summaryrefslogtreecommitdiff
path: root/gcc/lto-streamer.c
blob: a086d9180041b87d02c7ef2f71506043bb0e3acd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
/* Miscellaneous utilities for GIMPLE streaming.  Things that are used
   in both input and output are here.

   Copyright 2009, 2010 Free Software Foundation, Inc.
   Contributed by Doug Kwan <dougkwan@google.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "toplev.h"
#include "flags.h"
#include "tree.h"
#include "gimple.h"
#include "tree-flow.h"
#include "diagnostic-core.h"
#include "bitmap.h"
#include "vec.h"
#include "lto-streamer.h"

/* Statistics gathered during LTO, WPA and LTRANS.  */
struct lto_stats_d lto_stats;

/* LTO uses bitmaps with different life-times.  So use a seperate
   obstack for all LTO bitmaps.  */
static bitmap_obstack lto_obstack;
static bool lto_obstack_initialized;


/* Return a string representing LTO tag TAG.  */

const char *
lto_tag_name (enum LTO_tags tag)
{
  if (lto_tag_is_tree_code_p (tag))
    {
      /* For tags representing tree nodes, return the name of the
	 associated tree code.  */
      return tree_code_name[lto_tag_to_tree_code (tag)];
    }

  if (lto_tag_is_gimple_code_p (tag))
    {
      /* For tags representing gimple statements, return the name of
	 the associated gimple code.  */
      return gimple_code_name[lto_tag_to_gimple_code (tag)];
    }

  switch (tag)
    {
    case LTO_null:
      return "LTO_null";
    case LTO_bb0:
      return "LTO_bb0";
    case LTO_bb1:
      return "LTO_bb1";
    case LTO_eh_region:
      return "LTO_eh_region";
    case LTO_function:
      return "LTO_function";
    case LTO_eh_table:
      return "LTO_eh_table";
    case LTO_ert_cleanup:
      return "LTO_ert_cleanup";
    case LTO_ert_try:
      return "LTO_ert_try";
    case LTO_ert_allowed_exceptions:
      return "LTO_ert_allowed_exceptions";
    case LTO_ert_must_not_throw:
      return "LTO_ert_must_not_throw";
    case LTO_tree_pickle_reference:
      return "LTO_tree_pickle_reference";
    case LTO_field_decl_ref:
      return "LTO_field_decl_ref";
    case LTO_function_decl_ref:
      return "LTO_function_decl_ref";
    case LTO_label_decl_ref:
      return "LTO_label_decl_ref";
    case LTO_namespace_decl_ref:
      return "LTO_namespace_decl_ref";
    case LTO_result_decl_ref:
      return "LTO_result_decl_ref";
    case LTO_ssa_name_ref:
      return "LTO_ssa_name_ref";
    case LTO_type_decl_ref:
      return "LTO_type_decl_ref";
    case LTO_type_ref:
      return "LTO_type_ref";
    case LTO_global_decl_ref:
      return "LTO_global_decl_ref";
    default:
      return "LTO_UNKNOWN";
    }
}


/* Allocate a bitmap from heap.  Initializes the LTO obstack if necessary.  */

bitmap
lto_bitmap_alloc (void)
{
  if (!lto_obstack_initialized)
    {
      bitmap_obstack_initialize (&lto_obstack);
      lto_obstack_initialized = true;
    }
  return BITMAP_ALLOC (&lto_obstack);
}

/* Free bitmap B.  */

void
lto_bitmap_free (bitmap b)
{
  BITMAP_FREE (b);
}


/* Get a section name for a particular type or name.  The NAME field
   is only used if SECTION_TYPE is LTO_section_function_body or
   LTO_static_initializer.  For all others it is ignored.  The callee
   of this function is responcible to free the returned name.  */

char *
lto_get_section_name (int section_type, const char *name)
{
  switch (section_type)
    {
    case LTO_section_function_body:
      gcc_assert (name != NULL);
      if (name[0] == '*')
	name++;
      return concat (LTO_SECTION_NAME_PREFIX, name, NULL);

    case LTO_section_static_initializer:
      return concat (LTO_SECTION_NAME_PREFIX, ".statics", NULL);

    case LTO_section_symtab:
      return concat (LTO_SECTION_NAME_PREFIX, ".symtab", NULL);

    case LTO_section_decls:
      return concat (LTO_SECTION_NAME_PREFIX, ".decls", NULL);

    case LTO_section_cgraph:
      return concat (LTO_SECTION_NAME_PREFIX, ".cgraph", NULL);

    case LTO_section_varpool:
      return concat (LTO_SECTION_NAME_PREFIX, ".vars", NULL);

    case LTO_section_refs:
      return concat (LTO_SECTION_NAME_PREFIX, ".refs", NULL);

    case LTO_section_jump_functions:
      return concat (LTO_SECTION_NAME_PREFIX, ".jmpfuncs", NULL);

    case LTO_section_ipa_pure_const:
      return concat (LTO_SECTION_NAME_PREFIX, ".pureconst", NULL);

    case LTO_section_ipa_reference:
      return concat (LTO_SECTION_NAME_PREFIX, ".reference", NULL);

    case LTO_section_opts:
      return concat (LTO_SECTION_NAME_PREFIX, ".opts", NULL);

    case LTO_section_cgraph_opt_sum:
      return concat (LTO_SECTION_NAME_PREFIX, ".cgraphopt", NULL);

    default:
      internal_error ("bytecode stream: unexpected LTO section %s", name);
    }
}


/* Show various memory usage statistics related to LTO.  */

void
print_lto_report (void)
{
  const char *s = (flag_lto) ? "LTO" : (flag_wpa) ? "WPA" : "LTRANS";
  unsigned i;

  fprintf (stderr, "%s statistics\n", s);
  fprintf (stderr, "[%s] # of input files: "
	   HOST_WIDE_INT_PRINT_UNSIGNED "\n", s, lto_stats.num_input_files);

  fprintf (stderr, "[%s] # of input cgraph nodes: "
	   HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
	   lto_stats.num_input_cgraph_nodes);

  fprintf (stderr, "[%s] # of function bodies: "
	   HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
	   lto_stats.num_function_bodies);

  fprintf (stderr, "[%s] ", s);
  print_gimple_types_stats ();

  for (i = 0; i < NUM_TREE_CODES; i++)
    if (lto_stats.num_trees[i])
      fprintf (stderr, "[%s] # of '%s' objects read: "
	       HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
	       tree_code_name[i], lto_stats.num_trees[i]);

  if (flag_lto)
    {
      fprintf (stderr, "[%s] Compression: "
	       HOST_WIDE_INT_PRINT_UNSIGNED " output bytes, "
	       HOST_WIDE_INT_PRINT_UNSIGNED " compressed bytes", s,
	       lto_stats.num_output_il_bytes,
	       lto_stats.num_compressed_il_bytes);
      if (lto_stats.num_output_il_bytes > 0)
	{
	  const float dividend = (float) lto_stats.num_compressed_il_bytes;
	  const float divisor = (float) lto_stats.num_output_il_bytes;
	  fprintf (stderr, " (ratio: %f)", dividend / divisor);
	}
      fprintf (stderr, "\n");
    }

  if (flag_wpa)
    {
      fprintf (stderr, "[%s] # of output files: "
	       HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
	       lto_stats.num_output_files);

      fprintf (stderr, "[%s] # of output cgraph nodes: "
	       HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
	       lto_stats.num_output_cgraph_nodes);

      fprintf (stderr, "[%s] # callgraph partitions: "
	       HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
	       lto_stats.num_cgraph_partitions);

      fprintf (stderr, "[%s] Compression: "
	       HOST_WIDE_INT_PRINT_UNSIGNED " input bytes, "
	       HOST_WIDE_INT_PRINT_UNSIGNED " uncompressed bytes", s,
	       lto_stats.num_input_il_bytes,
	       lto_stats.num_uncompressed_il_bytes);
      if (lto_stats.num_input_il_bytes > 0)
	{
	  const float dividend = (float) lto_stats.num_uncompressed_il_bytes;
	  const float divisor = (float) lto_stats.num_input_il_bytes;
	  fprintf (stderr, " (ratio: %f)", dividend / divisor);
	}
      fprintf (stderr, "\n");
    }

  for (i = 0; i < LTO_N_SECTION_TYPES; i++)
    fprintf (stderr, "[%s] Size of mmap'd section %s: "
	     HOST_WIDE_INT_PRINT_UNSIGNED " bytes\n", s,
	     lto_section_name[i], lto_stats.section_size[i]);
}

/* We cache a single bitpack assuming that usually at most one is
   life.  This saves repeated re-allocations.  */
static struct bitpack_d *cached_bp;

/* Create a new bitpack.  */

struct bitpack_d *
bitpack_create (void)
{
  if (cached_bp)
    {
      struct bitpack_d *bp = cached_bp;
      cached_bp = NULL;
      return bp;
    }
  return XCNEW (struct bitpack_d);
}


/* Free the memory used by bitpack BP.  */

void
bitpack_delete (struct bitpack_d *bp)
{
  if (!cached_bp)
    {
      bp->num_bits = 0;
      bp->first_unused_bit = 0;
      VEC_truncate (bitpack_word_t, bp->values, 0);
      cached_bp = bp;
      return;
    }
  VEC_free (bitpack_word_t, heap, bp->values);
  free (bp);
}


/* Return an index to the word in bitpack BP that contains the
   next NBITS.  */

static inline unsigned
bp_get_next_word (struct bitpack_d *bp, unsigned nbits)
{
  unsigned last, ix;

  /* In principle, the next word to use is determined by the
     number of bits already processed in BP.  */
  ix = bp->num_bits / BITS_PER_BITPACK_WORD;

  /* All the encoded bit patterns in BP are contiguous, therefore if
     the next NBITS would straddle over two different words, move the
     index to the next word and update the number of encoded bits
     by adding up the hole of unused bits created by this move.  */
  bp->first_unused_bit %= BITS_PER_BITPACK_WORD;
  last = bp->first_unused_bit + nbits - 1;
  if (last >= BITS_PER_BITPACK_WORD)
    {
      ix++;
      bp->num_bits += (BITS_PER_BITPACK_WORD - bp->first_unused_bit);
      bp->first_unused_bit = 0;
    }

  return ix;
}


/* Pack NBITS of value VAL into bitpack BP.  */

void
bp_pack_value (struct bitpack_d *bp, bitpack_word_t val, unsigned nbits)
{
  unsigned ix;
  bitpack_word_t word;

  /* We cannot encode more bits than BITS_PER_BITPACK_WORD.  */
#ifdef ENABLE_CHECKING
  gcc_assert (nbits > 0 && nbits <= BITS_PER_BITPACK_WORD);
#endif

  /* Compute which word will contain the next NBITS.  */
  ix = bp_get_next_word (bp, nbits);
  if (ix >= VEC_length (bitpack_word_t, bp->values))
    {
      /* If there is no room left in the last word of the values
	 array, add a new word.  Additionally, we should only
	 need to add a single word, since every pack operation cannot
	 use more bits than fit in a single word.  */
      VEC_safe_push (bitpack_word_t, heap, bp->values, 0);
    }

  /* Grab the last word to pack VAL into.  */
  word = VEC_index (bitpack_word_t, bp->values, ix);

  /* To fit VAL in WORD, we need to shift VAL to the left to
     skip the bottom BP->FIRST_UNUSED_BIT bits.  */
  val <<= bp->first_unused_bit;

  /* Update WORD with VAL.  */
  word |= val;

  /* Update BP.  */
  VEC_replace (bitpack_word_t, bp->values, ix, word);
  bp->num_bits += nbits;
  bp->first_unused_bit += nbits;
}


/* Unpack the next NBITS from bitpack BP.  */

bitpack_word_t
bp_unpack_value (struct bitpack_d *bp, unsigned nbits)
{
  bitpack_word_t val, word, mask;
  unsigned ix;

  /* We cannot decode more bits than BITS_PER_BITPACK_WORD.  */
  gcc_assert (nbits > 0 && nbits <= BITS_PER_BITPACK_WORD);

  /* Compute which word contains the next NBITS.  */
  ix = bp_get_next_word (bp, nbits);
  word = VEC_index (bitpack_word_t, bp->values, ix);

  /* Compute the mask to get NBITS from WORD.  */
  mask = (nbits == BITS_PER_BITPACK_WORD)
	 ? (bitpack_word_t) -1
	 : ((bitpack_word_t) 1 << nbits) - 1;

  /* Shift WORD to the right to skip over the bits already decoded
     in word.  */
  word >>= bp->first_unused_bit;

  /* Apply the mask to obtain the requested value.  */
  val = word & mask;

  /* Update BP->NUM_BITS for the next unpack operation.  */
  bp->num_bits += nbits;
  bp->first_unused_bit += nbits;

  return val;
}


/* Check that all the TS_* structures handled by the lto_output_* and
   lto_input_* routines are exactly ALL the structures defined in
   treestruct.def.  */

static void
check_handled_ts_structures (void)
{
  bool handled_p[LAST_TS_ENUM];
  unsigned i;

  memset (&handled_p, 0, sizeof (handled_p));

  /* These are the TS_* structures that are either handled or
     explicitly ignored by the streamer routines.  */
  handled_p[TS_BASE] = true;
  handled_p[TS_COMMON] = true;
  handled_p[TS_INT_CST] = true;
  handled_p[TS_REAL_CST] = true;
  handled_p[TS_FIXED_CST] = true;
  handled_p[TS_VECTOR] = true;
  handled_p[TS_STRING] = true;
  handled_p[TS_COMPLEX] = true;
  handled_p[TS_IDENTIFIER] = true;
  handled_p[TS_DECL_MINIMAL] = true;
  handled_p[TS_DECL_COMMON] = true;
  handled_p[TS_DECL_WRTL] = true;
  handled_p[TS_DECL_NON_COMMON] = true;
  handled_p[TS_DECL_WITH_VIS] = true;
  handled_p[TS_FIELD_DECL] = true;
  handled_p[TS_VAR_DECL] = true;
  handled_p[TS_PARM_DECL] = true;
  handled_p[TS_LABEL_DECL] = true;
  handled_p[TS_RESULT_DECL] = true;
  handled_p[TS_CONST_DECL] = true;
  handled_p[TS_TYPE_DECL] = true;
  handled_p[TS_FUNCTION_DECL] = true;
  handled_p[TS_TYPE] = true;
  handled_p[TS_LIST] = true;
  handled_p[TS_VEC] = true;
  handled_p[TS_EXP] = true;
  handled_p[TS_SSA_NAME] = true;
  handled_p[TS_BLOCK] = true;
  handled_p[TS_BINFO] = true;
  handled_p[TS_STATEMENT_LIST] = true;
  handled_p[TS_CONSTRUCTOR] = true;
  handled_p[TS_OMP_CLAUSE] = true;
  handled_p[TS_OPTIMIZATION] = true;
  handled_p[TS_TARGET_OPTION] = true;

  /* Anything not marked above will trigger the following assertion.
     If this assertion triggers, it means that there is a new TS_*
     structure that should be handled by the streamer.  */
  for (i = 0; i < LAST_TS_ENUM; i++)
    gcc_assert (handled_p[i]);
}


/* Helper for lto_streamer_cache_insert_1.  Add T to CACHE->NODES at
   slot IX.  Add OFFSET to CACHE->OFFSETS at slot IX.  */

static void
lto_streamer_cache_add_to_node_array (struct lto_streamer_cache_d *cache,
				      int ix, tree t, unsigned offset)
{
  gcc_assert (ix >= 0);

  /* Grow the array of nodes and offsets to accomodate T at IX.  */
  if (ix >= (int) VEC_length (tree, cache->nodes))
    {
      size_t sz = ix + (20 + ix) / 4;
      VEC_safe_grow_cleared (tree, heap, cache->nodes, sz);
      VEC_safe_grow_cleared (unsigned, heap, cache->offsets, sz);
    }

  VEC_replace (tree, cache->nodes, ix, t);
  VEC_replace (unsigned, cache->offsets, ix, offset);
}


/* Helper for lto_streamer_cache_insert and lto_streamer_cache_insert_at.
   CACHE, T, IX_P and OFFSET_P are as in lto_streamer_cache_insert.

   If INSERT_AT_NEXT_SLOT_P is true, T is inserted at the next available
   slot in the cache.  Otherwise, T is inserted at the position indicated
   in *IX_P.

   If T already existed in CACHE, return true.  Otherwise,
   return false.  */

static bool
lto_streamer_cache_insert_1 (struct lto_streamer_cache_d *cache,
			     tree t, int *ix_p, unsigned *offset_p,
			     bool insert_at_next_slot_p)
{
  void **slot;
  struct tree_int_map d_entry, *entry;
  int ix;
  unsigned offset;
  bool existed_p;

  gcc_assert (t);

  d_entry.base.from = t;
  slot = htab_find_slot (cache->node_map, &d_entry, INSERT);
  if (*slot == NULL)
    {
      /* Determine the next slot to use in the cache.  */
      if (insert_at_next_slot_p)
	ix = cache->next_slot++;
      else
	ix = *ix_p;

      entry = (struct tree_int_map *)pool_alloc (cache->node_map_entries);
      entry->base.from = t;
      entry->to = (unsigned) ix;
      *slot = entry;

      /* If no offset was given, store the invalid offset -1.  */
      offset = (offset_p) ? *offset_p : (unsigned) -1;

      lto_streamer_cache_add_to_node_array (cache, ix, t, offset);

      /* Indicate that the item was not present in the cache.  */
      existed_p = false;
    }
  else
    {
      entry = (struct tree_int_map *) *slot;
      ix = (int) entry->to;
      offset = VEC_index (unsigned, cache->offsets, ix);

      if (!insert_at_next_slot_p && ix != *ix_p)
	{
	  /* If the caller wants to insert T at a specific slot
	     location, and ENTRY->TO does not match *IX_P, add T to
	     the requested location slot.  This situation arises when
	     streaming builtin functions.

	     For instance, on the writer side we could have two
	     FUNCTION_DECLS T1 and T2 that are represented by the same
	     builtin function.  The reader will only instantiate the
	     canonical builtin, but since T1 and T2 had been
	     originally stored in different cache slots (S1 and S2),
	     the reader must be able to find the canonical builtin
	     function at slots S1 and S2.  */
	  gcc_assert (lto_stream_as_builtin_p (t));
	  ix = *ix_p;

	  /* Since we are storing a builtin, the offset into the
	     stream is not necessary as we will not need to read
	     forward in the stream.  */
	  lto_streamer_cache_add_to_node_array (cache, ix, t, -1);
	}

      /* Indicate that T was already in the cache.  */
      existed_p = true;
    }

  if (ix_p)
    *ix_p = ix;

  if (offset_p)
    *offset_p = offset;

  return existed_p;
}


/* Insert tree node T in CACHE.  If T already existed in the cache
   return true.  Otherwise, return false.

   If IX_P is non-null, update it with the index into the cache where
   T has been stored.

   *OFFSET_P represents the offset in the stream where T is physically
   written out.  The first time T is added to the cache, *OFFSET_P is
   recorded in the cache together with T.  But if T already existed
   in the cache, *OFFSET_P is updated with the value that was recorded
   the first time T was added to the cache.

   If OFFSET_P is NULL, it is ignored.  */

bool
lto_streamer_cache_insert (struct lto_streamer_cache_d *cache, tree t,
			   int *ix_p, unsigned *offset_p)
{
  return lto_streamer_cache_insert_1 (cache, t, ix_p, offset_p, true);
}


/* Insert tree node T in CACHE at slot IX.  If T already
   existed in the cache return true.  Otherwise, return false.  */

bool
lto_streamer_cache_insert_at (struct lto_streamer_cache_d *cache,
			      tree t, int ix)
{
  return lto_streamer_cache_insert_1 (cache, t, &ix, NULL, false);
}


/* Return true if tree node T exists in CACHE.  If IX_P is
   not NULL, write to *IX_P the index into the cache where T is stored
   (-1 if T is not found).  */

bool
lto_streamer_cache_lookup (struct lto_streamer_cache_d *cache, tree t,
			   int *ix_p)
{
  void **slot;
  struct tree_int_map d_slot;
  bool retval;
  int ix;

  gcc_assert (t);

  d_slot.base.from = t;
  slot = htab_find_slot (cache->node_map, &d_slot, NO_INSERT);
  if (slot == NULL)
    {
      retval = false;
      ix = -1;
    }
  else
    {
      retval = true;
      ix = (int) ((struct tree_int_map *) *slot)->to;
    }

  if (ix_p)
    *ix_p = ix;

  return retval;
}


/* Return the tree node at slot IX in CACHE.  */

tree
lto_streamer_cache_get (struct lto_streamer_cache_d *cache, int ix)
{
  gcc_assert (cache);

  /* If the reader is requesting an index beyond the length of the
     cache, it will need to read ahead.  Return NULL_TREE to indicate
     that.  */
  if ((unsigned) ix >= VEC_length (tree, cache->nodes))
    return NULL_TREE;

  return VEC_index (tree, cache->nodes, (unsigned) ix);
}


/* Record NODE in COMMON_NODES if it is not NULL and is not already in
   SEEN_NODES.  */

static void
lto_record_common_node (tree *nodep, VEC(tree, heap) **common_nodes,
			struct pointer_set_t *seen_nodes)
{
  tree node = *nodep;

  if (node == NULL_TREE)
    return;

  if (TYPE_P (node))
    *nodep = node = gimple_register_type (node);

  /* Return if node is already seen.  */
  if (pointer_set_insert (seen_nodes, node))
    return;

  VEC_safe_push (tree, heap, *common_nodes, node);

  if (tree_node_can_be_shared (node))
    {
      if (POINTER_TYPE_P (node)
	  || TREE_CODE (node) == COMPLEX_TYPE
	  || TREE_CODE (node) == ARRAY_TYPE)
	lto_record_common_node (&TREE_TYPE (node), common_nodes, seen_nodes);
    }
}


/* Generate a vector of common nodes and make sure they are merged
   properly according to the the gimple type table.  */

static VEC(tree,heap) *
lto_get_common_nodes (void)
{
  unsigned i;
  VEC(tree,heap) *common_nodes = NULL;
  struct pointer_set_t *seen_nodes;

  /* The MAIN_IDENTIFIER_NODE is normally set up by the front-end, but the
     LTO back-end must agree. Currently, the only languages that set this
     use the name "main".  */
  if (main_identifier_node)
    {
      const char *main_name = IDENTIFIER_POINTER (main_identifier_node);
      gcc_assert (strcmp (main_name, "main") == 0);
    }
  else
    main_identifier_node = get_identifier ("main");

  gcc_assert (ptrdiff_type_node == integer_type_node);

  /* FIXME lto.  In the C++ front-end, fileptr_type_node is defined as a
     variant copy of of ptr_type_node, rather than ptr_node itself.  The
     distinction should only be relevant to the front-end, so we always
     use the C definition here in lto1.

     These should be assured in pass_ipa_free_lang_data.  */
  gcc_assert (fileptr_type_node == ptr_type_node);
  gcc_assert (TYPE_MAIN_VARIANT (fileptr_type_node) == ptr_type_node);

  seen_nodes = pointer_set_create ();

  /* Skip itk_char.  char_type_node is shared with the appropriately
     signed variant.  */
  for (i = itk_signed_char; i < itk_none; i++)
    lto_record_common_node (&integer_types[i], &common_nodes, seen_nodes);

  for (i = 0; i < TYPE_KIND_LAST; i++)
    lto_record_common_node (&sizetype_tab[i], &common_nodes, seen_nodes);

  for (i = 0; i < TI_MAX; i++)
    lto_record_common_node (&global_trees[i], &common_nodes, seen_nodes);

  pointer_set_destroy (seen_nodes);

  return common_nodes;
}


/* Assign an index to tree node T and enter it in the streamer cache
   CACHE.  */

static void
preload_common_node (struct lto_streamer_cache_d *cache, tree t)
{
  gcc_assert (t);

  lto_streamer_cache_insert (cache, t, NULL, NULL);

 /* The FIELD_DECLs of structures should be shared, so that every
    COMPONENT_REF uses the same tree node when referencing a field.
    Pointer equality between FIELD_DECLs is used by the alias
    machinery to compute overlapping memory references (See
    nonoverlapping_component_refs_p).  */
 if (TREE_CODE (t) == RECORD_TYPE)
   {
     tree f;

     for (f = TYPE_FIELDS (t); f; f = TREE_CHAIN (f))
       preload_common_node (cache, f);
   }
}


/* Create a cache of pickled nodes.  */

struct lto_streamer_cache_d *
lto_streamer_cache_create (void)
{
  struct lto_streamer_cache_d *cache;
  VEC(tree, heap) *common_nodes;
  unsigned i;
  tree node;

  cache = XCNEW (struct lto_streamer_cache_d);

  cache->node_map = htab_create (101, tree_int_map_hash, tree_int_map_eq, NULL);

  cache->node_map_entries = create_alloc_pool ("node map",
					       sizeof (struct tree_int_map),
					       100);

  /* Load all the well-known tree nodes that are always created by
     the compiler on startup.  This prevents writing them out
     unnecessarily.  */
  common_nodes = lto_get_common_nodes ();

  for (i = 0; VEC_iterate (tree, common_nodes, i, node); i++)
    preload_common_node (cache, node);

  VEC_free(tree, heap, common_nodes);

  return cache;
}


/* Delete the streamer cache C.  */

void
lto_streamer_cache_delete (struct lto_streamer_cache_d *c)
{
  if (c == NULL)
    return;

  htab_delete (c->node_map);
  free_alloc_pool (c->node_map_entries);
  VEC_free (tree, heap, c->nodes);
  VEC_free (unsigned, heap, c->offsets);
  free (c);
}


#ifdef LTO_STREAMER_DEBUG
static htab_t tree_htab;

struct tree_hash_entry
{
  tree key;
  intptr_t value;
};

static hashval_t
hash_tree (const void *p)
{
  const struct tree_hash_entry *e = (const struct tree_hash_entry *) p;
  return htab_hash_pointer (e->key);
}

static int
eq_tree (const void *p1, const void *p2)
{
  const struct tree_hash_entry *e1 = (const struct tree_hash_entry *) p1;
  const struct tree_hash_entry *e2 = (const struct tree_hash_entry *) p2;
  return (e1->key == e2->key);
}
#endif

/* Initialization common to the LTO reader and writer.  */

void
lto_streamer_init (void)
{
  /* Check that all the TS_* handled by the reader and writer routines
     match exactly the structures defined in treestruct.def.  When a
     new TS_* astructure is added, the streamer should be updated to
     handle it.  */
  check_handled_ts_structures ();

#ifdef LTO_STREAMER_DEBUG
  tree_htab = htab_create (31, hash_tree, eq_tree, NULL);
#endif
}


/* Gate function for all LTO streaming passes.  */

bool
gate_lto_out (void)
{
  return ((flag_generate_lto || in_lto_p)
	  /* Don't bother doing anything if the program has errors.  */
	  && !seen_error ());
}


#ifdef LTO_STREAMER_DEBUG
/* Add a mapping between T and ORIG_T, which is the numeric value of
   the original address of T as it was seen by the LTO writer.  This
   mapping is useful when debugging streaming problems.  A debugging
   session can be started on both reader and writer using ORIG_T
   as a breakpoint value in both sessions.

   Note that this mapping is transient and only valid while T is
   being reconstructed.  Once T is fully built, the mapping is
   removed.  */

void
lto_orig_address_map (tree t, intptr_t orig_t)
{
  struct tree_hash_entry ent;
  struct tree_hash_entry **slot;

  ent.key = t;
  ent.value = orig_t;
  slot
    = (struct tree_hash_entry **) htab_find_slot (tree_htab, &ent, INSERT);
  gcc_assert (!*slot);
  *slot = XNEW (struct tree_hash_entry);
  **slot = ent;
}


/* Get the original address of T as it was seen by the writer.  This
   is only valid while T is being reconstructed.  */

intptr_t
lto_orig_address_get (tree t)
{
  struct tree_hash_entry ent;
  struct tree_hash_entry **slot;

  ent.key = t;
  slot
    = (struct tree_hash_entry **) htab_find_slot (tree_htab, &ent, NO_INSERT);
  return (slot ? (*slot)->value : 0);
}


/* Clear the mapping of T to its original address.  */

void
lto_orig_address_remove (tree t)
{
  struct tree_hash_entry ent;
  struct tree_hash_entry **slot;

  ent.key = t;
  slot
    = (struct tree_hash_entry **) htab_find_slot (tree_htab, &ent, NO_INSERT);
  gcc_assert (slot);
  free (*slot);
  htab_clear_slot (tree_htab, (PTR *)slot);
}
#endif


/* Check that the version MAJOR.MINOR is the correct version number.  */

void
lto_check_version (int major, int minor)
{
  if (major != LTO_major_version || minor != LTO_minor_version)
    fatal_error ("bytecode stream generated with LTO version %d.%d instead "
	         "of the expected %d.%d",
		 major, minor,
		 LTO_major_version, LTO_minor_version);
}