1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
|
/* Strict aliasing checks.
Copyright (C) 2007 Free Software Foundation, Inc.
Contributed by Silvius Rus <rus@google.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "alloc-pool.h"
#include "tree.h"
#include "tree-dump.h"
#include "tree-flow.h"
#include "params.h"
#include "function.h"
#include "expr.h"
#include "toplev.h"
#include "diagnostic.h"
#include "tree-ssa-structalias.h"
#include "tree-ssa-propagate.h"
#include "langhooks.h"
/* Module to issue a warning when a program uses data through a type
different from the type through which the data were defined.
Implements -Wstrict-aliasing and -Wstrict-aliasing=n.
These checks only happen when -fstrict-aliasing is present.
The idea is to use the compiler to identify occurrences of nonstandard
aliasing, and report them to programmers. Programs free of such aliasing
are more portable, maintainable, and can usually be optimized better.
The current, as of April 2007, C and C++ language standards forbid
accessing data of type A through an lvalue of another type B,
with certain exceptions. See the C Standard ISO/IEC 9899:1999,
section 6.5, paragraph 7, and the C++ Standard ISO/IEC 14882:1998,
section 3.10, paragraph 15.
Example 1:*a is used as int but was defined as a float, *b.
int* a = ...;
float* b = reinterpret_cast<float*> (a);
*b = 2.0;
return *a
Unfortunately, the problem is in general undecidable if we take into
account arithmetic expressions such as array indices or pointer arithmetic.
(It is at least as hard as Peano arithmetic decidability.)
Even ignoring arithmetic, the problem is still NP-hard, because it is
at least as hard as flow-insensitive may-alias analysis, which was proved
NP-hard by Horwitz et al, TOPLAS 1997.
It is clear that we need to choose some heuristics.
Unfortunately, various users have different goals which correspond to
different time budgets so a common approach will not suit all.
We present the user with three effort/accuracy levels. By accuracy, we mean
a common-sense mix of low count of false positives with a
reasonably low number of false negatives. We are heavily biased
towards a low count of false positives.
The effort (compilation time) is likely to increase with the level.
-Wstrict-aliasing=1
===================
Most aggressive, least accurate. Possibly useful when higher levels
do not warn but -fstrict-aliasing still breaks the code, as
it has very few false negatives.
Warn for all bad pointer conversions, even if never dereferenced.
Implemented in the front end (c-common.c).
Uses alias_sets_might_conflict to compare types.
-Wstrict-aliasing=2
===================
Aggressive, not too precise.
May still have many false positives (not as many as level 1 though),
and few false negatives (but possibly more than level 1).
Runs only in the front end. Uses alias_sets_might_conflict to
compare types. Does not check for pointer dereferences.
Only warns when an address is taken. Warns about incomplete type punning.
-Wstrict-aliasing=3 (default)
===================
Should have very few false positives and few false negatives.
Takes care of the common punn+dereference pattern in the front end:
*(int*)&some_float.
Takes care of multiple statement cases in the back end,
using flow-sensitive points-to information (-O required).
Uses alias_sets_conflict_p to compare types and only warns
when the converted pointer is dereferenced.
Does not warn about incomplete type punning.
Future improvements can be included by adding higher levels.
In summary, expression level analysis is performed in the front-end,
and multiple-statement analysis is performed in the backend.
The remainder of this discussion is only about the backend analysis.
This implementation uses flow-sensitive points-to information.
Flow-sensitivity refers to accesses to the pointer, and not the object
pointed. For instance, we do not warn about the following case.
Example 2.
int* a = (int*)malloc (...);
float* b = reinterpret_cast<float*> (a);
*b = 2.0;
a = (int*)malloc (...);
return *a;
In SSA, it becomes clear that the INT value *A_2 referenced in the
return statement is not aliased to the FLOAT defined through *B_1.
int* a_1 = (int*)malloc (...);
float* b_1 = reinterpret_cast<float*> (a_1);
*b_1 = 2.0;
a_2 = (int*)malloc (...);
return *a_2;
Algorithm Outline
=================
ForEach (ptr, object) in the points-to table
If (incompatible_types (*ptr, object))
If (referenced (ptr, current function)
and referenced (object, current function))
Issue warning (ptr, object, reference locations)
The complexity is:
O (sizeof (points-to table)
+ sizeof (function body) * lookup_time (points-to table))
Pointer dereference locations are looked up on demand. The search is
a single scan of the function body, in which all references to pointers
and objects in the points-to table are recorded. However, this dominant
time factor occurs rarely, only when cross-type aliasing was detected.
Limitations of the Proposed Implementation
==========================================
1. We do not catch the following case, because -fstrict-aliasing will
associate different tags with MEM while building points-to information,
thus before we get to analyze it.
XXX: this could be solved by either running with -fno-strict-aliasing
or by recording the points-to information before splitting the original
tag based on type.
Example 3.
void* mem = malloc (...);
int* pi = reinterpret_cast<int*> (mem);
float* b = reinterpret_cast<float*> (mem);
*b = 2.0;
return *pi+1;
2. We do not check whether the two conflicting (de)references can
reach each other in the control flow sense. If we fixed limitation
1, we would wrongly issue a warning in the following case.
Example 4.
void* raw = malloc (...);
if (...) {
float* b = reinterpret_cast<float*> (raw);
*b = 2.0;
return (int)*b;
} else {
int* a = reinterpret_cast<int*> (raw);
*a = 1;
return *a;
3. Only simple types are compared, thus no structures, unions or classes
are analyzed. A first attempt to deal with structures introduced much
complication and has not showed much improvement in preliminary tests,
so it was left out.
4. All analysis is intraprocedural. */
/* Local declarations. */
static void find_references_in_function (void);
/* Get main type of tree TYPE, stripping array dimensions and qualifiers. */
static tree
get_main_type (tree type)
{
while (TREE_CODE (type) == ARRAY_TYPE)
type = TREE_TYPE (type);
return TYPE_MAIN_VARIANT (type);
}
/* Get the type of the given object. If IS_PTR is true, get the type of the
object pointed to or referenced by OBJECT instead.
For arrays, return the element type. Ignore all qualifiers. */
static tree
get_otype (tree object, bool is_ptr)
{
tree otype = TREE_TYPE (object);
if (is_ptr)
{
gcc_assert (POINTER_TYPE_P (otype));
otype = TREE_TYPE (otype);
}
return get_main_type (otype);
}
/* Return true if tree TYPE is struct, class or union. */
static bool
struct_class_union_p (tree type)
{
return (TREE_CODE (type) == RECORD_TYPE
|| TREE_CODE (type) == UNION_TYPE
|| TREE_CODE (type) == QUAL_UNION_TYPE);
}
/* Keep data during a search for an aliasing site.
RHS = object or pointer aliased. No LHS is specified because we are only
looking in the UseDef paths of a given variable, so LHS will always be
an SSA name of the same variable.
When IS_RHS_POINTER = true, we are looking for ... = RHS. Otherwise,
we are looking for ... = &RHS.
SITE is the output of a search, non-NULL if the search succeeded. */
struct alias_match
{
tree rhs;
bool is_rhs_pointer;
tree site;
};
/* Callback for find_alias_site. Return true if the right hand site
of STMT matches DATA. */
static bool
find_alias_site_helper (tree var ATTRIBUTE_UNUSED, tree stmt, void *data)
{
struct alias_match *match = (struct alias_match *) data;
tree rhs_pointer = get_rhs (stmt);
tree to_match = NULL_TREE;
while (TREE_CODE (rhs_pointer) == NOP_EXPR
|| TREE_CODE (rhs_pointer) == CONVERT_EXPR
|| TREE_CODE (rhs_pointer) == VIEW_CONVERT_EXPR)
rhs_pointer = TREE_OPERAND (rhs_pointer, 0);
if (!rhs_pointer)
/* Not a type conversion. */
return false;
if (TREE_CODE (rhs_pointer) == ADDR_EXPR && !match->is_rhs_pointer)
to_match = TREE_OPERAND (rhs_pointer, 0);
else if (POINTER_TYPE_P (rhs_pointer) && match->is_rhs_pointer)
to_match = rhs_pointer;
if (to_match != match->rhs)
/* Type conversion, but not a name match. */
return false;
/* Found it. */
match->site = stmt;
return true;
}
/* Find the statement where OBJECT1 gets aliased to OBJECT2.
If IS_PTR2 is true, consider OBJECT2 to be the name of a pointer or
reference rather than the actual aliased object.
For now, just implement the case where OBJECT1 is an SSA name defined
by a PHI statement. */
static tree
find_alias_site (tree object1, bool is_ptr1 ATTRIBUTE_UNUSED,
tree object2, bool is_ptr2)
{
struct alias_match match;
match.rhs = object2;
match.is_rhs_pointer = is_ptr2;
match.site = NULL_TREE;
if (TREE_CODE (object1) != SSA_NAME)
return NULL_TREE;
walk_use_def_chains (object1, find_alias_site_helper, &match, false);
return match.site;
}
/* Structure to store temporary results when trying to figure out whether
an object is referenced. Just its presence in the text is not enough,
as we may just be taking its address. */
struct match_info
{
tree object;
bool is_ptr;
/* The difference between the number of references to OBJECT
and the number of occurrences of &OBJECT. */
int found;
};
/* Return the base if EXPR is an SSA name. Return EXPR otherwise. */
static tree
get_ssa_base (tree expr)
{
if (TREE_CODE (expr) == SSA_NAME)
return SSA_NAME_VAR (expr);
else
return expr;
}
/* Record references to objects and pointer dereferences across some piece of
code. The number of references is recorded for each item.
References to an object just to take its address are not counted.
For instance, if PTR is a pointer and OBJ is an object:
1. Expression &obj + *ptr will have the following reference match structure:
ptrs: <ptr, 1>
objs: <ptr, 1>
OBJ does not appear as referenced because we just take its address.
2. Expression ptr + *ptr will have the following reference match structure:
ptrs: <ptr, 1>
objs: <ptr, 2>
PTR shows up twice as an object, but is dereferenced only once.
The elements of the hash tables are tree_map objects. */
struct reference_matches
{
htab_t ptrs;
htab_t objs;
};
/* Return the match, if any. Otherwise, return NULL_TREE. It will
return NULL_TREE even when a match was found, if the value associated
to KEY is NULL_TREE. */
static inline tree
match (htab_t ref_map, tree key)
{
struct tree_map *found;
void **slot = NULL;
slot = htab_find_slot (ref_map, &key, NO_INSERT);
if (!slot)
return NULL_TREE;
found = (struct tree_map *) *slot;
return found->to;
}
/* Set the entry corresponding to KEY, but only if the entry
already exists and its value is NULL_TREE. Otherwise, do nothing. */
static inline void
maybe_add_match (htab_t ref_map, struct tree_map *key)
{
struct tree_map *found = (struct tree_map *) htab_find (ref_map, key);
if (found && !found->to)
found->to = key->to;
}
/* Add an entry to HT, with key T and value NULL_TREE. */
static void
add_key (htab_t ht, tree t, alloc_pool references_pool)
{
void **slot;
struct tree_map *tp = (struct tree_map *) pool_alloc (references_pool);
tp->base.from = t;
tp->to = NULL_TREE;
slot = htab_find_slot (ht, &t, INSERT);
*slot = (void *) tp;
}
/* Some memory to keep the objects in the reference table. */
static alloc_pool ref_table_alloc_pool = NULL;
/* Get some memory to keep the objects in the reference table. */
static inline alloc_pool
reference_table_alloc_pool (bool build)
{
if (ref_table_alloc_pool || !build)
return ref_table_alloc_pool;
ref_table_alloc_pool =
create_alloc_pool ("ref_table_alloc_pool", sizeof (struct tree_map), 20);
return ref_table_alloc_pool;
}
/* Initialize the reference table by adding all pointers in the points-to
table as keys, and NULL_TREE as associated values. */
static struct reference_matches *
build_reference_table (void)
{
unsigned int i;
struct reference_matches *ref_table = NULL;
alloc_pool references_pool = reference_table_alloc_pool (true);
ref_table = XNEW (struct reference_matches);
ref_table->objs = htab_create (10, tree_map_base_hash, tree_map_eq, NULL);
ref_table->ptrs = htab_create (10, tree_map_base_hash, tree_map_eq, NULL);
for (i = 1; i < num_ssa_names; i++)
{
tree ptr = ssa_name (i);
struct ptr_info_def *pi;
if (ptr == NULL_TREE)
continue;
pi = SSA_NAME_PTR_INFO (ptr);
if (!SSA_NAME_IN_FREE_LIST (ptr) && pi && pi->name_mem_tag)
{
/* Add pointer to the interesting dereference list. */
add_key (ref_table->ptrs, ptr, references_pool);
/* Add all aliased names to the interesting reference list. */
if (pi->pt_vars)
{
unsigned ix;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, ix, bi)
{
tree alias = referenced_var (ix);
add_key (ref_table->objs, alias, references_pool);
}
}
}
}
return ref_table;
}
/* Reference table. */
static struct reference_matches *ref_table = NULL;
/* Clean up the reference table if allocated. */
static void
maybe_free_reference_table (void)
{
if (ref_table)
{
htab_delete (ref_table->ptrs);
htab_delete (ref_table->objs);
free (ref_table);
ref_table = NULL;
}
if (ref_table_alloc_pool)
{
free_alloc_pool (ref_table_alloc_pool);
ref_table_alloc_pool = NULL;
}
}
/* Get the reference table. Initialize it if needed. */
static inline struct reference_matches *
reference_table (bool build)
{
if (ref_table || !build)
return ref_table;
ref_table = build_reference_table ();
find_references_in_function ();
return ref_table;
}
/* Callback for find_references_in_function.
Check whether *TP is an object reference or pointer dereference for the
variables given in ((struct match_info*)DATA)->OBJS or
((struct match_info*)DATA)->PTRS. The total number of references
is stored in the same structures. */
static tree
find_references_in_tree_helper (tree *tp,
int *walk_subtrees ATTRIBUTE_UNUSED,
void *data)
{
struct tree_map match;
static int parent_tree_code = ERROR_MARK;
/* Do not report references just for the purpose of taking an address.
XXX: we rely on the fact that the tree walk is in preorder
and that ADDR_EXPR is not a leaf, thus cannot be carried over across
walks. */
if (parent_tree_code == ADDR_EXPR)
goto finish;
match.to = (tree) data;
if (TREE_CODE (*tp) == INDIRECT_REF)
{
match.base.from = TREE_OPERAND (*tp, 0);
maybe_add_match (reference_table (true)->ptrs, &match);
}
else
{
match.base.from = *tp;
maybe_add_match (reference_table (true)->objs, &match);
}
finish:
parent_tree_code = TREE_CODE (*tp);
return NULL_TREE;
}
/* Find all the references to aliased variables in the current function. */
static void
find_references_in_function (void)
{
basic_block bb;
block_stmt_iterator i;
FOR_EACH_BB (bb)
for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
walk_tree (bsi_stmt_ptr (i), find_references_in_tree_helper,
(void *) *bsi_stmt_ptr (i), NULL);
}
/* Find the reference site for OBJECT.
If IS_PTR is true, look for dereferences of OBJECT instead.
XXX: only the first site is returned in the current
implementation. If there are no matching sites, return NULL_TREE. */
static tree
reference_site (tree object, bool is_ptr)
{
if (is_ptr)
return match (reference_table (true)->ptrs, object);
else
return match (reference_table (true)->objs, object);
}
/* Try to get more location info when something is missing.
OBJECT1 and OBJECT2 are aliased names. If IS_PTR1 or IS_PTR2, the alias
is on the memory referenced or pointed to by OBJECT1 and OBJECT2.
ALIAS_SITE, DEREF_SITE1 and DEREF_SITE2 are the statements where the
alias takes place (some pointer assignment usually) and where the
alias is referenced through OBJECT1 and OBJECT2 respectively.
REF_TYPE1 and REF_TYPE2 will return the type of the reference at the
respective sites. Only the first matching reference is returned for
each name. If no statement is found, the function header is returned. */
static void
maybe_find_missing_stmts (tree object1, bool is_ptr1,
tree object2, bool is_ptr2,
tree *alias_site,
tree *deref_site1,
tree *deref_site2)
{
if (object1 && object2)
{
if (!*alias_site || !EXPR_HAS_LOCATION (*alias_site))
*alias_site = find_alias_site (object1, is_ptr1, object2, is_ptr2);
if (!*deref_site1 || !EXPR_HAS_LOCATION (*deref_site1))
*deref_site1 = reference_site (object1, is_ptr1);
if (!*deref_site2 || !EXPR_HAS_LOCATION (*deref_site2))
*deref_site2 = reference_site (object2, is_ptr2);
}
/* If we could not find the alias site, set it to one of the dereference
sites, if available. */
if (!*alias_site)
{
if (*deref_site1)
*alias_site = *deref_site1;
else if (*deref_site2)
*alias_site = *deref_site2;
}
/* If we could not find the dereference sites, set them to the alias site,
if known. */
if (!*deref_site1 && *alias_site)
*deref_site1 = *alias_site;
if (!*deref_site2 && *alias_site)
*deref_site2 = *alias_site;
}
/* Callback for find_first_artificial_name.
Find out if there are no artificial names at tree node *T. */
static tree
ffan_walker (tree *t,
int *go_below ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
if (DECL_P (*t) && !MTAG_P (*t) && DECL_ARTIFICIAL (*t))
return *t;
else
return NULL_TREE;
}
/* Return the first artificial name within EXPR, or NULL_TREE if
none exists. */
static tree
find_first_artificial_name (tree expr)
{
return walk_tree_without_duplicates (&expr, ffan_walker, NULL);
}
/* Get a name from the original program for VAR. */
static const char *
get_var_name (tree var)
{
if (TREE_CODE (var) == SSA_NAME)
return get_var_name (get_ssa_base (var));
if (find_first_artificial_name (var))
return "{unknown}";
if (TREE_CODE (var) == VAR_DECL || TREE_CODE (var) == PARM_DECL)
if (DECL_NAME (var))
return IDENTIFIER_POINTER (DECL_NAME (var));
return "{unknown}";
}
/* Return "*" if OBJECT is not the actual alias but a pointer to it, or
"" otherwise.
IS_PTR is true when OBJECT is not the actual alias.
In addition to checking IS_PTR, we also make sure that OBJECT is a pointer
since IS_PTR would also be true for C++ references, but we should only
print a * before a pointer and not before a reference. */
static const char *
get_maybe_star_prefix (tree object, bool is_ptr)
{
gcc_assert (object);
return (is_ptr
&& TREE_CODE (TREE_TYPE (object)) == POINTER_TYPE) ? "*" : "";
}
/* Callback for contains_node_type_p.
Returns true if *T has tree code *(int*)DATA. */
static tree
contains_node_type_p_callback (tree *t,
int *go_below ATTRIBUTE_UNUSED,
void *data)
{
return ((int) TREE_CODE (*t) == *((int *) data)) ? *t : NULL_TREE;
}
/* Return true if T contains a node with tree code TYPE. */
static bool
contains_node_type_p (tree t, int type)
{
return (walk_tree_without_duplicates (&t, contains_node_type_p_callback,
(void *) &type)
!= NULL_TREE);
}
/* Return true if a warning was issued in the front end at STMT. */
static bool
already_warned_in_frontend_p (tree stmt)
{
tree rhs_pointer;
if (stmt == NULL_TREE)
return false;
rhs_pointer = get_rhs (stmt);
if ((TREE_CODE (rhs_pointer) == NOP_EXPR
|| TREE_CODE (rhs_pointer) == CONVERT_EXPR
|| TREE_CODE (rhs_pointer) == VIEW_CONVERT_EXPR)
&& TREE_NO_WARNING (rhs_pointer))
return true;
else
return false;
}
/* Return true if and only if TYPE is a function or method pointer type,
or pointer to a pointer to ... to a function or method. */
static bool
is_method_pointer (tree type)
{
while (TREE_CODE (type) == POINTER_TYPE)
type = TREE_TYPE (type);
return TREE_CODE (type) == METHOD_TYPE || TREE_CODE (type) == FUNCTION_TYPE;
}
/* Issue a -Wstrict-aliasing warning.
OBJECT1 and OBJECT2 are aliased names.
If IS_PTR1 and/or IS_PTR2 is true, then the corresponding name
OBJECT1/OBJECT2 is a pointer or reference to the aliased memory,
rather than actual storage.
ALIAS_SITE is a statement where the alias took place. In the most common
case, that is where a pointer was assigned to the address of an object. */
static bool
strict_aliasing_warn (tree alias_site,
tree object1, bool is_ptr1,
tree object2, bool is_ptr2,
bool filter_artificials)
{
tree ref_site1 = NULL_TREE;
tree ref_site2 = NULL_TREE;
const char *name1;
const char *name2;
location_t alias_loc;
location_t ref1_loc;
location_t ref2_loc;
gcc_assert (object1);
gcc_assert (object2);
name1 = get_var_name (object1);
name2 = get_var_name (object2);
if (is_method_pointer (get_main_type (TREE_TYPE (object2))))
return false;
maybe_find_missing_stmts (object1, is_ptr1, object2, is_ptr2, &alias_site,
&ref_site1, &ref_site2);
if (EXPR_HAS_LOCATION (alias_site))
alias_loc = EXPR_LOCATION (alias_site);
else
return false;
if (EXPR_HAS_LOCATION (ref_site1))
ref1_loc = EXPR_LOCATION (ref_site1);
else
ref1_loc = alias_loc;
if (EXPR_HAS_LOCATION (ref_site2))
ref2_loc = EXPR_LOCATION (ref_site2);
else
ref2_loc = alias_loc;
if (already_warned_in_frontend_p (alias_site))
return false;
/* If they are not SSA names, but contain SSA names, drop the warning
because it cannot be displayed well.
Also drop it if they both contain artificials.
XXX: this is a hack, must figure out a better way to display them. */
if (filter_artificials)
if ((find_first_artificial_name (get_ssa_base (object1))
&& find_first_artificial_name (get_ssa_base (object2)))
|| (TREE_CODE (object1) != SSA_NAME
&& contains_node_type_p (object1, SSA_NAME))
|| (TREE_CODE (object2) != SSA_NAME
&& contains_node_type_p (object2, SSA_NAME)))
return false;
/* XXX: In the following format string, %s:%d should be replaced by %H.
However, in my tests only the first %H printed ok, while the
second and third were printed as blanks. */
warning (OPT_Wstrict_aliasing,
"%Hlikely type-punning may break strict-aliasing rules: "
"object %<%s%s%> of main type %qT is referenced at or around "
"%s:%d and may be "
"aliased to object %<%s%s%> of main type %qT which is referenced "
"at or around %s:%d.",
&alias_loc,
get_maybe_star_prefix (object1, is_ptr1),
name1, get_otype (object1, is_ptr1),
LOCATION_FILE (ref1_loc), LOCATION_LINE (ref1_loc),
get_maybe_star_prefix (object2, is_ptr2),
name2, get_otype (object2, is_ptr2),
LOCATION_FILE (ref2_loc), LOCATION_LINE (ref2_loc));
return true;
}
/* Return true when any objects of TYPE1 and TYPE2 respectively
may not be aliased according to the language standard. */
static bool
nonstandard_alias_types_p (tree type1, tree type2)
{
alias_set_type set1;
alias_set_type set2;
if (VOID_TYPE_P (type1) || VOID_TYPE_P (type2))
return false;
set1 = get_alias_set (type1);
set2 = get_alias_set (type2);
return !alias_sets_conflict_p (set1, set2);
}
/* Returns true when *PTR may not be aliased to ALIAS.
See C standard 6.5p7 and C++ standard 3.10p15.
If PTR_PTR is true, ALIAS represents a pointer or reference to the
aliased storage rather than its actual name. */
static bool
nonstandard_alias_p (tree ptr, tree alias, bool ptr_ptr)
{
/* Find the types to compare. */
tree ptr_type = get_otype (ptr, true);
tree alias_type = get_otype (alias, ptr_ptr);
/* XXX: for now, say it's OK if the alias escapes.
Not sure this is needed in general, but otherwise GCC will not
bootstrap. */
if (var_ann (get_ssa_base (alias))->escape_mask != NO_ESCAPE)
return false;
/* XXX: don't get into structures for now. It brings much complication
and little benefit. */
if (struct_class_union_p (ptr_type) || struct_class_union_p (alias_type))
return false;
/* If they are both SSA names of artificials, let it go, the warning
is too confusing. */
if (find_first_artificial_name (ptr) && find_first_artificial_name (alias))
return false;
/* Compare the types. */
return nonstandard_alias_types_p (ptr_type, alias_type);
}
/* Return true when we should skip analysis for pointer PTR based on the
fact that their alias information *PI is not considered relevant. */
static bool
skip_this_pointer (tree ptr ATTRIBUTE_UNUSED, struct ptr_info_def *pi)
{
/* If it is not dereferenced, it is not a problem (locally). */
if (!pi->is_dereferenced)
return true;
/* This would probably cause too many false positives. */
if (pi->value_escapes_p || pi->pt_anything)
return true;
return false;
}
/* Find aliasing to named objects for pointer PTR. */
static void
dsa_named_for (tree ptr)
{
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
if (pi)
{
if (skip_this_pointer (ptr, pi))
return;
/* For all the variables it could be aliased to. */
if (pi->pt_vars)
{
unsigned ix;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, ix, bi)
{
tree alias = referenced_var (ix);
if (nonstandard_alias_p (ptr, alias, false))
strict_aliasing_warn (SSA_NAME_DEF_STMT (ptr),
ptr, true, alias, false, true);
}
}
}
}
/* Detect and report strict aliasing violation of named objects. */
static void
detect_strict_aliasing_named (void)
{
unsigned int i;
for (i = 1; i < num_ssa_names; i++)
{
tree ptr = ssa_name (i);
struct ptr_info_def *pi;
if (ptr == NULL_TREE)
continue;
pi = SSA_NAME_PTR_INFO (ptr);
if (!SSA_NAME_IN_FREE_LIST (ptr) && pi && pi->name_mem_tag)
dsa_named_for (ptr);
}
}
/* Return false only the first time I see each instance of FUNC. */
static bool
processed_func_p (tree func)
{
static htab_t seen = NULL;
void **slot = NULL;
if (!seen)
seen = htab_create (10, tree_map_base_hash, tree_map_eq, NULL);
slot = htab_find_slot (seen, &func, INSERT);
gcc_assert (slot);
if (*slot)
return true;
gcc_assert (slot);
*slot = &func;
return false;
}
/* Detect and warn about type-punning using points-to information. */
void
strict_aliasing_warning_backend (void)
{
if (flag_strict_aliasing && warn_strict_aliasing == 3
&& !processed_func_p (current_function_decl))
{
detect_strict_aliasing_named ();
maybe_free_reference_table ();
}
}
|