summaryrefslogtreecommitdiff
path: root/gcc/omp-oacc-kernels-decompose.cc
blob: ffc0a8f813e5959e5803b2e11de2510024de18ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
/* Decompose OpenACC 'kernels' constructs into parts, a sequence of compute
   constructs

   Copyright (C) 2020-2023 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "tree.h"
#include "langhooks.h"
#include "gimple.h"
#include "tree-pass.h"
#include "cgraph.h"
#include "fold-const.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "gomp-constants.h"
#include "omp-general.h"
#include "diagnostic-core.h"


/* This preprocessing pass is run immediately before lower_omp.  It decomposes
   OpenACC 'kernels' constructs into parts, a sequence of compute constructs.

   The translation is as follows:
     - The entire 'kernels' region is turned into a 'data' region with clauses
       taken from the 'kernels' region.  New 'create' clauses are added for all
       variables declared at the top level in the kernels region.
     - Any loop nests annotated with an OpenACC 'loop' directive are wrapped in
       a new compute construct.
	 - 'loop' directives without an explicit 'independent' or 'seq' clause
	   get an 'auto' clause added; other clauses are preserved on the loop
	   or moved to the new surrounding compute construct, as applicable.
     - Any sequences of other code (non-loops, non-OpenACC 'loop's) are wrapped
       in new "gang-single" compute construct: 'worker'/'vector' parallelism is
       preserved, but 'num_gangs (1)' is enforced.
     - Both points above only apply at the topmost level in the region, that
       is, the transformation does not introduce new compute constructs inside
       nested statement bodies.  In particular, this means that a
       gang-parallelizable loop inside an 'if' statement is made "gang-single".
     - In order to make the host wait only once for the whole region instead
       of once per device kernel launch, the new compute constructs are
       annotated 'async'.  Unless the original 'kernels' construct already was
       marked 'async', the entire region ends with a 'wait' directive.  If the
       original 'kernels' construct was marked 'async', the synthesized 'async'
       clauses use the original 'kernels' construct's 'async' argument
       (possibly implicit).
*/


/*TODO Things are conceptually wrong here: 'loop' clauses may be hidden behind
  'device_type', so we have to defer a lot of processing until we're in the
  offloading compilation.  "Fortunately", GCC doesn't support the OpenACC
  'device_type' clause yet, so we get away that.  */


/* Helper function for decompose_kernels_region_body.  If STMT contains a
   "top-level" OMP_FOR statement, returns a pointer to that statement;
   returns NULL otherwise.

   A "top-level" OMP_FOR statement is one that is possibly accompanied by
   small snippets of setup code.  Specifically, this function accepts an
   OMP_FOR possibly wrapped in a singleton bind and a singleton try
   statement to allow for a local loop variable, but not an OMP_FOR
   statement nested in any other constructs.  Alternatively, it accepts a
   non-singleton bind containing only assignments and then an OMP_FOR
   statement at the very end.  The former style can be generated by the C
   frontend, the latter by the Fortran frontend.  */

static gimple *
top_level_omp_for_in_stmt (gimple *stmt)
{
  if (gimple_code (stmt) == GIMPLE_OMP_FOR)
    return stmt;

  if (gimple_code (stmt) == GIMPLE_BIND)
    {
      gimple_seq body = gimple_bind_body (as_a <gbind *> (stmt));
      if (gimple_seq_singleton_p (body))
	{
	  /* Accept an OMP_FOR statement, or a try statement containing only
	     a single OMP_FOR.  */
	  gimple *maybe_for_or_try = gimple_seq_first_stmt (body);
	  if (gimple_code (maybe_for_or_try) == GIMPLE_OMP_FOR)
	    return maybe_for_or_try;
	  else if (gimple_code (maybe_for_or_try) == GIMPLE_TRY)
	    {
	      gimple_seq try_body = gimple_try_eval (maybe_for_or_try);
	      if (!gimple_seq_singleton_p (try_body))
		return NULL;
	      gimple *maybe_omp_for_stmt = gimple_seq_first_stmt (try_body);
	      if (gimple_code (maybe_omp_for_stmt) == GIMPLE_OMP_FOR)
		return maybe_omp_for_stmt;
	    }
	}
      else
	{
	  gimple_stmt_iterator gsi;
	  /* Accept only a block of optional assignments followed by an
	     OMP_FOR at the end.  No other kinds of statements allowed.  */
	  for (gsi = gsi_start (body); !gsi_end_p (gsi); gsi_next (&gsi))
	    {
	      gimple *body_stmt = gsi_stmt (gsi);
	      if (gimple_code (body_stmt) == GIMPLE_ASSIGN)
		continue;
	      else if (gimple_code (body_stmt) == GIMPLE_OMP_FOR
		       && gsi_one_before_end_p (gsi))
		return body_stmt;
	      else
		return NULL;
	    }
	}
    }

  return NULL;
}

/* Helper for adjust_region_code: evaluate the statement at GSI_P.  */

static tree
adjust_region_code_walk_stmt_fn (gimple_stmt_iterator *gsi_p,
				 bool *handled_ops_p,
				 struct walk_stmt_info *wi)
{
  int *region_code = (int *) wi->info;

  gimple *stmt = gsi_stmt (*gsi_p);
  switch (gimple_code (stmt))
    {
    case GIMPLE_OMP_FOR:
      {
	tree clauses = gimple_omp_for_clauses (stmt);
	if (omp_find_clause (clauses, OMP_CLAUSE_INDEPENDENT))
	  {
	    /* Explicit 'independent' clause.  */
	    /* Keep going; recurse into loop body.  */
	    break;
	  }
	else if (omp_find_clause (clauses, OMP_CLAUSE_SEQ))
	  {
	    /* Explicit 'seq' clause.  */
	    /* We'll "parallelize" if at some level a loop construct has been
	       marked up by the user as unparallelizable ('seq' clause; we'll
	       respect that in the later processing).  Given that the user has
	       explicitly marked it up, this loop construct cannot be
	       performance-critical, and in this case it's also fine to
	       "parallelize" instead of "gang-single", because any outer or
	       inner loops may still exploit the available parallelism.  */
	    /* Keep going; recurse into loop body.  */
	    break;
	  }
	else
	  {
	    /* Explicit or implicit 'auto' clause.  */
	    /* The user would like this loop analyzed ('auto' clause) and
	       typically parallelized, but we don't have available yet the
	       compiler logic to analyze this, so can't parallelize it here, so
	       we'd very likely be running into a performance problem if we
	       were to execute this unparallelized, thus forward the whole loop
	       nest to 'parloops'.  */
	    *region_code = GF_OMP_TARGET_KIND_OACC_KERNELS;
	    /* Terminate: final decision for this region.  */
	    *handled_ops_p = true;
	    return integer_zero_node;
	  }
	gcc_unreachable ();
      }

    case GIMPLE_COND:
    case GIMPLE_GOTO:
    case GIMPLE_SWITCH:
    case GIMPLE_ASM:
    case GIMPLE_ASSUME:
    case GIMPLE_TRANSACTION:
    case GIMPLE_RETURN:
      /* Statement that might constitute some looping/control flow pattern.  */
      /* The user would like this code analyzed (implicit inside a 'kernels'
	 region) and typically parallelized, but we don't have available yet
	 the compiler logic to analyze this, so can't parallelize it here, so
	 we'd very likely be running into a performance problem if we were to
	 execute this unparallelized, thus forward the whole thing to
	 'parloops'.  */
      *region_code = GF_OMP_TARGET_KIND_OACC_KERNELS;
      /* Terminate: final decision for this region.  */
      *handled_ops_p = true;
      return integer_zero_node;

    default:
      /* Keep going.  */
      break;
    }

  return NULL;
}

/* Adjust the REGION_CODE for the region in GS.  */

static void
adjust_region_code (gimple_seq gs, int *region_code)
{
  struct walk_stmt_info wi;
  memset (&wi, 0, sizeof (wi));
  wi.info = region_code;
  walk_gimple_seq (gs, adjust_region_code_walk_stmt_fn, NULL, &wi);
}

/* Helper function for make_loops_gang_single for walking the tree.  If the
   statement indicated by GSI_P is an OpenACC for loop with a gang clause,
   issue a warning and remove the clause.  */

static tree
visit_loops_in_gang_single_region (gimple_stmt_iterator *gsi_p,
				   bool *handled_ops_p,
				   struct walk_stmt_info *)
{
  *handled_ops_p = false;

  gimple *stmt = gsi_stmt (*gsi_p);
  switch (gimple_code (stmt))
    {
    case GIMPLE_OMP_FOR:
      /*TODO Given the current 'adjust_region_code' algorithm, this is
	actually...  */
#if 0
      gcc_unreachable ();
#else
      /* ..., but due to bugs (PR100400), we may actually come here.
	 Reliably catch this, regardless of checking level.  */
      internal_error ("PR100400");
#endif

      {
	tree clauses = gimple_omp_for_clauses (stmt);
	tree prev_clause = NULL;
	for (tree clause = clauses; clause; clause = OMP_CLAUSE_CHAIN (clause))
	  {
	    if (OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_GANG)
	      {
		/* It makes no sense to have a 'gang' clause in a "gang-single"
		   region, so warn and remove it.  */
		warning_at (gimple_location (stmt), 0,
			    "conditionally executed loop in %<kernels%> region"
			    " will be executed by a single gang;"
			    " ignoring %<gang%> clause");
		if (prev_clause != NULL)
		  OMP_CLAUSE_CHAIN (prev_clause) = OMP_CLAUSE_CHAIN (clause);
		else
		  clauses = OMP_CLAUSE_CHAIN (clause);

		break;
	      }
	    prev_clause = clause;
	  }
	gimple_omp_for_set_clauses (stmt, clauses);
      }
      /* No need to recurse into nested statements; no loop nested inside
	 this loop can be gang-partitioned.  */
      sorry ("%<gang%> loop in %<gang-single%> region");
      *handled_ops_p = true;
      break;

    default:
      break;
    }

  return NULL;
}

/* Visit all nested OpenACC loops in the sequence indicated by GS.  This
   statement is expected to be inside a gang-single region.  Issue a warning
   for any loops inside it that have gang clauses and remove the clauses.  */

static void
make_loops_gang_single (gimple_seq gs)
{
  struct walk_stmt_info wi;
  memset (&wi, 0, sizeof (wi));
  walk_gimple_seq (gs, visit_loops_in_gang_single_region, NULL, &wi);
}

/* Construct a "gang-single" compute construct at LOC containing the STMTS.
   Annotate with CLAUSES, which must not contain a 'num_gangs' clause, and an
   additional 'num_gangs (1)' clause to force "gang-single" execution.  */

static gimple *
make_region_seq (location_t loc, gimple_seq stmts,
		 tree num_gangs_clause,
		 tree num_workers_clause,
		 tree vector_length_clause,
		 tree clauses)
{
  /* This correctly unshares the entire clause chain rooted here.  */
  clauses = unshare_expr (clauses);

  dump_user_location_t loc_stmts_first = gimple_seq_first (stmts);

  /* Figure out the region code for this region.  */
  /* Optimistic default: assume "setup code", no looping; thus not
     performance-critical.  */
  int region_code = GF_OMP_TARGET_KIND_OACC_PARALLEL_KERNELS_GANG_SINGLE;
  adjust_region_code (stmts, &region_code);

  if (region_code == GF_OMP_TARGET_KIND_OACC_PARALLEL_KERNELS_GANG_SINGLE)
    {
      if (dump_enabled_p ())
	/*TODO MSG_MISSED_OPTIMIZATION? */
	dump_printf_loc (MSG_NOTE, loc_stmts_first,
			 "beginning %<gang-single%> part"
			 " in OpenACC %<kernels%> region\n");

      /* Synthesize a 'num_gangs (1)' clause.  */
      tree gang_single_clause = build_omp_clause (loc, OMP_CLAUSE_NUM_GANGS);
      OMP_CLAUSE_OPERAND (gang_single_clause, 0) = integer_one_node;
      OMP_CLAUSE_CHAIN (gang_single_clause) = clauses;
      clauses = gang_single_clause;

      /* Remove and issue warnings about gang clauses on any OpenACC
	 loops nested inside this sequentially executed statement.  */
      make_loops_gang_single (stmts);
    }
  else if (region_code == GF_OMP_TARGET_KIND_OACC_KERNELS)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, loc_stmts_first,
			 "beginning %<parloops%> part"
			 " in OpenACC %<kernels%> region\n");

      /* As we're transforming a 'GF_OMP_TARGET_KIND_OACC_KERNELS' into another
	 'GF_OMP_TARGET_KIND_OACC_KERNELS', this isn't doing any of the clauses
	 mangling that 'make_region_loop_nest' is doing.  */
      /* Re-assemble the clauses stripped off earlier.  */
      if (num_gangs_clause != NULL)
	{
	  tree c = unshare_expr (num_gangs_clause);
	  OMP_CLAUSE_CHAIN (c) = clauses;
	  clauses = c;
	}
      if (num_workers_clause != NULL)
	{
	  tree c = unshare_expr (num_workers_clause);
	  OMP_CLAUSE_CHAIN (c) = clauses;
	  clauses = c;
	}
      if (vector_length_clause != NULL)
	{
	  tree c = unshare_expr (vector_length_clause);
	  OMP_CLAUSE_CHAIN (c) = clauses;
	  clauses = c;
	}
    }
  else
    gcc_unreachable ();

  /* Build the gang-single region.  */
  gimple *single_region = gimple_build_omp_target (NULL, region_code, clauses);
  gimple_set_location (single_region, loc);
  gbind *single_body = gimple_build_bind (NULL, stmts, make_node (BLOCK));
  gimple_omp_set_body (single_region, single_body);

  return single_region;
}

/* Helper function for make_region_loop_nest.  Adds a 'num_gangs'
   ('num_workers', 'vector_length') clause to the given CLAUSES, either the one
   from the parent compute construct (PARENT_CLAUSE) or a new one based on the
   loop's own LOOP_CLAUSE ('gang (num: N)' or similar for 'worker' or 'vector'
   clauses) with the given CLAUSE_CODE.  Does nothing if neither PARENT_CLAUSE
   nor LOOP_CLAUSE exist.  Returns the new clauses.  */

static tree
add_parent_or_loop_num_clause (tree parent_clause, tree loop_clause,
			       omp_clause_code clause_code, tree clauses)
{
  if (parent_clause != NULL)
    {
      tree num_clause = unshare_expr (parent_clause);
      OMP_CLAUSE_CHAIN (num_clause) = clauses;
      clauses = num_clause;
    }
  else if (loop_clause != NULL)
    {
      /* The kernels region does not have a 'num_gangs' clause, but the loop
	 itself had a 'gang (num: N)' clause.  Honor it by adding a
	 'num_gangs (N)' clause on the compute construct.  */
      tree num = OMP_CLAUSE_OPERAND (loop_clause, 0);
      tree new_num_clause
	= build_omp_clause (OMP_CLAUSE_LOCATION (loop_clause), clause_code);
      OMP_CLAUSE_OPERAND (new_num_clause, 0) = num;
      OMP_CLAUSE_CHAIN (new_num_clause) = clauses;
      clauses = new_num_clause;
    }
  return clauses;
}

/* Helper for make_region_loop_nest, looking for 'worker (num: N)' or 'vector
   (length: N)' clauses in nested loops.  Removes the argument, transferring it
   to the enclosing compute construct (via WI->INFO).  If arguments within the
   same loop nest conflict, emits a warning.

   This function also decides whether to add an 'auto' clause on each of these
   nested loops.  */

struct adjust_nested_loop_clauses_wi_info
{
  tree *loop_gang_clause_ptr;
  tree *loop_worker_clause_ptr;
  tree *loop_vector_clause_ptr;
};

static tree
adjust_nested_loop_clauses (gimple_stmt_iterator *gsi_p, bool *,
			    struct walk_stmt_info *wi)
{
  struct adjust_nested_loop_clauses_wi_info *wi_info
    = (struct adjust_nested_loop_clauses_wi_info *) wi->info;
  gimple *stmt = gsi_stmt (*gsi_p);

  if (gimple_code (stmt) == GIMPLE_OMP_FOR)
    {
      bool add_auto_clause = true;
      tree loop_clauses = gimple_omp_for_clauses (stmt);
      tree loop_clause = loop_clauses;
      for (; loop_clause; loop_clause = OMP_CLAUSE_CHAIN (loop_clause))
	{
	  tree *outer_clause_ptr = NULL;
	  switch (OMP_CLAUSE_CODE (loop_clause))
	    {
	    case OMP_CLAUSE_GANG:
	      outer_clause_ptr = wi_info->loop_gang_clause_ptr;
	      break;
	    case OMP_CLAUSE_WORKER:
	      outer_clause_ptr = wi_info->loop_worker_clause_ptr;
	      break;
	    case OMP_CLAUSE_VECTOR:
	      outer_clause_ptr = wi_info->loop_vector_clause_ptr;
	      break;
	    case OMP_CLAUSE_SEQ:
	    case OMP_CLAUSE_INDEPENDENT:
	    case OMP_CLAUSE_AUTO:
	      add_auto_clause = false;
	    default:
	      break;
	    }
	  if (outer_clause_ptr != NULL)
	    {
	      if (OMP_CLAUSE_OPERAND (loop_clause, 0) != NULL
		  && *outer_clause_ptr == NULL)
		{
		  /* Transfer the clause to the enclosing compute construct and
		     remove the numerical argument from the 'loop'.  */
		  *outer_clause_ptr = unshare_expr (loop_clause);
		  OMP_CLAUSE_OPERAND (loop_clause, 0) = NULL;
		}
	      else if (OMP_CLAUSE_OPERAND (loop_clause, 0) != NULL &&
		       OMP_CLAUSE_OPERAND (*outer_clause_ptr, 0) != NULL)
		{
		  /* See if both of these are the same constant.  If they
		     aren't, emit a warning.  */
		  tree old_op = OMP_CLAUSE_OPERAND (*outer_clause_ptr, 0);
		  tree new_op = OMP_CLAUSE_OPERAND (loop_clause, 0);
		  if (!(cst_and_fits_in_hwi (old_op) &&
			cst_and_fits_in_hwi (new_op) &&
			int_cst_value (old_op) == int_cst_value (new_op)))
		    {
		      const char *clause_name
			= omp_clause_code_name[OMP_CLAUSE_CODE (loop_clause)];
		      error_at (gimple_location (stmt),
				"cannot honor conflicting %qs clause",
				clause_name);
		      inform (OMP_CLAUSE_LOCATION (*outer_clause_ptr),
			      "location of the previous clause"
			      " in the same loop nest");
		    }
		  OMP_CLAUSE_OPERAND (loop_clause, 0) = NULL;
		}
	    }
	}
      if (add_auto_clause)
	{
	  tree auto_clause
	    = build_omp_clause (gimple_location (stmt), OMP_CLAUSE_AUTO);
	  OMP_CLAUSE_CHAIN (auto_clause) = loop_clauses;
	  gimple_omp_for_set_clauses (stmt, auto_clause);
	}
    }

  return NULL;
}

/* Helper for make_region_loop_nest.  Transform OpenACC 'kernels'/'loop'
   construct clauses into OpenACC 'parallel'/'loop' construct ones.  */

static tree
transform_kernels_loop_clauses (gimple *omp_for,
				tree num_gangs_clause,
				tree num_workers_clause,
				tree vector_length_clause,
				tree clauses)
{
  /* If this loop in a kernels region does not have an explicit 'seq',
     'independent', or 'auto' clause, we must give it an explicit 'auto'
     clause.
     We also check for 'gang (num: N)' clauses.  These must not appear in
     kernels regions that have their own 'num_gangs' clause.  Otherwise, they
     must be converted and put on the region; similarly for 'worker' and
     'vector' clauses.  */
  bool add_auto_clause = true;
  tree loop_gang_clause = NULL, loop_worker_clause = NULL,
       loop_vector_clause = NULL;
  tree loop_clauses = gimple_omp_for_clauses (omp_for);
  for (tree loop_clause = loop_clauses;
       loop_clause;
       loop_clause = OMP_CLAUSE_CHAIN (loop_clause))
    {
      bool found_num_clause = false;
      tree *clause_ptr, clause_to_check;
      switch (OMP_CLAUSE_CODE (loop_clause))
	{
	case OMP_CLAUSE_GANG:
	  found_num_clause = true;
	  clause_ptr = &loop_gang_clause;
	  clause_to_check = num_gangs_clause;
	  break;
	case OMP_CLAUSE_WORKER:
	  found_num_clause = true;
	  clause_ptr = &loop_worker_clause;
	  clause_to_check = num_workers_clause;
	  break;
	case OMP_CLAUSE_VECTOR:
	  found_num_clause = true;
	  clause_ptr = &loop_vector_clause;
	  clause_to_check = vector_length_clause;
	  break;
	case OMP_CLAUSE_INDEPENDENT:
	case OMP_CLAUSE_SEQ:
	case OMP_CLAUSE_AUTO:
	  add_auto_clause = false;
	default:
	  break;
	}
      if (found_num_clause && OMP_CLAUSE_OPERAND (loop_clause, 0) != NULL)
	{
	  if (clause_to_check)
	    {
	      const char *clause_name
		= omp_clause_code_name[OMP_CLAUSE_CODE (loop_clause)];
	      const char *parent_clause_name
		= omp_clause_code_name[OMP_CLAUSE_CODE (clause_to_check)];
	      error_at (OMP_CLAUSE_LOCATION (loop_clause),
			"argument not permitted on %qs clause"
			" in OpenACC %<kernels%> region with a %qs clause",
			clause_name, parent_clause_name);
	      inform (OMP_CLAUSE_LOCATION (clause_to_check),
		      "location of OpenACC %<kernels%>");
	    }
	  /* Copy the 'gang (N)'/'worker (N)'/'vector (N)' clause to the
	     enclosing compute construct.  */
	  *clause_ptr = unshare_expr (loop_clause);
	  OMP_CLAUSE_CHAIN (*clause_ptr) = NULL;
	  /* Leave a 'gang'/'worker'/'vector' clause on the 'loop', but without
	     argument.  */
	  OMP_CLAUSE_OPERAND (loop_clause, 0) = NULL;
	}
    }
  if (add_auto_clause)
    {
      tree auto_clause = build_omp_clause (gimple_location (omp_for),
					   OMP_CLAUSE_AUTO);
      OMP_CLAUSE_CHAIN (auto_clause) = loop_clauses;
      loop_clauses = auto_clause;
    }
  gimple_omp_for_set_clauses (omp_for, loop_clauses);
  /* We must also recurse into the loop; it might contain nested loops having
     their own 'worker (num: W)' or 'vector (length: V)' clauses.  Turn these
     into 'worker'/'vector' clauses on the compute construct.  */
  struct walk_stmt_info wi;
  memset (&wi, 0, sizeof (wi));
  struct adjust_nested_loop_clauses_wi_info wi_info;
  wi_info.loop_gang_clause_ptr = &loop_gang_clause;
  wi_info.loop_worker_clause_ptr = &loop_worker_clause;
  wi_info.loop_vector_clause_ptr = &loop_vector_clause;
  wi.info = &wi_info;
  gimple *body = gimple_omp_body (omp_for);
  walk_gimple_seq (body, adjust_nested_loop_clauses, NULL, &wi);
  /* Check if there were conflicting numbers of workers or vector length.  */
  if (loop_gang_clause != NULL &&
      OMP_CLAUSE_OPERAND (loop_gang_clause, 0) == NULL)
    loop_gang_clause = NULL;
  if (loop_worker_clause != NULL &&
      OMP_CLAUSE_OPERAND (loop_worker_clause, 0) == NULL)
    loop_worker_clause = NULL;
  if (loop_vector_clause != NULL &&
      OMP_CLAUSE_OPERAND (loop_vector_clause, 0) == NULL)
    vector_length_clause = NULL;

  /* If the kernels region had 'num_gangs', 'num_worker', 'vector_length'
     clauses, add these to this new compute construct.  */
  clauses
    = add_parent_or_loop_num_clause (num_gangs_clause, loop_gang_clause,
				     OMP_CLAUSE_NUM_GANGS, clauses);
  clauses
    = add_parent_or_loop_num_clause (num_workers_clause, loop_worker_clause,
				     OMP_CLAUSE_NUM_WORKERS, clauses);
  clauses
    = add_parent_or_loop_num_clause (vector_length_clause, loop_vector_clause,
				     OMP_CLAUSE_VECTOR_LENGTH, clauses);

  return clauses;
}

/* Construct a possibly gang-parallel compute construct containing the STMT,
   which must be identical to, or a bind containing, the loop OMP_FOR.

   The NUM_GANGS_CLAUSE, NUM_WORKERS_CLAUSE, and VECTOR_LENGTH_CLAUSE are
   optional clauses from the original kernels region and must not be contained
   in the other CLAUSES. The newly created compute construct is annotated with
   the optional NUM_GANGS_CLAUSE as well as the other CLAUSES.  If there is no
   NUM_GANGS_CLAUSE but the loop has a 'gang (num: N)' clause, that is
   converted to a 'num_gangs (N)' clause on the new compute construct, and
   similarly for 'worker' and 'vector' clauses.

   The outermost loop gets an 'auto' clause unless there already is an
   'seq'/'independent'/'auto' clause.  Nested loops inside OMP_FOR are treated
   similarly by the adjust_nested_loop_clauses function.  */

static gimple *
make_region_loop_nest (gimple *omp_for, gimple_seq stmts,
		       tree num_gangs_clause,
		       tree num_workers_clause,
		       tree vector_length_clause,
		       tree clauses)
{
  /* This correctly unshares the entire clause chain rooted here.  */
  clauses = unshare_expr (clauses);

  /* Figure out the region code for this region.  */
  /* Optimistic default: assume that the loop nest is parallelizable
     (essentially, no GIMPLE_OMP_FOR with (explicit or implicit) 'auto' clause,
     and no un-annotated loops).  */
  int region_code = GF_OMP_TARGET_KIND_OACC_PARALLEL_KERNELS_PARALLELIZED;
  adjust_region_code (stmts, &region_code);

  if (region_code == GF_OMP_TARGET_KIND_OACC_PARALLEL_KERNELS_PARALLELIZED)
    {
      if (dump_enabled_p ())
	/* This is not MSG_OPTIMIZED_LOCATIONS, as we're just doing what the
	   user asked us to.  */
	dump_printf_loc (MSG_NOTE, omp_for,
			 "parallelized loop nest"
			 " in OpenACC %<kernels%> region\n");

      clauses = transform_kernels_loop_clauses (omp_for,
						num_gangs_clause,
						num_workers_clause,
						vector_length_clause,
						clauses);
    }
  else if (region_code == GF_OMP_TARGET_KIND_OACC_KERNELS)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, omp_for,
			 "forwarded loop nest"
			 " in OpenACC %<kernels%> region"
			 " to %<parloops%> for analysis\n");

      /* We're transforming one 'GF_OMP_TARGET_KIND_OACC_KERNELS' into another
	 'GF_OMP_TARGET_KIND_OACC_KERNELS', so don't have to
	 'transform_kernels_loop_clauses'.  */
      /* Re-assemble the clauses stripped off earlier.  */
      clauses
	= add_parent_or_loop_num_clause (num_gangs_clause, NULL,
					 OMP_CLAUSE_NUM_GANGS, clauses);
      clauses
	= add_parent_or_loop_num_clause (num_workers_clause, NULL,
					 OMP_CLAUSE_NUM_WORKERS, clauses);
      clauses
	= add_parent_or_loop_num_clause (vector_length_clause, NULL,
					 OMP_CLAUSE_VECTOR_LENGTH, clauses);
    }
  else
    gcc_unreachable ();

  gimple *parallel_body_bind
    = gimple_build_bind (NULL, stmts, make_node (BLOCK));
  gimple *parallel_region
    = gimple_build_omp_target (parallel_body_bind, region_code, clauses);
  gimple_set_location (parallel_region, gimple_location (omp_for));

  return parallel_region;
}

/* Eliminate any binds directly inside BIND by adding their statements to
   BIND (i.e., modifying it in place), excluding binds that hold only an
   OMP_FOR loop and associated setup/cleanup code.  Recurse into binds but
   not other statements.  Return a chain of the local variables of eliminated
   binds, i.e., the local variables found in nested binds.  If
   INCLUDE_TOPLEVEL_VARS is true, this also includes the variables belonging
   to BIND itself. */

static tree
flatten_binds (gbind *bind, bool include_toplevel_vars = false)
{
  tree vars = NULL, last_var = NULL;

  if (include_toplevel_vars)
    {
      vars = gimple_bind_vars (bind);
      last_var = vars;
    }

  gimple_seq new_body = NULL;
  gimple_seq body_sequence = gimple_bind_body (bind);
  gimple_stmt_iterator gsi, gsi_n;
  for (gsi = gsi_start (body_sequence); !gsi_end_p (gsi); gsi = gsi_n)
    {
      /* Advance the iterator here because otherwise it would be invalidated
	 by moving statements below.  */
      gsi_n = gsi;
      gsi_next (&gsi_n);

      gimple *stmt = gsi_stmt (gsi);
      /* Flatten bind statements, except the ones that contain only an
	 OpenACC for loop.  */
      if (gimple_code (stmt) == GIMPLE_BIND
	  && !top_level_omp_for_in_stmt (stmt))
	{
	  gbind *inner_bind = as_a <gbind *> (stmt);
	  /* Flatten recursively, and collect all variables.  */
	  tree inner_vars = flatten_binds (inner_bind, true);
	  gimple_seq inner_sequence = gimple_bind_body (inner_bind);
	  if (flag_checking)
	    {
	      for (gimple_stmt_iterator inner_gsi = gsi_start (inner_sequence);
		   !gsi_end_p (inner_gsi);
		   gsi_next (&inner_gsi))
		{
		  gimple *inner_stmt = gsi_stmt (inner_gsi);
		  gcc_assert (gimple_code (inner_stmt) != GIMPLE_BIND
			      || top_level_omp_for_in_stmt (inner_stmt));
		}
	    }
	  gimple_seq_add_seq (&new_body, inner_sequence);
	  /* Find the last variable; we will append others to it.  */
	  while (last_var != NULL && TREE_CHAIN (last_var) != NULL)
	    last_var = TREE_CHAIN (last_var);
	  if (last_var != NULL)
	    {
	      TREE_CHAIN (last_var) = inner_vars;
	      last_var = inner_vars;
	    }
	  else
	    {
	      vars = inner_vars;
	      last_var = vars;
	    }
	}
      else
	gimple_seq_add_stmt (&new_body, stmt);
    }

  /* Put the possibly transformed body back into the bind.  */
  gimple_bind_set_body (bind, new_body);
  return vars;
}

/* Helper function for places where we construct data regions.  Wraps the BODY
   inside a try-finally construct at LOC that calls __builtin_GOACC_data_end
   in its cleanup block.  Returns this try statement.  */

static gimple *
make_data_region_try_statement (location_t loc, gimple *body)
{
  tree data_end_fn = builtin_decl_explicit (BUILT_IN_GOACC_DATA_END);
  gimple *call = gimple_build_call (data_end_fn, 0);
  gimple_seq cleanup = NULL;
  gimple_seq_add_stmt (&cleanup, call);
  gimple *try_stmt = gimple_build_try (body, cleanup, GIMPLE_TRY_FINALLY);
  gimple_set_location (body, loc);
  return try_stmt;
}

/* If INNER_BIND_VARS holds variables, build an OpenACC data region with
   location LOC containing BODY and having 'create (var)' clauses for each
   variable (as a side effect, such variables also get TREE_ADDRESSABLE set).
   If INNER_CLEANUP is present, add a try-finally statement with
   this cleanup code in the finally block.  Return the new data region, or
   the original BODY if no data region was needed.  */

static gimple *
maybe_build_inner_data_region (location_t loc, gimple *body,
			       tree inner_bind_vars, gimple *inner_cleanup)
{
  /* Is this an instantiation of a template?  (In this case, we don't care what
     the generic decl is - just whether the function decl has one.)  */
  bool generic_inst_p
    = (lang_hooks.decls.get_generic_function_decl (current_function_decl)
       != NULL);

  /* Build data 'create (var)' clauses for these local variables.
     Below we will add these to a data region enclosing the entire body
     of the decomposed kernels region.  */
  tree prev_mapped_var = NULL, next = NULL, artificial_vars = NULL,
       inner_data_clauses = NULL;
  for (tree v = inner_bind_vars; v; v = next)
    {
      next = TREE_CHAIN (v);
      if (DECL_ARTIFICIAL (v)
	  || TREE_CODE (v) == CONST_DECL
	  || generic_inst_p)
	{
	  /* If this is an artificial temporary, it need not be mapped.  We
	     move its declaration into the bind inside the data region.
	     Also avoid mapping variables if we are inside a template
	     instantiation; the code does not contain all the copies to
	     temporaries that would make this legal.  */
	  TREE_CHAIN (v) = artificial_vars;
	  artificial_vars = v;
	  if (prev_mapped_var != NULL)
	    TREE_CHAIN (prev_mapped_var) = next;
	  else
	    inner_bind_vars = next;
	}
      else
	{
	  /* Otherwise, build the map clause.  */
	  tree new_clause = build_omp_clause (loc, OMP_CLAUSE_MAP);
	  OMP_CLAUSE_SET_MAP_KIND (new_clause, GOMP_MAP_ALLOC);
	  OMP_CLAUSE_DECL (new_clause) = v;
	  OMP_CLAUSE_SIZE (new_clause) = DECL_SIZE_UNIT (v);
	  OMP_CLAUSE_CHAIN (new_clause) = inner_data_clauses;
	  inner_data_clauses = new_clause;

	  prev_mapped_var = v;

	  /* See <https://gcc.gnu.org/PR100280>.  */
	  if (!TREE_ADDRESSABLE (v))
	    {
	      /* Request that OMP lowering make 'v' addressable.  */
	      OMP_CLAUSE_MAP_DECL_MAKE_ADDRESSABLE (new_clause) = 1;

	      if (dump_enabled_p ())
		{
		  const dump_user_location_t d_u_loc
		    = dump_user_location_t::from_location_t (loc);
		  /* PR100695 "Format decoder, quoting in 'dump_printf' etc." */
#if __GNUC__ >= 10
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wformat"
#endif
		  dump_printf_loc (MSG_NOTE, d_u_loc,
				   "OpenACC %<kernels%> decomposition:"
				   " variable %<%T%> declared in block"
				   " requested to be made addressable\n",
				   v);
#if __GNUC__ >= 10
# pragma GCC diagnostic pop
#endif
		}
	    }
	}
    }

  if (artificial_vars)
    body = gimple_build_bind (artificial_vars, body, make_node (BLOCK));

  /* If we determined above that there are variables that need to be created
     on the device, construct a data region for them and wrap the body
     inside that.  */
  if (inner_data_clauses != NULL)
    {
      gcc_assert (inner_bind_vars != NULL);
      gimple *inner_data_region
	= gimple_build_omp_target (NULL, GF_OMP_TARGET_KIND_OACC_DATA_KERNELS,
				   inner_data_clauses);
      gimple_set_location (inner_data_region, loc);
      /* Make sure __builtin_GOACC_data_end is called at the end.  */
      gimple *try_stmt = make_data_region_try_statement (loc, body);
      gimple_omp_set_body (inner_data_region, try_stmt);
      gimple *bind_body;
      if (inner_cleanup != NULL)
	/* Clobber all the inner variables that need to be clobbered.  */
	bind_body = gimple_build_try (inner_data_region, inner_cleanup,
				      GIMPLE_TRY_FINALLY);
      else
	bind_body = inner_data_region;
      body = gimple_build_bind (inner_bind_vars, bind_body, make_node (BLOCK));
    }

  return body;
}

static void
add_wait (location_t loc, gimple_seq *region_body)
{
  /* A "#pragma acc wait" is just a call GOACC_wait (acc_async_sync, 0).  */
  tree wait_fn = builtin_decl_explicit (BUILT_IN_GOACC_WAIT);
  tree sync_arg = build_int_cst (integer_type_node, GOMP_ASYNC_SYNC);
  gimple *wait_call = gimple_build_call (wait_fn, 2,
					 sync_arg, integer_zero_node);
  gimple_set_location (wait_call, loc);
  gimple_seq_add_stmt (region_body, wait_call);
}

/* Helper function of decompose_kernels_region_body.  The statements in
   REGION_BODY are expected to be decomposed parts; add an 'async' clause to
   each.  Also add a 'wait' directive at the end of the sequence.  */

static void
add_async_clauses_and_wait (location_t loc, gimple_seq *region_body)
{
  tree default_async_queue
    = build_int_cst (integer_type_node, GOMP_ASYNC_NOVAL);
  for (gimple_stmt_iterator gsi = gsi_start (*region_body);
       !gsi_end_p (gsi);
       gsi_next (&gsi))
    {
      gimple *stmt = gsi_stmt (gsi);
      tree target_clauses = gimple_omp_target_clauses (stmt);
      tree new_async_clause = build_omp_clause (loc, OMP_CLAUSE_ASYNC);
      OMP_CLAUSE_OPERAND (new_async_clause, 0) = default_async_queue;
      OMP_CLAUSE_CHAIN (new_async_clause) = target_clauses;
      target_clauses = new_async_clause;
      gimple_omp_target_set_clauses (as_a <gomp_target *> (stmt),
				     target_clauses);
    }
  add_wait (loc, region_body);
}

/* Auxiliary analysis of the body of a kernels region, to determine for each
   OpenACC loop whether it is control-dependent (i.e., not necessarily
   executed every time the kernels region is entered) or not.
   We say that a loop is control-dependent if there is some cond, switch, or
   goto statement that jumps over it, forwards or backwards.  For example,
   if the loop is controlled by an if statement, then a jump to the true
   block, the false block, or from one of those blocks to the control flow
   join point will necessarily jump over the loop.
   This analysis implements an ad-hoc union-find data structure classifying
   statements into "control-flow regions" as follows: Most statements are in
   the same region as their predecessor, except that each OpenACC loop is in
   a region of its own, and each OpenACC loop's successor starts a new
   region.  We then unite the regions of any statements linked by jumps,
   placing any cond, switch, or goto statement in the same region as its
   target label(s).
   In the end, control dependence of OpenACC loops can be determined by
   comparing their immediate predecessor and successor statements' regions.
   A jump crosses the loop if and only if the predecessor and successor are
   in the same region.  (If there is no predecessor or successor, the loop
   is executed unconditionally.)
   The methods in this class identify statements by their index in the
   kernels region's body.  */

class control_flow_regions
{
  public:
    /* Initialize an instance and pre-compute the control-flow region
       information for the statement sequence SEQ.  */
    control_flow_regions (gimple_seq seq);

    /* Return true if the statement with the given index IDX in the analyzed
       statement sequence is an unconditionally executed OpenACC loop.  */
    bool is_unconditional_oacc_for_loop (size_t idx);

  private:
    /* Find the region representative for the statement identified by index
       STMT_IDX.  */
    size_t find_rep (size_t stmt_idx);

    /* Union the regions containing the statements represented by
       representatives A and B.  */
    void union_reps (size_t a, size_t b);

    /* Helper for the constructor.  Performs the actual computation of the
       control-flow regions in the statement sequence SEQ.  */
    void compute_regions (gimple_seq seq);

    /* The mapping from statement indices to region representatives.  */
    vec <size_t> representatives;

    /* A cache mapping statement indices to a flag indicating whether the
       statement is a top level OpenACC for loop.  */
    vec <bool> omp_for_loops;
};

control_flow_regions::control_flow_regions (gimple_seq seq)
{
  representatives.create (1);
  omp_for_loops.create (1);
  compute_regions (seq);
}

bool
control_flow_regions::is_unconditional_oacc_for_loop (size_t idx)
{
  if (idx == 0 || idx == representatives.length () - 1)
    /* The first or last statement in the kernels region.  This means that
       there is no room before or after it for a jump or a label.  Thus
       there cannot be a jump across it, so it is unconditional.  */
    return true;
  /* Otherwise, the loop is unconditional if the statements before and after
     it are in different control flow regions.  Scan forward and backward,
     skipping over neighboring OpenACC for loops, to find these preceding
     statements.  */
  size_t prev_index = idx - 1;
  while (prev_index > 0 && omp_for_loops [prev_index] == true)
    prev_index--;
  /* If all preceding statements are also OpenACC loops, all of these are
     unconditional.  */
  if (prev_index == 0)
    return true;
  size_t succ_index = idx + 1;
  while (succ_index < omp_for_loops.length ()
	 && omp_for_loops [succ_index] == true)
    succ_index++;
  /* If all following statements are also OpenACC loops, all of these are
     unconditional.  */
  if (succ_index == omp_for_loops.length ())
    return true;
  return (find_rep (prev_index) != find_rep (succ_index));
}

size_t
control_flow_regions::find_rep (size_t stmt_idx)
{
  size_t rep = stmt_idx, aux = stmt_idx;
  /* Find the root representative of this statement.  */
  while (representatives[rep] != rep)
    rep = representatives[rep];
  /* Compress the path from the original statement to the representative.  */
  while (representatives[aux] != rep)
    {
      size_t tmp = representatives[aux];
      representatives[aux] = rep;
      aux = tmp;
    }
  return rep;
}

void
control_flow_regions::union_reps (size_t a, size_t b)
{
  a = find_rep (a);
  b = find_rep (b);
  representatives[b] = a;
}

void
control_flow_regions::compute_regions (gimple_seq seq)
{
  hash_map <gimple *, size_t> control_flow_reps;
  hash_map <tree, size_t> label_reps;
  size_t current_region = 0, idx = 0;

  /* In a first pass, assign an initial region to each statement.  Except in
     the case of OpenACC loops, each statement simply gets the same region
     representative as its predecessor.  */
  for (gimple_stmt_iterator gsi = gsi_start (seq);
       !gsi_end_p (gsi);
       gsi_next (&gsi))
    {
      gimple *stmt = gsi_stmt (gsi);
      gimple *omp_for = top_level_omp_for_in_stmt (stmt);
      omp_for_loops.safe_push (omp_for != NULL);
      if (omp_for != NULL)
	{
	  /* Assign a new region to this loop and to its successor.  */
	  current_region = idx;
	  representatives.safe_push (current_region);
	  current_region++;
	}
      else
	{
	  representatives.safe_push (current_region);
	  /* Remember any jumps and labels for the second pass below.  */
	  if (gimple_code (stmt) == GIMPLE_COND
	      || gimple_code (stmt) == GIMPLE_SWITCH
	      || gimple_code (stmt) == GIMPLE_GOTO)
	    control_flow_reps.put (stmt, current_region);
	  else if (gimple_code (stmt) == GIMPLE_LABEL)
	    label_reps.put (gimple_label_label (as_a <glabel *> (stmt)),
			    current_region);
	}
      idx++;
    }
  gcc_assert (representatives.length () == omp_for_loops.length ());

  /* Revisit all the control flow statements and union the region of each
     cond, switch, or goto statement with the target labels' regions.  */
  for (hash_map <gimple *, size_t>::iterator it = control_flow_reps.begin ();
       it != control_flow_reps.end ();
       ++it)
    {
      gimple *stmt = (*it).first;
      size_t stmt_rep = (*it).second;
      switch (gimple_code (stmt))
	{
	  tree label;
	  unsigned int n;

	case GIMPLE_COND:
	  label = gimple_cond_true_label (as_a <gcond *> (stmt));
	  union_reps (stmt_rep, *label_reps.get (label));
	  label = gimple_cond_false_label (as_a <gcond *> (stmt));
	  union_reps (stmt_rep, *label_reps.get (label));
	  break;

	case GIMPLE_SWITCH:
	  n = gimple_switch_num_labels (as_a <gswitch *> (stmt));
	  for (unsigned int i = 0; i < n; i++)
	    {
	      tree switch_case
		= gimple_switch_label (as_a <gswitch *> (stmt), i);
	      label = CASE_LABEL (switch_case);
	      union_reps (stmt_rep, *label_reps.get (label));
	    }
	  break;

	case GIMPLE_GOTO:
	  label = gimple_goto_dest (stmt);
	  union_reps (stmt_rep, *label_reps.get (label));
	  break;

	default:
	  gcc_unreachable ();
	}
    }
}

/* Decompose the body of the KERNELS_REGION, which was originally annotated
   with the KERNELS_CLAUSES, into a series of compute constructs.  */

static gimple *
decompose_kernels_region_body (gimple *kernels_region, tree kernels_clauses)
{
  location_t loc = gimple_location (kernels_region);

  /* The kernels clauses will be propagated to the child clauses unmodified,
     except that the 'num_gangs', 'num_workers', and 'vector_length' clauses
     will only be added to loop regions.  The other regions are "gang-single"
     and get an explicit 'num_gangs (1)' clause.  So separate out the
     'num_gangs', 'num_workers', and 'vector_length' clauses here.
     Also check for the presence of an 'async' clause but do not remove it from
     the 'kernels' clauses.  */
  tree num_gangs_clause = NULL, num_workers_clause = NULL,
       vector_length_clause = NULL;
  tree async_clause = NULL;
  tree prev_clause = NULL, next_clause = NULL;
  tree parallel_clauses = kernels_clauses;
  for (tree c = parallel_clauses; c; c = next_clause)
    {
      /* Preserve this here, as we might NULL it later.  */
      next_clause = OMP_CLAUSE_CHAIN (c);

      if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_NUM_GANGS
	  || OMP_CLAUSE_CODE (c) == OMP_CLAUSE_NUM_WORKERS
	  || OMP_CLAUSE_CODE (c) == OMP_CLAUSE_VECTOR_LENGTH)
	{
	  /* Cut this clause out of the chain.  */
	  if (prev_clause != NULL)
	    OMP_CLAUSE_CHAIN (prev_clause) = OMP_CLAUSE_CHAIN (c);
	  else
	    kernels_clauses = OMP_CLAUSE_CHAIN (c);
	  OMP_CLAUSE_CHAIN (c) = NULL;
	  switch (OMP_CLAUSE_CODE (c))
	    {
	    case OMP_CLAUSE_NUM_GANGS:
	      num_gangs_clause = c;
	      break;
	    case OMP_CLAUSE_NUM_WORKERS:
	      num_workers_clause = c;
	      break;
	    case OMP_CLAUSE_VECTOR_LENGTH:
	      vector_length_clause = c;
	      break;
	    default:
	      gcc_unreachable ();
	    }
	}
      else
	prev_clause = c;
      if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_ASYNC)
	async_clause = c;
    }

  gimple *kernels_body = gimple_omp_body (kernels_region);
  gbind *kernels_bind = as_a <gbind *> (kernels_body);

  /* The body of the region may contain other nested binds declaring inner
     local variables.  Collapse all these binds into one to ensure that we
     have a single sequence of statements to iterate over; also, collect all
     inner variables.  */
  tree inner_bind_vars = flatten_binds (kernels_bind);
  gimple_seq body_sequence = gimple_bind_body (kernels_bind);

  /* All these inner variables will get allocated on the device (below, by
     calling maybe_build_inner_data_region).  Here we create 'present'
     clauses for them and add these clauses to the list of clauses to be
     attached to each inner compute construct.  */
  tree present_clauses = kernels_clauses;
  for (tree var = inner_bind_vars; var; var = TREE_CHAIN (var))
    {
      if (!DECL_ARTIFICIAL (var) && TREE_CODE (var) != CONST_DECL)
	{
	  tree present_clause = build_omp_clause (loc, OMP_CLAUSE_MAP);
	  OMP_CLAUSE_SET_MAP_KIND (present_clause, GOMP_MAP_FORCE_PRESENT);
	  OMP_CLAUSE_DECL (present_clause) = var;
	  OMP_CLAUSE_SIZE (present_clause) = DECL_SIZE_UNIT (var);
	  OMP_CLAUSE_CHAIN (present_clause) = present_clauses;
	  present_clauses = present_clause;
	}
    }
  kernels_clauses = present_clauses;

  /* In addition to nested binds, the "real" body of the region may be
     nested inside a try-finally block.  Find its cleanup block, which
     contains code to clobber the local variables that must be clobbered.  */
  gimple *inner_cleanup = NULL;
  if (body_sequence != NULL && gimple_code (body_sequence) == GIMPLE_TRY)
    {
      if (gimple_seq_singleton_p (body_sequence))
	{
	  /* The try statement is the only thing inside the bind.  */
	  inner_cleanup = gimple_try_cleanup (body_sequence);
	  body_sequence = gimple_try_eval (body_sequence);
	}
      else
	{
	  /* The bind's body starts with a try statement, but it is followed
	     by other things.  */
	  gimple_stmt_iterator gsi = gsi_start (body_sequence);
	  gimple *try_stmt = gsi_stmt (gsi);
	  inner_cleanup = gimple_try_cleanup (try_stmt);
	  gimple *try_body = gimple_try_eval (try_stmt);

	  gsi_remove (&gsi, false);
	  /* Now gsi indicates the sequence of statements after the try
	     statement in the bind.  Append the statement in the try body and
	     the trailing statements from gsi.  */
	  gsi_insert_seq_before (&gsi, try_body, GSI_CONTINUE_LINKING);
	  body_sequence = gsi_stmt (gsi);
	}
    }

  /* This sequence will collect all the top-level statements in the body of
     the data region we are about to construct.  */
  gimple_seq region_body = NULL;
  /* This sequence will collect consecutive statements to be put into a
     gang-single region.  */
  gimple_seq gang_single_seq = NULL;
  /* Flag recording whether the gang_single_seq only contains copies to
     local variables.  These may be loop setup code that should not be
     separated from the loop.  */
  bool only_simple_assignments = true;

  /* Precompute the control flow region information to determine whether an
     OpenACC loop is executed conditionally or unconditionally.  */
  control_flow_regions cf_regions (body_sequence);

  /* Iterate over the statements in the kernels region's body.  */
  size_t idx = 0;
  gimple_stmt_iterator gsi, gsi_n;
  for (gsi = gsi_start (body_sequence); !gsi_end_p (gsi); gsi = gsi_n, idx++)
    {
      /* Advance the iterator here because otherwise it would be invalidated
	 by moving statements below.  */
      gsi_n = gsi;
      gsi_next (&gsi_n);

      gimple *stmt = gsi_stmt (gsi);
      if (gimple_code (stmt) == GIMPLE_DEBUG)
	{
	  if (flag_compare_debug_opt || flag_compare_debug)
	    /* Let the usual '-fcompare-debug' analysis bail out, as
	       necessary.  */
	    ;
	  else
	    sorry_at (loc, "%qs not yet supported",
		      gimple_code_name[gimple_code (stmt)]);
	}
      gimple *omp_for = top_level_omp_for_in_stmt (stmt);
      bool is_unconditional_oacc_for_loop = false;
      if (omp_for != NULL)
	is_unconditional_oacc_for_loop
	  = cf_regions.is_unconditional_oacc_for_loop (idx);
      if (omp_for != NULL
	  && is_unconditional_oacc_for_loop)
	{
	  /* This is an OMP for statement, put it into a separate region.
	     But first, construct a gang-single region containing any
	     complex sequential statements we may have seen.  */
	  if (gang_single_seq != NULL && !only_simple_assignments)
	    {
	      gimple *single_region
		= make_region_seq (loc, gang_single_seq,
				   num_gangs_clause,
				   num_workers_clause,
				   vector_length_clause,
				   kernels_clauses);
	      gimple_seq_add_stmt (&region_body, single_region);
	    }
	  else if (gang_single_seq != NULL && only_simple_assignments)
	    {
	      /* There is a sequence of sequential statements preceding this
		 loop, but they are all simple assignments.  This is
		 probably setup code for the loop; in particular, Fortran DO
		 loops are preceded by code to copy the loop limit variable
		 to a temporary.  Group this code together with the loop
		 itself.  */
	      gimple_seq_add_stmt (&gang_single_seq, stmt);
	      stmt = gimple_build_bind (NULL, gang_single_seq,
					make_node (BLOCK));
	    }
	  gang_single_seq = NULL;
	  only_simple_assignments = true;

	  gimple_seq parallel_seq = NULL;
	  gimple_seq_add_stmt (&parallel_seq, stmt);
	  gimple *parallel_region
	    = make_region_loop_nest (omp_for, parallel_seq,
				     num_gangs_clause,
				     num_workers_clause,
				     vector_length_clause,
				     kernels_clauses);
	  gimple_seq_add_stmt (&region_body, parallel_region);
	}
      else
	{
	  if (omp_for != NULL)
	    {
	      gcc_checking_assert (!is_unconditional_oacc_for_loop);
	      if (dump_enabled_p ())
		dump_printf_loc (MSG_MISSED_OPTIMIZATION, omp_for,
				 "unparallelized loop nest"
				 " in OpenACC %<kernels%> region:"
				 " it's executed conditionally\n");
	    }

	  /* This is not an unconditional OMP for statement, so it will be
	     put into a gang-single region.  */
	  gimple_seq_add_stmt (&gang_single_seq, stmt);
	  /* Is this a simple assignment? We call it simple if it is an
	     assignment to an artificial local variable.  This captures
	     Fortran loop setup code computing loop bounds and offsets.  */
	  bool is_simple_assignment
	    = (gimple_code (stmt) == GIMPLE_ASSIGN
	       && TREE_CODE (gimple_assign_lhs (stmt)) == VAR_DECL
	       && DECL_ARTIFICIAL (gimple_assign_lhs (stmt)));
	  if (!is_simple_assignment)
	    only_simple_assignments = false;
	}
    }

  /* If we did not emit a new region, and are not going to emit one now
     (that is, the original region was empty), prepare to emit a dummy so as
     to preserve the original construct, which other processing (at least
     test cases) depend on.  */
  if (region_body == NULL && gang_single_seq == NULL)
    {
      gimple *stmt = gimple_build_nop ();
      gimple_set_location (stmt, loc);
      gimple_seq_add_stmt (&gang_single_seq, stmt);
    }

  /* Gather up any remaining gang-single statements.  */
  if (gang_single_seq != NULL)
    {
      gimple *single_region
	= make_region_seq (loc, gang_single_seq,
			   num_gangs_clause,
			   num_workers_clause,
			   vector_length_clause,
			   kernels_clauses);
      gimple_seq_add_stmt (&region_body, single_region);
    }

  /* We want to launch these kernels asynchronously.  If the original
     kernels region had an async clause, this is done automatically because
     that async clause was copied to the individual regions we created.
     Otherwise, add an async clause to each newly created region, as well as
     a wait directive at the end.  */
  if (async_clause == NULL)
    add_async_clauses_and_wait (loc, &region_body);
  else
    /* !!! If we have asynchronous parallel blocks inside a (synchronous) data
       region, then target memory will get unmapped at the point the data
       region ends, even if the inner asynchronous parallels have not yet
       completed.  For kernels marked "async", we might want to use "enter data
       async(...)" and "exit data async(...)" instead, or asynchronous data
       regions (see also <https://gcc.gnu.org/PR97390>
       "[OpenACC] 'async' clause on 'data' construct",
       which is to share the same implementation).
       For now, insert a (synchronous) wait at the end of the block.  */
    add_wait (loc, &region_body);

  tree kernels_locals = gimple_bind_vars (as_a <gbind *> (kernels_body));
  gimple *body = gimple_build_bind (kernels_locals, region_body,
				    make_node (BLOCK));

  /* If we found variables declared in nested scopes, build a data region to
     map them to the device.  */
  body = maybe_build_inner_data_region (loc, body, inner_bind_vars,
					inner_cleanup);

  return body;
}

/* Decompose one OpenACC 'kernels' construct into an OpenACC 'data' construct
   containing the original OpenACC 'kernels' construct's region cut up into a
   sequence of compute constructs.  */

static gimple *
omp_oacc_kernels_decompose_1 (gimple *kernels_stmt)
{
  gcc_checking_assert (gimple_omp_target_kind (kernels_stmt)
		       == GF_OMP_TARGET_KIND_OACC_KERNELS);
  location_t loc = gimple_location (kernels_stmt);

  /* Collect the data clauses of the OpenACC 'kernels' directive and create a
     new OpenACC 'data' construct with those clauses.  */
  tree kernels_clauses = gimple_omp_target_clauses (kernels_stmt);
  tree data_clauses = NULL;
  for (tree c = kernels_clauses; c; c = OMP_CLAUSE_CHAIN (c))
    {
      /* Certain clauses are copied to the enclosing OpenACC 'data'.  Other
	 clauses remain on the OpenACC 'kernels'.  */
      if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_MAP)
	{
	  tree decl = OMP_CLAUSE_DECL (c);
	  HOST_WIDE_INT map_kind = OMP_CLAUSE_MAP_KIND (c);
	  switch (map_kind)
	    {
	    default:
	      if (map_kind == GOMP_MAP_ALLOC
		  && integer_zerop (OMP_CLAUSE_SIZE (c)))
		/* ??? This is an alloc clause for mapping a pointer whose
		   target is already mapped.  We leave these on the inner
		   compute constructs because moving them to the outer data
		   region causes runtime errors.  */
		break;

	      /* For non-artificial variables, and for non-declaration
		 expressions like A[0:n], copy the clause to the data
		 region.  */
	      if ((DECL_P (decl) && !DECL_ARTIFICIAL (decl))
		  || !DECL_P (decl))
		{
		  tree new_clause = build_omp_clause (OMP_CLAUSE_LOCATION (c),
						      OMP_CLAUSE_MAP);
		  OMP_CLAUSE_SET_MAP_KIND (new_clause, map_kind);
		  /* This must be unshared here to avoid "incorrect sharing
		     of tree nodes" errors from verify_gimple.  */
		  OMP_CLAUSE_DECL (new_clause) = unshare_expr (decl);
		  OMP_CLAUSE_SIZE (new_clause) = OMP_CLAUSE_SIZE (c);
		  OMP_CLAUSE_CHAIN (new_clause) = data_clauses;
		  data_clauses = new_clause;

		  /* Now that this data is mapped, turn the data clause on the
		     inner OpenACC 'kernels' into a 'present' clause.  */
		  OMP_CLAUSE_SET_MAP_KIND (c, GOMP_MAP_FORCE_PRESENT);

		  /* See <https://gcc.gnu.org/PR100280>,
		     <https://gcc.gnu.org/PR104086>.  */
		  if (DECL_P (decl)
		      && !TREE_ADDRESSABLE (decl))
		    {
		      /* Request that OMP lowering make 'decl' addressable.  */
		      OMP_CLAUSE_MAP_DECL_MAKE_ADDRESSABLE (new_clause) = 1;

		      if (dump_enabled_p ())
			{
			  location_t loc = OMP_CLAUSE_LOCATION (new_clause);
			  const dump_user_location_t d_u_loc
			    = dump_user_location_t::from_location_t (loc);
			  /* PR100695 "Format decoder, quoting in 'dump_printf'
			     etc." */
#if __GNUC__ >= 10
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wformat"
#endif
			  dump_printf_loc
			    (MSG_NOTE, d_u_loc,
			     "OpenACC %<kernels%> decomposition:"
			     " variable %<%T%> in %qs clause"
			     " requested to be made addressable\n",
			     decl,
			     user_omp_clause_code_name (new_clause, true));
#if __GNUC__ >= 10
# pragma GCC diagnostic pop
#endif
			}
		    }
		}
	      break;

	    case GOMP_MAP_POINTER:
	    case GOMP_MAP_TO_PSET:
	    case GOMP_MAP_FIRSTPRIVATE_POINTER:
	    case GOMP_MAP_FIRSTPRIVATE_REFERENCE:
	      /* ??? Copying these map kinds leads to internal compiler
		 errors in later passes.  */
	      break;
	    }
	}
      else if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_IF)
	{
	  /* If there is an 'if' clause, it must be duplicated to the
	     enclosing data region.  Temporarily remove the if clause's
	     chain to avoid copying it.  */
	  tree saved_chain = OMP_CLAUSE_CHAIN (c);
	  OMP_CLAUSE_CHAIN (c) = NULL;
	  tree new_if_clause = unshare_expr (c);
	  OMP_CLAUSE_CHAIN (c) = saved_chain;
	  OMP_CLAUSE_CHAIN (new_if_clause) = data_clauses;
	  data_clauses = new_if_clause;
	}
    }
  /* Restore the original order of the clauses.  */
  data_clauses = nreverse (data_clauses);

  gimple *data_region
    = gimple_build_omp_target (NULL, GF_OMP_TARGET_KIND_OACC_DATA_KERNELS,
			       data_clauses);
  gimple_set_location (data_region, loc);

  /* Transform the body of the kernels region into a sequence of compute
     constructs.  */
  gimple *body = decompose_kernels_region_body (kernels_stmt,
						kernels_clauses);

  /* Put the transformed pieces together.  The entire body of the region is
     wrapped in a try-finally statement that calls __builtin_GOACC_data_end
     for cleanup.  */
  gimple *try_stmt = make_data_region_try_statement (loc, body);
  gimple_omp_set_body (data_region, try_stmt);

  return data_region;
}


/* Decompose OpenACC 'kernels' constructs in the current function.  */

static tree
omp_oacc_kernels_decompose_callback_stmt (gimple_stmt_iterator *gsi_p,
					  bool *handled_ops_p,
					  struct walk_stmt_info *)
{
  gimple *stmt = gsi_stmt (*gsi_p);

  if ((gimple_code (stmt) == GIMPLE_OMP_TARGET)
      && gimple_omp_target_kind (stmt) == GF_OMP_TARGET_KIND_OACC_KERNELS)
    {
      gimple *stmt_new = omp_oacc_kernels_decompose_1 (stmt);
      gsi_replace (gsi_p, stmt_new, false);
      *handled_ops_p = true;
    }
  else
    *handled_ops_p = false;

  return NULL;
}

static unsigned int
omp_oacc_kernels_decompose (void)
{
  gimple_seq body = gimple_body (current_function_decl);

  struct walk_stmt_info wi;
  memset (&wi, 0, sizeof (wi));
  walk_gimple_seq_mod (&body, omp_oacc_kernels_decompose_callback_stmt, NULL,
		       &wi);

  gimple_set_body (current_function_decl, body);

  return 0;
}


namespace {

const pass_data pass_data_omp_oacc_kernels_decompose =
{
  GIMPLE_PASS, /* type */
  "omp_oacc_kernels_decompose", /* name */
  OPTGROUP_OMP, /* optinfo_flags */
  TV_NONE, /* tv_id */
  PROP_gimple_any, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_omp_oacc_kernels_decompose : public gimple_opt_pass
{
public:
  pass_omp_oacc_kernels_decompose (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_omp_oacc_kernels_decompose, ctxt)
  {}

  /* opt_pass methods: */
  bool gate (function *) final override
  {
    return (flag_openacc
	    && param_openacc_kernels == OPENACC_KERNELS_DECOMPOSE);
  }
  unsigned int execute (function *) final override
  {
    return omp_oacc_kernels_decompose ();
  }

}; // class pass_omp_oacc_kernels_decompose

} // anon namespace

gimple_opt_pass *
make_pass_omp_oacc_kernels_decompose (gcc::context *ctxt)
{
  return new pass_omp_oacc_kernels_decompose (ctxt);
}