summaryrefslogtreecommitdiff
path: root/gcc/regmove.c
blob: 7dc808cc3641fe937078f647ecaa6ff6187728b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
/* Move registers around to reduce number of move instructions needed.
   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */


/* This module looks for cases where matching constraints would force
   an instruction to need a reload, and this reload would be a register
   to register move.  It then attempts to change the registers used by the
   instruction to avoid the move instruction.  */

#include "config.h"
#include "system.h"
#include "rtl.h" /* stdio.h must precede rtl.h for FFS.  */
#include "tm_p.h"
#include "insn-config.h"
#include "recog.h"
#include "output.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "function.h"
#include "expr.h"
#include "basic-block.h"
#include "except.h"
#include "toplev.h"
#include "reload.h"


/* Turn STACK_GROWS_DOWNWARD into a boolean.  */
#ifdef STACK_GROWS_DOWNWARD
#undef STACK_GROWS_DOWNWARD
#define STACK_GROWS_DOWNWARD 1
#else
#define STACK_GROWS_DOWNWARD 0
#endif

static int perhaps_ends_bb_p	PARAMS ((rtx));
static int optimize_reg_copy_1	PARAMS ((rtx, rtx, rtx));
static void optimize_reg_copy_2	PARAMS ((rtx, rtx, rtx));
static void optimize_reg_copy_3	PARAMS ((rtx, rtx, rtx));
static void copy_src_to_dest	PARAMS ((rtx, rtx, rtx, int));
static int *regmove_bb_head;

struct match {
  int with[MAX_RECOG_OPERANDS];
  enum { READ, WRITE, READWRITE } use[MAX_RECOG_OPERANDS];
  int commutative[MAX_RECOG_OPERANDS];
  int early_clobber[MAX_RECOG_OPERANDS];
};

static rtx discover_flags_reg PARAMS ((void));
static void mark_flags_life_zones PARAMS ((rtx));
static void flags_set_1 PARAMS ((rtx, rtx, void *));

static int try_auto_increment PARAMS ((rtx, rtx, rtx, rtx, HOST_WIDE_INT, int));
static int find_matches PARAMS ((rtx, struct match *));
static void replace_in_call_usage PARAMS ((rtx *, unsigned int, rtx, rtx));
static int fixup_match_1 PARAMS ((rtx, rtx, rtx, rtx, rtx, int, int, int, FILE *))
;
static int reg_is_remote_constant_p PARAMS ((rtx, rtx, rtx));
static int stable_and_no_regs_but_for_p PARAMS ((rtx, rtx, rtx));
static int regclass_compatible_p PARAMS ((int, int));
static int replacement_quality PARAMS ((rtx));
static int fixup_match_2 PARAMS ((rtx, rtx, rtx, rtx, FILE *));

/* Return non-zero if registers with CLASS1 and CLASS2 can be merged without
   causing too much register allocation problems.  */
static int
regclass_compatible_p (class0, class1)
     int class0, class1;
{
  return (class0 == class1
	  || (reg_class_subset_p (class0, class1)
	      && ! CLASS_LIKELY_SPILLED_P (class0))
	  || (reg_class_subset_p (class1, class0)
	      && ! CLASS_LIKELY_SPILLED_P (class1)));
}

/* INC_INSN is an instruction that adds INCREMENT to REG.
   Try to fold INC_INSN as a post/pre in/decrement into INSN.
   Iff INC_INSN_SET is nonzero, inc_insn has a destination different from src.
   Return nonzero for success.  */
static int
try_auto_increment (insn, inc_insn, inc_insn_set, reg, increment, pre)
     rtx reg, insn, inc_insn ,inc_insn_set;
     HOST_WIDE_INT increment;
     int pre;
{
  enum rtx_code inc_code;

  rtx pset = single_set (insn);
  if (pset)
    {
      /* Can't use the size of SET_SRC, we might have something like
	 (sign_extend:SI (mem:QI ...  */
      rtx use = find_use_as_address (pset, reg, 0);
      if (use != 0 && use != (rtx) (size_t) 1)
	{
	  int size = GET_MODE_SIZE (GET_MODE (use));
	  if (0
	      || (HAVE_POST_INCREMENT
		  && pre == 0 && (inc_code = POST_INC, increment == size))
	      || (HAVE_PRE_INCREMENT
		  && pre == 1 && (inc_code = PRE_INC, increment == size))
	      || (HAVE_POST_DECREMENT
		  && pre == 0 && (inc_code = POST_DEC, increment == -size))
	      || (HAVE_PRE_DECREMENT
		  && pre == 1 && (inc_code = PRE_DEC, increment == -size))
	  )
	    {
	      if (inc_insn_set)
		validate_change
		  (inc_insn,
		   &SET_SRC (inc_insn_set),
		   XEXP (SET_SRC (inc_insn_set), 0), 1);
	      validate_change (insn, &XEXP (use, 0),
			       gen_rtx_fmt_e (inc_code, Pmode, reg), 1);
	      if (apply_change_group ())
		{
		  /* If there is a REG_DEAD note on this insn, we must
		     change this not to REG_UNUSED meaning that the register
		     is set, but the value is dead.  Failure to do so will
		     result in a sched1 abort -- when it recomputes lifetime
		     information, the number of REG_DEAD notes will have
		     changed.  */
		  rtx note = find_reg_note (insn, REG_DEAD, reg);
		  if (note)
		    PUT_MODE (note, REG_UNUSED);

		  REG_NOTES (insn)
		    = gen_rtx_EXPR_LIST (REG_INC,
					 reg, REG_NOTES (insn));
		  if (! inc_insn_set)
		    delete_insn (inc_insn);
		  return 1;
		}
	    }
	}
    }
  return 0;
}

/* Determine if the pattern generated by add_optab has a clobber,
   such as might be issued for a flags hard register.  To make the
   code elsewhere simpler, we handle cc0 in this same framework.

   Return the register if one was discovered.  Return NULL_RTX if
   if no flags were found.  Return pc_rtx if we got confused.  */

static rtx
discover_flags_reg ()
{
  rtx tmp;
  tmp = gen_rtx_REG (word_mode, 10000);
  tmp = gen_add3_insn (tmp, tmp, GEN_INT (2));

  /* If we get something that isn't a simple set, or a
     [(set ..) (clobber ..)], this whole function will go wrong.  */
  if (GET_CODE (tmp) == SET)
    return NULL_RTX;
  else if (GET_CODE (tmp) == PARALLEL)
    {
      int found;

      if (XVECLEN (tmp, 0) != 2)
	return pc_rtx;
      tmp = XVECEXP (tmp, 0, 1);
      if (GET_CODE (tmp) != CLOBBER)
	return pc_rtx;
      tmp = XEXP (tmp, 0);

      /* Don't do anything foolish if the md wanted to clobber a
	 scratch or something.  We only care about hard regs.
	 Moreover we don't like the notion of subregs of hard regs.  */
      if (GET_CODE (tmp) == SUBREG
	  && GET_CODE (SUBREG_REG (tmp)) == REG
	  && REGNO (SUBREG_REG (tmp)) < FIRST_PSEUDO_REGISTER)
	return pc_rtx;
      found = (GET_CODE (tmp) == REG && REGNO (tmp) < FIRST_PSEUDO_REGISTER);

      return (found ? tmp : NULL_RTX);
    }

  return pc_rtx;
}

/* It is a tedious task identifying when the flags register is live and
   when it is safe to optimize.  Since we process the instruction stream
   multiple times, locate and record these live zones by marking the
   mode of the instructions --

   QImode is used on the instruction at which the flags becomes live.

   HImode is used within the range (exclusive) that the flags are
   live.  Thus the user of the flags is not marked.

   All other instructions are cleared to VOIDmode.  */

/* Used to communicate with flags_set_1.  */
static rtx flags_set_1_rtx;
static int flags_set_1_set;

static void
mark_flags_life_zones (flags)
     rtx flags;
{
  int flags_regno;
  int flags_nregs;
  int block;

#ifdef HAVE_cc0
  /* If we found a flags register on a cc0 host, bail.  */
  if (flags == NULL_RTX)
    flags = cc0_rtx;
  else if (flags != cc0_rtx)
    flags = pc_rtx;
#endif

  /* Simple cases first: if no flags, clear all modes.  If confusing,
     mark the entire function as being in a flags shadow.  */
  if (flags == NULL_RTX || flags == pc_rtx)
    {
      enum machine_mode mode = (flags ? HImode : VOIDmode);
      rtx insn;
      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
	PUT_MODE (insn, mode);
      return;
    }

#ifdef HAVE_cc0
  flags_regno = -1;
  flags_nregs = 1;
#else
  flags_regno = REGNO (flags);
  flags_nregs = HARD_REGNO_NREGS (flags_regno, GET_MODE (flags));
#endif
  flags_set_1_rtx = flags;

  /* Process each basic block.  */
  for (block = n_basic_blocks - 1; block >= 0; block--)
    {
      rtx insn, end;
      int live;

      insn = BLOCK_HEAD (block);
      end = BLOCK_END (block);

      /* Look out for the (unlikely) case of flags being live across
	 basic block boundaries.  */
      live = 0;
#ifndef HAVE_cc0
      {
	int i;
	for (i = 0; i < flags_nregs; ++i)
	  live |= REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start,
				   flags_regno + i);
      }
#endif

      while (1)
	{
	  /* Process liveness in reverse order of importance --
	     alive, death, birth.  This lets more important info
	     overwrite the mode of lesser info.  */

	  if (INSN_P (insn))
	    {
#ifdef HAVE_cc0
	      /* In the cc0 case, death is not marked in reg notes,
		 but is instead the mere use of cc0 when it is alive.  */
	      if (live && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
		live = 0;
#else
	      /* In the hard reg case, we watch death notes.  */
	      if (live && find_regno_note (insn, REG_DEAD, flags_regno))
		live = 0;
#endif
	      PUT_MODE (insn, (live ? HImode : VOIDmode));

	      /* In either case, birth is denoted simply by it's presence
		 as the destination of a set.  */
	      flags_set_1_set = 0;
	      note_stores (PATTERN (insn), flags_set_1, NULL);
	      if (flags_set_1_set)
		{
		  live = 1;
		  PUT_MODE (insn, QImode);
		}
	    }
	  else
	    PUT_MODE (insn, (live ? HImode : VOIDmode));

	  if (insn == end)
	    break;
	  insn = NEXT_INSN (insn);
	}
    }
}

/* A subroutine of mark_flags_life_zones, called through note_stores.  */

static void
flags_set_1 (x, pat, data)
     rtx x, pat;
     void *data ATTRIBUTE_UNUSED;
{
  if (GET_CODE (pat) == SET
      && reg_overlap_mentioned_p (x, flags_set_1_rtx))
    flags_set_1_set = 1;
}

static int *regno_src_regno;

/* Indicate how good a choice REG (which appears as a source) is to replace
   a destination register with.  The higher the returned value, the better
   the choice.  The main objective is to avoid using a register that is
   a candidate for tying to a hard register, since the output might in
   turn be a candidate to be tied to a different hard register.  */
static int
replacement_quality (reg)
     rtx reg;
{
  int src_regno;

  /* Bad if this isn't a register at all.  */
  if (GET_CODE (reg) != REG)
    return 0;

  /* If this register is not meant to get a hard register,
     it is a poor choice.  */
  if (REG_LIVE_LENGTH (REGNO (reg)) < 0)
    return 0;

  src_regno = regno_src_regno[REGNO (reg)];

  /* If it was not copied from another register, it is fine.  */
  if (src_regno < 0)
    return 3;

  /* Copied from a hard register?  */
  if (src_regno < FIRST_PSEUDO_REGISTER)
    return 1;

  /* Copied from a pseudo register - not as bad as from a hard register,
     yet still cumbersome, since the register live length will be lengthened
     when the registers get tied.  */
  return 2;
}

/* Return 1 if INSN might end a basic block.  */

static int perhaps_ends_bb_p (insn)
     rtx insn;
{
  switch (GET_CODE (insn))
    {
    case CODE_LABEL:
    case JUMP_INSN:
      /* These always end a basic block.  */
      return 1;

    case CALL_INSN:
      /* A CALL_INSN might be the last insn of a basic block, if it is inside
	 an EH region or if there are nonlocal gotos.  Note that this test is
	 very conservative.  */
      if (nonlocal_goto_handler_labels)
	return 1;
      /* FALLTHRU */
    default:
      return can_throw_internal (insn);
    }
}

/* INSN is a copy from SRC to DEST, both registers, and SRC does not die
   in INSN.

   Search forward to see if SRC dies before either it or DEST is modified,
   but don't scan past the end of a basic block.  If so, we can replace SRC
   with DEST and let SRC die in INSN.

   This will reduce the number of registers live in that range and may enable
   DEST to be tied to SRC, thus often saving one register in addition to a
   register-register copy.  */

static int
optimize_reg_copy_1 (insn, dest, src)
     rtx insn;
     rtx dest;
     rtx src;
{
  rtx p, q;
  rtx note;
  rtx dest_death = 0;
  int sregno = REGNO (src);
  int dregno = REGNO (dest);

  /* We don't want to mess with hard regs if register classes are small.  */
  if (sregno == dregno
      || (SMALL_REGISTER_CLASSES
	  && (sregno < FIRST_PSEUDO_REGISTER
	      || dregno < FIRST_PSEUDO_REGISTER))
      /* We don't see all updates to SP if they are in an auto-inc memory
	 reference, so we must disallow this optimization on them.  */
      || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
    return 0;

  for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
    {
      /* ??? We can't scan past the end of a basic block without updating
	 the register lifetime info (REG_DEAD/basic_block_live_at_start).  */
      if (perhaps_ends_bb_p (p))
	break;
      else if (! INSN_P (p))
	continue;

      if (reg_set_p (src, p) || reg_set_p (dest, p)
	  /* Don't change a USE of a register.  */
	  || (GET_CODE (PATTERN (p)) == USE
	      && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
	break;

      /* See if all of SRC dies in P.  This test is slightly more
	 conservative than it needs to be.  */
      if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
	  && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
	{
	  int failed = 0;
	  int d_length = 0;
	  int s_length = 0;
	  int d_n_calls = 0;
	  int s_n_calls = 0;

	  /* We can do the optimization.  Scan forward from INSN again,
	     replacing regs as we go.  Set FAILED if a replacement can't
	     be done.  In that case, we can't move the death note for SRC.
	     This should be rare.  */

	  /* Set to stop at next insn.  */
	  for (q = next_real_insn (insn);
	       q != next_real_insn (p);
	       q = next_real_insn (q))
	    {
	      if (reg_overlap_mentioned_p (src, PATTERN (q)))
		{
		  /* If SRC is a hard register, we might miss some
		     overlapping registers with validate_replace_rtx,
		     so we would have to undo it.  We can't if DEST is
		     present in the insn, so fail in that combination
		     of cases.  */
		  if (sregno < FIRST_PSEUDO_REGISTER
		      && reg_mentioned_p (dest, PATTERN (q)))
		    failed = 1;

		  /* Replace all uses and make sure that the register
		     isn't still present.  */
		  else if (validate_replace_rtx (src, dest, q)
			   && (sregno >= FIRST_PSEUDO_REGISTER
			       || ! reg_overlap_mentioned_p (src,
							     PATTERN (q))))
		    ;
		  else
		    {
		      validate_replace_rtx (dest, src, q);
		      failed = 1;
		    }
		}

	      /* For SREGNO, count the total number of insns scanned.
		 For DREGNO, count the total number of insns scanned after
		 passing the death note for DREGNO.  */
	      s_length++;
	      if (dest_death)
		d_length++;

	      /* If the insn in which SRC dies is a CALL_INSN, don't count it
		 as a call that has been crossed.  Otherwise, count it.  */
	      if (q != p && GET_CODE (q) == CALL_INSN)
		{
		  /* Similarly, total calls for SREGNO, total calls beyond
		     the death note for DREGNO.  */
		  s_n_calls++;
		  if (dest_death)
		    d_n_calls++;
		}

	      /* If DEST dies here, remove the death note and save it for
		 later.  Make sure ALL of DEST dies here; again, this is
		 overly conservative.  */
	      if (dest_death == 0
		  && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0)
		{
		  if (GET_MODE (XEXP (dest_death, 0)) != GET_MODE (dest))
		    failed = 1, dest_death = 0;
		  else
		    remove_note (q, dest_death);
		}
	    }

	  if (! failed)
	    {
	      /* These counters need to be updated if and only if we are
		 going to move the REG_DEAD note.  */
	      if (sregno >= FIRST_PSEUDO_REGISTER)
		{
		  if (REG_LIVE_LENGTH (sregno) >= 0)
		    {
		      REG_LIVE_LENGTH (sregno) -= s_length;
		      /* REG_LIVE_LENGTH is only an approximation after
			 combine if sched is not run, so make sure that we
			 still have a reasonable value.  */
		      if (REG_LIVE_LENGTH (sregno) < 2)
			REG_LIVE_LENGTH (sregno) = 2;
		    }

		  REG_N_CALLS_CROSSED (sregno) -= s_n_calls;
		}

	      /* Move death note of SRC from P to INSN.  */
	      remove_note (p, note);
	      XEXP (note, 1) = REG_NOTES (insn);
	      REG_NOTES (insn) = note;
	    }

	  /* DEST is also dead if INSN has a REG_UNUSED note for DEST.  */
	  if (! dest_death
	      && (dest_death = find_regno_note (insn, REG_UNUSED, dregno)))
	    {
	      PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
	      remove_note (insn, dest_death);
	    }

	  /* Put death note of DEST on P if we saw it die.  */
	  if (dest_death)
	    {
	      XEXP (dest_death, 1) = REG_NOTES (p);
	      REG_NOTES (p) = dest_death;

	      if (dregno >= FIRST_PSEUDO_REGISTER)
		{
		  /* If and only if we are moving the death note for DREGNO,
		     then we need to update its counters.  */
		  if (REG_LIVE_LENGTH (dregno) >= 0)
		    REG_LIVE_LENGTH (dregno) += d_length;
		  REG_N_CALLS_CROSSED (dregno) += d_n_calls;
		}
	    }

	  return ! failed;
	}

      /* If SRC is a hard register which is set or killed in some other
	 way, we can't do this optimization.  */
      else if (sregno < FIRST_PSEUDO_REGISTER
	       && dead_or_set_p (p, src))
	break;
    }
  return 0;
}

/* INSN is a copy of SRC to DEST, in which SRC dies.  See if we now have
   a sequence of insns that modify DEST followed by an insn that sets
   SRC to DEST in which DEST dies, with no prior modification of DEST.
   (There is no need to check if the insns in between actually modify
   DEST.  We should not have cases where DEST is not modified, but
   the optimization is safe if no such modification is detected.)
   In that case, we can replace all uses of DEST, starting with INSN and
   ending with the set of SRC to DEST, with SRC.  We do not do this
   optimization if a CALL_INSN is crossed unless SRC already crosses a
   call or if DEST dies before the copy back to SRC.

   It is assumed that DEST and SRC are pseudos; it is too complicated to do
   this for hard registers since the substitutions we may make might fail.  */

static void
optimize_reg_copy_2 (insn, dest, src)
     rtx insn;
     rtx dest;
     rtx src;
{
  rtx p, q;
  rtx set;
  int sregno = REGNO (src);
  int dregno = REGNO (dest);

  for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
    {
      /* ??? We can't scan past the end of a basic block without updating
	 the register lifetime info (REG_DEAD/basic_block_live_at_start).  */
      if (perhaps_ends_bb_p (p))
	break;
      else if (! INSN_P (p))
	continue;

      set = single_set (p);
      if (set && SET_SRC (set) == dest && SET_DEST (set) == src
	  && find_reg_note (p, REG_DEAD, dest))
	{
	  /* We can do the optimization.  Scan forward from INSN again,
	     replacing regs as we go.  */

	  /* Set to stop at next insn.  */
	  for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
	    if (INSN_P (q))
	      {
		if (reg_mentioned_p (dest, PATTERN (q)))
		  PATTERN (q) = replace_rtx (PATTERN (q), dest, src);


	      if (GET_CODE (q) == CALL_INSN)
		{
		  REG_N_CALLS_CROSSED (dregno)--;
		  REG_N_CALLS_CROSSED (sregno)++;
		}
	      }

	  remove_note (p, find_reg_note (p, REG_DEAD, dest));
	  REG_N_DEATHS (dregno)--;
	  remove_note (insn, find_reg_note (insn, REG_DEAD, src));
	  REG_N_DEATHS (sregno)--;
	  return;
	}

      if (reg_set_p (src, p)
	  || find_reg_note (p, REG_DEAD, dest)
	  || (GET_CODE (p) == CALL_INSN && REG_N_CALLS_CROSSED (sregno) == 0))
	break;
    }
}
/* INSN is a ZERO_EXTEND or SIGN_EXTEND of SRC to DEST.
   Look if SRC dies there, and if it is only set once, by loading
   it from memory.  If so, try to encorporate the zero/sign extension
   into the memory read, change SRC to the mode of DEST, and alter
   the remaining accesses to use the appropriate SUBREG.  This allows
   SRC and DEST to be tied later.  */
static void
optimize_reg_copy_3 (insn, dest, src)
     rtx insn;
     rtx dest;
     rtx src;
{
  rtx src_reg = XEXP (src, 0);
  int src_no = REGNO (src_reg);
  int dst_no = REGNO (dest);
  rtx p, set, subreg;
  enum machine_mode old_mode;

  if (src_no < FIRST_PSEUDO_REGISTER
      || dst_no < FIRST_PSEUDO_REGISTER
      || ! find_reg_note (insn, REG_DEAD, src_reg)
      || REG_N_SETS (src_no) != 1)
    return;
  for (p = PREV_INSN (insn); p && ! reg_set_p (src_reg, p); p = PREV_INSN (p))
    /* ??? We can't scan past the end of a basic block without updating
       the register lifetime info (REG_DEAD/basic_block_live_at_start).  */
    if (perhaps_ends_bb_p (p))
      break;

  if (! p)
    return;

  if (! (set = single_set (p))
      || GET_CODE (SET_SRC (set)) != MEM
      /* If there's a REG_EQUIV note, this must be an insn that loads an
	 argument.  Prefer keeping the note over doing this optimization.  */
      || find_reg_note (p, REG_EQUIV, NULL_RTX)
      || SET_DEST (set) != src_reg)
    return;

  /* Be conserative: although this optimization is also valid for
     volatile memory references, that could cause trouble in later passes.  */
  if (MEM_VOLATILE_P (SET_SRC (set)))
    return;

  /* Do not use a SUBREG to truncate from one mode to another if truncation
     is not a nop.  */
  if (GET_MODE_BITSIZE (GET_MODE (src_reg)) <= GET_MODE_BITSIZE (GET_MODE (src))
      && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (src)),
				 GET_MODE_BITSIZE (GET_MODE (src_reg))))
    return;

  old_mode = GET_MODE (src_reg);
  PUT_MODE (src_reg, GET_MODE (src));
  XEXP (src, 0) = SET_SRC (set);

  /* Include this change in the group so that it's easily undone if
     one of the changes in the group is invalid.  */
  validate_change (p, &SET_SRC (set), src, 1);

  /* Now walk forward making additional replacements.  We want to be able
     to undo all the changes if a later substitution fails.  */
  subreg = gen_lowpart_SUBREG (old_mode, src_reg);
  while (p = NEXT_INSN (p), p != insn)
    {
      if (! INSN_P (p))
	continue;

      /* Make a tenative change.  */
      validate_replace_rtx_group (src_reg, subreg, p);
    }

  validate_replace_rtx_group (src, src_reg, insn);

  /* Now see if all the changes are valid.  */
  if (! apply_change_group ())
    {
      /* One or more changes were no good.  Back out everything.  */
      PUT_MODE (src_reg, old_mode);
      XEXP (src, 0) = src_reg;
    }
  else
    {
      rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
      if (note)
	remove_note (p, note);
    }
}


/* If we were not able to update the users of src to use dest directly, try
   instead moving the value to dest directly before the operation.  */

static void
copy_src_to_dest (insn, src, dest, old_max_uid)
     rtx insn;
     rtx src;
     rtx dest;
     int old_max_uid;
{
  rtx seq;
  rtx link;
  rtx next;
  rtx set;
  rtx move_insn;
  rtx *p_insn_notes;
  rtx *p_move_notes;
  int src_regno;
  int dest_regno;
  int bb;
  int insn_uid;
  int move_uid;

  /* A REG_LIVE_LENGTH of -1 indicates the register is equivalent to a constant
     or memory location and is used infrequently; a REG_LIVE_LENGTH of -2 is
     parameter when there is no frame pointer that is not allocated a register.
     For now, we just reject them, rather than incrementing the live length.  */

  if (GET_CODE (src) == REG
      && REG_LIVE_LENGTH (REGNO (src)) > 0
      && GET_CODE (dest) == REG
      && !RTX_UNCHANGING_P (dest)
      && REG_LIVE_LENGTH (REGNO (dest)) > 0
      && (set = single_set (insn)) != NULL_RTX
      && !reg_mentioned_p (dest, SET_SRC (set))
      && GET_MODE (src) == GET_MODE (dest))
    {
      int old_num_regs = reg_rtx_no;

      /* Generate the src->dest move.  */
      start_sequence ();
      emit_move_insn (dest, src);
      seq = gen_sequence ();
      end_sequence ();
      /* If this sequence uses new registers, we may not use it.  */
      if (old_num_regs != reg_rtx_no
	  || ! validate_replace_rtx (src, dest, insn))
	{
	  /* We have to restore reg_rtx_no to its old value, lest
	     recompute_reg_usage will try to compute the usage of the
	     new regs, yet reg_n_info is not valid for them.  */
	  reg_rtx_no = old_num_regs;
	  return;
	}
      emit_insn_before (seq, insn);
      move_insn = PREV_INSN (insn);
      p_move_notes = &REG_NOTES (move_insn);
      p_insn_notes = &REG_NOTES (insn);

      /* Move any notes mentioning src to the move instruction */
      for (link = REG_NOTES (insn); link != NULL_RTX; link = next)
	{
	  next = XEXP (link, 1);
	  if (XEXP (link, 0) == src)
	    {
	      *p_move_notes = link;
	      p_move_notes = &XEXP (link, 1);
	    }
	  else
	    {
	      *p_insn_notes = link;
	      p_insn_notes = &XEXP (link, 1);
	    }
	}

      *p_move_notes = NULL_RTX;
      *p_insn_notes = NULL_RTX;

      /* Is the insn the head of a basic block?  If so extend it */
      insn_uid = INSN_UID (insn);
      move_uid = INSN_UID (move_insn);
      if (insn_uid < old_max_uid)
	{
	  bb = regmove_bb_head[insn_uid];
	  if (bb >= 0)
	    {
	      BLOCK_HEAD (bb) = move_insn;
	      regmove_bb_head[insn_uid] = -1;
	    }
	}

      /* Update the various register tables.  */
      dest_regno = REGNO (dest);
      REG_N_SETS (dest_regno) ++;
      REG_LIVE_LENGTH (dest_regno)++;
      if (REGNO_FIRST_UID (dest_regno) == insn_uid)
	REGNO_FIRST_UID (dest_regno) = move_uid;

      src_regno = REGNO (src);
      if (! find_reg_note (move_insn, REG_DEAD, src))
	REG_LIVE_LENGTH (src_regno)++;

      if (REGNO_FIRST_UID (src_regno) == insn_uid)
	REGNO_FIRST_UID (src_regno) = move_uid;

      if (REGNO_LAST_UID (src_regno) == insn_uid)
	REGNO_LAST_UID (src_regno) = move_uid;

      if (REGNO_LAST_NOTE_UID (src_regno) == insn_uid)
	REGNO_LAST_NOTE_UID (src_regno) = move_uid;
    }
}


/* Return whether REG is set in only one location, and is set to a
   constant, but is set in a different basic block from INSN (an
   instructions which uses REG).  In this case REG is equivalent to a
   constant, and we don't want to break that equivalence, because that
   may increase register pressure and make reload harder.  If REG is
   set in the same basic block as INSN, we don't worry about it,
   because we'll probably need a register anyhow (??? but what if REG
   is used in a different basic block as well as this one?).  FIRST is
   the first insn in the function.  */

static int
reg_is_remote_constant_p (reg, insn, first)
     rtx reg;
     rtx insn;
     rtx first;
{
  rtx p;

  if (REG_N_SETS (REGNO (reg)) != 1)
    return 0;

  /* Look for the set.  */
  for (p = LOG_LINKS (insn); p; p = XEXP (p, 1))
    {
      rtx s;

      if (REG_NOTE_KIND (p) != 0)
	continue;
      s = single_set (XEXP (p, 0));
      if (s != 0
	  && GET_CODE (SET_DEST (s)) == REG
	  && REGNO (SET_DEST (s)) == REGNO (reg))
	{
	  /* The register is set in the same basic block.  */
	  return 0;
	}
    }

  for (p = first; p && p != insn; p = NEXT_INSN (p))
    {
      rtx s;

      if (! INSN_P (p))
	continue;
      s = single_set (p);
      if (s != 0
	  && GET_CODE (SET_DEST (s)) == REG
	  && REGNO (SET_DEST (s)) == REGNO (reg))
	{
	  /* This is the instruction which sets REG.  If there is a
             REG_EQUAL note, then REG is equivalent to a constant.  */
	  if (find_reg_note (p, REG_EQUAL, NULL_RTX))
	    return 1;
	  return 0;
	}
    }

  return 0;
}

/* INSN is adding a CONST_INT to a REG.  We search backwards looking for
   another add immediate instruction with the same source and dest registers,
   and if we find one, we change INSN to an increment, and return 1.  If
   no changes are made, we return 0.

   This changes
     (set (reg100) (plus reg1 offset1))
     ...
     (set (reg100) (plus reg1 offset2))
   to
     (set (reg100) (plus reg1 offset1))
     ...
     (set (reg100) (plus reg100 offset2-offset1))  */

/* ??? What does this comment mean?  */
/* cse disrupts preincrement / postdecrement squences when it finds a
   hard register as ultimate source, like the frame pointer.  */

static int
fixup_match_2 (insn, dst, src, offset, regmove_dump_file)
     rtx insn, dst, src, offset;
     FILE *regmove_dump_file;
{
  rtx p, dst_death = 0;
  int length, num_calls = 0;

  /* If SRC dies in INSN, we'd have to move the death note.  This is
     considered to be very unlikely, so we just skip the optimization
     in this case.  */
  if (find_regno_note (insn, REG_DEAD, REGNO (src)))
    return 0;

  /* Scan backward to find the first instruction that sets DST.  */

  for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
    {
      rtx pset;

      /* ??? We can't scan past the end of a basic block without updating
	 the register lifetime info (REG_DEAD/basic_block_live_at_start).  */
      if (perhaps_ends_bb_p (p))
	break;
      else if (! INSN_P (p))
	continue;

      if (find_regno_note (p, REG_DEAD, REGNO (dst)))
	dst_death = p;
      if (! dst_death)
	length++;

      pset = single_set (p);
      if (pset && SET_DEST (pset) == dst
	  && GET_CODE (SET_SRC (pset)) == PLUS
	  && XEXP (SET_SRC (pset), 0) == src
	  && GET_CODE (XEXP (SET_SRC (pset), 1)) == CONST_INT)
	{
	  HOST_WIDE_INT newconst
	    = INTVAL (offset) - INTVAL (XEXP (SET_SRC (pset), 1));
	  rtx add = gen_add3_insn (dst, dst, GEN_INT (newconst));

	  if (add && validate_change (insn, &PATTERN (insn), add, 0))
	    {
	      /* Remove the death note for DST from DST_DEATH.  */
	      if (dst_death)
		{
		  remove_death (REGNO (dst), dst_death);
		  REG_LIVE_LENGTH (REGNO (dst)) += length;
		  REG_N_CALLS_CROSSED (REGNO (dst)) += num_calls;
		}

	      if (regmove_dump_file)
		fprintf (regmove_dump_file,
			 "Fixed operand of insn %d.\n",
			  INSN_UID (insn));

#ifdef AUTO_INC_DEC
	      for (p = PREV_INSN (insn); p; p = PREV_INSN (p))
		{
		  if (GET_CODE (p) == CODE_LABEL
		      || GET_CODE (p) == JUMP_INSN)
		    break;
		  if (! INSN_P (p))
		    continue;
		  if (reg_overlap_mentioned_p (dst, PATTERN (p)))
		    {
		      if (try_auto_increment (p, insn, 0, dst, newconst, 0))
			return 1;
		      break;
		    }
		}
	      for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
		{
		  if (GET_CODE (p) == CODE_LABEL
		      || GET_CODE (p) == JUMP_INSN)
		    break;
		  if (! INSN_P (p))
		    continue;
		  if (reg_overlap_mentioned_p (dst, PATTERN (p)))
		    {
		      try_auto_increment (p, insn, 0, dst, newconst, 1);
		      break;
		    }
		}
#endif
	      return 1;
	    }
	}

      if (reg_set_p (dst, PATTERN (p)))
	break;

      /* If we have passed a call instruction, and the
         pseudo-reg SRC is not already live across a call,
         then don't perform the optimization.  */
      /* reg_set_p is overly conservative for CALL_INSNS, thinks that all
	 hard regs are clobbered.  Thus, we only use it for src for
	 non-call insns.  */
      if (GET_CODE (p) == CALL_INSN)
	{
	  if (! dst_death)
	    num_calls++;

	  if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
	    break;

	  if (call_used_regs [REGNO (dst)]
	      || find_reg_fusage (p, CLOBBER, dst))
	    break;
	}
      else if (reg_set_p (src, PATTERN (p)))
	break;
    }

  return 0;
}

/* Main entry for the register move optimization.
   F is the first instruction.
   NREGS is one plus the highest pseudo-reg number used in the instruction.
   REGMOVE_DUMP_FILE is a stream for output of a trace of actions taken
   (or 0 if none should be output).  */

void
regmove_optimize (f, nregs, regmove_dump_file)
     rtx f;
     int nregs;
     FILE *regmove_dump_file;
{
  int old_max_uid = get_max_uid ();
  rtx insn;
  struct match match;
  int pass;
  int i;
  rtx copy_src, copy_dst;

  /* ??? Hack.  Regmove doesn't examine the CFG, and gets mightily
     confused by non-call exceptions ending blocks.  */
  if (flag_non_call_exceptions)
    return;

  /* Find out where a potential flags register is live, and so that we
     can supress some optimizations in those zones.  */
  mark_flags_life_zones (discover_flags_reg ());

  regno_src_regno = (int *) xmalloc (sizeof *regno_src_regno * nregs);
  for (i = nregs; --i >= 0; ) regno_src_regno[i] = -1;

  regmove_bb_head = (int *) xmalloc (sizeof (int) * (old_max_uid + 1));
  for (i = old_max_uid; i >= 0; i--) regmove_bb_head[i] = -1;
  for (i = 0; i < n_basic_blocks; i++)
    regmove_bb_head[INSN_UID (BLOCK_HEAD (i))] = i;

  /* A forward/backward pass.  Replace output operands with input operands.  */

  for (pass = 0; pass <= 2; pass++)
    {
      if (! flag_regmove && pass >= flag_expensive_optimizations)
	goto done;

      if (regmove_dump_file)
	fprintf (regmove_dump_file, "Starting %s pass...\n",
		 pass ? "backward" : "forward");

      for (insn = pass ? get_last_insn () : f; insn;
	   insn = pass ? PREV_INSN (insn) : NEXT_INSN (insn))
	{
	  rtx set;
	  int op_no, match_no;

	  set = single_set (insn);
	  if (! set)
	    continue;

	  if (flag_expensive_optimizations && ! pass
	      && (GET_CODE (SET_SRC (set)) == SIGN_EXTEND
		  || GET_CODE (SET_SRC (set)) == ZERO_EXTEND)
	      && GET_CODE (XEXP (SET_SRC (set), 0)) == REG
	      && GET_CODE (SET_DEST (set)) == REG)
	    optimize_reg_copy_3 (insn, SET_DEST (set), SET_SRC (set));

	  if (flag_expensive_optimizations && ! pass
	      && GET_CODE (SET_SRC (set)) == REG
	      && GET_CODE (SET_DEST (set)) == REG)
	    {
	      /* If this is a register-register copy where SRC is not dead,
		 see if we can optimize it.  If this optimization succeeds,
		 it will become a copy where SRC is dead.  */
	      if ((find_reg_note (insn, REG_DEAD, SET_SRC (set))
		   || optimize_reg_copy_1 (insn, SET_DEST (set), SET_SRC (set)))
		  && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
		{
		  /* Similarly for a pseudo-pseudo copy when SRC is dead.  */
		  if (REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
		    optimize_reg_copy_2 (insn, SET_DEST (set), SET_SRC (set));
		  if (regno_src_regno[REGNO (SET_DEST (set))] < 0
		      && SET_SRC (set) != SET_DEST (set))
		    {
		      int srcregno = REGNO (SET_SRC (set));
		      if (regno_src_regno[srcregno] >= 0)
			srcregno = regno_src_regno[srcregno];
		      regno_src_regno[REGNO (SET_DEST (set))] = srcregno;
		    }
		}
	    }
	  if (! flag_regmove)
	    continue;

	  if (! find_matches (insn, &match))
	    continue;

	  /* Now scan through the operands looking for a source operand
	     which is supposed to match the destination operand.
	     Then scan forward for an instruction which uses the dest
	     operand.
	     If it dies there, then replace the dest in both operands with
	     the source operand.  */

	  for (op_no = 0; op_no < recog_data.n_operands; op_no++)
	    {
	      rtx src, dst, src_subreg;
	      enum reg_class src_class, dst_class;

	      match_no = match.with[op_no];

	      /* Nothing to do if the two operands aren't supposed to match.  */
	      if (match_no < 0)
		continue;

	      src = recog_data.operand[op_no];
	      dst = recog_data.operand[match_no];

	      if (GET_CODE (src) != REG)
		continue;

	      src_subreg = src;
	      if (GET_CODE (dst) == SUBREG
		  && GET_MODE_SIZE (GET_MODE (dst))
		     >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dst))))
		{
		  src_subreg
		    = gen_rtx_SUBREG (GET_MODE (SUBREG_REG (dst)),
				      src, SUBREG_BYTE (dst));
		  dst = SUBREG_REG (dst);
		}
	      if (GET_CODE (dst) != REG
		  || REGNO (dst) < FIRST_PSEUDO_REGISTER)
		continue;

	      if (REGNO (src) < FIRST_PSEUDO_REGISTER)
		{
		  if (match.commutative[op_no] < op_no)
		    regno_src_regno[REGNO (dst)] = REGNO (src);
		  continue;
		}

	      if (REG_LIVE_LENGTH (REGNO (src)) < 0)
		continue;

	      /* op_no/src must be a read-only operand, and
		 match_operand/dst must be a write-only operand.  */
	      if (match.use[op_no] != READ
		  || match.use[match_no] != WRITE)
		continue;

	      if (match.early_clobber[match_no]
		  && count_occurrences (PATTERN (insn), src, 0) > 1)
		continue;

	      /* Make sure match_operand is the destination.  */
	      if (recog_data.operand[match_no] != SET_DEST (set))
		continue;

	      /* If the operands already match, then there is nothing to do.  */
	      if (operands_match_p (src, dst))
		continue;

	      /* But in the commutative case, we might find a better match.  */
	      if (match.commutative[op_no] >= 0)
		{
		  rtx comm = recog_data.operand[match.commutative[op_no]];
		  if (operands_match_p (comm, dst)
		      && (replacement_quality (comm)
			  >= replacement_quality (src)))
		    continue;
		}

	      src_class = reg_preferred_class (REGNO (src));
	      dst_class = reg_preferred_class (REGNO (dst));
	      if (! regclass_compatible_p (src_class, dst_class))
		continue;

	      if (GET_MODE (src) != GET_MODE (dst))
		continue;

	      if (fixup_match_1 (insn, set, src, src_subreg, dst, pass,
				 op_no, match_no,
				 regmove_dump_file))
		break;
	    }
	}
    }

  /* A backward pass.  Replace input operands with output operands.  */

  if (regmove_dump_file)
    fprintf (regmove_dump_file, "Starting backward pass...\n");

  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
    {
      if (INSN_P (insn))
	{
	  int op_no, match_no;
	  int success = 0;

	  if (! find_matches (insn, &match))
	    continue;

	  /* Now scan through the operands looking for a destination operand
	     which is supposed to match a source operand.
	     Then scan backward for an instruction which sets the source
	     operand.  If safe, then replace the source operand with the
	     dest operand in both instructions.  */

	  copy_src = NULL_RTX;
	  copy_dst = NULL_RTX;
	  for (op_no = 0; op_no < recog_data.n_operands; op_no++)
	    {
	      rtx set, p, src, dst;
	      rtx src_note, dst_note;
	      int num_calls = 0;
	      enum reg_class src_class, dst_class;
	      int length;

	      match_no = match.with[op_no];

	      /* Nothing to do if the two operands aren't supposed to match.  */
	      if (match_no < 0)
		continue;

	      dst = recog_data.operand[match_no];
	      src = recog_data.operand[op_no];

	      if (GET_CODE (src) != REG)
		continue;

	      if (GET_CODE (dst) != REG
		  || REGNO (dst) < FIRST_PSEUDO_REGISTER
		  || REG_LIVE_LENGTH (REGNO (dst)) < 0
		  || RTX_UNCHANGING_P (dst))
		continue;

	      /* If the operands already match, then there is nothing to do.  */
	      if (operands_match_p (src, dst))
		continue;

	      if (match.commutative[op_no] >= 0)
		{
		  rtx comm = recog_data.operand[match.commutative[op_no]];
		  if (operands_match_p (comm, dst))
		    continue;
		}

	      set = single_set (insn);
	      if (! set)
		continue;

	      /* Note that single_set ignores parts of a parallel set for
		 which one of the destinations is REG_UNUSED.  We can't
		 handle that here, since we can wind up rewriting things
		 such that a single register is set twice within a single
		 parallel.  */
	      if (reg_set_p (src, insn))
		continue;

	      /* match_no/dst must be a write-only operand, and
		 operand_operand/src must be a read-only operand.  */
	      if (match.use[op_no] != READ
		  || match.use[match_no] != WRITE)
		continue;

	      if (match.early_clobber[match_no]
		  && count_occurrences (PATTERN (insn), src, 0) > 1)
		continue;

	      /* Make sure match_no is the destination.  */
	      if (recog_data.operand[match_no] != SET_DEST (set))
		continue;

	      if (REGNO (src) < FIRST_PSEUDO_REGISTER)
		{
		  if (GET_CODE (SET_SRC (set)) == PLUS
		      && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
		      && XEXP (SET_SRC (set), 0) == src
		      && fixup_match_2 (insn, dst, src,
					XEXP (SET_SRC (set), 1),
					regmove_dump_file))
		    break;
		  continue;
		}
	      src_class = reg_preferred_class (REGNO (src));
	      dst_class = reg_preferred_class (REGNO (dst));

	      if (! (src_note = find_reg_note (insn, REG_DEAD, src)))
		{
		  /* We used to force the copy here like in other cases, but
		     it produces worse code, as it eliminates no copy
		     instructions and the copy emitted will be produced by
		     reload anyway.  On patterns with multiple alternatives,
		     there may be better sollution availble.

		     In particular this change produced slower code for numeric
		     i387 programs.  */

		  continue;
		}

	      if (! regclass_compatible_p (src_class, dst_class))
		{
		  if (!copy_src)
		    {
		      copy_src = src;
		      copy_dst = dst;
		    }
		  continue;
		}

	      /* Can not modify an earlier insn to set dst if this insn
		 uses an old value in the source.  */
	      if (reg_overlap_mentioned_p (dst, SET_SRC (set)))
		{
		  if (!copy_src)
		    {
		      copy_src = src;
		      copy_dst = dst;
		    }
		  continue;
		}

	      /* If src is set once in a different basic block,
		 and is set equal to a constant, then do not use
		 it for this optimization, as this would make it
		 no longer equivalent to a constant.  */

	      if (reg_is_remote_constant_p (src, insn, f))
		{
		  if (!copy_src)
		    {
		      copy_src = src;
		      copy_dst = dst;
		    }
		  continue;
		}


	      if (regmove_dump_file)
		fprintf (regmove_dump_file,
			 "Could fix operand %d of insn %d matching operand %d.\n",
			 op_no, INSN_UID (insn), match_no);

	      /* Scan backward to find the first instruction that uses
		 the input operand.  If the operand is set here, then
		 replace it in both instructions with match_no.  */

	      for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
		{
		  rtx pset;

		  /* ??? We can't scan past the end of a basic block without
		     updating the register lifetime info
		     (REG_DEAD/basic_block_live_at_start).  */
		  if (perhaps_ends_bb_p (p))
		    break;
		  else if (! INSN_P (p))
		    continue;

		  length++;

		  /* ??? See if all of SRC is set in P.  This test is much
		     more conservative than it needs to be.  */
		  pset = single_set (p);
		  if (pset && SET_DEST (pset) == src)
		    {
		      /* We use validate_replace_rtx, in case there
			 are multiple identical source operands.  All of
			 them have to be changed at the same time.  */
		      if (validate_replace_rtx (src, dst, insn))
			{
			  if (validate_change (p, &SET_DEST (pset),
					       dst, 0))
			    success = 1;
			  else
			    {
			      /* Change all source operands back.
				 This modifies the dst as a side-effect.  */
			      validate_replace_rtx (dst, src, insn);
			      /* Now make sure the dst is right.  */
			      validate_change (insn,
					       recog_data.operand_loc[match_no],
					       dst, 0);
			    }
			}
		      break;
		    }

		  if (reg_overlap_mentioned_p (src, PATTERN (p))
		      || reg_overlap_mentioned_p (dst, PATTERN (p)))
		    break;

		  /* If we have passed a call instruction, and the
		     pseudo-reg DST is not already live across a call,
		     then don't perform the optimization.  */
		  if (GET_CODE (p) == CALL_INSN)
		    {
		      num_calls++;

		      if (REG_N_CALLS_CROSSED (REGNO (dst)) == 0)
			break;
		    }
		}

	      if (success)
		{
		  int dstno, srcno;

		  /* Remove the death note for SRC from INSN.  */
		  remove_note (insn, src_note);
		  /* Move the death note for SRC to P if it is used
		     there.  */
		  if (reg_overlap_mentioned_p (src, PATTERN (p)))
		    {
		      XEXP (src_note, 1) = REG_NOTES (p);
		      REG_NOTES (p) = src_note;
		    }
		  /* If there is a REG_DEAD note for DST on P, then remove
		     it, because DST is now set there.  */
		  if ((dst_note = find_reg_note (p, REG_DEAD, dst)))
		    remove_note (p, dst_note);

		  dstno = REGNO (dst);
		  srcno = REGNO (src);

		  REG_N_SETS (dstno)++;
		  REG_N_SETS (srcno)--;

		  REG_N_CALLS_CROSSED (dstno) += num_calls;
		  REG_N_CALLS_CROSSED (srcno) -= num_calls;

		  REG_LIVE_LENGTH (dstno) += length;
		  if (REG_LIVE_LENGTH (srcno) >= 0)
		    {
		      REG_LIVE_LENGTH (srcno) -= length;
		      /* REG_LIVE_LENGTH is only an approximation after
			 combine if sched is not run, so make sure that we
			 still have a reasonable value.  */
		      if (REG_LIVE_LENGTH (srcno) < 2)
			REG_LIVE_LENGTH (srcno) = 2;
		    }

		  if (regmove_dump_file)
		    fprintf (regmove_dump_file,
			     "Fixed operand %d of insn %d matching operand %d.\n",
			     op_no, INSN_UID (insn), match_no);

		  break;
		}
	    }

	  /* If we weren't able to replace any of the alternatives, try an
	     alternative appoach of copying the source to the destination.  */
	  if (!success && copy_src != NULL_RTX)
	    copy_src_to_dest (insn, copy_src, copy_dst, old_max_uid);

	}
    }

  /* In fixup_match_1, some insns may have been inserted after basic block
     ends.  Fix that here.  */
  for (i = 0; i < n_basic_blocks; i++)
    {
      basic_block bb = BASIC_BLOCK (i);
      rtx end = bb->end;
      rtx new = end;
      rtx next = NEXT_INSN (new);
      while (next != 0 && INSN_UID (next) >= old_max_uid
	     && (bb->next_bb == EXIT_BLOCK_PTR || bb->next_bb->head != next))
	new = next, next = NEXT_INSN (new);
      bb->end = new;
    }

 done:
  /* Clean up.  */
  free (regno_src_regno);
  free (regmove_bb_head);
}

/* Returns nonzero if INSN's pattern has matching constraints for any operand.
   Returns 0 if INSN can't be recognized, or if the alternative can't be
   determined.

   Initialize the info in MATCHP based on the constraints.  */

static int
find_matches (insn, matchp)
     rtx insn;
     struct match *matchp;
{
  int likely_spilled[MAX_RECOG_OPERANDS];
  int op_no;
  int any_matches = 0;

  extract_insn (insn);
  if (! constrain_operands (0))
    return 0;

  /* Must initialize this before main loop, because the code for
     the commutative case may set matches for operands other than
     the current one.  */
  for (op_no = recog_data.n_operands; --op_no >= 0; )
    matchp->with[op_no] = matchp->commutative[op_no] = -1;

  for (op_no = 0; op_no < recog_data.n_operands; op_no++)
    {
      const char *p;
      char c;
      int i = 0;

      p = recog_data.constraints[op_no];

      likely_spilled[op_no] = 0;
      matchp->use[op_no] = READ;
      matchp->early_clobber[op_no] = 0;
      if (*p == '=')
	matchp->use[op_no] = WRITE;
      else if (*p == '+')
	matchp->use[op_no] = READWRITE;

      for (;*p && i < which_alternative; p++)
	if (*p == ',')
	  i++;

      while ((c = *p++) != '\0' && c != ',')
	switch (c)
	  {
	  case '=':
	    break;
	  case '+':
	    break;
	  case '&':
	    matchp->early_clobber[op_no] = 1;
	    break;
	  case '%':
	    matchp->commutative[op_no] = op_no + 1;
	    matchp->commutative[op_no + 1] = op_no;
	    break;

	  case '0': case '1': case '2': case '3': case '4':
	  case '5': case '6': case '7': case '8': case '9':
	    {
	      char *end;
	      unsigned long match_ul = strtoul (p - 1, &end, 10);
	      int match = match_ul;

	      p = end;

	      if (match < op_no && likely_spilled[match])
		break;
	      matchp->with[op_no] = match;
	      any_matches = 1;
	      if (matchp->commutative[op_no] >= 0)
		matchp->with[matchp->commutative[op_no]] = match;
	    }
	    break;

	  case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'h':
	  case 'j': case 'k': case 'l': case 'p': case 'q': case 't': case 'u':
	  case 'v': case 'w': case 'x': case 'y': case 'z': case 'A': case 'B':
	  case 'C': case 'D': case 'W': case 'Y': case 'Z':
	    if (CLASS_LIKELY_SPILLED_P (REG_CLASS_FROM_LETTER ((unsigned char) c)))
	      likely_spilled[op_no] = 1;
	    break;
	  }
    }
  return any_matches;
}

/* Try to replace all occurrences of DST_REG with SRC in LOC, that is
   assumed to be in INSN.  */

static void
replace_in_call_usage (loc, dst_reg, src, insn)
     rtx *loc;
     unsigned int dst_reg;
     rtx src;
     rtx insn;
{
  rtx x = *loc;
  enum rtx_code code;
  const char *fmt;
  int i, j;

  if (! x)
    return;

  code = GET_CODE (x);
  if (code == REG)
    {
      if (REGNO (x) != dst_reg)
	return;

      validate_change (insn, loc, src, 1);

      return;
    }

  /* Process each of our operands recursively.  */
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    if (*fmt == 'e')
      replace_in_call_usage (&XEXP (x, i), dst_reg, src, insn);
    else if (*fmt == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
	replace_in_call_usage (& XVECEXP (x, i, j), dst_reg, src, insn);
}

/* Try to replace output operand DST in SET, with input operand SRC.  SET is
   the only set in INSN.  INSN has just been recognized and constrained.
   SRC is operand number OPERAND_NUMBER in INSN.
   DST is operand number MATCH_NUMBER in INSN.
   If BACKWARD is nonzero, we have been called in a backward pass.
   Return nonzero for success.  */

static int
fixup_match_1 (insn, set, src, src_subreg, dst, backward, operand_number,
	       match_number, regmove_dump_file)
     rtx insn, set, src, src_subreg, dst;
     int backward, operand_number, match_number;
     FILE *regmove_dump_file;
{
  rtx p;
  rtx post_inc = 0, post_inc_set = 0, search_end = 0;
  int success = 0;
  int num_calls = 0, s_num_calls = 0;
  enum rtx_code code = NOTE;
  HOST_WIDE_INT insn_const = 0, newconst;
  rtx overlap = 0; /* need to move insn ? */
  rtx src_note = find_reg_note (insn, REG_DEAD, src), dst_note = NULL_RTX;
  int length, s_length;

  /* If SRC is marked as unchanging, we may not change it.
     ??? Maybe we could get better code by removing the unchanging bit
     instead, and changing it back if we don't succeed?  */
  if (RTX_UNCHANGING_P (src))
    return 0;

  if (! src_note)
    {
      /* Look for (set (regX) (op regA constX))
		  (set (regY) (op regA constY))
	 and change that to
		  (set (regA) (op regA constX)).
		  (set (regY) (op regA constY-constX)).
	 This works for add and shift operations, if
	 regA is dead after or set by the second insn.  */

      code = GET_CODE (SET_SRC (set));
      if ((code == PLUS || code == LSHIFTRT
	   || code == ASHIFT || code == ASHIFTRT)
	  && XEXP (SET_SRC (set), 0) == src
	  && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
	insn_const = INTVAL (XEXP (SET_SRC (set), 1));
      else if (! stable_and_no_regs_but_for_p (SET_SRC (set), src, dst))
	return 0;
      else
	/* We might find a src_note while scanning.  */
	code = NOTE;
    }

  if (regmove_dump_file)
    fprintf (regmove_dump_file,
	     "Could fix operand %d of insn %d matching operand %d.\n",
	     operand_number, INSN_UID (insn), match_number);

  /* If SRC is equivalent to a constant set in a different basic block,
     then do not use it for this optimization.  We want the equivalence
     so that if we have to reload this register, we can reload the
     constant, rather than extending the lifespan of the register.  */
  if (reg_is_remote_constant_p (src, insn, get_insns ()))
    return 0;

  /* Scan forward to find the next instruction that
     uses the output operand.  If the operand dies here,
     then replace it in both instructions with
     operand_number.  */

  for (length = s_length = 0, p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
    {
      if (GET_CODE (p) == CALL_INSN)
	replace_in_call_usage (& CALL_INSN_FUNCTION_USAGE (p),
			       REGNO (dst), src, p);

      /* ??? We can't scan past the end of a basic block without updating
	 the register lifetime info (REG_DEAD/basic_block_live_at_start).  */
      if (perhaps_ends_bb_p (p))
	break;
      else if (! INSN_P (p))
	continue;

      length++;
      if (src_note)
	s_length++;

      if (reg_set_p (src, p) || reg_set_p (dst, p)
	  || (GET_CODE (PATTERN (p)) == USE
	      && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
	break;

      /* See if all of DST dies in P.  This test is
	 slightly more conservative than it needs to be.  */
      if ((dst_note = find_regno_note (p, REG_DEAD, REGNO (dst)))
	  && (GET_MODE (XEXP (dst_note, 0)) == GET_MODE (dst)))
	{
	  /* If we would be moving INSN, check that we won't move it
	     into the shadow of a live a live flags register.  */
	  /* ??? We only try to move it in front of P, although
		 we could move it anywhere between OVERLAP and P.  */
	  if (overlap && GET_MODE (PREV_INSN (p)) != VOIDmode)
	    break;

	  if (! src_note)
	    {
	      rtx q;
	      rtx set2 = NULL_RTX;

	      /* If an optimization is done, the value of SRC while P
		 is executed will be changed.  Check that this is OK.  */
	      if (reg_overlap_mentioned_p (src, PATTERN (p)))
		break;
	      for (q = p; q; q = NEXT_INSN (q))
		{
		  /* ??? We can't scan past the end of a basic block without
		     updating the register lifetime info
		     (REG_DEAD/basic_block_live_at_start).  */
		  if (perhaps_ends_bb_p (q))
		    {
		      q = 0;
		      break;
		    }
		  else if (! INSN_P (q))
		    continue;
		  else if (reg_overlap_mentioned_p (src, PATTERN (q))
			   || reg_set_p (src, q))
		    break;
		}
	      if (q)
		set2 = single_set (q);
	      if (! q || ! set2 || GET_CODE (SET_SRC (set2)) != code
		  || XEXP (SET_SRC (set2), 0) != src
		  || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT
		  || (SET_DEST (set2) != src
		      && ! find_reg_note (q, REG_DEAD, src)))
		{
		  /* If this is a PLUS, we can still save a register by doing
		     src += insn_const;
		     P;
		     src -= insn_const; .
		     This also gives opportunities for subsequent
		     optimizations in the backward pass, so do it there.  */
		  if (code == PLUS && backward
		      /* Don't do this if we can likely tie DST to SET_DEST
			 of P later; we can't do this tying here if we got a
			 hard register.  */
		      && ! (dst_note && ! REG_N_CALLS_CROSSED (REGNO (dst))
			    && single_set (p)
			    && GET_CODE (SET_DEST (single_set (p))) == REG
			    && (REGNO (SET_DEST (single_set (p)))
				< FIRST_PSEUDO_REGISTER))
		      /* We may only emit an insn directly after P if we
			 are not in the shadow of a live flags register.  */
		      && GET_MODE (p) == VOIDmode)
		    {
		      search_end = q;
		      q = insn;
		      set2 = set;
		      newconst = -insn_const;
		      code = MINUS;
		    }
		  else
		    break;
		}
	      else
		{
		  newconst = INTVAL (XEXP (SET_SRC (set2), 1)) - insn_const;
		  /* Reject out of range shifts.  */
		  if (code != PLUS
		      && (newconst < 0
			  || ((unsigned HOST_WIDE_INT) newconst
			      >= (GET_MODE_BITSIZE (GET_MODE
						    (SET_SRC (set2)))))))
		    break;
		  if (code == PLUS)
		    {
		      post_inc = q;
		      if (SET_DEST (set2) != src)
			post_inc_set = set2;
		    }
		}
	      /* We use 1 as last argument to validate_change so that all
		 changes are accepted or rejected together by apply_change_group
		 when it is called by validate_replace_rtx .  */
	      validate_change (q, &XEXP (SET_SRC (set2), 1),
			       GEN_INT (newconst), 1);
	    }
	  validate_change (insn, recog_data.operand_loc[match_number], src, 1);
	  if (validate_replace_rtx (dst, src_subreg, p))
	    success = 1;
	  break;
	}

      if (reg_overlap_mentioned_p (dst, PATTERN (p)))
	break;
      if (! src_note && reg_overlap_mentioned_p (src, PATTERN (p)))
	{
	  /* INSN was already checked to be movable wrt. the registers that it
	     sets / uses when we found no REG_DEAD note for src on it, but it
	     still might clobber the flags register.  We'll have to check that
	     we won't insert it into the shadow of a live flags register when
	     we finally know where we are to move it.  */
	  overlap = p;
	  src_note = find_reg_note (p, REG_DEAD, src);
	}

      /* If we have passed a call instruction, and the pseudo-reg SRC is not
	 already live across a call, then don't perform the optimization.  */
      if (GET_CODE (p) == CALL_INSN)
	{
	  if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
	    break;

	  num_calls++;

	  if (src_note)
	    s_num_calls++;

	}
    }

  if (! success)
    return 0;

  /* Remove the death note for DST from P.  */
  remove_note (p, dst_note);
  if (code == MINUS)
    {
      post_inc = emit_insn_after (copy_rtx (PATTERN (insn)), p);
      if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
	  && search_end
	  && try_auto_increment (search_end, post_inc, 0, src, newconst, 1))
	post_inc = 0;
      validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (insn_const), 0);
      REG_N_SETS (REGNO (src))++;
      REG_LIVE_LENGTH (REGNO (src))++;
    }
  if (overlap)
    {
      /* The lifetime of src and dest overlap,
	 but we can change this by moving insn.  */
      rtx pat = PATTERN (insn);
      if (src_note)
	remove_note (overlap, src_note);
      if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
	  && code == PLUS
	  && try_auto_increment (overlap, insn, 0, src, insn_const, 0))
	insn = overlap;
      else
	{
	  rtx notes = REG_NOTES (insn);

	  emit_insn_after_with_line_notes (pat, PREV_INSN (p), insn);
	  delete_insn (insn);
	  /* emit_insn_after_with_line_notes has no
	     return value, so search for the new insn.  */
	  insn = p;
	  while (! INSN_P (insn) || PATTERN (insn) != pat)
	    insn = PREV_INSN (insn);

	  REG_NOTES (insn) = notes;
	}
    }
  /* Sometimes we'd generate src = const; src += n;
     if so, replace the instruction that set src
     in the first place.  */

  if (! overlap && (code == PLUS || code == MINUS))
    {
      rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
      rtx q, set2 = NULL_RTX;
      int num_calls2 = 0, s_length2 = 0;

      if (note && CONSTANT_P (XEXP (note, 0)))
	{
	  for (q = PREV_INSN (insn); q; q = PREV_INSN (q))
	    {
	      /* ??? We can't scan past the end of a basic block without
		 updating the register lifetime info
		 (REG_DEAD/basic_block_live_at_start).  */
	      if (perhaps_ends_bb_p (q))
		{
		  q = 0;
		  break;
		}
	      else if (! INSN_P (q))
		continue;

	      s_length2++;
	      if (reg_set_p (src, q))
		{
		  set2 = single_set (q);
		  break;
		}
	      if (reg_overlap_mentioned_p (src, PATTERN (q)))
		{
		  q = 0;
		  break;
		}
	      if (GET_CODE (p) == CALL_INSN)
		num_calls2++;
	    }
	  if (q && set2 && SET_DEST (set2) == src && CONSTANT_P (SET_SRC (set2))
	      && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
	    {
	      delete_insn (q);
	      REG_N_SETS (REGNO (src))--;
	      REG_N_CALLS_CROSSED (REGNO (src)) -= num_calls2;
	      REG_LIVE_LENGTH (REGNO (src)) -= s_length2;
	      insn_const = 0;
	    }
	}
    }

  if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
	   && (code == PLUS || code == MINUS) && insn_const
	   && try_auto_increment (p, insn, 0, src, insn_const, 1))
    insn = p;
  else if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
	   && post_inc
	   && try_auto_increment (p, post_inc, post_inc_set, src, newconst, 0))
    post_inc = 0;
  /* If post_inc still prevails, try to find an
     insn where it can be used as a pre-in/decrement.
     If code is MINUS, this was already tried.  */
  if (post_inc && code == PLUS
  /* Check that newconst is likely to be usable
     in a pre-in/decrement before starting the search.  */
      && ((HAVE_PRE_INCREMENT && newconst > 0 && newconst <= MOVE_MAX)
	  || (HAVE_PRE_DECREMENT && newconst < 0 && newconst >= -MOVE_MAX))
      && exact_log2 (newconst))
    {
      rtx q, inc_dest;

      inc_dest = post_inc_set ? SET_DEST (post_inc_set) : src;
      for (q = post_inc; (q = NEXT_INSN (q)); )
	{
	  /* ??? We can't scan past the end of a basic block without updating
	     the register lifetime info
	     (REG_DEAD/basic_block_live_at_start).  */
	  if (perhaps_ends_bb_p (q))
	    break;
	  else if (! INSN_P (q))
	    continue;
	  else if (src != inc_dest
		   && (reg_overlap_mentioned_p (src, PATTERN (q))
		       || reg_set_p (src, q)))
	    break;
	  else if (reg_set_p (inc_dest, q))
	    break;
	  else if (reg_overlap_mentioned_p (inc_dest, PATTERN (q)))
	    {
	      try_auto_increment (q, post_inc,
				  post_inc_set, inc_dest, newconst, 1);
	      break;
	    }
	}
    }

  /* Move the death note for DST to INSN if it is used
     there.  */
  if (reg_overlap_mentioned_p (dst, PATTERN (insn)))
    {
      XEXP (dst_note, 1) = REG_NOTES (insn);
      REG_NOTES (insn) = dst_note;
    }

  if (src_note)
    {
      /* Move the death note for SRC from INSN to P.  */
      if (! overlap)
	remove_note (insn, src_note);
      XEXP (src_note, 1) = REG_NOTES (p);
      REG_NOTES (p) = src_note;

      REG_N_CALLS_CROSSED (REGNO (src)) += s_num_calls;
    }

  REG_N_SETS (REGNO (src))++;
  REG_N_SETS (REGNO (dst))--;

  REG_N_CALLS_CROSSED (REGNO (dst)) -= num_calls;

  REG_LIVE_LENGTH (REGNO (src)) += s_length;
  if (REG_LIVE_LENGTH (REGNO (dst)) >= 0)
    {
      REG_LIVE_LENGTH (REGNO (dst)) -= length;
      /* REG_LIVE_LENGTH is only an approximation after
	 combine if sched is not run, so make sure that we
	 still have a reasonable value.  */
      if (REG_LIVE_LENGTH (REGNO (dst)) < 2)
	REG_LIVE_LENGTH (REGNO (dst)) = 2;
    }
  if (regmove_dump_file)
    fprintf (regmove_dump_file,
	     "Fixed operand %d of insn %d matching operand %d.\n",
	     operand_number, INSN_UID (insn), match_number);
  return 1;
}


/* return nonzero if X is stable and mentions no regsiters but for
   mentioning SRC or mentioning / changing DST .  If in doubt, presume
   it is unstable.
   The rationale is that we want to check if we can move an insn easily
   while just paying attention to SRC and DST.  A register is considered
   stable if it has the RTX_UNCHANGING_P bit set, but that would still
   leave the burden to update REG_DEAD / REG_UNUSED notes, so we don't
   want any registers but SRC and DST.  */
static int
stable_and_no_regs_but_for_p (x, src, dst)
     rtx x, src, dst;
{
  RTX_CODE code = GET_CODE (x);
  switch (GET_RTX_CLASS (code))
    {
    case '<': case '1': case 'c': case '2': case 'b': case '3':
      {
	int i;
	const char *fmt = GET_RTX_FORMAT (code);
	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
	  if (fmt[i] == 'e'
	      && ! stable_and_no_regs_but_for_p (XEXP (x, i), src, dst))
	      return 0;
	return 1;
      }
    case 'o':
      if (code == REG)
	return x == src || x == dst;
      /* If this is a MEM, look inside - there might be a register hidden in
	 the address of an unchanging MEM.  */
      if (code == MEM
	  && ! stable_and_no_regs_but_for_p (XEXP (x, 0), src, dst))
	return 0;
      /* fall through */
    default:
      return ! rtx_unstable_p (x);
    }
}

/* Track stack adjustments and stack memory references.  Attempt to
   reduce the number of stack adjustments by back-propagating across
   the memory references.

   This is intended primarily for use with targets that do not define
   ACCUMULATE_OUTGOING_ARGS.  It is of significantly more value to
   targets that define PREFERRED_STACK_BOUNDARY more aligned than
   STACK_BOUNDARY (e.g. x86), or if not all registers can be pushed
   (e.g. x86 fp regs) which would ordinarily have to be implemented
   as a sub/mov pair due to restrictions in calls.c.

   Propagation stops when any of the insns that need adjusting are
   (a) no longer valid because we've exceeded their range, (b) a
   non-trivial push instruction, or (c) a call instruction.

   Restriction B is based on the assumption that push instructions
   are smaller or faster.  If a port really wants to remove all
   pushes, it should have defined ACCUMULATE_OUTGOING_ARGS.  The
   one exception that is made is for an add immediately followed
   by a push.  */

/* This structure records stack memory references between stack adjusting
   instructions.  */

struct csa_memlist
{
  HOST_WIDE_INT sp_offset;
  rtx insn, *mem;
  struct csa_memlist *next;
};

static int stack_memref_p		PARAMS ((rtx));
static rtx single_set_for_csa		PARAMS ((rtx));
static void free_csa_memlist		PARAMS ((struct csa_memlist *));
static struct csa_memlist *record_one_stack_memref
  PARAMS ((rtx, rtx *, struct csa_memlist *));
static int try_apply_stack_adjustment
  PARAMS ((rtx, struct csa_memlist *, HOST_WIDE_INT, HOST_WIDE_INT));
static void combine_stack_adjustments_for_block PARAMS ((basic_block));
static int record_stack_memrefs	PARAMS ((rtx *, void *));


/* Main entry point for stack adjustment combination.  */

void
combine_stack_adjustments ()
{
  int i;

  for (i = 0; i < n_basic_blocks; ++i)
    combine_stack_adjustments_for_block (BASIC_BLOCK (i));
}

/* Recognize a MEM of the form (sp) or (plus sp const).  */

static int
stack_memref_p (x)
     rtx x;
{
  if (GET_CODE (x) != MEM)
    return 0;
  x = XEXP (x, 0);

  if (x == stack_pointer_rtx)
    return 1;
  if (GET_CODE (x) == PLUS
      && XEXP (x, 0) == stack_pointer_rtx
      && GET_CODE (XEXP (x, 1)) == CONST_INT)
    return 1;

  return 0;
}

/* Recognize either normal single_set or the hack in i386.md for
   tying fp and sp adjustments.  */

static rtx
single_set_for_csa (insn)
     rtx insn;
{
  int i;
  rtx tmp = single_set (insn);
  if (tmp)
    return tmp;

  if (GET_CODE (insn) != INSN
      || GET_CODE (PATTERN (insn)) != PARALLEL)
    return NULL_RTX;

  tmp = PATTERN (insn);
  if (GET_CODE (XVECEXP (tmp, 0, 0)) != SET)
    return NULL_RTX;

  for (i = 1; i < XVECLEN (tmp, 0); ++i)
    {
      rtx this = XVECEXP (tmp, 0, i);

      /* The special case is allowing a no-op set.  */
      if (GET_CODE (this) == SET
	  && SET_SRC (this) == SET_DEST (this))
	;
      else if (GET_CODE (this) != CLOBBER
	       && GET_CODE (this) != USE)
	return NULL_RTX;
    }

  return XVECEXP (tmp, 0, 0);
}

/* Free the list of csa_memlist nodes.  */

static void
free_csa_memlist (memlist)
     struct csa_memlist *memlist;
{
  struct csa_memlist *next;
  for (; memlist ; memlist = next)
    {
      next = memlist->next;
      free (memlist);
    }
}

/* Create a new csa_memlist node from the given memory reference.
   It is already known that the memory is stack_memref_p.  */

static struct csa_memlist *
record_one_stack_memref (insn, mem, next_memlist)
     rtx insn, *mem;
     struct csa_memlist *next_memlist;
{
  struct csa_memlist *ml;

  ml = (struct csa_memlist *) xmalloc (sizeof (*ml));

  if (XEXP (*mem, 0) == stack_pointer_rtx)
    ml->sp_offset = 0;
  else
    ml->sp_offset = INTVAL (XEXP (XEXP (*mem, 0), 1));

  ml->insn = insn;
  ml->mem = mem;
  ml->next = next_memlist;

  return ml;
}

/* Attempt to apply ADJUST to the stack adjusting insn INSN, as well
   as each of the memories in MEMLIST.  Return true on success.  */

static int
try_apply_stack_adjustment (insn, memlist, new_adjust, delta)
     rtx insn;
     struct csa_memlist *memlist;
     HOST_WIDE_INT new_adjust, delta;
{
  struct csa_memlist *ml;
  rtx set;

  set = single_set_for_csa (insn);
  validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (new_adjust), 1);

  for (ml = memlist; ml ; ml = ml->next)
    validate_change
      (ml->insn, ml->mem,
       replace_equiv_address_nv (*ml->mem,
				 plus_constant (stack_pointer_rtx,
						ml->sp_offset - delta)), 1);

  if (apply_change_group ())
    {
      /* Succeeded.  Update our knowledge of the memory references.  */
      for (ml = memlist; ml ; ml = ml->next)
	ml->sp_offset -= delta;

      return 1;
    }
  else
    return 0;
}

/* Called via for_each_rtx and used to record all stack memory references in
   the insn and discard all other stack pointer references.  */
struct record_stack_memrefs_data
{
  rtx insn;
  struct csa_memlist *memlist;
};

static int
record_stack_memrefs (xp, data)
     rtx *xp;
     void *data;
{
  rtx x = *xp;
  struct record_stack_memrefs_data *d =
    (struct record_stack_memrefs_data *) data;
  if (!x)
    return 0;
  switch (GET_CODE (x))
    {
    case MEM:
      if (!reg_mentioned_p (stack_pointer_rtx, x))
	return -1;
      /* We are not able to handle correctly all possible memrefs containing
         stack pointer, so this check is necessary.  */
      if (stack_memref_p (x))
	{
	  d->memlist = record_one_stack_memref (d->insn, xp, d->memlist);
	  return -1;
	}
      return 1;
    case REG:
      /* ??? We want be able to handle non-memory stack pointer
	 references later.  For now just discard all insns refering to
	 stack pointer outside mem expressions.  We would probably
	 want to teach validate_replace to simplify expressions first.

	 We can't just compare with STACK_POINTER_RTX because the
	 reference to the stack pointer might be in some other mode.
	 In particular, an explict clobber in an asm statement will
	 result in a QImode clober.  */
      if (REGNO (x) == STACK_POINTER_REGNUM)
	return 1;
      break;
    default:
      break;
    }
  return 0;
}

/* Subroutine of combine_stack_adjustments, called for each basic block.  */

static void
combine_stack_adjustments_for_block (bb)
     basic_block bb;
{
  HOST_WIDE_INT last_sp_adjust = 0;
  rtx last_sp_set = NULL_RTX;
  struct csa_memlist *memlist = NULL;
  rtx insn, next, set;
  struct record_stack_memrefs_data data;
  bool end_of_block = false;

  for (insn = bb->head; !end_of_block ; insn = next)
    {
      end_of_block = insn == bb->end;
      next = NEXT_INSN (insn);

      if (! INSN_P (insn))
	continue;

      set = single_set_for_csa (insn);
      if (set)
	{
	  rtx dest = SET_DEST (set);
	  rtx src = SET_SRC (set);

	  /* Find constant additions to the stack pointer.  */
	  if (dest == stack_pointer_rtx
	      && GET_CODE (src) == PLUS
	      && XEXP (src, 0) == stack_pointer_rtx
	      && GET_CODE (XEXP (src, 1)) == CONST_INT)
	    {
	      HOST_WIDE_INT this_adjust = INTVAL (XEXP (src, 1));

	      /* If we've not seen an adjustment previously, record
		 it now and continue.  */
	      if (! last_sp_set)
		{
		  last_sp_set = insn;
		  last_sp_adjust = this_adjust;
		  continue;
		}

	      /* If not all recorded memrefs can be adjusted, or the
		 adjustment is now too large for a constant addition,
		 we cannot merge the two stack adjustments.

		 Also we need to be carefull to not move stack pointer
		 such that we create stack accesses outside the allocated
		 area.  We can combine an allocation into the first insn,
		 or a deallocation into the second insn.  We can not
		 combine an allocation followed by a deallocation.

		 The only somewhat frequent occurrence of the later is when
		 a function allocates a stack frame but does not use it.
		 For this case, we would need to analyze rtl stream to be
		 sure that allocated area is really unused.  This means not
		 only checking the memory references, but also all registers
		 or global memory references possibly containing a stack
		 frame address.

		 Perhaps the best way to address this problem is to teach
		 gcc not to allocate stack for objects never used.  */

	      /* Combine an allocation into the first instruction.  */
	      if (STACK_GROWS_DOWNWARD ? this_adjust <= 0 : this_adjust >= 0)
		{
		  if (try_apply_stack_adjustment (last_sp_set, memlist,
						  last_sp_adjust + this_adjust,
						  this_adjust))
		    {
		      /* It worked!  */
		      delete_insn (insn);
		      last_sp_adjust += this_adjust;
		      continue;
		    }
		}

	      /* Otherwise we have a deallocation.  Do not combine with
		 a previous allocation.  Combine into the second insn.  */
	      else if (STACK_GROWS_DOWNWARD
		       ? last_sp_adjust >= 0 : last_sp_adjust <= 0)
		{
		  if (try_apply_stack_adjustment (insn, memlist,
						  last_sp_adjust + this_adjust,
						  -last_sp_adjust))
		    {
		      /* It worked!  */
		      delete_insn (last_sp_set);
		      last_sp_set = insn;
		      last_sp_adjust += this_adjust;
		      free_csa_memlist (memlist);
		      memlist = NULL;
		      continue;
		    }
		}

	      /* Combination failed.  Restart processing from here.  If
		 deallocation+allocation conspired to cancel, we can
		 delete the old deallocation insn.  */
	      if (last_sp_set && last_sp_adjust == 0)
		delete_insn (insn);
	      free_csa_memlist (memlist);
	      memlist = NULL;
	      last_sp_set = insn;
	      last_sp_adjust = this_adjust;
	      continue;
	    }

	  /* Find a predecrement of exactly the previous adjustment and
	     turn it into a direct store.  Obviously we can't do this if
	     there were any intervening uses of the stack pointer.  */
	  if (memlist == NULL
	      && GET_CODE (dest) == MEM
	      && ((GET_CODE (XEXP (dest, 0)) == PRE_DEC
		   && (last_sp_adjust
		       == (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (dest))))
		  || (GET_CODE (XEXP (dest, 0)) == PRE_MODIFY
		      && GET_CODE (XEXP (XEXP (dest, 0), 1)) == PLUS
		      && XEXP (XEXP (XEXP (dest, 0), 1), 0) == stack_pointer_rtx
		      && (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
		          == CONST_INT)
		      && (INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1))
		          == -last_sp_adjust)))
	      && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx
	      && ! reg_mentioned_p (stack_pointer_rtx, src)
	      && memory_address_p (GET_MODE (dest), stack_pointer_rtx)
	      && validate_change (insn, &SET_DEST (set),
				  replace_equiv_address (dest,
							 stack_pointer_rtx),
				  0))
	    {
	      delete_insn (last_sp_set);
	      free_csa_memlist (memlist);
	      memlist = NULL;
	      last_sp_set = NULL_RTX;
	      last_sp_adjust = 0;
	      continue;
	    }
	}

      data.insn = insn;
      data.memlist = memlist;
      if (GET_CODE (insn) != CALL_INSN && last_sp_set
	  && !for_each_rtx (&PATTERN (insn), record_stack_memrefs, &data))
	{
	   memlist = data.memlist;
	   continue;
	}
      memlist = data.memlist;

      /* Otherwise, we were not able to process the instruction.
	 Do not continue collecting data across such a one.  */
      if (last_sp_set
	  && (GET_CODE (insn) == CALL_INSN
	      || reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))))
	{
	  if (last_sp_set && last_sp_adjust == 0)
	    delete_insn (last_sp_set);
	  free_csa_memlist (memlist);
	  memlist = NULL;
	  last_sp_set = NULL_RTX;
	  last_sp_adjust = 0;
	}
    }

  if (last_sp_set && last_sp_adjust == 0)
    delete_insn (last_sp_set);
}