1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
|
/* IRA conflict builder.
Copyright (C) 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "regs.h"
#include "rtl.h"
#include "tm_p.h"
#include "target.h"
#include "flags.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "insn-config.h"
#include "recog.h"
#include "toplev.h"
#include "params.h"
#include "df.h"
#include "sparseset.h"
#include "ira-int.h"
#include "addresses.h"
/* This file contains code responsible for allocno conflict creation,
allocno copy creation and allocno info accumulation on upper level
regions. */
/* ira_allocnos_num array of arrays of bits, recording whether two
allocno's conflict (can't go in the same hardware register).
Some arrays will be used as conflict bit vector of the
corresponding allocnos see function build_allocno_conflicts. */
static IRA_INT_TYPE **conflicts;
/* Macro to test a conflict of A1 and A2 in `conflicts'. */
#define CONFLICT_ALLOCNO_P(A1, A2) \
(ALLOCNO_MIN (A1) <= ALLOCNO_CONFLICT_ID (A2) \
&& ALLOCNO_CONFLICT_ID (A2) <= ALLOCNO_MAX (A1) \
&& TEST_ALLOCNO_SET_BIT (conflicts[ALLOCNO_NUM (A1)], \
ALLOCNO_CONFLICT_ID (A2), \
ALLOCNO_MIN (A1), \
ALLOCNO_MAX (A1)))
/* Build allocno conflict table by processing allocno live ranges.
Return true if the table was built. The table is not built if it
is too big. */
static bool
build_conflict_bit_table (void)
{
int i, num, id, allocated_words_num, conflict_bit_vec_words_num;
unsigned int j;
enum reg_class cover_class;
ira_allocno_t allocno, live_a;
allocno_live_range_t r;
ira_allocno_iterator ai;
sparseset allocnos_live;
int allocno_set_words;
allocno_set_words = (ira_allocnos_num + IRA_INT_BITS - 1) / IRA_INT_BITS;
allocated_words_num = 0;
FOR_EACH_ALLOCNO (allocno, ai)
{
if (ALLOCNO_MAX (allocno) < ALLOCNO_MIN (allocno))
continue;
conflict_bit_vec_words_num
= ((ALLOCNO_MAX (allocno) - ALLOCNO_MIN (allocno) + IRA_INT_BITS)
/ IRA_INT_BITS);
allocated_words_num += conflict_bit_vec_words_num;
if ((unsigned long long) allocated_words_num * sizeof (IRA_INT_TYPE)
> (unsigned long long) IRA_MAX_CONFLICT_TABLE_SIZE * 1024 * 1024)
{
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
fprintf
(ira_dump_file,
"+++Conflict table will be too big(>%dMB) -- don't use it\n",
IRA_MAX_CONFLICT_TABLE_SIZE);
return false;
}
}
allocnos_live = sparseset_alloc (ira_allocnos_num);
conflicts = (IRA_INT_TYPE **) ira_allocate (sizeof (IRA_INT_TYPE *)
* ira_allocnos_num);
allocated_words_num = 0;
FOR_EACH_ALLOCNO (allocno, ai)
{
num = ALLOCNO_NUM (allocno);
if (ALLOCNO_MAX (allocno) < ALLOCNO_MIN (allocno))
{
conflicts[num] = NULL;
continue;
}
conflict_bit_vec_words_num
= ((ALLOCNO_MAX (allocno) - ALLOCNO_MIN (allocno) + IRA_INT_BITS)
/ IRA_INT_BITS);
allocated_words_num += conflict_bit_vec_words_num;
conflicts[num]
= (IRA_INT_TYPE *) ira_allocate (sizeof (IRA_INT_TYPE)
* conflict_bit_vec_words_num);
memset (conflicts[num], 0,
sizeof (IRA_INT_TYPE) * conflict_bit_vec_words_num);
}
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
fprintf
(ira_dump_file,
"+++Allocating %ld bytes for conflict table (uncompressed size %ld)\n",
(long) allocated_words_num * sizeof (IRA_INT_TYPE),
(long) allocno_set_words * ira_allocnos_num * sizeof (IRA_INT_TYPE));
for (i = 0; i < ira_max_point; i++)
{
for (r = ira_start_point_ranges[i]; r != NULL; r = r->start_next)
{
allocno = r->allocno;
num = ALLOCNO_NUM (allocno);
id = ALLOCNO_CONFLICT_ID (allocno);
cover_class = ALLOCNO_COVER_CLASS (allocno);
sparseset_set_bit (allocnos_live, num);
EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, j)
{
live_a = ira_allocnos[j];
if (ira_reg_classes_intersect_p
[cover_class][ALLOCNO_COVER_CLASS (live_a)]
/* Don't set up conflict for the allocno with itself. */
&& num != (int) j)
{
SET_ALLOCNO_SET_BIT (conflicts[num],
ALLOCNO_CONFLICT_ID (live_a),
ALLOCNO_MIN (allocno),
ALLOCNO_MAX (allocno));
SET_ALLOCNO_SET_BIT (conflicts[j], id,
ALLOCNO_MIN (live_a),
ALLOCNO_MAX (live_a));
}
}
}
for (r = ira_finish_point_ranges[i]; r != NULL; r = r->finish_next)
sparseset_clear_bit (allocnos_live, ALLOCNO_NUM (r->allocno));
}
sparseset_free (allocnos_live);
return true;
}
/* Return TRUE if the operand constraint STR is commutative. */
static bool
commutative_constraint_p (const char *str)
{
bool ignore_p;
int c;
for (ignore_p = false;;)
{
c = *str;
if (c == '\0')
break;
str += CONSTRAINT_LEN (c, str);
if (c == '#')
ignore_p = true;
else if (c == ',')
ignore_p = false;
else if (! ignore_p)
{
/* Usually `%' is the first constraint character but the
documentation does not require this. */
if (c == '%')
return true;
}
}
return false;
}
/* Return the number of the operand which should be the same in any
case as operand with number OP_NUM (or negative value if there is
no such operand). If USE_COMMUT_OP_P is TRUE, the function makes
temporarily commutative operand exchange before this. The function
takes only really possible alternatives into consideration. */
static int
get_dup_num (int op_num, bool use_commut_op_p)
{
int curr_alt, c, original, dup;
bool ignore_p, commut_op_used_p;
const char *str;
rtx op;
if (op_num < 0 || recog_data.n_alternatives == 0)
return -1;
op = recog_data.operand[op_num];
commut_op_used_p = true;
if (use_commut_op_p)
{
if (commutative_constraint_p (recog_data.constraints[op_num]))
op_num++;
else if (op_num > 0 && commutative_constraint_p (recog_data.constraints
[op_num - 1]))
op_num--;
else
commut_op_used_p = false;
}
str = recog_data.constraints[op_num];
for (ignore_p = false, original = -1, curr_alt = 0;;)
{
c = *str;
if (c == '\0')
break;
if (c == '#')
ignore_p = true;
else if (c == ',')
{
curr_alt++;
ignore_p = false;
}
else if (! ignore_p)
switch (c)
{
case 'X':
return -1;
case 'm':
case 'o':
/* Accept a register which might be placed in memory. */
return -1;
break;
case 'V':
case '<':
case '>':
break;
case 'p':
GO_IF_LEGITIMATE_ADDRESS (VOIDmode, op, win_p);
break;
win_p:
return -1;
case 'g':
return -1;
case 'r':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
case 'h': case 'j': case 'k': case 'l':
case 'q': case 't': case 'u':
case 'v': case 'w': case 'x': case 'y': case 'z':
case 'A': case 'B': case 'C': case 'D':
case 'Q': case 'R': case 'S': case 'T': case 'U':
case 'W': case 'Y': case 'Z':
{
enum reg_class cl;
cl = (c == 'r'
? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, str));
if (cl != NO_REGS)
return -1;
#ifdef EXTRA_CONSTRAINT_STR
else if (EXTRA_CONSTRAINT_STR (op, c, str))
return -1;
#endif
break;
}
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
if (original != -1 && original != c)
return -1;
original = c;
break;
}
str += CONSTRAINT_LEN (c, str);
}
if (original == -1)
return -1;
dup = original - '0';
if (use_commut_op_p)
{
if (commutative_constraint_p (recog_data.constraints[dup]))
dup++;
else if (dup > 0
&& commutative_constraint_p (recog_data.constraints[dup -1]))
dup--;
else if (! commut_op_used_p)
return -1;
}
return dup;
}
/* Return the operand which should be, in any case, the same as
operand with number OP_NUM. If USE_COMMUT_OP_P is TRUE, the
function makes temporarily commutative operand exchange before
this. */
static rtx
get_dup (int op_num, bool use_commut_op_p)
{
int n = get_dup_num (op_num, use_commut_op_p);
if (n < 0)
return NULL_RTX;
else
return recog_data.operand[n];
}
/* Check that X is REG or SUBREG of REG. */
#define REG_SUBREG_P(x) \
(REG_P (x) || (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))))
/* Return X if X is a REG, otherwise it should be SUBREG of REG and
the function returns the reg in this case. *OFFSET will be set to
0 in the first case or the regno offset in the first case. */
static rtx
go_through_subreg (rtx x, int *offset)
{
rtx reg;
*offset = 0;
if (REG_P (x))
return x;
ira_assert (GET_CODE (x) == SUBREG);
reg = SUBREG_REG (x);
ira_assert (REG_P (reg));
if (REGNO (reg) < FIRST_PSEUDO_REGISTER)
*offset = subreg_regno_offset (REGNO (reg), GET_MODE (reg),
SUBREG_BYTE (x), GET_MODE (x));
else
*offset = (SUBREG_BYTE (x) / REGMODE_NATURAL_SIZE (GET_MODE (x)));
return reg;
}
/* Process registers REG1 and REG2 in move INSN with execution
frequency FREQ. The function also processes the registers in a
potential move insn (INSN == NULL in this case) with frequency
FREQ. The function can modify hard register costs of the
corresponding allocnos or create a copy involving the corresponding
allocnos. The function does nothing if the both registers are hard
registers. When nothing is changed, the function returns
FALSE. */
static bool
process_regs_for_copy (rtx reg1, rtx reg2, bool constraint_p,
rtx insn, int freq)
{
int allocno_preferenced_hard_regno, cost, index, offset1, offset2;
bool only_regs_p;
ira_allocno_t a;
enum reg_class rclass, cover_class;
enum machine_mode mode;
ira_copy_t cp;
ira_loop_tree_node_t parent;
gcc_assert (REG_SUBREG_P (reg1) && REG_SUBREG_P (reg2));
only_regs_p = REG_P (reg1) && REG_P (reg2);
reg1 = go_through_subreg (reg1, &offset1);
reg2 = go_through_subreg (reg2, &offset2);
/* Set up hard regno preferenced by allocno. If allocno gets the
hard regno the copy (or potential move) insn will be removed. */
if (HARD_REGISTER_P (reg1))
{
if (HARD_REGISTER_P (reg2))
return false;
allocno_preferenced_hard_regno = REGNO (reg1) + offset1 - offset2;
a = ira_curr_regno_allocno_map[REGNO (reg2)];
}
else if (HARD_REGISTER_P (reg2))
{
allocno_preferenced_hard_regno = REGNO (reg2) + offset2 - offset1;
a = ira_curr_regno_allocno_map[REGNO (reg1)];
}
else if (!CONFLICT_ALLOCNO_P (ira_curr_regno_allocno_map[REGNO (reg1)],
ira_curr_regno_allocno_map[REGNO (reg2)])
&& offset1 == offset2)
{
cp = ira_add_allocno_copy (ira_curr_regno_allocno_map[REGNO (reg1)],
ira_curr_regno_allocno_map[REGNO (reg2)],
freq, constraint_p, insn,
ira_curr_loop_tree_node);
bitmap_set_bit (ira_curr_loop_tree_node->local_copies, cp->num);
return true;
}
else
return false;
if (! IN_RANGE (allocno_preferenced_hard_regno, 0, FIRST_PSEUDO_REGISTER - 1))
/* Can not be tied. */
return false;
rclass = REGNO_REG_CLASS (allocno_preferenced_hard_regno);
mode = ALLOCNO_MODE (a);
cover_class = ALLOCNO_COVER_CLASS (a);
if (only_regs_p && insn != NULL_RTX
&& reg_class_size[rclass] <= (unsigned) CLASS_MAX_NREGS (rclass, mode))
/* It is already taken into account in ira-costs.c. */
return false;
index = ira_class_hard_reg_index[cover_class][allocno_preferenced_hard_regno];
if (index < 0)
/* Can not be tied. It is not in the cover class. */
return false;
if (HARD_REGISTER_P (reg1))
cost = ira_register_move_cost[mode][cover_class][rclass] * freq;
else
cost = ira_register_move_cost[mode][rclass][cover_class] * freq;
for (;;)
{
ira_allocate_and_set_costs
(&ALLOCNO_HARD_REG_COSTS (a), cover_class,
ALLOCNO_COVER_CLASS_COST (a));
ira_allocate_and_set_costs
(&ALLOCNO_CONFLICT_HARD_REG_COSTS (a), cover_class, 0);
ALLOCNO_HARD_REG_COSTS (a)[index] -= cost;
ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[index] -= cost;
if (ALLOCNO_HARD_REG_COSTS (a)[index] < ALLOCNO_COVER_CLASS_COST (a))
ALLOCNO_COVER_CLASS_COST (a) = ALLOCNO_HARD_REG_COSTS (a)[index];
if (ALLOCNO_CAP (a) != NULL)
a = ALLOCNO_CAP (a);
else if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL
|| (a = parent->regno_allocno_map[ALLOCNO_REGNO (a)]) == NULL)
break;
}
return true;
}
/* Process all of the output registers of the current insn and
the input register REG (its operand number OP_NUM) which dies in the
insn as if there were a move insn between them with frequency
FREQ. */
static void
process_reg_shuffles (rtx reg, int op_num, int freq)
{
int i;
rtx another_reg;
gcc_assert (REG_SUBREG_P (reg));
for (i = 0; i < recog_data.n_operands; i++)
{
another_reg = recog_data.operand[i];
if (!REG_SUBREG_P (another_reg) || op_num == i
|| recog_data.operand_type[i] != OP_OUT)
continue;
process_regs_for_copy (reg, another_reg, false, NULL_RTX, freq);
}
}
/* Process INSN and create allocno copies if necessary. For example,
it might be because INSN is a pseudo-register move or INSN is two
operand insn. */
static void
add_insn_allocno_copies (rtx insn)
{
rtx set, operand, dup;
const char *str;
bool commut_p, bound_p;
int i, j, freq;
freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
if (freq == 0)
freq = 1;
if ((set = single_set (insn)) != NULL_RTX
&& REG_SUBREG_P (SET_DEST (set)) && REG_SUBREG_P (SET_SRC (set))
&& ! side_effects_p (set)
&& find_reg_note (insn, REG_DEAD,
REG_P (SET_SRC (set))
? SET_SRC (set)
: SUBREG_REG (SET_SRC (set))) != NULL_RTX)
process_regs_for_copy (SET_DEST (set), SET_SRC (set), false, insn, freq);
else
{
extract_insn (insn);
for (i = 0; i < recog_data.n_operands; i++)
{
operand = recog_data.operand[i];
if (REG_SUBREG_P (operand)
&& find_reg_note (insn, REG_DEAD,
REG_P (operand)
? operand : SUBREG_REG (operand)) != NULL_RTX)
{
str = recog_data.constraints[i];
while (*str == ' ' && *str == '\t')
str++;
bound_p = false;
for (j = 0, commut_p = false; j < 2; j++, commut_p = true)
if ((dup = get_dup (i, commut_p)) != NULL_RTX
&& REG_SUBREG_P (dup)
&& process_regs_for_copy (operand, dup, true,
NULL_RTX, freq))
bound_p = true;
if (bound_p)
continue;
/* If an operand dies, prefer its hard register for the
output operands by decreasing the hard register cost
or creating the corresponding allocno copies. The
cost will not correspond to a real move insn cost, so
make the frequency smaller. */
process_reg_shuffles (operand, i, freq < 8 ? 1 : freq / 8);
}
}
}
}
/* Add copies originated from BB given by LOOP_TREE_NODE. */
static void
add_copies (ira_loop_tree_node_t loop_tree_node)
{
basic_block bb;
rtx insn;
bb = loop_tree_node->bb;
if (bb == NULL)
return;
FOR_BB_INSNS (bb, insn)
if (INSN_P (insn))
add_insn_allocno_copies (insn);
}
/* Propagate copies the corresponding allocnos on upper loop tree
level. */
static void
propagate_copies (void)
{
ira_copy_t cp;
ira_copy_iterator ci;
ira_allocno_t a1, a2, parent_a1, parent_a2;
ira_loop_tree_node_t parent;
FOR_EACH_COPY (cp, ci)
{
a1 = cp->first;
a2 = cp->second;
if (ALLOCNO_LOOP_TREE_NODE (a1) == ira_loop_tree_root)
continue;
ira_assert ((ALLOCNO_LOOP_TREE_NODE (a2) != ira_loop_tree_root));
parent = ALLOCNO_LOOP_TREE_NODE (a1)->parent;
if ((parent_a1 = ALLOCNO_CAP (a1)) == NULL)
parent_a1 = parent->regno_allocno_map[ALLOCNO_REGNO (a1)];
if ((parent_a2 = ALLOCNO_CAP (a2)) == NULL)
parent_a2 = parent->regno_allocno_map[ALLOCNO_REGNO (a2)];
ira_assert (parent_a1 != NULL && parent_a2 != NULL);
if (! CONFLICT_ALLOCNO_P (parent_a1, parent_a2))
ira_add_allocno_copy (parent_a1, parent_a2, cp->freq,
cp->constraint_p, cp->insn, cp->loop_tree_node);
}
}
/* Array used to collect all conflict allocnos for given allocno. */
static ira_allocno_t *collected_conflict_allocnos;
/* Build conflict vectors or bit conflict vectors (whatever is more
profitable) for allocno A from the conflict table and propagate the
conflicts to upper level allocno. */
static void
build_allocno_conflicts (ira_allocno_t a)
{
int i, px, parent_num;
int conflict_bit_vec_words_num;
ira_loop_tree_node_t parent;
ira_allocno_t parent_a, another_a, another_parent_a;
ira_allocno_t *vec;
IRA_INT_TYPE *allocno_conflicts;
ira_allocno_set_iterator asi;
allocno_conflicts = conflicts[ALLOCNO_NUM (a)];
px = 0;
FOR_EACH_ALLOCNO_IN_SET (allocno_conflicts,
ALLOCNO_MIN (a), ALLOCNO_MAX (a), i, asi)
{
another_a = ira_conflict_id_allocno_map[i];
ira_assert (ira_reg_classes_intersect_p
[ALLOCNO_COVER_CLASS (a)][ALLOCNO_COVER_CLASS (another_a)]);
collected_conflict_allocnos[px++] = another_a;
}
if (ira_conflict_vector_profitable_p (a, px))
{
ira_allocate_allocno_conflict_vec (a, px);
vec = (ira_allocno_t*) ALLOCNO_CONFLICT_ALLOCNO_ARRAY (a);
memcpy (vec, collected_conflict_allocnos, sizeof (ira_allocno_t) * px);
vec[px] = NULL;
ALLOCNO_CONFLICT_ALLOCNOS_NUM (a) = px;
}
else
{
ALLOCNO_CONFLICT_ALLOCNO_ARRAY (a) = conflicts[ALLOCNO_NUM (a)];
if (ALLOCNO_MAX (a) < ALLOCNO_MIN (a))
conflict_bit_vec_words_num = 0;
else
conflict_bit_vec_words_num
= ((ALLOCNO_MAX (a) - ALLOCNO_MIN (a) + IRA_INT_BITS)
/ IRA_INT_BITS);
ALLOCNO_CONFLICT_ALLOCNO_ARRAY_SIZE (a)
= conflict_bit_vec_words_num * sizeof (IRA_INT_TYPE);
}
parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
if ((parent_a = ALLOCNO_CAP (a)) == NULL
&& (parent == NULL
|| (parent_a = parent->regno_allocno_map[ALLOCNO_REGNO (a)])
== NULL))
return;
ira_assert (parent != NULL);
ira_assert (ALLOCNO_COVER_CLASS (a) == ALLOCNO_COVER_CLASS (parent_a));
parent_num = ALLOCNO_NUM (parent_a);
FOR_EACH_ALLOCNO_IN_SET (allocno_conflicts,
ALLOCNO_MIN (a), ALLOCNO_MAX (a), i, asi)
{
another_a = ira_conflict_id_allocno_map[i];
ira_assert (ira_reg_classes_intersect_p
[ALLOCNO_COVER_CLASS (a)][ALLOCNO_COVER_CLASS (another_a)]);
if ((another_parent_a = ALLOCNO_CAP (another_a)) == NULL
&& (another_parent_a = (parent->regno_allocno_map
[ALLOCNO_REGNO (another_a)])) == NULL)
continue;
ira_assert (ALLOCNO_NUM (another_parent_a) >= 0);
ira_assert (ALLOCNO_COVER_CLASS (another_a)
== ALLOCNO_COVER_CLASS (another_parent_a));
SET_ALLOCNO_SET_BIT (conflicts[parent_num],
ALLOCNO_CONFLICT_ID (another_parent_a),
ALLOCNO_MIN (parent_a),
ALLOCNO_MAX (parent_a));
}
}
/* Build conflict vectors or bit conflict vectors (whatever is more
profitable) of all allocnos from the conflict table. */
static void
build_conflicts (void)
{
int i;
ira_allocno_t a, cap;
collected_conflict_allocnos
= (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
* ira_allocnos_num);
for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
for (a = ira_regno_allocno_map[i];
a != NULL;
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
{
build_allocno_conflicts (a);
for (cap = ALLOCNO_CAP (a); cap != NULL; cap = ALLOCNO_CAP (cap))
build_allocno_conflicts (cap);
}
ira_free (collected_conflict_allocnos);
}
/* Print hard reg set SET with TITLE to FILE. */
static void
print_hard_reg_set (FILE *file, const char *title, HARD_REG_SET set)
{
int i, start;
fprintf (file, title);
for (start = -1, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (TEST_HARD_REG_BIT (set, i))
{
if (i == 0 || ! TEST_HARD_REG_BIT (set, i - 1))
start = i;
}
if (start >= 0
&& (i == FIRST_PSEUDO_REGISTER - 1 || ! TEST_HARD_REG_BIT (set, i)))
{
if (start == i - 1)
fprintf (file, " %d", start);
else if (start == i - 2)
fprintf (file, " %d %d", start, start + 1);
else
fprintf (file, " %d-%d", start, i - 1);
start = -1;
}
}
fprintf (file, "\n");
}
/* Print information about allocno or only regno (if REG_P) conflicts
to FILE. */
static void
print_conflicts (FILE *file, bool reg_p)
{
ira_allocno_t a;
ira_allocno_iterator ai;
HARD_REG_SET conflicting_hard_regs;
FOR_EACH_ALLOCNO (a, ai)
{
ira_allocno_t conflict_a;
ira_allocno_conflict_iterator aci;
basic_block bb;
if (reg_p)
fprintf (file, ";; r%d", ALLOCNO_REGNO (a));
else
{
fprintf (file, ";; a%d(r%d,", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
fprintf (file, "b%d", bb->index);
else
fprintf (file, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
fprintf (file, ")");
}
fprintf (file, " conflicts:");
if (ALLOCNO_CONFLICT_ALLOCNO_ARRAY (a) != NULL)
FOR_EACH_ALLOCNO_CONFLICT (a, conflict_a, aci)
{
if (reg_p)
fprintf (file, " r%d,", ALLOCNO_REGNO (conflict_a));
else
{
fprintf (file, " a%d(r%d,", ALLOCNO_NUM (conflict_a),
ALLOCNO_REGNO (conflict_a));
if ((bb = ALLOCNO_LOOP_TREE_NODE (conflict_a)->bb) != NULL)
fprintf (file, "b%d)", bb->index);
else
fprintf (file, "l%d)",
ALLOCNO_LOOP_TREE_NODE (conflict_a)->loop->num);
}
}
COPY_HARD_REG_SET (conflicting_hard_regs,
ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a));
AND_COMPL_HARD_REG_SET (conflicting_hard_regs, ira_no_alloc_regs);
AND_HARD_REG_SET (conflicting_hard_regs,
reg_class_contents[ALLOCNO_COVER_CLASS (a)]);
print_hard_reg_set (file, "\n;; total conflict hard regs:",
conflicting_hard_regs);
COPY_HARD_REG_SET (conflicting_hard_regs,
ALLOCNO_CONFLICT_HARD_REGS (a));
AND_COMPL_HARD_REG_SET (conflicting_hard_regs, ira_no_alloc_regs);
AND_HARD_REG_SET (conflicting_hard_regs,
reg_class_contents[ALLOCNO_COVER_CLASS (a)]);
print_hard_reg_set (file, ";; conflict hard regs:",
conflicting_hard_regs);
}
fprintf (file, "\n");
}
/* Print information about allocno or only regno (if REG_P) conflicts
to stderr. */
void
ira_debug_conflicts (bool reg_p)
{
print_conflicts (stderr, reg_p);
}
/* Entry function which builds allocno conflicts and allocno copies
and accumulate some allocno info on upper level regions. */
void
ira_build_conflicts (void)
{
ira_allocno_t a;
ira_allocno_iterator ai;
HARD_REG_SET temp_hard_reg_set;
if (ira_conflicts_p)
{
ira_conflicts_p = build_conflict_bit_table ();
if (ira_conflicts_p)
{
build_conflicts ();
ira_traverse_loop_tree (true, ira_loop_tree_root, NULL, add_copies);
/* We need finished conflict table for the subsequent call. */
if (flag_ira_region == IRA_REGION_ALL
|| flag_ira_region == IRA_REGION_MIXED)
propagate_copies ();
/* Now we can free memory for the conflict table (see function
build_allocno_conflicts for details). */
FOR_EACH_ALLOCNO (a, ai)
{
if (ALLOCNO_CONFLICT_ALLOCNO_ARRAY (a)
!= conflicts[ALLOCNO_NUM (a)])
ira_free (conflicts[ALLOCNO_NUM (a)]);
}
ira_free (conflicts);
}
}
if (! CLASS_LIKELY_SPILLED_P (base_reg_class (VOIDmode, ADDRESS, SCRATCH)))
CLEAR_HARD_REG_SET (temp_hard_reg_set);
else
{
COPY_HARD_REG_SET (temp_hard_reg_set,
reg_class_contents[base_reg_class (VOIDmode, ADDRESS, SCRATCH)]);
AND_COMPL_HARD_REG_SET (temp_hard_reg_set, ira_no_alloc_regs);
AND_HARD_REG_SET (temp_hard_reg_set, call_used_reg_set);
}
FOR_EACH_ALLOCNO (a, ai)
{
if (ALLOCNO_CALLS_CROSSED_NUM (a) == 0)
continue;
if (! flag_caller_saves)
{
IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a),
call_used_reg_set);
if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a),
call_used_reg_set);
}
else
{
IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a),
no_caller_save_reg_set);
IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a),
temp_hard_reg_set);
if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
{
IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a),
no_caller_save_reg_set);
IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a),
temp_hard_reg_set);
}
}
}
if (optimize && ira_conflicts_p
&& internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
print_conflicts (ira_dump_file, false);
}
|