          || single_pred (bb1) != bb)
	continue;

      if (do_store_elim)
	{
	  /* bb1 is the middle block, bb2 the join block, bb the split block,
	     e1 the fallthrough edge from bb1 to bb2.  We can't do the
	     optimization if the join block has more than two predecessors.  */
	  if (EDGE_COUNT (bb2->preds) > 2)
	    continue;
	  if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
	    cfgchanged = true;
	}
      else
	{
	  gimple_seq phis = phi_nodes (bb2);
	  gimple_stmt_iterator gsi;
	  bool candorest = true;

	  /* Value replacement can work with more than one PHI
	     so try that first. */
	  for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
	    {
	      phi = gsi_stmt (gsi);
	      arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
	      arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
	      if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
		{
		  candorest = false;
	          cfgchanged = true;
		  break;
		}
	    }

	  if (!candorest)
	    continue;

	  phi = single_non_singleton_phi_for_edges (phis, e1, e2);
	  if (!phi)
	    continue;

	  arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
	  arg1 = gimple_phi_arg_def (phi, e2->dest_idx);

	  /* Something is wrong if we cannot find the arguments in the PHI
	     node.  */
	  gcc_assert (arg0 != NULL && arg1 != NULL);

	  /* Do the replacement of conditional if it can be done.  */
	  if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
	    cfgchanged = true;
	  else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
	    cfgchanged = true;
	  else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
	    cfgchanged = true;
	}
    }

  free (bb_order);

  if (do_store_elim)
    pointer_set_destroy (nontrap);
  /* If the CFG has changed, we should cleanup the CFG.  */
  if (cfgchanged && do_store_elim)
    {
      /* In cond-store replacement we have added some loads on edges
         and new VOPS (as we moved the store, and created a load).  */
      gsi_commit_edge_inserts ();
      return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
    }
  else if (cfgchanged)
    return TODO_cleanup_cfg;
  return 0;
}

/* Replace PHI node element whose edge is E in block BB with variable NEW.
   Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
   is known to have two edges, one of which must reach BB).  */

static void
replace_phi_edge_with_variable (basic_block cond_block,
				edge e, gimple phi, tree new_tree)
{
  basic_block bb = gimple_bb (phi);
  basic_block block_to_remove;
  gimple_stmt_iterator gsi;

  /* Change the PHI argument to new.  */
  SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);

  /* Remove the empty basic block.  */
  if (EDGE_SUCC (cond_block, 0)->dest == bb)
    {
      EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
      EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
      EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
      EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;

      block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
    }
  else
    {
      EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
      EDGE_SUCC (cond_block, 1)->flags
	&= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
      EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
      EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;

      block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
    }
  delete_basic_block (block_to_remove);

  /* Eliminate the COND_EXPR at the end of COND_BLOCK.  */
  gsi = gsi_last_bb (cond_block);
  gsi_remove (&gsi, true);

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file,
	      "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
	      cond_block->index,
	      bb->index);
}

/*  The function conditional_replacement does the main work of doing the
    conditional replacement.  Return true if the replacement is done.
    Otherwise return false.
    BB is the basic block where the replacement is going to be done on.  ARG0
    is argument 0 from PHI.  Likewise for ARG1.  */

static bool
conditional_replacement (basic_block cond_bb, basic_block middle_bb,
			 edge e0, edge e1, gimple phi,
			 tree arg0, tree arg1)
{
  tree result;
  gimple stmt, new_stmt;
  tree cond;
  gimple_stmt_iterator gsi;
  edge true_edge, false_edge;
  tree new_var, new_var2;
  bool neg;

  /* FIXME: Gimplification of complex type is too hard for now.  */
  /* We aren't prepared to handle vectors either (and it is a question
     if it would be worthwhile anyway).  */
  if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
	|| POINTER_TYPE_P (TREE_TYPE (arg0)))
      || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
	   || POINTER_TYPE_P (TREE_TYPE (arg1))))
    return false;

  /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
     convert it to the conditional.  */
  if ((integer_zerop (arg0) && integer_onep (arg1))
      || (integer_zerop (arg1) && integer_onep (arg0)))
    neg = false;
  else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
	   || (integer_zerop (arg1) && integer_all_onesp (arg0)))
    neg = true;
  else
    return false;

  if (!empty_block_p (middle_bb))
    return false;

  /* At this point we know we have a GIMPLE_COND with two successors.
     One successor is BB, the other successor is an empty block which
     falls through into BB.

     There is a single PHI node at the join point (BB) and its arguments
     are constants (0, 1) or (0, -1).

     So, given the condition COND, and the two PHI arguments, we can
     rewrite this PHI into non-branching code:

       dest = (COND) or dest = COND'

     We use the condition as-is if the argument associated with the
     true edge has the value one or the argument associated with the
     false edge as the value zero.  Note that those conditions are not
     the same since only one of the outgoing edges from the GIMPLE_COND
     will directly reach BB and thus be associated with an argument.  */

  stmt = last_stmt (cond_bb);
  result = PHI_RESULT (phi);

  /* To handle special cases like floating point comparison, it is easier and
     less error-prone to build a tree and gimplify it on the fly though it is
     less efficient.  */
  cond = fold_build2_loc (gimple_location (stmt),
			  gimple_cond_code (stmt), boolean_type_node,
			  gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));

  /* We need to know which is the true edge and which is the false
     edge so that we know when to invert the condition below.  */
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
  if ((e0 == true_edge && integer_zerop (arg0))
      || (e0 == false_edge && !integer_zerop (arg0))
      || (e1 == true_edge && integer_zerop (arg1))
      || (e1 == false_edge && !integer_zerop (arg1)))
    cond = fold_build1_loc (gimple_location (stmt),
                            TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);

  if (neg)
    {
      cond = fold_convert_loc (gimple_location (stmt),
                               TREE_TYPE (result), cond);
      cond = fold_build1_loc (gimple_location (stmt),
                              NEGATE_EXPR, TREE_TYPE (cond), cond);
    }

  /* Insert our new statements at the end of conditional block before the
     COND_STMT.  */
  gsi = gsi_for_stmt (stmt);
  new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
				      GSI_SAME_STMT);

  if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
    {
      source_location locus_0, locus_1;

      new_var2 = make_ssa_name (TREE_TYPE (result), NULL);
      new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
					       new_var, NULL);
      gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
      new_var = new_var2;

      /* Set the locus to the first argument, unless is doesn't have one.  */
      locus_0 = gimple_phi_arg_location (phi, 0);
      locus_1 = gimple_phi_arg_location (phi, 1);
      if (locus_0 == UNKNOWN_LOCATION)
        locus_0 = locus_1;
      gimple_set_location (new_stmt, locus_0);
    }

  replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);

  /* Note that we optimized this PHI.  */
  return true;
}

/* Update *ARG which is defined in STMT so that it contains the
   computed value if that seems profitable.  Return true if the
   statement is made dead by that rewriting.  */

static bool
jump_function_from_stmt (tree *arg, gimple stmt)
{
  enum tree_code code = gimple_assign_rhs_code (stmt);
  if (code == ADDR_EXPR)
    {
      /* For arg = &p->i transform it to p, if possible.  */
      tree rhs1 = gimple_assign_rhs1 (stmt);
      HOST_WIDE_INT offset;
      tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
						&offset);
      if (tem
	  && TREE_CODE (tem) == MEM_REF
	  && (mem_ref_offset (tem) + double_int::from_shwi (offset)).is_zero ())
	{
	  *arg = TREE_OPERAND (tem, 0);
	  return true;
	}
    }
  /* TODO: Much like IPA-CP jump-functions we want to handle constant
     additions symbolically here, and we'd need to update the comparison
     code that compares the arg + cst tuples in our caller.  For now the
     code above exactly handles the VEC_BASE pattern from vec.h.  */
  return false;
}

/* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
   of the form SSA_NAME NE 0.

   If RHS is fed by a simple EQ_EXPR comparison of two values, see if
   the two input values of the EQ_EXPR match arg0 and arg1.

   If so update *code and return TRUE.  Otherwise return FALSE.  */

static bool
rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
				  enum tree_code *code, const_tree rhs)
{
  /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
     statement.  */
  if (TREE_CODE (rhs) == SSA_NAME)
    {
      gimple def1 = SSA_NAME_DEF_STMT (rhs);

      /* Verify the defining statement has an EQ_EXPR on the RHS.  */
      if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
	{
	  /* Finally verify the source operands of the EQ_EXPR are equal
	     to arg0 and arg1.  */
	  tree op0 = gimple_assign_rhs1 (def1);
	  tree op1 = gimple_assign_rhs2 (def1);
	  if ((operand_equal_for_phi_arg_p (arg0, op0)
	       && operand_equal_for_phi_arg_p (arg1, op1))
	      || (operand_equal_for_phi_arg_p (arg0, op1)
               && operand_equal_for_phi_arg_p (arg1, op0)))
	    {
	      /* We will perform the optimization.  */
	      *code = gimple_assign_rhs_code (def1);
	      return true;
	    }
	}
    }
  return false;
}

/* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND. 

   Also return TRUE if arg0/arg1 are equal to the source arguments of a
   an EQ comparison feeding a BIT_AND_EXPR which feeds COND. 

   Return FALSE otherwise.  */

static bool
operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
				     enum tree_code *code, gimple cond)
{
  gimple def;
  tree lhs = gimple_cond_lhs (cond);
  tree rhs = gimple_cond_rhs (cond);

  if ((operand_equal_for_phi_arg_p (arg0, lhs)
       && operand_equal_for_phi_arg_p (arg1, rhs))
      || (operand_equal_for_phi_arg_p (arg1, lhs)
	  && operand_equal_for_phi_arg_p (arg0, rhs)))
    return true;

  /* Now handle more complex case where we have an EQ comparison
     which feeds a BIT_AND_EXPR which feeds COND.

     First verify that COND is of the form SSA_NAME NE 0.  */
  if (*code != NE_EXPR || !integer_zerop (rhs)
      || TREE_CODE (lhs) != SSA_NAME)
    return false;

  /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR.  */
  def = SSA_NAME_DEF_STMT (lhs);
  if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
    return false;

  /* Now verify arg0/arg1 correspond to the source arguments of an 
     EQ comparison feeding the BIT_AND_EXPR.  */
     
  tree tmp = gimple_assign_rhs1 (def);
  if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
    return true;

  tmp = gimple_assign_rhs2 (def);
  if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
    return true;

  return false;
}

/*  The function value_replacement does the main work of doing the value
    replacement.  Return non-zero if the replacement is done.  Otherwise return
    0.  If we remove the middle basic block, return 2.
    BB is the basic block where the replacement is going to be done on.  ARG0
    is argument 0 from the PHI.  Likewise for ARG1.  */

static int
value_replacement (basic_block cond_bb, basic_block middle_bb,
		   edge e0, edge e1, gimple phi,
		   tree arg0, tree arg1)
{
  gimple_stmt_iterator gsi;
  gimple cond;
  edge true_edge, false_edge;
  enum tree_code code;
  bool emtpy_or_with_defined_p = true;

  /* If the type says honor signed zeros we cannot do this
     optimization.  */
  if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
    return 0;

  /* If there is a statement in MIDDLE_BB that defines one of the PHI
     arguments, then adjust arg0 or arg1.  */
  gsi = gsi_after_labels (middle_bb);
  if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
    gsi_next_nondebug (&gsi);
  while (!gsi_end_p (gsi))
    {
      gimple stmt = gsi_stmt (gsi);
      tree lhs;
      gsi_next_nondebug (&gsi);
      if (!is_gimple_assign (stmt))
	{
	  emtpy_or_with_defined_p = false;
	  continue;
	}
      /* Now try to adjust arg0 or arg1 according to the computation
	 in the statement.  */
      lhs = gimple_assign_lhs (stmt);
      if (!(lhs == arg0
	     && jump_function_from_stmt (&arg0, stmt))
	    || (lhs == arg1
		&& jump_function_from_stmt (&arg1, stmt)))
	emtpy_or_with_defined_p = false;
    }

  cond = last_stmt (cond_bb);
  code = gimple_cond_code (cond);

  /* This transformation is only valid for equality comparisons.  */
  if (code != NE_EXPR && code != EQ_EXPR)
    return 0;

  /* We need to know which is the true edge and which is the false
      edge so that we know if have abs or negative abs.  */
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);

  /* At this point we know we have a COND_EXPR with two successors.
     One successor is BB, the other successor is an empty block which
     falls through into BB.

     The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.

     There is a single PHI node at the join point (BB) with two arguments.

     We now need to verify that the two arguments in the PHI node match
     the two arguments to the equality comparison.  */

  if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
    {
      edge e;
      tree arg;

      /* For NE_EXPR, we want to build an assignment result = arg where
	 arg is the PHI argument associated with the true edge.  For
	 EQ_EXPR we want the PHI argument associated with the false edge.  */
      e = (code == NE_EXPR ? true_edge : false_edge);

      /* Unfortunately, E may not reach BB (it may instead have gone to
	 OTHER_BLOCK).  If that is the case, then we want the single outgoing
	 edge from OTHER_BLOCK which reaches BB and represents the desired
	 path from COND_BLOCK.  */
      if (e->dest == middle_bb)
	e = single_succ_edge (e->dest);

      /* Now we know the incoming edge to BB that has the argument for the
	 RHS of our new assignment statement.  */
      if (e0 == e)
	arg = arg0;
      else
	arg = arg1;

      /* If the middle basic block was empty or is defining the
	 PHI arguments and this is a single phi where the args are different
	 for the edges e0 and e1 then we can remove the middle basic block. */
      if (emtpy_or_with_defined_p
	  && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
							    e0, e1))
	{
          replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
	  /* Note that we optimized this PHI.  */
	  return 2;
	}
      else
	{
	  /* Replace the PHI arguments with arg. */
	  SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
	  SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "PHI ");
	      print_generic_expr (dump_file, gimple_phi_result (phi), 0);
	      fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
		       cond_bb->index);
	      print_generic_expr (dump_file, arg, 0);
	      fprintf (dump_file, ".\n");
            }
          return 1;
	}

    }
  return 0;
}

/*  The function minmax_replacement does the main work of doing the minmax
    replacement.  Return true if the replacement is done.  Otherwise return
    false.
    BB is the basic block where the replacement is going to be done on.  ARG0
    is argument 0 from the PHI.  Likewise for ARG1.  */

static bool
minmax_replacement (basic_block cond_bb, basic_block middle_bb,
		    edge e0, edge e1, gimple phi,
		    tree arg0, tree arg1)
{
  tree result, type;
  gimple cond, new_stmt;
  edge true_edge, false_edge;
  enum tree_code cmp, minmax, ass_code;
  tree smaller, larger, arg_true, arg_false;
  gimple_stmt_iterator gsi, gsi_from;

  type = TREE_TYPE (PHI_RESULT (phi));

  /* The optimization may be unsafe due to NaNs.  */
  if (HONOR_NANS (TYPE_MODE (type)))
    return false;

  cond = last_stmt (cond_bb);
  cmp = gimple_cond_code (cond);

  /* This transformation is only valid for order comparisons.  Record which
     operand is smaller/larger if the result of the comparison is true.  */
  if (cmp == LT_EXPR || cmp == LE_EXPR)
    {
      smaller = gimple_cond_lhs (cond);
      larger = gimple_cond_rhs (cond);
    }
  else if (cmp == GT_EXPR || cmp == GE_EXPR)
    {
      smaller = gimple_cond_rhs (cond);
      larger = gimple_cond_lhs (cond);
    }
  else
    return false;

  /* We need to know which is the true edge and which is the false
      edge so that we know if have abs or negative abs.  */
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);

  /* Forward the edges over the middle basic block.  */
  if (true_edge->dest == middle_bb)
    true_edge = EDGE_SUCC (true_edge->dest, 0);
  if (false_edge->dest == middle_bb)
    false_edge = EDGE_SUCC (false_edge->dest, 0);

  if (true_edge == e0)
    {
      gcc_assert (false_edge == e1);
      arg_true = arg0;
      arg_false = arg1;
    }
  else
    {
      gcc_assert (false_edge == e0);
      gcc_assert (true_edge == e1);
      arg_true = arg1;
      arg_false = arg0;
    }

  if (empty_block_p (middle_bb))
    {
      if (operand_equal_for_phi_arg_p (arg_true, smaller)
	  && operand_equal_for_phi_arg_p (arg_false, larger))
	{
	  /* Case

	     if (smaller < larger)
	     rslt = smaller;
	     else
	     rslt = larger;  */
	  minmax = MIN_EXPR;
	}
      else if (operand_equal_for_phi_arg_p (arg_false, smaller)
	       && operand_equal_for_phi_arg_p (arg_true, larger))
	minmax = MAX_EXPR;
      else
	return false;
    }
  else
    {
      /* Recognize the following case, assuming d <= u:

	 if (a <= u)
	   b = MAX (a, d);
	 x = PHI <b, u>

	 This is equivalent to

	 b = MAX (a, d);
	 x = MIN (b, u);  */

      gimple assign = last_and_only_stmt (middle_bb);
      tree lhs, op0, op1, bound;

      if (!assign
	  || gimple_code (assign) != GIMPLE_ASSIGN)
	return false;

      lhs = gimple_assign_lhs (assign);
      ass_code = gimple_assign_rhs_code (assign);
      if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
	return false;
      op0 = gimple_assign_rhs1 (assign);
      op1 = gimple_assign_rhs2 (assign);

      if (true_edge->src == middle_bb)
	{
	  /* We got here if the condition is true, i.e., SMALLER < LARGER.  */
	  if (!operand_equal_for_phi_arg_p (lhs, arg_true))
	    return false;

	  if (operand_equal_for_phi_arg_p (arg_false, larger))
	    {
	      /* Case

		 if (smaller < larger)
		   {
		     r' = MAX_EXPR (smaller, bound)
		   }
		 r = PHI <r', larger>  --> to be turned to MIN_EXPR.  */
	      if (ass_code != MAX_EXPR)
		return false;

	      minmax = MIN_EXPR;
	      if (operand_equal_for_phi_arg_p (op0, smaller))
		bound = op1;
	      else if (operand_equal_for_phi_arg_p (op1, smaller))
		bound = op0;
	      else
		return false;

	      /* We need BOUND <= LARGER.  */
	      if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
						  bound, larger)))
		return false;
	    }
	  else if (operand_equal_for_phi_arg_p (arg_false, smaller))
	    {
	      /* Case

		 if (smaller < larger)
		   {
		     r' = MIN_EXPR (larger, bound)
		   }
		 r = PHI <r', smaller>  --> to be turned to MAX_EXPR.  */
	      if (ass_code != MIN_EXPR)
		return false;

	      minmax = MAX_EXPR;
	      if (operand_equal_for_phi_arg_p (op0, larger))
		bound = op1;
	      else if (operand_equal_for_phi_arg_p (op1, larger))
		bound = op0;
	      else
		return false;

	      /* We need BOUND >= SMALLER.  */
	      if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
						  bound, smaller)))
		return false;
	    }
	  else
	    return false;
	}
      else
	{
	  /* We got here if the condition is false, i.e., SMALLER > LARGER.  */
	  if (!operand_equal_for_phi_arg_p (lhs, arg_false))
	    return false;

	  if (operand_equal_for_phi_arg_p (arg_true, larger))
	    {
	      /* Case

		 if (smaller > larger)
		   {
		     r' = MIN_EXPR (smaller, bound)
		   }
		 r = PHI <r', larger>  --> to be turned to MAX_EXPR.  */
	      if (ass_code != MIN_EXPR)
		return false;

	      minmax = MAX_EXPR;
	      if (operand_equal_for_phi_arg_p (op0, smaller))
		bound = op1;
	      else if (operand_equal_for_phi_arg_p (op1, smaller))
		bound = op0;
	      else
		return false;

	      /* We need BOUND >= LARGER.  */
	      if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
						  bound, larger)))
		return false;
	    }
	  else if (operand_equal_for_phi_arg_p (arg_true, smaller))
	    {
	      /* Case

		 if (smaller > larger)
		   {
		     r' = MAX_EXPR (larger, bound)
		   }
		 r = PHI <r', smaller>  --> to be turned to MIN_EXPR.  */
	      if (ass_code != MAX_EXPR)
		return false;

	      minmax = MIN_EXPR;
	      if (operand_equal_for_phi_arg_p (op0, larger))
		bound = op1;
	      else if (operand_equal_for_phi_arg_p (op1, larger))
		bound = op0;
	      else
		return false;

	      /* We need BOUND <= SMALLER.  */
	      if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
						  bound, smaller)))
		return false;
	    }
	  else
	    return false;
	}

      /* Move the statement from the middle block.  */
      gsi = gsi_last_bb (cond_bb);
      gsi_from = gsi_last_nondebug_bb (middle_bb);
      gsi_move_before (&gsi_from, &gsi);
    }

  /* Emit the statement to compute min/max.  */
  result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
  new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
  gsi = gsi_last_bb (cond_bb);
  gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);

  replace_phi_edge_with_variable (cond_bb, e1, phi, result);
  return true;
}

/*  The function absolute_replacement does the main work of doing the absolute
    replacement.  Return true if the replacement is done.  Otherwise return
    false.
    bb is the basic block where the replacement is going to be done on.  arg0
    is argument 0 from the phi.  Likewise for arg1.  */

static bool
abs_replacement (basic_block cond_bb, basic_block middle_bb,
		 edge e0 ATTRIBUTE_UNUSED, edge e1,
		 gimple phi, tree arg0, tree arg1)
{
  tree result;
  gimple new_stmt, cond;
  gimple_stmt_iterator gsi;
  edge true_edge, false_edge;
  gimple assign;
  edge e;
  tree rhs, lhs;
  bool negate;
  enum tree_code cond_code;

  /* If the type says honor signed zeros we cannot do this
     optimization.  */
  if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
    return false;

  /* OTHER_BLOCK must have only one executable statement which must have the
     form arg0 = -arg1 or arg1 = -arg0.  */

  assign = last_and_only_stmt (middle_bb);
  /* If we did not find the proper negation assignment, then we can not
     optimize.  */
  if (assign == NULL)
    return false;

  /* If we got here, then we have found the only executable statement
     in OTHER_BLOCK.  If it is anything other than arg = -arg1 or
     arg1 = -arg0, then we can not optimize.  */
  if (gimple_code (assign) != GIMPLE_ASSIGN)
    return false;

  lhs = gimple_assign_lhs (assign);

  if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
    return false;

  rhs = gimple_assign_rhs1 (assign);

  /* The assignment has to be arg0 = -arg1 or arg1 = -arg0.  */
  if (!(lhs == arg0 && rhs == arg1)
      && !(lhs == arg1 && rhs == arg0))
    return false;

  cond = last_stmt (cond_bb);
  result = PHI_RESULT (phi);

  /* Only relationals comparing arg[01] against zero are interesting.  */
  cond_code = gimple_cond_code (cond);
  if (cond_code != GT_EXPR && cond_code != GE_EXPR
      && cond_code != LT_EXPR && cond_code != LE_EXPR)
    return false;

  /* Make sure the conditional is arg[01] OP y.  */
  if (gimple_cond_lhs (cond) != rhs)
    return false;

  if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
	       ? real_zerop (gimple_cond_rhs (cond))
	       : integer_zerop (gimple_cond_rhs (cond)))
    ;
  else
    return false;

  /* We need to know which is the true edge and which is the false
     edge so that we know if have abs or negative abs.  */
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);

  /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
     will need to negate the result.  Similarly for LT_EXPR/LE_EXPR if
     the false edge goes to OTHER_BLOCK.  */
  if (cond_code == GT_EXPR || cond_code == GE_EXPR)
    e = true_edge;
  else
    e = false_edge;

  if (e->dest == middle_bb)
    negate = true;
  else
    negate = false;

  result = duplicate_ssa_name (result, NULL);

  if (negate)
    lhs = make_ssa_name (TREE_TYPE (result), NULL);
  else
    lhs = result;

  /* Build the modify expression with abs expression.  */
  new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);

  gsi = gsi_last_bb (cond_bb);
  gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);

  if (negate)
    {
      /* Get the right GSI.  We want to insert after the recently
	 added ABS_EXPR statement (which we know is the first statement
	 in the block.  */
      new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);

      gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
    }

  replace_phi_edge_with_variable (cond_bb, e1, phi, result);

  /* Note that we optimized this PHI.  */
  return true;
}

/* Auxiliary functions to determine the set of memory accesses which
   can't trap because they are preceded by accesses to the same memory
   portion.  We do that for MEM_REFs, so we only need to track
   the SSA_NAME of the pointer indirectly referenced.  The algorithm
   simply is a walk over all instructions in dominator order.  When
   we see an MEM_REF we determine if we've already seen a same
   ref anywhere up to the root of the dominator tree.  If we do the
   current access can't trap.  If we don't see any dominating access
   the current access might trap, but might also make later accesses
   non-trapping, so we remember it.  We need to be careful with loads
   or stores, for instance a load might not trap, while a store would,
   so if we see a dominating read access this doesn't mean that a later
   write access would not trap.  Hence we also need to differentiate the
   type of access(es) seen.

   ??? We currently are very conservative and assume that a load might
   trap even if a store doesn't (write-only memory).  This probably is
   overly conservative.  */

/* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
   through it was seen, which would constitute a no-trap region for
   same accesses.  */
struct name_to_bb
{
  unsigned int ssa_name_ver;
  unsigned int phase;
  bool store;
  HOST_WIDE_INT offset, size;
  basic_block bb;
};

/* Hashtable helpers.  */

struct ssa_names_hasher : typed_free_remove <name_to_bb>
{
  typedef name_to_bb value_type;
  typedef name_to_bb compare_type;
  static inline hashval_t hash (const value_type *);
  static inline bool equal (const value_type *, const compare_type *);
};

/* Used for quick clearing of the hash-table when we see calls.
   Hash entries with phase < nt_call_phase are invalid.  */
static unsigned int nt_call_phase;

/* The hash function.  */

inline hashval_t
ssa_names_hasher::hash (const value_type *n)
{
  return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
         ^ (n->offset << 6) ^ (n->size << 3);
}

/* The equality function of *P1 and *P2.  */

inline bool
ssa_names_hasher::equal (const value_type *n1, const compare_type *n2)
{
  return n1->ssa_name_ver == n2->ssa_name_ver
         && n1->store == n2->store
         && n1->offset == n2->offset
         && n1->size == n2->size;
}

/* The hash table for remembering what we've seen.  */
static hash_table <ssa_names_hasher> seen_ssa_names;

/* We see the expression EXP in basic block BB.  If it's an interesting
   expression (an MEM_REF through an SSA_NAME) possibly insert the
   expression into the set NONTRAP or the hash table of seen expressions.
   STORE is true if this expression is on the LHS, otherwise it's on
   the RHS.  */
static void
add_or_mark_expr (basic_block bb, tree exp,
		  struct pointer_set_t *nontrap, bool store)
{
  HOST_WIDE_INT size;

  if (TREE_CODE (exp) == MEM_REF
      && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
      && host_integerp (TREE_OPERAND (exp, 1), 0)
      && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
    {
      tree name = TREE_OPERAND (exp, 0);
      struct name_to_bb map;
      name_to_bb **slot;
      struct name_to_bb *n2bb;
      basic_block found_bb = 0;

      /* Try to find the last seen MEM_REF through the same
         SSA_NAME, which can trap.  */
      map.ssa_name_ver = SSA_NAME_VERSION (name);
      map.phase = 0;
      map.bb = 0;
      map.store = store;
      map.offset = tree_low_cst (TREE_OPERAND (exp, 1), 0);
      map.size = size;

      slot = seen_ssa_names.find_slot (&map, INSERT);
      n2bb = *slot;
      if (n2bb && n2bb->phase >= nt_call_phase)
        found_bb = n2bb->bb;

      /* If we've found a trapping MEM_REF, _and_ it dominates EXP
         (it's in a basic block on the path from us to the dominator root)
	 then we can't trap.  */
      if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
	{
	  pointer_set_insert (nontrap, exp);
	}
      else
        {
	  /* EXP might trap, so insert it into the hash table.  */
	  if (n2bb)
	    {
	      n2bb->phase = nt_call_phase;
	      n2bb->bb = bb;
	    }
	  else
	    {
	      n2bb = XNEW (struct name_to_bb);
	      n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
	      n2bb->phase = nt_call_phase;
	      n2bb->bb = bb;
	      n2bb->store = store;
	      n2bb->offset = map.offset;
	      n2bb->size = size;
	      *slot = n2bb;
	    }
	}
    }
}

class nontrapping_dom_walker : public dom_walker
{
public:
  nontrapping_dom_walker (cdi_direction direction, pointer_set_t *ps)
    : dom_walker (direction), m_nontrapping (ps) {}

  virtual void before_dom_children (basic_block);
  virtual void after_dom_children (basic_block);

private:
  pointer_set_t *m_nontrapping;
};

/* Called by walk_dominator_tree, when entering the block BB.  */
void
nontrapping_dom_walker::before_dom_children (basic_block bb)
{
  edge e;
  edge_iterator ei;
  gimple_stmt_iterator gsi;

  /* If we haven't seen all our predecessors, clear the hash-table.  */
  FOR_EACH_EDGE (e, ei, bb->preds)
    if ((((size_t)e->src->aux) & 2) == 0)
      {
	nt_call_phase++;
	break;
      }

  /* Mark this BB as being on the path to dominator root and as visited.  */
  bb->aux = (void*)(1 | 2);

  /* And walk the statements in order.  */
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple stmt = gsi_stmt (gsi);

      if (is_gimple_call (stmt) && !nonfreeing_call_p (stmt))
	nt_call_phase++;
      else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
	{
	  add_or_mark_expr (bb, gimple_assign_lhs (stmt), m_nontrapping, true);
	  add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), m_nontrapping, false);
	}
    }
}

/* Called by walk_dominator_tree, when basic block BB is exited.  */
void
nontrapping_dom_walker::after_dom_children (basic_block bb)
{
  /* This BB isn't on the path to dominator root anymore.  */
  bb->aux = (void*)2;
}

/* This is the entry point of gathering non trapping memory accesses.
   It will do a dominator walk over the whole function, and it will
   make use of the bb->aux pointers.  It returns a set of trees
   (the MEM_REFs itself) which can't trap.  */
static struct pointer_set_t *
get_non_trapping (void)
{
  nt_call_phase = 0;
  pointer_set_t *nontrap = pointer_set_create ();
  seen_ssa_names.create (128);
  /* We're going to do a dominator walk, so ensure that we have
     dominance information.  */
  calculate_dominance_info (CDI_DOMINATORS);

  nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
    .walk (cfun->cfg->x_entry_block_ptr);

  seen_ssa_names.dispose ();

  clear_aux_for_blocks ();
  return nontrap;
}

/* Do the main work of conditional store replacement.  We already know
   that the recognized pattern looks like so:

   split:
     if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
   MIDDLE_BB:
     something
     fallthrough (edge E0)
   JOIN_BB:
     some more

   We check that MIDDLE_BB contains only one store, that that store
   doesn't trap (not via NOTRAP, but via checking if an access to the same
   memory location dominates us) and that the store has a "simple" RHS.  */

static bool
cond_store_replacement (basic_block middle_bb, basic_block join_bb,
			edge e0, edge e1, struct pointer_set_t *nontrap)
{
  gimple assign = last_and_only_stmt (middle_bb);
  tree lhs, rhs, name, name2;
  gimple newphi, new_stmt;
  gimple_stmt_iterator gsi;
  source_location locus;

  /* Check if middle_bb contains of only one store.  */
  if (!assign
      || !gimple_assign_single_p (assign)
      || gimple_has_volatile_ops (assign))
    return false;

  locus = gimple_location (assign);
  lhs = gimple_assign_lhs (assign);
  rhs = gimple_assign_rhs1 (assign);
  if (TREE_CODE (lhs) != MEM_REF
      || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
      || !is_gimple_reg_type (TREE_TYPE (lhs)))
    return false;

  /* Prove that we can move the store down.  We could also check
     TREE_THIS_NOTRAP here, but in that case we also could move stores,
     whose value is not available readily, which we want to avoid.  */
  if (!pointer_set_contains (nontrap, lhs))
    return false;

  /* Now we've checked the constraints, so do the transformation:
     1) Remove the single store.  */
  gsi = gsi_for_stmt (assign);
  unlink_stmt_vdef (assign);
  gsi_remove (&gsi, true);
  release_defs (assign);

  /* 2) Insert a load from the memory of the store to the temporary
        on the edge which did not contain the store.  */
  lhs = unshare_expr (lhs);
  name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
  new_stmt = gimple_build_assign (name, lhs);
  gimple_set_location (new_stmt, locus);
  gsi_insert_on_edge (e1, new_stmt);

  /* 3) Create a PHI node at the join block, with one argument
        holding the old RHS, and the other holding the temporary
        where we stored the old memory contents.  */
  name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
  newphi = create_phi_node (name2, join_bb);
  add_phi_arg (newphi, rhs, e0, locus);
  add_phi_arg (newphi, name, e1, locus);

  lhs = unshare_expr (lhs);
  new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));

  /* 4) Insert that PHI node.  */
  gsi = gsi_after_labels (join_bb);
  if (gsi_end_p (gsi))
    {
      gsi = gsi_last_bb (join_bb);
      gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
    }
  else
    gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);

  return true;
}

/* Do the main work of conditional store replacement.  */

static bool
cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
				  basic_block join_bb, gimple then_assign,
				  gimple else_assign)
{
  tree lhs_base, lhs, then_rhs, else_rhs, name;
  source_location then_locus, else_locus;
  gimple_stmt_iterator gsi;
  gimple newphi, new_stmt;

  if (then_assign == NULL
      || !gimple_assign_single_p (then_assign)
      || gimple_clobber_p (then_assign)
      || gimple_has_volatile_ops (then_assign)
      || else_assign == NULL
      || !gimple_assign_single_p (else_assign)
      || gimple_clobber_p (else_assign)
      || gimple_has_volatile_ops (else_assign))
    return false;

  lhs = gimple_assign_lhs (then_assign);
  if (!is_gimple_reg_type (TREE_TYPE (lhs))
      || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
    return false;

  lhs_base = get_base_address (lhs);
  if (lhs_base == NULL_TREE
      || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
    return false;

  then_rhs = gimple_assign_rhs1 (then_assign);
  else_rhs = gimple_assign_rhs1 (else_assign);
  then_locus = gimple_location (then_assign);
  else_locus = gimple_location (else_assign);

  /* Now we've checked the constraints, so do the transformation:
     1) Remove the stores.  */
  gsi = gsi_for_stmt (then_assign);
  unlink_stmt_vdef (then_assign);
  gsi_remove (&gsi, true);
  release_defs (then_assign);

  gsi = gsi_for_stmt (else_assign);
  unlink_stmt_vdef (else_assign);
  gsi_remove (&gsi, true);
  release_defs (else_assign);

  /* 2) Create a PHI node at the join block, with one argument
	holding the old RHS, and the other holding the temporary
	where we stored the old memory contents.  */
  name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
  newphi = create_phi_node (name, join_bb);
  add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
  add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);

  new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));

  /* 3) Insert that PHI node.  */
  gsi = gsi_after_labels (join_bb);
  if (gsi_end_p (gsi))
    {
      gsi = gsi_last_bb (join_bb);
      gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
    }
  else
    gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);

  return true;
}

/* Conditional store replacement.  We already know
   that the recognized pattern looks like so:

   split:
     if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
   THEN_BB:
     ...
     X = Y;
     ...
     goto JOIN_BB;
   ELSE_BB:
     ...
     X = Z;
     ...
     fallthrough (edge E0)
   JOIN_BB:
     some more

   We check that it is safe to sink the store to JOIN_BB by verifying that
   there are no read-after-write or write-after-write dependencies in
   THEN_BB and ELSE_BB.  */

static bool
cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
                                basic_block join_bb)
{
  gimple then_assign = last_and_only_stmt (then_bb);
  gimple else_assign = last_and_only_stmt (else_bb);
  vec<data_reference_p> then_datarefs, else_datarefs;
  vec<ddr_p> then_ddrs, else_ddrs;
  gimple then_store, else_store;
  bool found, ok = false, res;
  struct data_dependence_relation *ddr;
  data_reference_p then_dr, else_dr;
  int i, j;
  tree then_lhs, else_lhs;
  vec<gimple> then_stores, else_stores;
  basic_block blocks[3];

  if (MAX_STORES_TO_SINK == 0)
    return false;

  /* Handle the case with single statement in THEN_BB and ELSE_BB.  */
  if (then_assign && else_assign)
    return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
                                             then_assign, else_assign);

  /* Find data references.  */
  then_datarefs.create (1);
  else_datarefs.create (1);
  if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
        == chrec_dont_know)
      || !then_datarefs.length ()
      || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
        == chrec_dont_know)
      || !else_datarefs.length ())
    {
      free_data_refs (then_datarefs);
      free_data_refs (else_datarefs);
      return false;
    }

  /* Find pairs of stores with equal LHS.  */
  then_stores.create (1);
  else_stores.create (1);
  FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
    {
      if (DR_IS_READ (then_dr))
        continue;

      then_store = DR_STMT (then_dr);
      then_lhs = gimple_get_lhs (then_store);
      found = false;

      FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
        {
          if (DR_IS_READ (else_dr))
            continue;

          else_store = DR_STMT (else_dr);
          else_lhs = gimple_get_lhs (else_store);

          if (operand_equal_p (then_lhs, else_lhs, 0))
            {
              found = true;
              break;
            }
        }

      if (!found)
        continue;

      then_stores.safe_push (then_store);
      else_stores.safe_push (else_store);
    }

  /* No pairs of stores found.  */
  if (!then_stores.length ()
      || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
    {
      free_data_refs (then_datarefs);
      free_data_refs (else_datarefs);
      then_stores.release ();
      else_stores.release ();
      return false;
    }

  /* Compute and check data dependencies in both basic blocks.  */
  then_ddrs.create (1);
  else_ddrs.create (1);
  if (!compute_all_dependences (then_datarefs, &then_ddrs,
				vNULL, false)
      || !compute_all_dependences (else_datarefs, &else_ddrs,
				   vNULL, false))
    {
      free_dependence_relations (then_ddrs);
      free_dependence_relations (else_ddrs);
      free_data_refs (then_datarefs);
      free_data_refs (else_datarefs);
      then_stores.release ();
      else_stores.release ();
      return false;
    }
  blocks[0] = then_bb;
  blocks[1] = else_bb;
  blocks[2] = join_bb;
  renumber_gimple_stmt_uids_in_blocks (blocks, 3);

  /* Check that there are no read-after-write or write-after-write dependencies
     in THEN_BB.  */
  FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
    {
      struct data_reference *dra = DDR_A (ddr);
      struct data_reference *drb = DDR_B (ddr);

      if (DDR_ARE_DEPENDENT (ddr) != chrec_known
          && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
               && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
              || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
                  && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
              || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
        {
          free_dependence_relations (then_ddrs);
          free_dependence_relations (else_ddrs);
	  free_data_refs (then_datarefs);
	  free_data_refs (else_datarefs);
          then_stores.release ();
          else_stores.release ();
          return false;
        }
    }

  /* Check that there are no read-after-write or write-after-write dependencies
     in ELSE_BB.  */
  FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
    {
      struct data_reference *dra = DDR_A (ddr);
      struct data_reference *drb = DDR_B (ddr);

      if (DDR_ARE_DEPENDENT (ddr) != chrec_known
          && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
               && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
              || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
                  && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
              || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
        {
          free_dependence_relations (then_ddrs);
          free_dependence_relations (else_ddrs);
	  free_data_refs (then_datarefs);
	  free_data_refs (else_datarefs);
          then_stores.release ();
          else_stores.release ();
          return false;
        }
    }

  /* Sink stores with same LHS.  */
  FOR_EACH_VEC_ELT (then_stores, i, then_store)
    {
      else_store = else_stores[i];
      res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
                                              then_store, else_store);
      ok = ok || res;
    }

  free_dependence_relations (then_ddrs);
  free_dependence_relations (else_ddrs);
  free_data_refs (then_datarefs);
  free_data_refs (else_datarefs);
  then_stores.release ();
  else_stores.release ();

  return ok;
}

/* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB.  */

static bool
local_mem_dependence (gimple stmt, basic_block bb)
{
  tree vuse = gimple_vuse (stmt);
  gimple def;

  if (!vuse)
    return false;

  def = SSA_NAME_DEF_STMT (vuse);
  return (def && gimple_bb (def) == bb);
}

/* Given a "diamond" control-flow pattern where BB0 tests a condition,
   BB1 and BB2 are "then" and "else" blocks dependent on this test,
   and BB3 rejoins control flow following BB1 and BB2, look for
   opportunities to hoist loads as follows.  If BB3 contains a PHI of
   two loads, one each occurring in BB1 and BB2, and the loads are
   provably of adjacent fields in the same structure, then move both
   loads into BB0.  Of course this can only be done if there are no
   dependencies preventing such motion.

   One of the hoisted loads will always be speculative, so the
   transformation is currently conservative:

    - The fields must be strictly adjacent.
    - The two fields must occupy a single memory block that is
      guaranteed to not cross a page boundary.

    The last is difficult to prove, as such memory blocks should be
    aligned on the minimum of the stack alignment boundary and the
    alignment guaranteed by heap allocation interfaces.  Thus we rely
    on a parameter for the alignment value.

    Provided a good value is used for the last case, the first
    restriction could possibly be relaxed.  */

static void
hoist_adjacent_loads (basic_block bb0, basic_block bb1,
		      basic_block bb2, basic_block bb3)
{
  int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
  unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
  gimple_stmt_iterator gsi;

  /* Walk the phis in bb3 looking for an opportunity.  We are looking
     for phis of two SSA names, one each of which is defined in bb1 and
     bb2.  */
  for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple phi_stmt = gsi_stmt (gsi);
      gimple def1, def2, defswap;
      tree arg1, arg2, ref1, ref2, field1, field2, fieldswap;
      tree tree_offset1, tree_offset2, tree_size2, next;
      int offset1, offset2, size2;
      unsigned align1;
      gimple_stmt_iterator gsi2;
      basic_block bb_for_def1, bb_for_def2;

      if (gimple_phi_num_args (phi_stmt) != 2
	  || virtual_operand_p (gimple_phi_result (phi_stmt)))
	continue;

      arg1 = gimple_phi_arg_def (phi_stmt, 0);
      arg2 = gimple_phi_arg_def (phi_stmt, 1);

      if (TREE_CODE (arg1) != SSA_NAME
	  || TREE_CODE (arg2) != SSA_NAME
	  || SSA_NAME_IS_DEFAULT_DEF (arg1)
	  || SSA_NAME_IS_DEFAULT_DEF (arg2))
	continue;

      def1 = SSA_NAME_DEF_STMT (arg1);
      def2 = SSA_NAME_DEF_STMT (arg2);

      if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
	  && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
	continue;

      /* Check the mode of the arguments to be sure a conditional move
	 can be generated for it.  */
      if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
	  == CODE_FOR_nothing)
	continue;

      /* Both statements must be assignments whose RHS is a COMPONENT_REF.  */
      if (!gimple_assign_single_p (def1)
	  || !gimple_assign_single_p (def2)
	  || gimple_has_volatile_ops (def1)
	  || gimple_has_volatile_ops (def2))
	continue;

      ref1 = gimple_assign_rhs1 (def1);
      ref2 = gimple_assign_rhs1 (def2);

      if (TREE_CODE (ref1) != COMPONENT_REF
	  || TREE_CODE (ref2) != COMPONENT_REF)
	continue;

      /* The zeroth operand of the two component references must be
	 identical.  It is not sufficient to compare get_base_address of
	 the two references, because this could allow for different
	 elements of the same array in the two trees.  It is not safe to
	 assume that the existence of one array element implies the
	 existence of a different one.  */
      if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
	continue;

      field1 = TREE_OPERAND (ref1, 1);
      field2 = TREE_OPERAND (ref2, 1);

      /* Check for field adjacency, and ensure field1 comes first.  */
      for (next = DECL_CHAIN (field1);
	   next && TREE_CODE (next) != FIELD_DECL;
	   next = DECL_CHAIN (next))
	;

      if (next != field2)
	{
	  for (next = DECL_CHAIN (field2);
	       next && TREE_CODE (next) != FIELD_DECL;
	       next = DECL_CHAIN (next))
	    ;

	  if (next != field1)
	    continue;

	  fieldswap = field1;
	  field1 = field2;
	  field2 = fieldswap;
	  defswap = def1;
	  def1 = def2;
	  def2 = defswap;
	}

      bb_for_def1 = gimple_bb (def1);
      bb_for_def2 = gimple_bb (def2);

      /* Check for proper alignment of the first field.  */
      tree_offset1 = bit_position (field1);
      tree_offset2 = bit_position (field2);
      tree_size2 = DECL_SIZE (field2);

      if (!host_integerp (tree_offset1, 1)
	  || !host_integerp (tree_offset2, 1)
	  || !host_integerp (tree_size2, 1))
	continue;

      offset1 = TREE_INT_CST_LOW (tree_offset1);
      offset2 = TREE_INT_CST_LOW (tree_offset2);
      size2 = TREE_INT_CST_LOW (tree_size2);
      align1 = DECL_ALIGN (field1) % param_align_bits;

      if (offset1 % BITS_PER_UNIT != 0)
	continue;

      /* For profitability, the two field references should fit within
	 a single cache line.  */
      if (align1 + offset2 - offset1 + size2 > param_align_bits)
	continue;

      /* The two expressions cannot be dependent upon vdefs defined
	 in bb1/bb2.  */
      if (local_mem_dependence (def1, bb_for_def1)
	  || local_mem_dependence (def2, bb_for_def2))
	continue;

      /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
	 bb0.  We hoist the first one first so that a cache miss is handled
         efficiently regardless of hardware cache-fill policy.  */
      gsi2 = gsi_for_stmt (def1);
      gsi_move_to_bb_end (&gsi2, bb0);
      gsi2 = gsi_for_stmt (def2);
      gsi_move_to_bb_end (&gsi2, bb0);

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file,
		   "\nHoisting adjacent loads from %d and %d into %d: \n",
		   bb_for_def1->index, bb_for_def2->index, bb0->index);
	  print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
	  print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
	}
    }
}

/* Determine whether we should attempt to hoist adjacent loads out of
   diamond patterns in pass_phiopt.  Always hoist loads if
   -fhoist-adjacent-loads is specified and the target machine has
   both a conditional move instruction and a defined cache line size.  */

static bool
gate_hoist_loads (void)
{
  return (flag_hoist_adjacent_loads == 1
	  && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
	  && HAVE_conditional_move);
}

/* Always do these optimizations if we have SSA
   trees to work on.  */
static bool
gate_phiopt (void)
{
  return 1;
}

namespace {

const pass_data pass_data_phiopt =
{
  GIMPLE_PASS, /* type */
  "phiopt", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  true, /* has_gate */
  true, /* has_execute */
  TV_TREE_PHIOPT, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  ( TODO_verify_ssa | TODO_verify_flow
    | TODO_verify_stmts ), /* todo_flags_finish */
};

class pass_phiopt : public gimple_opt_pass
{
public:
  pass_phiopt (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_phiopt, ctxt)
  {}

  /* opt_pass methods: */
  opt_pass * clone () { return new pass_phiopt (m_ctxt); }
  bool gate () { return gate_phiopt (); }
  unsigned int execute () { return tree_ssa_phiopt (); }

}; // class pass_phiopt

} // anon namespace

gimple_opt_pass *
make_pass_phiopt (gcc::context *ctxt)
{
  return new pass_phiopt (ctxt);
}

static bool
gate_cselim (void)
{
  return flag_tree_cselim;
}

namespace {

const pass_data pass_data_cselim =
{
  GIMPLE_PASS, /* type */
  "cselim", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  true, /* has_gate */
  true, /* has_execute */
  TV_TREE_PHIOPT, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  ( TODO_verify_ssa | TODO_verify_flow
    | TODO_verify_stmts ), /* todo_flags_finish */
};

class pass_cselim : public gimple_opt_pass
{
public:
  pass_cselim (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_cselim, ctxt)
  {}

  /* opt_pass methods: */
  bool gate () { return gate_cselim (); }
  unsigned int execute () { return tree_ssa_cs_elim (); }

}; // class pass_cselim

} // anon namespace

gimple_opt_pass *
make_pass_cselim (gcc::context *ctxt)
{
  return new pass_cselim (ctxt);
}