1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
! { dg-options "-O3 -fgraphite-identity -floop-interchange " }
module mqc_m
implicit none
private
public :: mutual_ind_quad_cir_coil
integer, parameter, private :: longreal = selected_real_kind(15,90)
real (kind = longreal), parameter, private :: pi = 3.141592653589793_longreal
real (kind = longreal), parameter, private :: small = 1.0e-10_longreal
contains
subroutine mutual_ind_quad_cir_coil (r_coil, x_coil, y_coil, z_coil, h_coil, n_coil, &
rotate_coil, m, mu, l12)
real (kind = longreal), intent(in) :: r_coil, x_coil, y_coil, z_coil, h_coil, n_coil, &
mu
real (kind = longreal), dimension(:,:), intent(in) :: rotate_coil
integer, intent(in) :: m
real (kind = longreal), intent(out) :: l12
real (kind = longreal), dimension(3,3) :: rotate_quad
real (kind = longreal), dimension(9), save :: x2gauss, y2gauss, w2gauss, z1gauss, &
w1gauss
real (kind = longreal) :: xxvec, xyvec, xzvec, yxvec, yyvec, yzvec, zxvec, zyvec, &
zzvec, magnitude, l12_lower, l12_upper, dx, dy, dz, theta, &
a, b1, b2, numerator, denominator, coefficient, angle
real (kind = longreal), dimension(3) :: c_vector, q_vector, rot_c_vector, &
rot_q_vector, current_vector, &
coil_current_vec, coil_tmp_vector
integer :: i, j, k
logical, save :: first = .true.
do i = 1, 2*m
theta = pi*real(i,longreal)/real(m,longreal)
c_vector(1) = r_coil * cos(theta)
c_vector(2) = r_coil * sin(theta)
coil_tmp_vector(1) = -sin(theta)
coil_tmp_vector(2) = cos(theta)
coil_tmp_vector(3) = 0.0_longreal
coil_current_vec(1) = dot_product(rotate_coil(1,:),coil_tmp_vector(:))
coil_current_vec(2) = dot_product(rotate_coil(2,:),coil_tmp_vector(:))
coil_current_vec(3) = dot_product(rotate_coil(3,:),coil_tmp_vector(:))
do j = 1, 9
c_vector(3) = 0.5 * h_coil * z1gauss(j)
rot_c_vector(1) = dot_product(rotate_coil(1,:),c_vector(:)) + dx
rot_c_vector(2) = dot_product(rotate_coil(2,:),c_vector(:)) + dy
rot_c_vector(3) = dot_product(rotate_coil(3,:),c_vector(:)) + dz
do k = 1, 9
q_vector(1) = 0.5_longreal * a * (x2gauss(k) + 1.0_longreal)
q_vector(2) = 0.5_longreal * b1 * (y2gauss(k) - 1.0_longreal)
q_vector(3) = 0.0_longreal
rot_q_vector(1) = dot_product(rotate_quad(1,:),q_vector(:))
rot_q_vector(2) = dot_product(rotate_quad(2,:),q_vector(:))
rot_q_vector(3) = dot_product(rotate_quad(3,:),q_vector(:))
numerator = w1gauss(j) * w2gauss(k) * &
dot_product(coil_current_vec,current_vector)
denominator = sqrt(dot_product(rot_c_vector-rot_q_vector, &
rot_c_vector-rot_q_vector))
l12_lower = l12_lower + numerator/denominator
end do
end do
end do
l12 = coefficient * (b1 * l12_lower + b2 * l12_upper)
end subroutine mutual_ind_quad_cir_coil
end module mqc_m
|