summaryrefslogtreecommitdiff
path: root/gcc/ira-color.c
blob: 1f0cdea839526b1d56ee514efa9a19757698c40f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
/* IRA allocation based on graph coloring.
   Copyright (C) 2006-2014 Free Software Foundation, Inc.
   Contributed by Vladimir Makarov <vmakarov@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tm_p.h"
#include "target.h"
#include "regs.h"
#include "flags.h"
#include "sbitmap.h"
#include "bitmap.h"
#include "hash-table.h"
#include "hard-reg-set.h"
#include "predict.h"
#include "vec.h"
#include "hashtab.h"
#include "hash-set.h"
#include "machmode.h"
#include "input.h"
#include "function.h"
#include "dominance.h"
#include "cfg.h"
#include "basic-block.h"
#include "expr.h"
#include "diagnostic-core.h"
#include "reload.h"
#include "params.h"
#include "df.h"
#include "ira-int.h"

typedef struct allocno_hard_regs *allocno_hard_regs_t;

/* The structure contains information about hard registers can be
   assigned to allocnos.  Usually it is allocno profitable hard
   registers but in some cases this set can be a bit different.  Major
   reason of the difference is a requirement to use hard register sets
   that form a tree or a forest (set of trees), i.e. hard register set
   of a node should contain hard register sets of its subnodes.  */
struct allocno_hard_regs
{
  /* Hard registers can be assigned to an allocno.  */
  HARD_REG_SET set;
  /* Overall (spilling) cost of all allocnos with given register
     set.  */
  int64_t cost;
};

typedef struct allocno_hard_regs_node *allocno_hard_regs_node_t;

/* A node representing allocno hard registers.  Such nodes form a
   forest (set of trees).  Each subnode of given node in the forest
   refers for hard register set (usually allocno profitable hard
   register set) which is a subset of one referred from given
   node.  */
struct allocno_hard_regs_node
{
  /* Set up number of the node in preorder traversing of the forest.  */
  int preorder_num;
  /* Used for different calculation like finding conflict size of an
     allocno.  */
  int check;
  /* Used for calculation of conflict size of an allocno.  The
     conflict size of the allocno is maximal number of given allocno
     hard registers needed for allocation of the conflicting allocnos.
     Given allocno is trivially colored if this number plus the number
     of hard registers needed for given allocno is not greater than
     the number of given allocno hard register set.  */
  int conflict_size;
  /* The number of hard registers given by member hard_regs.  */
  int hard_regs_num;
  /* The following member is used to form the final forest.  */
  bool used_p;
  /* Pointer to the corresponding profitable hard registers.  */
  allocno_hard_regs_t hard_regs;
  /* Parent, first subnode, previous and next node with the same
     parent in the forest.  */
  allocno_hard_regs_node_t parent, first, prev, next;
};

/* Info about changing hard reg costs of an allocno.  */
struct update_cost_record
{
  /* Hard regno for which we changed the cost.  */
  int hard_regno;
  /* Divisor used when we changed the cost of HARD_REGNO.  */
  int divisor;
  /* Next record for given allocno.  */
  struct update_cost_record *next;
};

/* To decrease footprint of ira_allocno structure we store all data
   needed only for coloring in the following structure.  */
struct allocno_color_data
{
  /* TRUE value means that the allocno was not removed yet from the
     conflicting graph during coloring.  */
  unsigned int in_graph_p : 1;
  /* TRUE if it is put on the stack to make other allocnos
     colorable.  */
  unsigned int may_be_spilled_p : 1;
  /* TRUE if the allocno is trivially colorable.  */
  unsigned int colorable_p : 1;
  /* Number of hard registers of the allocno class really
     available for the allocno allocation.  It is number of the
     profitable hard regs.  */
  int available_regs_num;
  /* Allocnos in a bucket (used in coloring) chained by the following
     two members.  */
  ira_allocno_t next_bucket_allocno;
  ira_allocno_t prev_bucket_allocno;
  /* Used for temporary purposes.  */
  int temp;
  /* Used to exclude repeated processing.  */
  int last_process;
  /* Profitable hard regs available for this pseudo allocation.  It
     means that the set excludes unavailable hard regs and hard regs
     conflicting with given pseudo.  They should be of the allocno
     class.  */
  HARD_REG_SET profitable_hard_regs;
  /* The allocno hard registers node.  */
  allocno_hard_regs_node_t hard_regs_node;
  /* Array of structures allocno_hard_regs_subnode representing
     given allocno hard registers node (the 1st element in the array)
     and all its subnodes in the tree (forest) of allocno hard
     register nodes (see comments above).  */
  int hard_regs_subnodes_start;
  /* The length of the previous array.  */
  int hard_regs_subnodes_num;
  /* Records about updating allocno hard reg costs from copies.  If
     the allocno did not get expected hard register, these records are
     used to restore original hard reg costs of allocnos connected to
     this allocno by copies.  */
  struct update_cost_record *update_cost_records;
  /* Threads.  We collect allocnos connected by copies into threads
     and try to assign hard regs to allocnos by threads.  */
  /* Allocno representing all thread.  */
  ira_allocno_t first_thread_allocno;
  /* Allocnos in thread forms a cycle list through the following
     member.  */
  ira_allocno_t next_thread_allocno;
  /* All thread frequency.  Defined only for first thread allocno.  */
  int thread_freq;
};

/* See above.  */
typedef struct allocno_color_data *allocno_color_data_t;

/* Container for storing allocno data concerning coloring.  */
static allocno_color_data_t allocno_color_data;

/* Macro to access the data concerning coloring.  */
#define ALLOCNO_COLOR_DATA(a) ((allocno_color_data_t) ALLOCNO_ADD_DATA (a))

/* Used for finding allocno colorability to exclude repeated allocno
   processing and for updating preferencing to exclude repeated
   allocno processing during assignment.  */
static int curr_allocno_process;

/* This file contains code for regional graph coloring, spill/restore
   code placement optimization, and code helping the reload pass to do
   a better job.  */

/* Bitmap of allocnos which should be colored.  */
static bitmap coloring_allocno_bitmap;

/* Bitmap of allocnos which should be taken into account during
   coloring.  In general case it contains allocnos from
   coloring_allocno_bitmap plus other already colored conflicting
   allocnos.  */
static bitmap consideration_allocno_bitmap;

/* All allocnos sorted according their priorities.  */
static ira_allocno_t *sorted_allocnos;

/* Vec representing the stack of allocnos used during coloring.  */
static vec<ira_allocno_t> allocno_stack_vec;

/* Helper for qsort comparison callbacks - return a positive integer if
   X > Y, or a negative value otherwise.  Use a conditional expression
   instead of a difference computation to insulate from possible overflow
   issues, e.g. X - Y < 0 for some X > 0 and Y < 0.  */
#define SORTGT(x,y) (((x) > (y)) ? 1 : -1)



/* Definition of vector of allocno hard registers.  */

/* Vector of unique allocno hard registers.  */
static vec<allocno_hard_regs_t> allocno_hard_regs_vec;

struct allocno_hard_regs_hasher : typed_noop_remove <allocno_hard_regs>
{
  typedef allocno_hard_regs value_type;
  typedef allocno_hard_regs compare_type;
  static inline hashval_t hash (const value_type *);
  static inline bool equal (const value_type *, const compare_type *);
};

/* Returns hash value for allocno hard registers V.  */
inline hashval_t
allocno_hard_regs_hasher::hash (const value_type *hv)
{
  return iterative_hash (&hv->set, sizeof (HARD_REG_SET), 0);
}

/* Compares allocno hard registers V1 and V2.  */
inline bool
allocno_hard_regs_hasher::equal (const value_type *hv1, const compare_type *hv2)
{
  return hard_reg_set_equal_p (hv1->set, hv2->set);
}

/* Hash table of unique allocno hard registers.  */
static hash_table<allocno_hard_regs_hasher> *allocno_hard_regs_htab;

/* Return allocno hard registers in the hash table equal to HV.  */
static allocno_hard_regs_t
find_hard_regs (allocno_hard_regs_t hv)
{
  return allocno_hard_regs_htab->find (hv);
}

/* Insert allocno hard registers HV in the hash table (if it is not
   there yet) and return the value which in the table.  */
static allocno_hard_regs_t
insert_hard_regs (allocno_hard_regs_t hv)
{
  allocno_hard_regs **slot = allocno_hard_regs_htab->find_slot (hv, INSERT);

  if (*slot == NULL)
    *slot = hv;
  return *slot;
}

/* Initialize data concerning allocno hard registers.  */
static void
init_allocno_hard_regs (void)
{
  allocno_hard_regs_vec.create (200);
  allocno_hard_regs_htab
    = new hash_table<allocno_hard_regs_hasher> (200);
}

/* Add (or update info about) allocno hard registers with SET and
   COST.  */
static allocno_hard_regs_t
add_allocno_hard_regs (HARD_REG_SET set, int64_t cost)
{
  struct allocno_hard_regs temp;
  allocno_hard_regs_t hv;

  gcc_assert (! hard_reg_set_empty_p (set));
  COPY_HARD_REG_SET (temp.set, set);
  if ((hv = find_hard_regs (&temp)) != NULL)
    hv->cost += cost;
  else
    {
      hv = ((struct allocno_hard_regs *)
	    ira_allocate (sizeof (struct allocno_hard_regs)));
      COPY_HARD_REG_SET (hv->set, set);
      hv->cost = cost;
      allocno_hard_regs_vec.safe_push (hv);
      insert_hard_regs (hv);
    }
  return hv;
}

/* Finalize data concerning allocno hard registers.  */
static void
finish_allocno_hard_regs (void)
{
  int i;
  allocno_hard_regs_t hv;

  for (i = 0;
       allocno_hard_regs_vec.iterate (i, &hv);
       i++)
    ira_free (hv);
  delete allocno_hard_regs_htab;
  allocno_hard_regs_htab = NULL;
  allocno_hard_regs_vec.release ();
}

/* Sort hard regs according to their frequency of usage. */
static int
allocno_hard_regs_compare (const void *v1p, const void *v2p)
{
  allocno_hard_regs_t hv1 = *(const allocno_hard_regs_t *) v1p;
  allocno_hard_regs_t hv2 = *(const allocno_hard_regs_t *) v2p;

  if (hv2->cost > hv1->cost)
    return 1;
  else if (hv2->cost < hv1->cost)
    return -1;
  else
    return 0;
}



/* Used for finding a common ancestor of two allocno hard registers
   nodes in the forest.  We use the current value of
   'node_check_tick' to mark all nodes from one node to the top and
   then walking up from another node until we find a marked node.

   It is also used to figure out allocno colorability as a mark that
   we already reset value of member 'conflict_size' for the forest
   node corresponding to the processed allocno.  */
static int node_check_tick;

/* Roots of the forest containing hard register sets can be assigned
   to allocnos.  */
static allocno_hard_regs_node_t hard_regs_roots;

/* Definition of vector of allocno hard register nodes.  */

/* Vector used to create the forest.  */
static vec<allocno_hard_regs_node_t> hard_regs_node_vec;

/* Create and return allocno hard registers node containing allocno
   hard registers HV.  */
static allocno_hard_regs_node_t
create_new_allocno_hard_regs_node (allocno_hard_regs_t hv)
{
  allocno_hard_regs_node_t new_node;

  new_node = ((struct allocno_hard_regs_node *)
	      ira_allocate (sizeof (struct allocno_hard_regs_node)));
  new_node->check = 0;
  new_node->hard_regs = hv;
  new_node->hard_regs_num = hard_reg_set_size (hv->set);
  new_node->first = NULL;
  new_node->used_p = false;
  return new_node;
}

/* Add allocno hard registers node NEW_NODE to the forest on its level
   given by ROOTS.  */
static void
add_new_allocno_hard_regs_node_to_forest (allocno_hard_regs_node_t *roots,
					  allocno_hard_regs_node_t new_node)
{
  new_node->next = *roots;
  if (new_node->next != NULL)
    new_node->next->prev = new_node;
  new_node->prev = NULL;
  *roots = new_node;
}

/* Add allocno hard registers HV (or its best approximation if it is
   not possible) to the forest on its level given by ROOTS.  */
static void
add_allocno_hard_regs_to_forest (allocno_hard_regs_node_t *roots,
				 allocno_hard_regs_t hv)
{
  unsigned int i, start;
  allocno_hard_regs_node_t node, prev, new_node;
  HARD_REG_SET temp_set;
  allocno_hard_regs_t hv2;

  start = hard_regs_node_vec.length ();
  for (node = *roots; node != NULL; node = node->next)
    {
      if (hard_reg_set_equal_p (hv->set, node->hard_regs->set))
	return;
      if (hard_reg_set_subset_p (hv->set, node->hard_regs->set))
	{
	  add_allocno_hard_regs_to_forest (&node->first, hv);
	  return;
	}
      if (hard_reg_set_subset_p (node->hard_regs->set, hv->set))
	hard_regs_node_vec.safe_push (node);
      else if (hard_reg_set_intersect_p (hv->set, node->hard_regs->set))
	{
	  COPY_HARD_REG_SET (temp_set, hv->set);
	  AND_HARD_REG_SET (temp_set, node->hard_regs->set);
	  hv2 = add_allocno_hard_regs (temp_set, hv->cost);
	  add_allocno_hard_regs_to_forest (&node->first, hv2);
	}
    }
  if (hard_regs_node_vec.length ()
      > start + 1)
    {
      /* Create a new node which contains nodes in hard_regs_node_vec.  */
      CLEAR_HARD_REG_SET (temp_set);
      for (i = start;
	   i < hard_regs_node_vec.length ();
	   i++)
	{
	  node = hard_regs_node_vec[i];
	  IOR_HARD_REG_SET (temp_set, node->hard_regs->set);
	}
      hv = add_allocno_hard_regs (temp_set, hv->cost);
      new_node = create_new_allocno_hard_regs_node (hv);
      prev = NULL;
      for (i = start;
	   i < hard_regs_node_vec.length ();
	   i++)
	{
	  node = hard_regs_node_vec[i];
	  if (node->prev == NULL)
	    *roots = node->next;
	  else
	    node->prev->next = node->next;
	  if (node->next != NULL)
	    node->next->prev = node->prev;
	  if (prev == NULL)
	    new_node->first = node;
	  else
	    prev->next = node;
	  node->prev = prev;
	  node->next = NULL;
	  prev = node;
	}
      add_new_allocno_hard_regs_node_to_forest (roots, new_node);
    }
  hard_regs_node_vec.truncate (start);
}

/* Add allocno hard registers nodes starting with the forest level
   given by FIRST which contains biggest set inside SET.  */
static void
collect_allocno_hard_regs_cover (allocno_hard_regs_node_t first,
				 HARD_REG_SET set)
{
  allocno_hard_regs_node_t node;

  ira_assert (first != NULL);
  for (node = first; node != NULL; node = node->next)
    if (hard_reg_set_subset_p (node->hard_regs->set, set))
      hard_regs_node_vec.safe_push (node);
    else if (hard_reg_set_intersect_p (set, node->hard_regs->set))
      collect_allocno_hard_regs_cover (node->first, set);
}

/* Set up field parent as PARENT in all allocno hard registers nodes
   in forest given by FIRST.  */
static void
setup_allocno_hard_regs_nodes_parent (allocno_hard_regs_node_t first,
				      allocno_hard_regs_node_t parent)
{
  allocno_hard_regs_node_t node;

  for (node = first; node != NULL; node = node->next)
    {
      node->parent = parent;
      setup_allocno_hard_regs_nodes_parent (node->first, node);
    }
}

/* Return allocno hard registers node which is a first common ancestor
   node of FIRST and SECOND in the forest.  */
static allocno_hard_regs_node_t
first_common_ancestor_node (allocno_hard_regs_node_t first,
			    allocno_hard_regs_node_t second)
{
  allocno_hard_regs_node_t node;

  node_check_tick++;
  for (node = first; node != NULL; node = node->parent)
    node->check = node_check_tick;
  for (node = second; node != NULL; node = node->parent)
    if (node->check == node_check_tick)
      return node;
  return first_common_ancestor_node (second, first);
}

/* Print hard reg set SET to F.  */
static void
print_hard_reg_set (FILE *f, HARD_REG_SET set, bool new_line_p)
{
  int i, start;

  for (start = -1, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if (TEST_HARD_REG_BIT (set, i))
	{
	  if (i == 0 || ! TEST_HARD_REG_BIT (set, i - 1))
	    start = i;
	}
      if (start >= 0
	  && (i == FIRST_PSEUDO_REGISTER - 1 || ! TEST_HARD_REG_BIT (set, i)))
	{
	  if (start == i - 1)
	    fprintf (f, " %d", start);
	  else if (start == i - 2)
	    fprintf (f, " %d %d", start, start + 1);
	  else
	    fprintf (f, " %d-%d", start, i - 1);
	  start = -1;
	}
    }
  if (new_line_p)
    fprintf (f, "\n");
}

/* Print allocno hard register subforest given by ROOTS and its LEVEL
   to F.  */
static void
print_hard_regs_subforest (FILE *f, allocno_hard_regs_node_t roots,
			   int level)
{
  int i;
  allocno_hard_regs_node_t node;

  for (node = roots; node != NULL; node = node->next)
    {
      fprintf (f, "    ");
      for (i = 0; i < level * 2; i++)
	fprintf (f, " ");
      fprintf (f, "%d:(", node->preorder_num);
      print_hard_reg_set (f, node->hard_regs->set, false);
      fprintf (f, ")@%"PRId64"\n", node->hard_regs->cost);
      print_hard_regs_subforest (f, node->first, level + 1);
    }
}

/* Print the allocno hard register forest to F.  */
static void
print_hard_regs_forest (FILE *f)
{
  fprintf (f, "    Hard reg set forest:\n");
  print_hard_regs_subforest (f, hard_regs_roots, 1);
}

/* Print the allocno hard register forest to stderr.  */
void
ira_debug_hard_regs_forest (void)
{
  print_hard_regs_forest (stderr);
}

/* Remove unused allocno hard registers nodes from forest given by its
   *ROOTS.  */
static void
remove_unused_allocno_hard_regs_nodes (allocno_hard_regs_node_t *roots)
{
  allocno_hard_regs_node_t node, prev, next, last;

  for (prev = NULL, node = *roots; node != NULL; node = next)
    {
      next = node->next;
      if (node->used_p)
	{
	  remove_unused_allocno_hard_regs_nodes (&node->first);
	  prev = node;
	}
      else
	{
	  for (last = node->first;
	       last != NULL && last->next != NULL;
	       last = last->next)
	    ;
	  if (last != NULL)
	    {
	      if (prev == NULL)
		*roots = node->first;
	      else 
		prev->next = node->first;
	      if (next != NULL)
		next->prev = last;
	      last->next = next;
	      next = node->first;
	    }
	  else
	    {
	      if (prev == NULL)
		*roots = next;
	      else
		prev->next = next;
	      if (next != NULL)
		next->prev = prev;
	    }
	  ira_free (node);
	}
    }
}

/* Set up fields preorder_num starting with START_NUM in all allocno
   hard registers nodes in forest given by FIRST.  Return biggest set
   PREORDER_NUM increased by 1.  */
static int
enumerate_allocno_hard_regs_nodes (allocno_hard_regs_node_t first,
				   allocno_hard_regs_node_t parent,
				   int start_num)
{
  allocno_hard_regs_node_t node;

  for (node = first; node != NULL; node = node->next)
    {
      node->preorder_num = start_num++;
      node->parent = parent;
      start_num = enumerate_allocno_hard_regs_nodes (node->first, node,
						     start_num);
    }
  return start_num;
}

/* Number of allocno hard registers nodes in the forest.  */
static int allocno_hard_regs_nodes_num;

/* Table preorder number of allocno hard registers node in the forest
   -> the allocno hard registers node.  */
static allocno_hard_regs_node_t *allocno_hard_regs_nodes;

/* See below.  */
typedef struct allocno_hard_regs_subnode *allocno_hard_regs_subnode_t;

/* The structure is used to describes all subnodes (not only immediate
   ones) in the mentioned above tree for given allocno hard register
   node.  The usage of such data accelerates calculation of
   colorability of given allocno.  */
struct allocno_hard_regs_subnode
{
  /* The conflict size of conflicting allocnos whose hard register
     sets are equal sets (plus supersets if given node is given
     allocno hard registers node) of one in the given node.  */
  int left_conflict_size;
  /* The summary conflict size of conflicting allocnos whose hard
     register sets are strict subsets of one in the given node.
     Overall conflict size is
     left_conflict_subnodes_size
       + MIN (max_node_impact - left_conflict_subnodes_size,
              left_conflict_size)
  */
  short left_conflict_subnodes_size;
  short max_node_impact;
};

/* Container for hard regs subnodes of all allocnos.  */
static allocno_hard_regs_subnode_t allocno_hard_regs_subnodes;

/* Table (preorder number of allocno hard registers node in the
   forest, preorder number of allocno hard registers subnode) -> index
   of the subnode relative to the node.  -1 if it is not a
   subnode.  */
static int *allocno_hard_regs_subnode_index;

/* Setup arrays ALLOCNO_HARD_REGS_NODES and
   ALLOCNO_HARD_REGS_SUBNODE_INDEX.  */
static void
setup_allocno_hard_regs_subnode_index (allocno_hard_regs_node_t first)
{
  allocno_hard_regs_node_t node, parent;
  int index;

  for (node = first; node != NULL; node = node->next)
    {
      allocno_hard_regs_nodes[node->preorder_num] = node;
      for (parent = node; parent != NULL; parent = parent->parent)
	{
	  index = parent->preorder_num * allocno_hard_regs_nodes_num;
	  allocno_hard_regs_subnode_index[index + node->preorder_num]
	    = node->preorder_num - parent->preorder_num;
	}
      setup_allocno_hard_regs_subnode_index (node->first);
    }
}

/* Count all allocno hard registers nodes in tree ROOT.  */
static int
get_allocno_hard_regs_subnodes_num (allocno_hard_regs_node_t root)
{
  int len = 1;

  for (root = root->first; root != NULL; root = root->next)
    len += get_allocno_hard_regs_subnodes_num (root);
  return len;
}

/* Build the forest of allocno hard registers nodes and assign each
   allocno a node from the forest.  */
static void
form_allocno_hard_regs_nodes_forest (void)
{
  unsigned int i, j, size, len;
  int start;
  ira_allocno_t a;
  allocno_hard_regs_t hv;
  bitmap_iterator bi;
  HARD_REG_SET temp;
  allocno_hard_regs_node_t node, allocno_hard_regs_node;
  allocno_color_data_t allocno_data;

  node_check_tick = 0;
  init_allocno_hard_regs ();
  hard_regs_roots = NULL;
  hard_regs_node_vec.create (100);
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
      {
	CLEAR_HARD_REG_SET (temp);
	SET_HARD_REG_BIT (temp, i);
	hv = add_allocno_hard_regs (temp, 0);
	node = create_new_allocno_hard_regs_node (hv);
	add_new_allocno_hard_regs_node_to_forest (&hard_regs_roots, node);
      }
  start = allocno_hard_regs_vec.length ();
  EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
    {
      a = ira_allocnos[i];
      allocno_data = ALLOCNO_COLOR_DATA (a);
      
      if (hard_reg_set_empty_p (allocno_data->profitable_hard_regs))
	continue;
      hv = (add_allocno_hard_regs
	    (allocno_data->profitable_hard_regs,
	     ALLOCNO_MEMORY_COST (a) - ALLOCNO_CLASS_COST (a)));
    }
  SET_HARD_REG_SET (temp);
  AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
  add_allocno_hard_regs (temp, 0);
  qsort (allocno_hard_regs_vec.address () + start,
	 allocno_hard_regs_vec.length () - start,
	 sizeof (allocno_hard_regs_t), allocno_hard_regs_compare);
  for (i = start;
       allocno_hard_regs_vec.iterate (i, &hv);
       i++)
    {
      add_allocno_hard_regs_to_forest (&hard_regs_roots, hv);
      ira_assert (hard_regs_node_vec.length () == 0);
    }
  /* We need to set up parent fields for right work of
     first_common_ancestor_node. */
  setup_allocno_hard_regs_nodes_parent (hard_regs_roots, NULL);
  EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
    {
      a = ira_allocnos[i];
      allocno_data = ALLOCNO_COLOR_DATA (a);
      if (hard_reg_set_empty_p (allocno_data->profitable_hard_regs))
	continue;
      hard_regs_node_vec.truncate (0);
      collect_allocno_hard_regs_cover (hard_regs_roots,
				       allocno_data->profitable_hard_regs);
      allocno_hard_regs_node = NULL;
      for (j = 0; hard_regs_node_vec.iterate (j, &node); j++)
	allocno_hard_regs_node
	  = (j == 0
	     ? node
	     : first_common_ancestor_node (node, allocno_hard_regs_node));
      /* That is a temporary storage.  */
      allocno_hard_regs_node->used_p = true;
      allocno_data->hard_regs_node = allocno_hard_regs_node;
    }
  ira_assert (hard_regs_roots->next == NULL);
  hard_regs_roots->used_p = true;
  remove_unused_allocno_hard_regs_nodes (&hard_regs_roots);
  allocno_hard_regs_nodes_num
    = enumerate_allocno_hard_regs_nodes (hard_regs_roots, NULL, 0);
  allocno_hard_regs_nodes
    = ((allocno_hard_regs_node_t *)
       ira_allocate (allocno_hard_regs_nodes_num
		     * sizeof (allocno_hard_regs_node_t)));
  size = allocno_hard_regs_nodes_num * allocno_hard_regs_nodes_num;
  allocno_hard_regs_subnode_index
    = (int *) ira_allocate (size * sizeof (int));
  for (i = 0; i < size; i++)
    allocno_hard_regs_subnode_index[i] = -1;
  setup_allocno_hard_regs_subnode_index (hard_regs_roots);
  start = 0;
  EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
    {
      a = ira_allocnos[i];
      allocno_data = ALLOCNO_COLOR_DATA (a);
      if (hard_reg_set_empty_p (allocno_data->profitable_hard_regs))
	continue;
      len = get_allocno_hard_regs_subnodes_num (allocno_data->hard_regs_node);
      allocno_data->hard_regs_subnodes_start = start;
      allocno_data->hard_regs_subnodes_num = len;
      start += len;
    }
  allocno_hard_regs_subnodes
    = ((allocno_hard_regs_subnode_t)
       ira_allocate (sizeof (struct allocno_hard_regs_subnode) * start));
  hard_regs_node_vec.release ();
}

/* Free tree of allocno hard registers nodes given by its ROOT.  */
static void
finish_allocno_hard_regs_nodes_tree (allocno_hard_regs_node_t root)
{
  allocno_hard_regs_node_t child, next;

  for (child = root->first; child != NULL; child = next)
    {
      next = child->next;
      finish_allocno_hard_regs_nodes_tree (child);
    }
  ira_free (root);
}

/* Finish work with the forest of allocno hard registers nodes.  */
static void
finish_allocno_hard_regs_nodes_forest (void)
{
  allocno_hard_regs_node_t node, next;
  
  ira_free (allocno_hard_regs_subnodes);
  for (node = hard_regs_roots; node != NULL; node = next)
    {
      next = node->next;
      finish_allocno_hard_regs_nodes_tree (node);
    }
  ira_free (allocno_hard_regs_nodes);
  ira_free (allocno_hard_regs_subnode_index);
  finish_allocno_hard_regs ();
}

/* Set up left conflict sizes and left conflict subnodes sizes of hard
   registers subnodes of allocno A.  Return TRUE if allocno A is
   trivially colorable.  */
static bool
setup_left_conflict_sizes_p (ira_allocno_t a)
{
  int i, k, nobj, start;
  int conflict_size, left_conflict_subnodes_size, node_preorder_num;
  allocno_color_data_t data;
  HARD_REG_SET profitable_hard_regs;
  allocno_hard_regs_subnode_t subnodes;
  allocno_hard_regs_node_t node;
  HARD_REG_SET node_set;

  nobj = ALLOCNO_NUM_OBJECTS (a);
  conflict_size = 0;
  data = ALLOCNO_COLOR_DATA (a);
  subnodes = allocno_hard_regs_subnodes + data->hard_regs_subnodes_start;
  COPY_HARD_REG_SET (profitable_hard_regs, data->profitable_hard_regs);
  node = data->hard_regs_node;
  node_preorder_num = node->preorder_num;
  COPY_HARD_REG_SET (node_set, node->hard_regs->set);
  node_check_tick++;
  for (k = 0; k < nobj; k++)
    {
      ira_object_t obj = ALLOCNO_OBJECT (a, k);
      ira_object_t conflict_obj;
      ira_object_conflict_iterator oci;
      
      FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
	{
	  int size;
 	  ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
	  allocno_hard_regs_node_t conflict_node, temp_node;
	  HARD_REG_SET conflict_node_set;
	  allocno_color_data_t conflict_data;

	  conflict_data = ALLOCNO_COLOR_DATA (conflict_a);
	  if (! ALLOCNO_COLOR_DATA (conflict_a)->in_graph_p
	      || ! hard_reg_set_intersect_p (profitable_hard_regs,
					     conflict_data
					     ->profitable_hard_regs))
	    continue;
	  conflict_node = conflict_data->hard_regs_node;
	  COPY_HARD_REG_SET (conflict_node_set, conflict_node->hard_regs->set);
	  if (hard_reg_set_subset_p (node_set, conflict_node_set))
	    temp_node = node;
	  else
	    {
	      ira_assert (hard_reg_set_subset_p (conflict_node_set, node_set));
	      temp_node = conflict_node;
	    }
	  if (temp_node->check != node_check_tick)
	    {
	      temp_node->check = node_check_tick;
	      temp_node->conflict_size = 0;
	    }
	  size = (ira_reg_class_max_nregs
		  [ALLOCNO_CLASS (conflict_a)][ALLOCNO_MODE (conflict_a)]);
	  if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1)
	    /* We will deal with the subwords individually.  */
	    size = 1;
	  temp_node->conflict_size += size;
	}
    }
  for (i = 0; i < data->hard_regs_subnodes_num; i++)
    {
      allocno_hard_regs_node_t temp_node;
      
      temp_node = allocno_hard_regs_nodes[i + node_preorder_num];
      ira_assert (temp_node->preorder_num == i + node_preorder_num);
      subnodes[i].left_conflict_size = (temp_node->check != node_check_tick
					? 0 : temp_node->conflict_size);
      if (hard_reg_set_subset_p (temp_node->hard_regs->set,
				 profitable_hard_regs))
	subnodes[i].max_node_impact = temp_node->hard_regs_num;
      else
	{
	  HARD_REG_SET temp_set;
	  int j, n, hard_regno;
	  enum reg_class aclass;
	  
	  COPY_HARD_REG_SET (temp_set, temp_node->hard_regs->set);
	  AND_HARD_REG_SET (temp_set, profitable_hard_regs);
	  aclass = ALLOCNO_CLASS (a);
	  for (n = 0, j = ira_class_hard_regs_num[aclass] - 1; j >= 0; j--)
	    {
	      hard_regno = ira_class_hard_regs[aclass][j];
	      if (TEST_HARD_REG_BIT (temp_set, hard_regno))
		n++;
	    }
	  subnodes[i].max_node_impact = n;
	}
      subnodes[i].left_conflict_subnodes_size = 0;
    }
  start = node_preorder_num * allocno_hard_regs_nodes_num;
  for (i = data->hard_regs_subnodes_num - 1; i >= 0; i--)
    {
      int size, parent_i;
      allocno_hard_regs_node_t parent;
      
      size = (subnodes[i].left_conflict_subnodes_size
	      + MIN (subnodes[i].max_node_impact
		     - subnodes[i].left_conflict_subnodes_size,
		     subnodes[i].left_conflict_size));
      parent = allocno_hard_regs_nodes[i + node_preorder_num]->parent;
      if (parent == NULL)
	continue;
      parent_i
	= allocno_hard_regs_subnode_index[start + parent->preorder_num];
      if (parent_i < 0)
	continue;
      subnodes[parent_i].left_conflict_subnodes_size += size;
    }
  left_conflict_subnodes_size = subnodes[0].left_conflict_subnodes_size;
  conflict_size
    += (left_conflict_subnodes_size
	+ MIN (subnodes[0].max_node_impact - left_conflict_subnodes_size,
	       subnodes[0].left_conflict_size));
  conflict_size += ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
  data->colorable_p = conflict_size <= data->available_regs_num;
  return data->colorable_p;
}

/* Update left conflict sizes of hard registers subnodes of allocno A
   after removing allocno REMOVED_A with SIZE from the conflict graph.
   Return TRUE if A is trivially colorable.  */
static bool
update_left_conflict_sizes_p (ira_allocno_t a,
			      ira_allocno_t removed_a, int size)
{
  int i, conflict_size, before_conflict_size, diff, start;
  int node_preorder_num, parent_i;
  allocno_hard_regs_node_t node, removed_node, parent;
  allocno_hard_regs_subnode_t subnodes;
  allocno_color_data_t data = ALLOCNO_COLOR_DATA (a);

  ira_assert (! data->colorable_p);
  node = data->hard_regs_node;
  node_preorder_num = node->preorder_num;
  removed_node = ALLOCNO_COLOR_DATA (removed_a)->hard_regs_node;
  ira_assert (hard_reg_set_subset_p (removed_node->hard_regs->set,
			       node->hard_regs->set)
	      || hard_reg_set_subset_p (node->hard_regs->set,
					removed_node->hard_regs->set));
  start = node_preorder_num * allocno_hard_regs_nodes_num;
  i = allocno_hard_regs_subnode_index[start + removed_node->preorder_num];
  if (i < 0)
    i = 0;
  subnodes = allocno_hard_regs_subnodes + data->hard_regs_subnodes_start;
  before_conflict_size
    = (subnodes[i].left_conflict_subnodes_size
       + MIN (subnodes[i].max_node_impact
	      - subnodes[i].left_conflict_subnodes_size,
	      subnodes[i].left_conflict_size));
  subnodes[i].left_conflict_size -= size;
  for (;;)
    {
      conflict_size
	= (subnodes[i].left_conflict_subnodes_size
	   + MIN (subnodes[i].max_node_impact
		  - subnodes[i].left_conflict_subnodes_size,
		  subnodes[i].left_conflict_size));
      if ((diff = before_conflict_size - conflict_size) == 0)
	break;
      ira_assert (conflict_size < before_conflict_size);
      parent = allocno_hard_regs_nodes[i + node_preorder_num]->parent;
      if (parent == NULL)
	break;
      parent_i
	= allocno_hard_regs_subnode_index[start + parent->preorder_num];
      if (parent_i < 0)
	break;
      i = parent_i;
      before_conflict_size
	= (subnodes[i].left_conflict_subnodes_size
	   + MIN (subnodes[i].max_node_impact
		  - subnodes[i].left_conflict_subnodes_size,
		  subnodes[i].left_conflict_size));
      subnodes[i].left_conflict_subnodes_size -= diff;
    }
  if (i != 0
      || (conflict_size 
	  + ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]
	  > data->available_regs_num))
    return false;
  data->colorable_p = true;
  return true;
}

/* Return true if allocno A has empty profitable hard regs.  */
static bool
empty_profitable_hard_regs (ira_allocno_t a)
{
  allocno_color_data_t data = ALLOCNO_COLOR_DATA (a);

  return hard_reg_set_empty_p (data->profitable_hard_regs);
}

/* Set up profitable hard registers for each allocno being
   colored.  */
static void
setup_profitable_hard_regs (void)
{
  unsigned int i;
  int j, k, nobj, hard_regno, nregs, class_size;
  ira_allocno_t a;
  bitmap_iterator bi;
  enum reg_class aclass;
  enum machine_mode mode;
  allocno_color_data_t data;

  /* Initial set up from allocno classes and explicitly conflicting
     hard regs.  */
  EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
    {
      a = ira_allocnos[i];
      if ((aclass = ALLOCNO_CLASS (a)) == NO_REGS)
	continue;
      data = ALLOCNO_COLOR_DATA (a);
      if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL
	  && ALLOCNO_CLASS_COST (a) > ALLOCNO_MEMORY_COST (a))
	CLEAR_HARD_REG_SET (data->profitable_hard_regs);
      else
	{
	  mode = ALLOCNO_MODE (a);
	  COPY_HARD_REG_SET (data->profitable_hard_regs,
			     ira_useful_class_mode_regs[aclass][mode]);
	  nobj = ALLOCNO_NUM_OBJECTS (a);
	  for (k = 0; k < nobj; k++)
	    {
	      ira_object_t obj = ALLOCNO_OBJECT (a, k);
	      
	      AND_COMPL_HARD_REG_SET (data->profitable_hard_regs,
				      OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
	    }
	}
    }
  /* Exclude hard regs already assigned for conflicting objects.  */
  EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, i, bi)
    {
      a = ira_allocnos[i];
      if ((aclass = ALLOCNO_CLASS (a)) == NO_REGS
	  || ! ALLOCNO_ASSIGNED_P (a)
	  || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
	continue;
      mode = ALLOCNO_MODE (a);
      nregs = hard_regno_nregs[hard_regno][mode];
      nobj = ALLOCNO_NUM_OBJECTS (a);
      for (k = 0; k < nobj; k++)
	{
	  ira_object_t obj = ALLOCNO_OBJECT (a, k);
	  ira_object_t conflict_obj;
	  ira_object_conflict_iterator oci;

	  FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
	    {
	      ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);

	      /* We can process the conflict allocno repeatedly with
		 the same result.  */
	      if (nregs == nobj && nregs > 1)
		{
		  int num = OBJECT_SUBWORD (conflict_obj);
		  
		  if (REG_WORDS_BIG_ENDIAN)
		    CLEAR_HARD_REG_BIT
		      (ALLOCNO_COLOR_DATA (conflict_a)->profitable_hard_regs,
		       hard_regno + nobj - num - 1);
		  else
		    CLEAR_HARD_REG_BIT
		      (ALLOCNO_COLOR_DATA (conflict_a)->profitable_hard_regs,
		       hard_regno + num);
		}
	      else
		AND_COMPL_HARD_REG_SET
		  (ALLOCNO_COLOR_DATA (conflict_a)->profitable_hard_regs,
		   ira_reg_mode_hard_regset[hard_regno][mode]);
	    }
	}
    }
  /* Exclude too costly hard regs.  */
  EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
    {
      int min_cost = INT_MAX;
      int *costs;

      a = ira_allocnos[i];
      if ((aclass = ALLOCNO_CLASS (a)) == NO_REGS
	  || empty_profitable_hard_regs (a))
	continue;
      data = ALLOCNO_COLOR_DATA (a);
      mode = ALLOCNO_MODE (a);
      if ((costs = ALLOCNO_UPDATED_HARD_REG_COSTS (a)) != NULL
	  || (costs = ALLOCNO_HARD_REG_COSTS (a)) != NULL)
	{
	  class_size = ira_class_hard_regs_num[aclass];
	  for (j = 0; j < class_size; j++)
	    {
	      hard_regno = ira_class_hard_regs[aclass][j];
	      if (! TEST_HARD_REG_BIT (data->profitable_hard_regs,
				       hard_regno))
		continue;
	      if (ALLOCNO_UPDATED_MEMORY_COST (a) < costs[j])
		CLEAR_HARD_REG_BIT (data->profitable_hard_regs,
				    hard_regno);
	      else if (min_cost > costs[j])
		min_cost = costs[j];
	    }
	}
      else if (ALLOCNO_UPDATED_MEMORY_COST (a)
	       < ALLOCNO_UPDATED_CLASS_COST (a))
	CLEAR_HARD_REG_SET (data->profitable_hard_regs);
      if (ALLOCNO_UPDATED_CLASS_COST (a) > min_cost)
	ALLOCNO_UPDATED_CLASS_COST (a) = min_cost;
    }
}



/* This page contains functions used to choose hard registers for
   allocnos.  */

/* Pool for update cost records.  */
static alloc_pool update_cost_record_pool;

/* Initiate update cost records.  */
static void
init_update_cost_records (void)
{
  update_cost_record_pool
    = create_alloc_pool ("update cost records",
			 sizeof (struct update_cost_record), 100);
}

/* Return new update cost record with given params.  */
static struct update_cost_record *
get_update_cost_record (int hard_regno, int divisor,
			struct update_cost_record *next)
{
  struct update_cost_record *record;

  record = (struct update_cost_record *) pool_alloc (update_cost_record_pool);
  record->hard_regno = hard_regno;
  record->divisor = divisor;
  record->next = next;
  return record;
}

/* Free memory for all records in LIST.  */
static void
free_update_cost_record_list (struct update_cost_record *list)
{
  struct update_cost_record *next;

  while (list != NULL)
    {
      next = list->next;
      pool_free (update_cost_record_pool, list);
      list = next;
    }
}

/* Free memory allocated for all update cost records.  */
static void
finish_update_cost_records (void)
{
  free_alloc_pool (update_cost_record_pool);
}

/* Array whose element value is TRUE if the corresponding hard
   register was already allocated for an allocno.  */
static bool allocated_hardreg_p[FIRST_PSEUDO_REGISTER];

/* Describes one element in a queue of allocnos whose costs need to be
   updated.  Each allocno in the queue is known to have an allocno
   class.  */
struct update_cost_queue_elem
{
  /* This element is in the queue iff CHECK == update_cost_check.  */
  int check;

  /* COST_HOP_DIVISOR**N, where N is the length of the shortest path
     connecting this allocno to the one being allocated.  */
  int divisor;

  /* Allocno from which we are chaining costs of connected allocnos.
     It is used not go back in graph of allocnos connected by
     copies.  */
  ira_allocno_t from;

  /* The next allocno in the queue, or null if this is the last element.  */
  ira_allocno_t next;
};

/* The first element in a queue of allocnos whose copy costs need to be
   updated.  Null if the queue is empty.  */
static ira_allocno_t update_cost_queue;

/* The last element in the queue described by update_cost_queue.
   Not valid if update_cost_queue is null.  */
static struct update_cost_queue_elem *update_cost_queue_tail;

/* A pool of elements in the queue described by update_cost_queue.
   Elements are indexed by ALLOCNO_NUM.  */
static struct update_cost_queue_elem *update_cost_queue_elems;

/* The current value of update_costs_from_copies call count.  */
static int update_cost_check;

/* Allocate and initialize data necessary for function
   update_costs_from_copies.  */
static void
initiate_cost_update (void)
{
  size_t size;

  size = ira_allocnos_num * sizeof (struct update_cost_queue_elem);
  update_cost_queue_elems
    = (struct update_cost_queue_elem *) ira_allocate (size);
  memset (update_cost_queue_elems, 0, size);
  update_cost_check = 0;
  init_update_cost_records ();
}

/* Deallocate data used by function update_costs_from_copies.  */
static void
finish_cost_update (void)
{
  ira_free (update_cost_queue_elems);
  finish_update_cost_records ();
}

/* When we traverse allocnos to update hard register costs, the cost
   divisor will be multiplied by the following macro value for each
   hop from given allocno to directly connected allocnos.  */
#define COST_HOP_DIVISOR 4

/* Start a new cost-updating pass.  */
static void
start_update_cost (void)
{
  update_cost_check++;
  update_cost_queue = NULL;
}

/* Add (ALLOCNO, FROM, DIVISOR) to the end of update_cost_queue, unless
   ALLOCNO is already in the queue, or has NO_REGS class.  */
static inline void
queue_update_cost (ira_allocno_t allocno, ira_allocno_t from, int divisor)
{
  struct update_cost_queue_elem *elem;

  elem = &update_cost_queue_elems[ALLOCNO_NUM (allocno)];
  if (elem->check != update_cost_check
      && ALLOCNO_CLASS (allocno) != NO_REGS)
    {
      elem->check = update_cost_check;
      elem->from = from;
      elem->divisor = divisor;
      elem->next = NULL;
      if (update_cost_queue == NULL)
	update_cost_queue = allocno;
      else
	update_cost_queue_tail->next = allocno;
      update_cost_queue_tail = elem;
    }
}

/* Try to remove the first element from update_cost_queue.  Return
   false if the queue was empty, otherwise make (*ALLOCNO, *FROM,
   *DIVISOR) describe the removed element.  */
static inline bool
get_next_update_cost (ira_allocno_t *allocno, ira_allocno_t *from, int *divisor)
{
  struct update_cost_queue_elem *elem;

  if (update_cost_queue == NULL)
    return false;

  *allocno = update_cost_queue;
  elem = &update_cost_queue_elems[ALLOCNO_NUM (*allocno)];
  *from = elem->from;
  *divisor = elem->divisor;
  update_cost_queue = elem->next;
  return true;
}

/* Increase costs of HARD_REGNO by UPDATE_COST for ALLOCNO.  Return
   true if we really modified the cost.  */
static bool
update_allocno_cost (ira_allocno_t allocno, int hard_regno, int update_cost)
{
  int i;
  enum reg_class aclass = ALLOCNO_CLASS (allocno);

  i = ira_class_hard_reg_index[aclass][hard_regno];
  if (i < 0)
    return false;
  ira_allocate_and_set_or_copy_costs
    (&ALLOCNO_UPDATED_HARD_REG_COSTS (allocno), aclass,
     ALLOCNO_UPDATED_CLASS_COST (allocno),
     ALLOCNO_HARD_REG_COSTS (allocno));
  ira_allocate_and_set_or_copy_costs
    (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (allocno),
     aclass, 0, ALLOCNO_CONFLICT_HARD_REG_COSTS (allocno));
  ALLOCNO_UPDATED_HARD_REG_COSTS (allocno)[i] += update_cost;
  ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (allocno)[i] += update_cost;
  return true;
}

/* Update (decrease if DECR_P) HARD_REGNO cost of allocnos connected
   by copies to ALLOCNO to increase chances to remove some copies as
   the result of subsequent assignment.  Record cost updates if
   RECORD_P is true.  */
static void
update_costs_from_allocno (ira_allocno_t allocno, int hard_regno,
			   int divisor, bool decr_p, bool record_p)
{
  int cost, update_cost;
  enum machine_mode mode;
  enum reg_class rclass, aclass;
  ira_allocno_t another_allocno, from = NULL;
  ira_copy_t cp, next_cp;

  rclass = REGNO_REG_CLASS (hard_regno);
  do
    {
      mode = ALLOCNO_MODE (allocno);
      ira_init_register_move_cost_if_necessary (mode);
      for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
	{
	  if (cp->first == allocno)
	    {
	      next_cp = cp->next_first_allocno_copy;
	      another_allocno = cp->second;
	    }
	  else if (cp->second == allocno)
	    {
	      next_cp = cp->next_second_allocno_copy;
	      another_allocno = cp->first;
	    }
	  else
	    gcc_unreachable ();

	  if (another_allocno == from)
	    continue;

	  aclass = ALLOCNO_CLASS (another_allocno);
	  if (! TEST_HARD_REG_BIT (reg_class_contents[aclass],
				   hard_regno)
	      || ALLOCNO_ASSIGNED_P (another_allocno))
	    continue;

	  cost = (cp->second == allocno
		  ? ira_register_move_cost[mode][rclass][aclass]
		  : ira_register_move_cost[mode][aclass][rclass]);
	  if (decr_p)
	    cost = -cost;

	  update_cost = cp->freq * cost / divisor;
	  if (update_cost == 0)
	    continue;

	  if (! update_allocno_cost (another_allocno, hard_regno, update_cost))
	    continue;
	  queue_update_cost (another_allocno, allocno, divisor * COST_HOP_DIVISOR);
	  if (record_p && ALLOCNO_COLOR_DATA (another_allocno) != NULL)
	    ALLOCNO_COLOR_DATA (another_allocno)->update_cost_records
	      = get_update_cost_record (hard_regno, divisor,
					ALLOCNO_COLOR_DATA (another_allocno)
					->update_cost_records);
	}
    }
  while (get_next_update_cost (&allocno, &from, &divisor));
}

/* Decrease preferred ALLOCNO hard register costs and costs of
   allocnos connected to ALLOCNO through copy.  */
static void
update_costs_from_prefs (ira_allocno_t allocno)
{
  ira_pref_t pref;

  start_update_cost ();
  for (pref = ALLOCNO_PREFS (allocno); pref != NULL; pref = pref->next_pref)
    update_costs_from_allocno (allocno, pref->hard_regno,
			       COST_HOP_DIVISOR, true, true);
}

/* Update (decrease if DECR_P) the cost of allocnos connected to
   ALLOCNO through copies to increase chances to remove some copies as
   the result of subsequent assignment.  ALLOCNO was just assigned to
   a hard register.  Record cost updates if RECORD_P is true.  */
static void
update_costs_from_copies (ira_allocno_t allocno, bool decr_p, bool record_p)
{
  int hard_regno;

  hard_regno = ALLOCNO_HARD_REGNO (allocno);
  ira_assert (hard_regno >= 0 && ALLOCNO_CLASS (allocno) != NO_REGS);
  start_update_cost ();
  update_costs_from_allocno (allocno, hard_regno, 1, decr_p, record_p);
}

/* Restore costs of allocnos connected to ALLOCNO by copies as it was
   before updating costs of these allocnos from given allocno.  This
   is a wise thing to do as if given allocno did not get an expected
   hard reg, using smaller cost of the hard reg for allocnos connected
   by copies to given allocno becomes actually misleading.  Free all
   update cost records for ALLOCNO as we don't need them anymore.  */
static void
restore_costs_from_copies (ira_allocno_t allocno)
{
  struct update_cost_record *records, *curr;

  if (ALLOCNO_COLOR_DATA (allocno) == NULL)
    return;
  records = ALLOCNO_COLOR_DATA (allocno)->update_cost_records;
  start_update_cost ();
  for (curr = records; curr != NULL; curr = curr->next)
    update_costs_from_allocno (allocno, curr->hard_regno,
			       curr->divisor, true, false);
  free_update_cost_record_list (records);
  ALLOCNO_COLOR_DATA (allocno)->update_cost_records = NULL;
}

/* This function updates COSTS (decrease if DECR_P) for hard_registers
   of ACLASS by conflict costs of the unassigned allocnos
   connected by copies with allocnos in update_cost_queue.  This
   update increases chances to remove some copies.  */
static void
update_conflict_hard_regno_costs (int *costs, enum reg_class aclass,
				  bool decr_p)
{
  int i, cost, class_size, freq, mult, div, divisor;
  int index, hard_regno;
  int *conflict_costs;
  bool cont_p;
  enum reg_class another_aclass;
  ira_allocno_t allocno, another_allocno, from;
  ira_copy_t cp, next_cp;

  while (get_next_update_cost (&allocno, &from, &divisor))
    for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
      {
	if (cp->first == allocno)
	  {
	    next_cp = cp->next_first_allocno_copy;
	    another_allocno = cp->second;
	  }
	else if (cp->second == allocno)
	  {
	    next_cp = cp->next_second_allocno_copy;
	    another_allocno = cp->first;
	  }
	else
	  gcc_unreachable ();

	if (another_allocno == from)
	  continue;

 	another_aclass = ALLOCNO_CLASS (another_allocno);
 	if (! ira_reg_classes_intersect_p[aclass][another_aclass]
	    || ALLOCNO_ASSIGNED_P (another_allocno)
	    || ALLOCNO_COLOR_DATA (another_allocno)->may_be_spilled_p)
	  continue;
	class_size = ira_class_hard_regs_num[another_aclass];
	ira_allocate_and_copy_costs
	  (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno),
	   another_aclass, ALLOCNO_CONFLICT_HARD_REG_COSTS (another_allocno));
	conflict_costs
	  = ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno);
	if (conflict_costs == NULL)
	  cont_p = true;
	else
	  {
	    mult = cp->freq;
	    freq = ALLOCNO_FREQ (another_allocno);
	    if (freq == 0)
	      freq = 1;
	    div = freq * divisor;
	    cont_p = false;
	    for (i = class_size - 1; i >= 0; i--)
	      {
		hard_regno = ira_class_hard_regs[another_aclass][i];
		ira_assert (hard_regno >= 0);
		index = ira_class_hard_reg_index[aclass][hard_regno];
		if (index < 0)
		  continue;
		cost = (int) ((unsigned) conflict_costs [i] * mult) / div;
		if (cost == 0)
		  continue;
		cont_p = true;
		if (decr_p)
		  cost = -cost;
		costs[index] += cost;
	      }
	  }
	/* Probably 5 hops will be enough.  */
	if (cont_p
	    && divisor <= (COST_HOP_DIVISOR
			   * COST_HOP_DIVISOR
			   * COST_HOP_DIVISOR
			   * COST_HOP_DIVISOR))
	  queue_update_cost (another_allocno, allocno, divisor * COST_HOP_DIVISOR);
      }
}

/* Set up conflicting (through CONFLICT_REGS) for each object of
   allocno A and the start allocno profitable regs (through
   START_PROFITABLE_REGS).  Remember that the start profitable regs
   exclude hard regs which can not hold value of mode of allocno A.
   This covers mostly cases when multi-register value should be
   aligned.  */
static inline void
get_conflict_and_start_profitable_regs (ira_allocno_t a, bool retry_p,
					HARD_REG_SET *conflict_regs,
					HARD_REG_SET *start_profitable_regs)
{
  int i, nwords;
  ira_object_t obj;

  nwords = ALLOCNO_NUM_OBJECTS (a);
  for (i = 0; i < nwords; i++)
    {
      obj = ALLOCNO_OBJECT (a, i);
      COPY_HARD_REG_SET (conflict_regs[i],
			 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
    }
  if (retry_p)
    {
      COPY_HARD_REG_SET (*start_profitable_regs,
			 reg_class_contents[ALLOCNO_CLASS (a)]);
      AND_COMPL_HARD_REG_SET (*start_profitable_regs,
			      ira_prohibited_class_mode_regs
			      [ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
    }
  else
    COPY_HARD_REG_SET (*start_profitable_regs,
		       ALLOCNO_COLOR_DATA (a)->profitable_hard_regs);
}

/* Return true if HARD_REGNO is ok for assigning to allocno A with
   PROFITABLE_REGS and whose objects have CONFLICT_REGS.  */
static inline bool
check_hard_reg_p (ira_allocno_t a, int hard_regno,
		  HARD_REG_SET *conflict_regs, HARD_REG_SET profitable_regs)
{
  int j, nwords, nregs;
  enum reg_class aclass;
  enum machine_mode mode;

  aclass = ALLOCNO_CLASS (a);
  mode = ALLOCNO_MODE (a);
  if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[aclass][mode],
			 hard_regno))
    return false;
  /* Checking only profitable hard regs.  */
  if (! TEST_HARD_REG_BIT (profitable_regs, hard_regno))
    return false;
  nregs = hard_regno_nregs[hard_regno][mode];
  nwords = ALLOCNO_NUM_OBJECTS (a);
  for (j = 0; j < nregs; j++)
    {
      int k;
      int set_to_test_start = 0, set_to_test_end = nwords;
      
      if (nregs == nwords)
	{
	  if (REG_WORDS_BIG_ENDIAN)
	    set_to_test_start = nwords - j - 1;
	  else
	    set_to_test_start = j;
	  set_to_test_end = set_to_test_start + 1;
	}
      for (k = set_to_test_start; k < set_to_test_end; k++)
	if (TEST_HARD_REG_BIT (conflict_regs[k], hard_regno + j))
	  break;
      if (k != set_to_test_end)
	break;
    }
  return j == nregs;
}

/* Return number of registers needed to be saved and restored at
   function prologue/epilogue if we allocate HARD_REGNO to hold value
   of MODE.  */
static int
calculate_saved_nregs (int hard_regno, enum machine_mode mode)
{
  int i;
  int nregs = 0;

  ira_assert (hard_regno >= 0);
  for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
    if (!allocated_hardreg_p[hard_regno + i]
	&& !TEST_HARD_REG_BIT (call_used_reg_set, hard_regno + i)
	&& !LOCAL_REGNO (hard_regno + i))
      nregs++;
  return nregs;
}

/* Choose a hard register for allocno A.  If RETRY_P is TRUE, it means
   that the function called from function
   `ira_reassign_conflict_allocnos' and `allocno_reload_assign'.  In
   this case some allocno data are not defined or updated and we
   should not touch these data.  The function returns true if we
   managed to assign a hard register to the allocno.

   To assign a hard register, first of all we calculate all conflict
   hard registers which can come from conflicting allocnos with
   already assigned hard registers.  After that we find first free
   hard register with the minimal cost.  During hard register cost
   calculation we take conflict hard register costs into account to
   give a chance for conflicting allocnos to get a better hard
   register in the future.

   If the best hard register cost is bigger than cost of memory usage
   for the allocno, we don't assign a hard register to given allocno
   at all.

   If we assign a hard register to the allocno, we update costs of the
   hard register for allocnos connected by copies to improve a chance
   to coalesce insns represented by the copies when we assign hard
   registers to the allocnos connected by the copies.  */
static bool
assign_hard_reg (ira_allocno_t a, bool retry_p)
{
  HARD_REG_SET conflicting_regs[2], profitable_hard_regs;
  int i, j, hard_regno, best_hard_regno, class_size;
  int cost, mem_cost, min_cost, full_cost, min_full_cost, nwords, word;
  int *a_costs;
  enum reg_class aclass;
  enum machine_mode mode;
  static int costs[FIRST_PSEUDO_REGISTER], full_costs[FIRST_PSEUDO_REGISTER];
  int saved_nregs;
  enum reg_class rclass;
  int add_cost;
#ifdef STACK_REGS
  bool no_stack_reg_p;
#endif

  ira_assert (! ALLOCNO_ASSIGNED_P (a));
  get_conflict_and_start_profitable_regs (a, retry_p,
					  conflicting_regs,
					  &profitable_hard_regs);
  aclass = ALLOCNO_CLASS (a);
  class_size = ira_class_hard_regs_num[aclass];
  best_hard_regno = -1;
  memset (full_costs, 0, sizeof (int) * class_size);
  mem_cost = 0;
  memset (costs, 0, sizeof (int) * class_size);
  memset (full_costs, 0, sizeof (int) * class_size);
#ifdef STACK_REGS
  no_stack_reg_p = false;
#endif
  if (! retry_p)
    start_update_cost ();
  mem_cost += ALLOCNO_UPDATED_MEMORY_COST (a);
  
  ira_allocate_and_copy_costs (&ALLOCNO_UPDATED_HARD_REG_COSTS (a),
			       aclass, ALLOCNO_HARD_REG_COSTS (a));
  a_costs = ALLOCNO_UPDATED_HARD_REG_COSTS (a);
#ifdef STACK_REGS
  no_stack_reg_p = no_stack_reg_p || ALLOCNO_TOTAL_NO_STACK_REG_P (a);
#endif
  cost = ALLOCNO_UPDATED_CLASS_COST (a);
  for (i = 0; i < class_size; i++)
    if (a_costs != NULL)
      {
	costs[i] += a_costs[i];
	full_costs[i] += a_costs[i];
      }
    else
      {
	costs[i] += cost;
	full_costs[i] += cost;
      }
  nwords = ALLOCNO_NUM_OBJECTS (a);
  curr_allocno_process++;
  for (word = 0; word < nwords; word++)
    {
      ira_object_t conflict_obj;
      ira_object_t obj = ALLOCNO_OBJECT (a, word);
      ira_object_conflict_iterator oci;
      
      /* Take preferences of conflicting allocnos into account.  */
      FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
        {
	  ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
	  enum reg_class conflict_aclass;
	  allocno_color_data_t data = ALLOCNO_COLOR_DATA (conflict_a);

	  /* Reload can give another class so we need to check all
	     allocnos.  */
	  if (!retry_p
	      && (!bitmap_bit_p (consideration_allocno_bitmap,
				 ALLOCNO_NUM (conflict_a))
		  || ((!ALLOCNO_ASSIGNED_P (conflict_a)
		       || ALLOCNO_HARD_REGNO (conflict_a) < 0)
		      && !(hard_reg_set_intersect_p
			   (profitable_hard_regs,
			    ALLOCNO_COLOR_DATA
			    (conflict_a)->profitable_hard_regs)))))
	    continue;
	  conflict_aclass = ALLOCNO_CLASS (conflict_a);
	  ira_assert (ira_reg_classes_intersect_p
		      [aclass][conflict_aclass]);
	  if (ALLOCNO_ASSIGNED_P (conflict_a))
	    {
	      hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
	      if (hard_regno >= 0
		  && (ira_hard_reg_set_intersection_p
		      (hard_regno, ALLOCNO_MODE (conflict_a),
		       reg_class_contents[aclass])))
		{
		  int n_objects = ALLOCNO_NUM_OBJECTS (conflict_a);
		  int conflict_nregs;

		  mode = ALLOCNO_MODE (conflict_a);
		  conflict_nregs = hard_regno_nregs[hard_regno][mode];
		  if (conflict_nregs == n_objects && conflict_nregs > 1)
		    {
		      int num = OBJECT_SUBWORD (conflict_obj);

		      if (REG_WORDS_BIG_ENDIAN)
			SET_HARD_REG_BIT (conflicting_regs[word],
					  hard_regno + n_objects - num - 1);
		      else
			SET_HARD_REG_BIT (conflicting_regs[word],
					  hard_regno + num);
		    }
		  else
		    IOR_HARD_REG_SET
		      (conflicting_regs[word],
		       ira_reg_mode_hard_regset[hard_regno][mode]);
		  if (hard_reg_set_subset_p (profitable_hard_regs,
					     conflicting_regs[word]))
		    goto fail;
		}
	    }
	  else if (! retry_p
		   && ! ALLOCNO_COLOR_DATA (conflict_a)->may_be_spilled_p
		   /* Don't process the conflict allocno twice.  */
		   && (ALLOCNO_COLOR_DATA (conflict_a)->last_process
		       != curr_allocno_process))
	    {
	      int k, *conflict_costs;
	      
	      ALLOCNO_COLOR_DATA (conflict_a)->last_process
		= curr_allocno_process;
	      ira_allocate_and_copy_costs
		(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (conflict_a),
		 conflict_aclass,
		 ALLOCNO_CONFLICT_HARD_REG_COSTS (conflict_a));
	      conflict_costs
		= ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (conflict_a);
	      if (conflict_costs != NULL)
		for (j = class_size - 1; j >= 0; j--)
		  {
		    hard_regno = ira_class_hard_regs[aclass][j];
		    ira_assert (hard_regno >= 0);
		    k = ira_class_hard_reg_index[conflict_aclass][hard_regno];
		    if (k < 0
			   /* If HARD_REGNO is not available for CONFLICT_A,
			      the conflict would be ignored, since HARD_REGNO
			      will never be assigned to CONFLICT_A.  */
			|| !TEST_HARD_REG_BIT (data->profitable_hard_regs,
					       hard_regno))
		      continue;
		    full_costs[j] -= conflict_costs[k];
		  }
	      queue_update_cost (conflict_a, NULL, COST_HOP_DIVISOR);

	    }
	}
    }
  if (! retry_p)
    /* Take into account preferences of allocnos connected by copies to
       the conflict allocnos.  */
    update_conflict_hard_regno_costs (full_costs, aclass, true);

  /* Take preferences of allocnos connected by copies into
     account.  */
  if (! retry_p)
    {
      start_update_cost ();
      queue_update_cost (a, NULL,  COST_HOP_DIVISOR);
      update_conflict_hard_regno_costs (full_costs, aclass, false);
    }
  min_cost = min_full_cost = INT_MAX;
  /* We don't care about giving callee saved registers to allocnos no
     living through calls because call clobbered registers are
     allocated first (it is usual practice to put them first in
     REG_ALLOC_ORDER).  */
  mode = ALLOCNO_MODE (a);
  for (i = 0; i < class_size; i++)
    {
      hard_regno = ira_class_hard_regs[aclass][i];
#ifdef STACK_REGS
      if (no_stack_reg_p
	  && FIRST_STACK_REG <= hard_regno && hard_regno <= LAST_STACK_REG)
	continue;
#endif
      if (! check_hard_reg_p (a, hard_regno,
			      conflicting_regs, profitable_hard_regs))
	continue;
      cost = costs[i];
      full_cost = full_costs[i];
      if (!HONOR_REG_ALLOC_ORDER)
	{
	  if ((saved_nregs = calculate_saved_nregs (hard_regno, mode)) != 0)
	  /* We need to save/restore the hard register in
	     epilogue/prologue.  Therefore we increase the cost.  */
	  {
	    rclass = REGNO_REG_CLASS (hard_regno);
	    add_cost = ((ira_memory_move_cost[mode][rclass][0]
		         + ira_memory_move_cost[mode][rclass][1])
		        * saved_nregs / hard_regno_nregs[hard_regno][mode] - 1);
	    cost += add_cost;
	    full_cost += add_cost;
	  }
	}
      if (min_cost > cost)
	min_cost = cost;
      if (min_full_cost > full_cost)
	{
	  min_full_cost = full_cost;
	  best_hard_regno = hard_regno;
	  ira_assert (hard_regno >= 0);
	}
    }
  if (min_full_cost > mem_cost)
    {
      if (! retry_p && internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
	fprintf (ira_dump_file, "(memory is more profitable %d vs %d) ",
		 mem_cost, min_full_cost);
      best_hard_regno = -1;
    }
 fail:
  if (best_hard_regno >= 0)
    {
      for (i = hard_regno_nregs[best_hard_regno][mode] - 1; i >= 0; i--)
	allocated_hardreg_p[best_hard_regno + i] = true;
    }
  if (! retry_p)
    restore_costs_from_copies (a);
  ALLOCNO_HARD_REGNO (a) = best_hard_regno;
  ALLOCNO_ASSIGNED_P (a) = true;
  if (best_hard_regno >= 0)
    update_costs_from_copies (a, true, ! retry_p);
  ira_assert (ALLOCNO_CLASS (a) == aclass);
  /* We don't need updated costs anymore.  */
  ira_free_allocno_updated_costs (a);
  return best_hard_regno >= 0;
}



/* An array used to sort copies.  */
static ira_copy_t *sorted_copies;

/* Return TRUE if live ranges of allocnos A1 and A2 intersect.  It is
   used to find a conflict for new allocnos or allocnos with the
   different allocno classes.  */
static bool
allocnos_conflict_by_live_ranges_p (ira_allocno_t a1, ira_allocno_t a2)
{
  rtx reg1, reg2;
  int i, j;
  int n1 = ALLOCNO_NUM_OBJECTS (a1);
  int n2 = ALLOCNO_NUM_OBJECTS (a2);

  if (a1 == a2)
    return false;
  reg1 = regno_reg_rtx[ALLOCNO_REGNO (a1)];
  reg2 = regno_reg_rtx[ALLOCNO_REGNO (a2)];
  if (reg1 != NULL && reg2 != NULL
      && ORIGINAL_REGNO (reg1) == ORIGINAL_REGNO (reg2))
    return false;

  for (i = 0; i < n1; i++)
    {
      ira_object_t c1 = ALLOCNO_OBJECT (a1, i);

      for (j = 0; j < n2; j++)
	{
	  ira_object_t c2 = ALLOCNO_OBJECT (a2, j);

	  if (ira_live_ranges_intersect_p (OBJECT_LIVE_RANGES (c1),
					   OBJECT_LIVE_RANGES (c2)))
	    return true;
	}
    }
  return false;
}

/* The function is used to sort copies according to their execution
   frequencies.  */
static int
copy_freq_compare_func (const void *v1p, const void *v2p)
{
  ira_copy_t cp1 = *(const ira_copy_t *) v1p, cp2 = *(const ira_copy_t *) v2p;
  int pri1, pri2;

  pri1 = cp1->freq;
  pri2 = cp2->freq;
  if (pri2 - pri1)
    return pri2 - pri1;

  /* If frequencies are equal, sort by copies, so that the results of
     qsort leave nothing to chance.  */
  return cp1->num - cp2->num;
}



/* Return true if any allocno from thread of A1 conflicts with any
   allocno from thread A2.  */
static bool
allocno_thread_conflict_p (ira_allocno_t a1, ira_allocno_t a2)
{
  ira_allocno_t a, conflict_a;

  for (a = ALLOCNO_COLOR_DATA (a2)->next_thread_allocno;;
       a = ALLOCNO_COLOR_DATA (a)->next_thread_allocno)
    {
      for (conflict_a = ALLOCNO_COLOR_DATA (a1)->next_thread_allocno;;
	   conflict_a = ALLOCNO_COLOR_DATA (conflict_a)->next_thread_allocno)
	{
	  if (allocnos_conflict_by_live_ranges_p (a, conflict_a))
	    return true;
	  if (conflict_a == a1)
	    break;
	}
      if (a == a2)
	break;
    }
  return false;
}

/* Merge two threads given correspondingly by their first allocnos T1
   and T2 (more accurately merging T2 into T1).  */
static void
merge_threads (ira_allocno_t t1, ira_allocno_t t2)
{
  ira_allocno_t a, next, last;

  gcc_assert (t1 != t2
	      && ALLOCNO_COLOR_DATA (t1)->first_thread_allocno == t1
	      && ALLOCNO_COLOR_DATA (t2)->first_thread_allocno == t2);
  for (last = t2, a = ALLOCNO_COLOR_DATA (t2)->next_thread_allocno;;
       a = ALLOCNO_COLOR_DATA (a)->next_thread_allocno)
    {
      ALLOCNO_COLOR_DATA (a)->first_thread_allocno = t1;
      if (a == t2)
	break;
      last = a;
    }
  next = ALLOCNO_COLOR_DATA (t1)->next_thread_allocno;
  ALLOCNO_COLOR_DATA (t1)->next_thread_allocno = t2;
  ALLOCNO_COLOR_DATA (last)->next_thread_allocno = next;
  ALLOCNO_COLOR_DATA (t1)->thread_freq += ALLOCNO_COLOR_DATA (t2)->thread_freq;
}

/* Create threads by processing CP_NUM copies from sorted copies.  We
   process the most expensive copies first.  */
static void
form_threads_from_copies (int cp_num)
{
  ira_allocno_t a, thread1, thread2;
  ira_copy_t cp;
  int i, n;

  qsort (sorted_copies, cp_num, sizeof (ira_copy_t), copy_freq_compare_func);
  /* Form threads processing copies, most frequently executed
     first.  */
  for (; cp_num != 0;)
    {
      for (i = 0; i < cp_num; i++)
	{
	  cp = sorted_copies[i];
	  thread1 = ALLOCNO_COLOR_DATA (cp->first)->first_thread_allocno;
	  thread2 = ALLOCNO_COLOR_DATA (cp->second)->first_thread_allocno;
	  if (thread1 == thread2)
	    continue;
	  if (! allocno_thread_conflict_p (thread1, thread2))
	    {
	      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
		fprintf
		  (ira_dump_file,
		   "      Forming thread by copy %d:a%dr%d-a%dr%d (freq=%d):\n",
		   cp->num, ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
		   ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second),
		   cp->freq);
	      merge_threads (thread1, thread2);
	      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
		{
		  thread1 = ALLOCNO_COLOR_DATA (thread1)->first_thread_allocno;
		  fprintf (ira_dump_file, "        Result (freq=%d): a%dr%d(%d)",
			   ALLOCNO_COLOR_DATA (thread1)->thread_freq,
			   ALLOCNO_NUM (thread1), ALLOCNO_REGNO (thread1),
			   ALLOCNO_FREQ (thread1));
		  for (a = ALLOCNO_COLOR_DATA (thread1)->next_thread_allocno;
		       a != thread1;
		       a = ALLOCNO_COLOR_DATA (a)->next_thread_allocno)
		    fprintf (ira_dump_file, " a%dr%d(%d)",
			     ALLOCNO_NUM (a), ALLOCNO_REGNO (a),
			     ALLOCNO_FREQ (a));
		  fprintf (ira_dump_file, "\n");
		}
	      i++;
	      break;
	    }
	}
      /* Collect the rest of copies.  */
      for (n = 0; i < cp_num; i++)
	{
	  cp = sorted_copies[i];
	  if (ALLOCNO_COLOR_DATA (cp->first)->first_thread_allocno
	      != ALLOCNO_COLOR_DATA (cp->second)->first_thread_allocno)
	    sorted_copies[n++] = cp;
	}
      cp_num = n;
    }
}

/* Create threads by processing copies of all alocnos from BUCKET.  We
   process the most expensive copies first.  */
static void
form_threads_from_bucket (ira_allocno_t bucket)
{
  ira_allocno_t a;
  ira_copy_t cp, next_cp;
  int cp_num = 0;

  for (a = bucket; a != NULL; a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
    {
      for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
	{
	  if (cp->first == a)
	    {
	      next_cp = cp->next_first_allocno_copy;
	      sorted_copies[cp_num++] = cp;
	    }
	  else if (cp->second == a)
	    next_cp = cp->next_second_allocno_copy;
	  else
	    gcc_unreachable ();
	}
    }
  form_threads_from_copies (cp_num);
}

/* Create threads by processing copies of colorable allocno A.  We
   process most expensive copies first.  */
static void
form_threads_from_colorable_allocno (ira_allocno_t a)
{
  ira_allocno_t another_a;
  ira_copy_t cp, next_cp;
  int cp_num = 0;

  for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
    {
      if (cp->first == a)
	{
	  next_cp = cp->next_first_allocno_copy;
	  another_a = cp->second;
	}
      else if (cp->second == a)
	{
	  next_cp = cp->next_second_allocno_copy;
	  another_a = cp->first;
	}
      else
	gcc_unreachable ();
      if ((! ALLOCNO_COLOR_DATA (another_a)->in_graph_p
	   && !ALLOCNO_COLOR_DATA (another_a)->may_be_spilled_p)
	   || ALLOCNO_COLOR_DATA (another_a)->colorable_p)
	sorted_copies[cp_num++] = cp;
    }
  form_threads_from_copies (cp_num);
}

/* Form initial threads which contain only one allocno.  */
static void
init_allocno_threads (void)
{
  ira_allocno_t a;
  unsigned int j;
  bitmap_iterator bi;

  EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
    {
      a = ira_allocnos[j];
      /* Set up initial thread data: */
      ALLOCNO_COLOR_DATA (a)->first_thread_allocno
	= ALLOCNO_COLOR_DATA (a)->next_thread_allocno = a;
      ALLOCNO_COLOR_DATA (a)->thread_freq = ALLOCNO_FREQ (a);
    }
}



/* This page contains the allocator based on the Chaitin-Briggs algorithm.  */

/* Bucket of allocnos that can colored currently without spilling.  */
static ira_allocno_t colorable_allocno_bucket;

/* Bucket of allocnos that might be not colored currently without
   spilling.  */
static ira_allocno_t uncolorable_allocno_bucket;

/* The current number of allocnos in the uncolorable_bucket.  */
static int uncolorable_allocnos_num;

/* Return the current spill priority of allocno A.  The less the
   number, the more preferable the allocno for spilling.  */
static inline int
allocno_spill_priority (ira_allocno_t a)
{
  allocno_color_data_t data = ALLOCNO_COLOR_DATA (a);

  return (data->temp
	  / (ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a)
	     * ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]
	     + 1));
}

/* Add allocno A to bucket *BUCKET_PTR.  A should be not in a bucket
   before the call.  */
static void
add_allocno_to_bucket (ira_allocno_t a, ira_allocno_t *bucket_ptr)
{
  ira_allocno_t first_a;
  allocno_color_data_t data;

  if (bucket_ptr == &uncolorable_allocno_bucket
      && ALLOCNO_CLASS (a) != NO_REGS)
    {
      uncolorable_allocnos_num++;
      ira_assert (uncolorable_allocnos_num > 0);
    }
  first_a = *bucket_ptr;
  data = ALLOCNO_COLOR_DATA (a);
  data->next_bucket_allocno = first_a;
  data->prev_bucket_allocno = NULL;
  if (first_a != NULL)
    ALLOCNO_COLOR_DATA (first_a)->prev_bucket_allocno = a;
  *bucket_ptr = a;
}

/* Compare two allocnos to define which allocno should be pushed first
   into the coloring stack.  If the return is a negative number, the
   allocno given by the first parameter will be pushed first.  In this
   case such allocno has less priority than the second one and the
   hard register will be assigned to it after assignment to the second
   one.  As the result of such assignment order, the second allocno
   has a better chance to get the best hard register.  */
static int
bucket_allocno_compare_func (const void *v1p, const void *v2p)
{
  ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
  ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
  int diff, freq1, freq2, a1_num, a2_num;
  ira_allocno_t t1 = ALLOCNO_COLOR_DATA (a1)->first_thread_allocno;
  ira_allocno_t t2 = ALLOCNO_COLOR_DATA (a2)->first_thread_allocno;
  int cl1 = ALLOCNO_CLASS (a1), cl2 = ALLOCNO_CLASS (a2);

  freq1 = ALLOCNO_COLOR_DATA (t1)->thread_freq;
  freq2 = ALLOCNO_COLOR_DATA (t2)->thread_freq;
  if ((diff = freq1 - freq2) != 0)
    return diff;
  
  if ((diff = ALLOCNO_NUM (t2) - ALLOCNO_NUM (t1)) != 0)
    return diff;

  /* Push pseudos requiring less hard registers first.  It means that
     we will assign pseudos requiring more hard registers first
     avoiding creation small holes in free hard register file into
     which the pseudos requiring more hard registers can not fit.  */
  if ((diff = (ira_reg_class_max_nregs[cl1][ALLOCNO_MODE (a1)]
	       - ira_reg_class_max_nregs[cl2][ALLOCNO_MODE (a2)])) != 0)
    return diff;

  freq1 = ALLOCNO_FREQ (a1);
  freq2 = ALLOCNO_FREQ (a2);
  if ((diff = freq1 - freq2) != 0)
    return diff;

  a1_num = ALLOCNO_COLOR_DATA (a1)->available_regs_num;
  a2_num = ALLOCNO_COLOR_DATA (a2)->available_regs_num;
  if ((diff = a2_num - a1_num) != 0)
    return diff;
  return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1);
}

/* Sort bucket *BUCKET_PTR and return the result through
   BUCKET_PTR.  */
static void
sort_bucket (ira_allocno_t *bucket_ptr,
	     int (*compare_func) (const void *, const void *))
{
  ira_allocno_t a, head;
  int n;

  for (n = 0, a = *bucket_ptr;
       a != NULL;
       a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
    sorted_allocnos[n++] = a;
  if (n <= 1)
    return;
  qsort (sorted_allocnos, n, sizeof (ira_allocno_t), compare_func);
  head = NULL;
  for (n--; n >= 0; n--)
    {
      a = sorted_allocnos[n];
      ALLOCNO_COLOR_DATA (a)->next_bucket_allocno = head;
      ALLOCNO_COLOR_DATA (a)->prev_bucket_allocno = NULL;
      if (head != NULL)
	ALLOCNO_COLOR_DATA (head)->prev_bucket_allocno = a;
      head = a;
    }
  *bucket_ptr = head;
}

/* Add ALLOCNO to colorable bucket maintaining the order according
   their priority.  ALLOCNO should be not in a bucket before the
   call.  */
static void
add_allocno_to_ordered_colorable_bucket (ira_allocno_t allocno)
{
  ira_allocno_t before, after;

  form_threads_from_colorable_allocno (allocno);
  for (before = colorable_allocno_bucket, after = NULL;
       before != NULL;
       after = before,
	 before = ALLOCNO_COLOR_DATA (before)->next_bucket_allocno)
    if (bucket_allocno_compare_func (&allocno, &before) < 0)
      break;
  ALLOCNO_COLOR_DATA (allocno)->next_bucket_allocno = before;
  ALLOCNO_COLOR_DATA (allocno)->prev_bucket_allocno = after;
  if (after == NULL)
    colorable_allocno_bucket = allocno;
  else
    ALLOCNO_COLOR_DATA (after)->next_bucket_allocno = allocno;
  if (before != NULL)
    ALLOCNO_COLOR_DATA (before)->prev_bucket_allocno = allocno;
}

/* Delete ALLOCNO from bucket *BUCKET_PTR.  It should be there before
   the call.  */
static void
delete_allocno_from_bucket (ira_allocno_t allocno, ira_allocno_t *bucket_ptr)
{
  ira_allocno_t prev_allocno, next_allocno;

  if (bucket_ptr == &uncolorable_allocno_bucket
      && ALLOCNO_CLASS (allocno) != NO_REGS)
    {
      uncolorable_allocnos_num--;
      ira_assert (uncolorable_allocnos_num >= 0);
    }
  prev_allocno = ALLOCNO_COLOR_DATA (allocno)->prev_bucket_allocno;
  next_allocno = ALLOCNO_COLOR_DATA (allocno)->next_bucket_allocno;
  if (prev_allocno != NULL)
    ALLOCNO_COLOR_DATA (prev_allocno)->next_bucket_allocno = next_allocno;
  else
    {
      ira_assert (*bucket_ptr == allocno);
      *bucket_ptr = next_allocno;
    }
  if (next_allocno != NULL)
    ALLOCNO_COLOR_DATA (next_allocno)->prev_bucket_allocno = prev_allocno;
}

/* Put allocno A onto the coloring stack without removing it from its
   bucket.  Pushing allocno to the coloring stack can result in moving
   conflicting allocnos from the uncolorable bucket to the colorable
   one.  */
static void
push_allocno_to_stack (ira_allocno_t a)
{
  enum reg_class aclass;
  allocno_color_data_t data, conflict_data;
  int size, i, n = ALLOCNO_NUM_OBJECTS (a);
    
  data = ALLOCNO_COLOR_DATA (a);
  data->in_graph_p = false;
  allocno_stack_vec.safe_push (a);
  aclass = ALLOCNO_CLASS (a);
  if (aclass == NO_REGS)
    return;
  size = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
  if (n > 1)
    {
      /* We will deal with the subwords individually.  */
      gcc_assert (size == ALLOCNO_NUM_OBJECTS (a));
      size = 1;
    }
  for (i = 0; i < n; i++)
    {
      ira_object_t obj = ALLOCNO_OBJECT (a, i);
      ira_object_t conflict_obj;
      ira_object_conflict_iterator oci;
      
      FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
	{
	  ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
	  
	  conflict_data = ALLOCNO_COLOR_DATA (conflict_a);
	  if (conflict_data->colorable_p
	      || ! conflict_data->in_graph_p
	      || ALLOCNO_ASSIGNED_P (conflict_a)
	      || !(hard_reg_set_intersect_p
		   (ALLOCNO_COLOR_DATA (a)->profitable_hard_regs,
		    conflict_data->profitable_hard_regs)))
	    continue;
	  ira_assert (bitmap_bit_p (coloring_allocno_bitmap,
				    ALLOCNO_NUM (conflict_a)));
	  if (update_left_conflict_sizes_p (conflict_a, a, size))
	    {
	      delete_allocno_from_bucket
		(conflict_a, &uncolorable_allocno_bucket);
	      add_allocno_to_ordered_colorable_bucket (conflict_a);
	      if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
		{
		  fprintf (ira_dump_file, "        Making");
		  ira_print_expanded_allocno (conflict_a);
		  fprintf (ira_dump_file, " colorable\n");
		}
	    }
	  
	}
    }
}

/* Put ALLOCNO onto the coloring stack and remove it from its bucket.
   The allocno is in the colorable bucket if COLORABLE_P is TRUE.  */
static void
remove_allocno_from_bucket_and_push (ira_allocno_t allocno, bool colorable_p)
{
  if (colorable_p)
    delete_allocno_from_bucket (allocno, &colorable_allocno_bucket);
  else
    delete_allocno_from_bucket (allocno, &uncolorable_allocno_bucket);
  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
    {
      fprintf (ira_dump_file, "      Pushing");
      ira_print_expanded_allocno (allocno);
      if (colorable_p)
	fprintf (ira_dump_file, "(cost %d)\n",
		 ALLOCNO_COLOR_DATA (allocno)->temp);
      else
	fprintf (ira_dump_file, "(potential spill: %spri=%d, cost=%d)\n",
		 ALLOCNO_BAD_SPILL_P (allocno) ? "bad spill, " : "",
		 allocno_spill_priority (allocno),
		 ALLOCNO_COLOR_DATA (allocno)->temp);
    }
  if (! colorable_p)
    ALLOCNO_COLOR_DATA (allocno)->may_be_spilled_p = true;
  push_allocno_to_stack (allocno);
}

/* Put all allocnos from colorable bucket onto the coloring stack.  */
static void
push_only_colorable (void)
{
  form_threads_from_bucket (colorable_allocno_bucket);
  sort_bucket (&colorable_allocno_bucket, bucket_allocno_compare_func);
  for (;colorable_allocno_bucket != NULL;)
    remove_allocno_from_bucket_and_push (colorable_allocno_bucket, true);
}

/* Return the frequency of exit edges (if EXIT_P) or entry from/to the
   loop given by its LOOP_NODE.  */
int
ira_loop_edge_freq (ira_loop_tree_node_t loop_node, int regno, bool exit_p)
{
  int freq, i;
  edge_iterator ei;
  edge e;
  vec<edge> edges;

  ira_assert (current_loops != NULL && loop_node->loop != NULL
	      && (regno < 0 || regno >= FIRST_PSEUDO_REGISTER));
  freq = 0;
  if (! exit_p)
    {
      FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds)
	if (e->src != loop_node->loop->latch
	    && (regno < 0
		|| (bitmap_bit_p (df_get_live_out (e->src), regno)
		    && bitmap_bit_p (df_get_live_in (e->dest), regno))))
	  freq += EDGE_FREQUENCY (e);
    }
  else
    {
      edges = get_loop_exit_edges (loop_node->loop);
      FOR_EACH_VEC_ELT (edges, i, e)
	if (regno < 0
	    || (bitmap_bit_p (df_get_live_out (e->src), regno)
		&& bitmap_bit_p (df_get_live_in (e->dest), regno)))
	  freq += EDGE_FREQUENCY (e);
      edges.release ();
    }

  return REG_FREQ_FROM_EDGE_FREQ (freq);
}

/* Calculate and return the cost of putting allocno A into memory.  */
static int
calculate_allocno_spill_cost (ira_allocno_t a)
{
  int regno, cost;
  enum machine_mode mode;
  enum reg_class rclass;
  ira_allocno_t parent_allocno;
  ira_loop_tree_node_t parent_node, loop_node;

  regno = ALLOCNO_REGNO (a);
  cost = ALLOCNO_UPDATED_MEMORY_COST (a) - ALLOCNO_UPDATED_CLASS_COST (a);
  if (ALLOCNO_CAP (a) != NULL)
    return cost;
  loop_node = ALLOCNO_LOOP_TREE_NODE (a);
  if ((parent_node = loop_node->parent) == NULL)
    return cost;
  if ((parent_allocno = parent_node->regno_allocno_map[regno]) == NULL)
    return cost;
  mode = ALLOCNO_MODE (a);
  rclass = ALLOCNO_CLASS (a);
  if (ALLOCNO_HARD_REGNO (parent_allocno) < 0)
    cost -= (ira_memory_move_cost[mode][rclass][0]
	     * ira_loop_edge_freq (loop_node, regno, true)
	     + ira_memory_move_cost[mode][rclass][1]
	     * ira_loop_edge_freq (loop_node, regno, false));
  else
    {
      ira_init_register_move_cost_if_necessary (mode);
      cost += ((ira_memory_move_cost[mode][rclass][1]
		* ira_loop_edge_freq (loop_node, regno, true)
		+ ira_memory_move_cost[mode][rclass][0]
		* ira_loop_edge_freq (loop_node, regno, false))
	       - (ira_register_move_cost[mode][rclass][rclass]
		  * (ira_loop_edge_freq (loop_node, regno, false)
		     + ira_loop_edge_freq (loop_node, regno, true))));
    }
  return cost;
}

/* Used for sorting allocnos for spilling.  */
static inline int
allocno_spill_priority_compare (ira_allocno_t a1, ira_allocno_t a2)
{
  int pri1, pri2, diff;

  if (ALLOCNO_BAD_SPILL_P (a1) && ! ALLOCNO_BAD_SPILL_P (a2))
    return 1;
  if (ALLOCNO_BAD_SPILL_P (a2) && ! ALLOCNO_BAD_SPILL_P (a1))
    return -1;
  pri1 = allocno_spill_priority (a1);
  pri2 = allocno_spill_priority (a2);
  if ((diff = pri1 - pri2) != 0)
    return diff;
  if ((diff
       = ALLOCNO_COLOR_DATA (a1)->temp - ALLOCNO_COLOR_DATA (a2)->temp) != 0)
    return diff;
  return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
}

/* Used for sorting allocnos for spilling.  */
static int
allocno_spill_sort_compare (const void *v1p, const void *v2p)
{
  ira_allocno_t p1 = *(const ira_allocno_t *) v1p;
  ira_allocno_t p2 = *(const ira_allocno_t *) v2p;

  return allocno_spill_priority_compare (p1, p2);
}

/* Push allocnos to the coloring stack.  The order of allocnos in the
   stack defines the order for the subsequent coloring.  */
static void
push_allocnos_to_stack (void)
{
  ira_allocno_t a;
  int cost;

  /* Calculate uncolorable allocno spill costs.  */
  for (a = uncolorable_allocno_bucket;
       a != NULL;
       a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
    if (ALLOCNO_CLASS (a) != NO_REGS)
      {
	cost = calculate_allocno_spill_cost (a);
	/* ??? Remove cost of copies between the coalesced
	   allocnos.  */
	ALLOCNO_COLOR_DATA (a)->temp = cost;
      }
  sort_bucket (&uncolorable_allocno_bucket, allocno_spill_sort_compare);
  for (;;)
    {
      push_only_colorable ();
      a = uncolorable_allocno_bucket;
      if (a == NULL)
	break;
      remove_allocno_from_bucket_and_push (a, false);
    }
  ira_assert (colorable_allocno_bucket == NULL
	      && uncolorable_allocno_bucket == NULL);
  ira_assert (uncolorable_allocnos_num == 0);
}

/* Pop the coloring stack and assign hard registers to the popped
   allocnos.  */
static void
pop_allocnos_from_stack (void)
{
  ira_allocno_t allocno;
  enum reg_class aclass;

  for (;allocno_stack_vec.length () != 0;)
    {
      allocno = allocno_stack_vec.pop ();
      aclass = ALLOCNO_CLASS (allocno);
      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
	{
	  fprintf (ira_dump_file, "      Popping");
	  ira_print_expanded_allocno (allocno);
	  fprintf (ira_dump_file, "  -- ");
	}
      if (aclass == NO_REGS)
	{
	  ALLOCNO_HARD_REGNO (allocno) = -1;
	  ALLOCNO_ASSIGNED_P (allocno) = true;
	  ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (allocno) == NULL);
	  ira_assert
	    (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (allocno) == NULL);
	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
	    fprintf (ira_dump_file, "assign memory\n");
	}
      else if (assign_hard_reg (allocno, false))
	{
	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
	    fprintf (ira_dump_file, "assign reg %d\n",
		     ALLOCNO_HARD_REGNO (allocno));
	}
      else if (ALLOCNO_ASSIGNED_P (allocno))
	{
	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
	    fprintf (ira_dump_file, "spill%s\n",
		     ALLOCNO_COLOR_DATA (allocno)->may_be_spilled_p
		     ? "" : "!");
	}
      ALLOCNO_COLOR_DATA (allocno)->in_graph_p = true;
    }
}

/* Set up number of available hard registers for allocno A.  */
static void
setup_allocno_available_regs_num (ira_allocno_t a)
{
  int i, n, hard_regno, hard_regs_num, nwords;
  enum reg_class aclass;
  allocno_color_data_t data;

  aclass = ALLOCNO_CLASS (a);
  data = ALLOCNO_COLOR_DATA (a);
  data->available_regs_num = 0;
  if (aclass == NO_REGS)
    return;
  hard_regs_num = ira_class_hard_regs_num[aclass];
  nwords = ALLOCNO_NUM_OBJECTS (a);
  for (n = 0, i = hard_regs_num - 1; i >= 0; i--)
    {
      hard_regno = ira_class_hard_regs[aclass][i];
      /* Checking only profitable hard regs.  */
      if (TEST_HARD_REG_BIT (data->profitable_hard_regs, hard_regno))
	n++;
    }
  data->available_regs_num = n;
  if (internal_flag_ira_verbose <= 2 || ira_dump_file == NULL)
    return;
  fprintf
    (ira_dump_file,
     "      Allocno a%dr%d of %s(%d) has %d avail. regs ",
     ALLOCNO_NUM (a), ALLOCNO_REGNO (a),
     reg_class_names[aclass], ira_class_hard_regs_num[aclass], n);
  print_hard_reg_set (ira_dump_file, data->profitable_hard_regs, false);
  fprintf (ira_dump_file, ", %snode: ",
	   hard_reg_set_equal_p (data->profitable_hard_regs,
				 data->hard_regs_node->hard_regs->set)
	   ? "" : "^");
  print_hard_reg_set (ira_dump_file,
		      data->hard_regs_node->hard_regs->set, false);
  for (i = 0; i < nwords; i++)
    {
      ira_object_t obj = ALLOCNO_OBJECT (a, i);

      if (nwords != 1)
	{
	  if (i != 0)
	    fprintf (ira_dump_file, ", ");
	  fprintf (ira_dump_file, " obj %d", i);
	}
      fprintf (ira_dump_file, " (confl regs = ");
      print_hard_reg_set (ira_dump_file, OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
			  false);
      fprintf (ira_dump_file, ")");
    }
  fprintf (ira_dump_file, "\n");
}

/* Put ALLOCNO in a bucket corresponding to its number and size of its
   conflicting allocnos and hard registers.  */
static void
put_allocno_into_bucket (ira_allocno_t allocno)
{
  ALLOCNO_COLOR_DATA (allocno)->in_graph_p = true;
  setup_allocno_available_regs_num (allocno);
  if (setup_left_conflict_sizes_p (allocno))
    add_allocno_to_bucket (allocno, &colorable_allocno_bucket);
  else
    add_allocno_to_bucket (allocno, &uncolorable_allocno_bucket);
}

/* Map: allocno number -> allocno priority.  */
static int *allocno_priorities;

/* Set up priorities for N allocnos in array
   CONSIDERATION_ALLOCNOS.  */
static void
setup_allocno_priorities (ira_allocno_t *consideration_allocnos, int n)
{
  int i, length, nrefs, priority, max_priority, mult;
  ira_allocno_t a;

  max_priority = 0;
  for (i = 0; i < n; i++)
    {
      a = consideration_allocnos[i];
      nrefs = ALLOCNO_NREFS (a);
      ira_assert (nrefs >= 0);
      mult = floor_log2 (ALLOCNO_NREFS (a)) + 1;
      ira_assert (mult >= 0);
      allocno_priorities[ALLOCNO_NUM (a)]
	= priority
	= (mult
	   * (ALLOCNO_MEMORY_COST (a) - ALLOCNO_CLASS_COST (a))
	   * ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
      if (priority < 0)
	priority = -priority;
      if (max_priority < priority)
	max_priority = priority;
    }
  mult = max_priority == 0 ? 1 : INT_MAX / max_priority;
  for (i = 0; i < n; i++)
    {
      a = consideration_allocnos[i];
      length = ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
      if (ALLOCNO_NUM_OBJECTS (a) > 1)
	length /= ALLOCNO_NUM_OBJECTS (a);
      if (length <= 0)
	length = 1;
      allocno_priorities[ALLOCNO_NUM (a)]
	= allocno_priorities[ALLOCNO_NUM (a)] * mult / length;
    }
}

/* Sort allocnos according to the profit of usage of a hard register
   instead of memory for them. */
static int
allocno_cost_compare_func (const void *v1p, const void *v2p)
{
  ira_allocno_t p1 = *(const ira_allocno_t *) v1p;
  ira_allocno_t p2 = *(const ira_allocno_t *) v2p;
  int c1, c2;

  c1 = ALLOCNO_UPDATED_MEMORY_COST (p1) - ALLOCNO_UPDATED_CLASS_COST (p1);
  c2 = ALLOCNO_UPDATED_MEMORY_COST (p2) - ALLOCNO_UPDATED_CLASS_COST (p2);
  if (c1 - c2)
    return c1 - c2;

  /* If regs are equally good, sort by allocno numbers, so that the
     results of qsort leave nothing to chance.  */
  return ALLOCNO_NUM (p1) - ALLOCNO_NUM (p2);
}

/* We used Chaitin-Briggs coloring to assign as many pseudos as
   possible to hard registers.  Let us try to improve allocation with
   cost point of view.  This function improves the allocation by
   spilling some allocnos and assigning the freed hard registers to
   other allocnos if it decreases the overall allocation cost.  */
static void
improve_allocation (void)
{
  unsigned int i;
  int j, k, n, hregno, conflict_hregno, base_cost, class_size, word, nwords;
  int check, spill_cost, min_cost, nregs, conflict_nregs, r, best;
  bool try_p;
  enum reg_class aclass;
  enum machine_mode mode;
  int *allocno_costs;
  int costs[FIRST_PSEUDO_REGISTER];
  HARD_REG_SET conflicting_regs[2], profitable_hard_regs;
  ira_allocno_t a;
  bitmap_iterator bi;

  /* Clear counts used to process conflicting allocnos only once for
     each allocno.  */
  EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
    ALLOCNO_COLOR_DATA (ira_allocnos[i])->temp = 0;
  check = n = 0;
  /* Process each allocno and try to assign a hard register to it by
     spilling some its conflicting allocnos.  */
  EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
    {
      a = ira_allocnos[i];
      ALLOCNO_COLOR_DATA (a)->temp = 0;
      if (empty_profitable_hard_regs (a))
	continue;
      check++;
      aclass = ALLOCNO_CLASS (a);
      allocno_costs = ALLOCNO_UPDATED_HARD_REG_COSTS (a);
      if (allocno_costs == NULL)
	allocno_costs = ALLOCNO_HARD_REG_COSTS (a);
      if ((hregno = ALLOCNO_HARD_REGNO (a)) < 0)
	base_cost = ALLOCNO_UPDATED_MEMORY_COST (a);
      else if (allocno_costs == NULL)
	/* It means that assigning a hard register is not profitable
	   (we don't waste memory for hard register costs in this
	   case).  */
	continue;
      else
	base_cost = allocno_costs[ira_class_hard_reg_index[aclass][hregno]];
      try_p = false;
      get_conflict_and_start_profitable_regs (a, false,
					      conflicting_regs,
					      &profitable_hard_regs);
      class_size = ira_class_hard_regs_num[aclass];
      /* Set up cost improvement for usage of each profitable hard
	 register for allocno A.  */
      for (j = 0; j < class_size; j++)
	{
	  hregno = ira_class_hard_regs[aclass][j];
	  if (! check_hard_reg_p (a, hregno,
				  conflicting_regs, profitable_hard_regs))
	    continue;
	  ira_assert (ira_class_hard_reg_index[aclass][hregno] == j);
	  k = allocno_costs == NULL ? 0 : j;
	  costs[hregno] = (allocno_costs == NULL
			   ? ALLOCNO_UPDATED_CLASS_COST (a) : allocno_costs[k]);
	  costs[hregno] -= base_cost;
	  if (costs[hregno] < 0)
	    try_p = true;
	}
      if (! try_p)
	/* There is no chance to improve the allocation cost by
	   assigning hard register to allocno A even without spilling
	   conflicting allocnos.  */
	continue;
      mode = ALLOCNO_MODE (a);
      nwords = ALLOCNO_NUM_OBJECTS (a);
      /* Process each allocno conflicting with A and update the cost
	 improvement for profitable hard registers of A.  To use a
	 hard register for A we need to spill some conflicting
	 allocnos and that creates penalty for the cost
	 improvement.  */
      for (word = 0; word < nwords; word++)
	{
	  ira_object_t conflict_obj;
	  ira_object_t obj = ALLOCNO_OBJECT (a, word);
	  ira_object_conflict_iterator oci;
      
	  FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
	    {
	      ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);

	      if (ALLOCNO_COLOR_DATA (conflict_a)->temp == check)
		/* We already processed this conflicting allocno
		   because we processed earlier another object of the
		   conflicting allocno.  */
		continue;
	      ALLOCNO_COLOR_DATA (conflict_a)->temp = check;
	      if ((conflict_hregno = ALLOCNO_HARD_REGNO (conflict_a)) < 0)
		continue;
	      spill_cost = ALLOCNO_UPDATED_MEMORY_COST (conflict_a);
	      k = (ira_class_hard_reg_index
		   [ALLOCNO_CLASS (conflict_a)][conflict_hregno]);
	      ira_assert (k >= 0);
	      if ((allocno_costs = ALLOCNO_UPDATED_HARD_REG_COSTS (conflict_a))
		  != NULL)
		spill_cost -= allocno_costs[k];
	      else if ((allocno_costs = ALLOCNO_HARD_REG_COSTS (conflict_a))
		       != NULL)
		spill_cost -= allocno_costs[k];
	      else
		spill_cost -= ALLOCNO_UPDATED_CLASS_COST (conflict_a);
	      conflict_nregs
		= hard_regno_nregs[conflict_hregno][ALLOCNO_MODE (conflict_a)];
	      for (r = conflict_hregno;
		   r >= 0 && r + hard_regno_nregs[r][mode] > conflict_hregno;
		   r--)
		if (check_hard_reg_p (a, r,
				      conflicting_regs, profitable_hard_regs))
		  costs[r] += spill_cost;
	      for (r = conflict_hregno + 1;
		   r < conflict_hregno + conflict_nregs;
		   r++)
		if (check_hard_reg_p (a, r,
				      conflicting_regs, profitable_hard_regs))
		  costs[r] += spill_cost;
	    }
	}
      min_cost = INT_MAX;
      best = -1;
      /* Now we choose hard register for A which results in highest
	 allocation cost improvement.  */
      for (j = 0; j < class_size; j++)
	{
	  hregno = ira_class_hard_regs[aclass][j];
	  if (check_hard_reg_p (a, hregno,
				conflicting_regs, profitable_hard_regs)
	      && min_cost > costs[hregno])
	    {
	      best = hregno;
	      min_cost = costs[hregno];
	    }
	}
      if (min_cost >= 0)
	/* We are in a situation when assigning any hard register to A
	   by spilling some conflicting allocnos does not improve the
	   allocation cost.  */
	continue;
      nregs = hard_regno_nregs[best][mode];
      /* Now spill conflicting allocnos which contain a hard register
	 of A when we assign the best chosen hard register to it.  */
      for (word = 0; word < nwords; word++)
	{
	  ira_object_t conflict_obj;
	  ira_object_t obj = ALLOCNO_OBJECT (a, word);
	  ira_object_conflict_iterator oci;
      
	  FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
	    {
	      ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);

	      if ((conflict_hregno = ALLOCNO_HARD_REGNO (conflict_a)) < 0)
		continue;
	      conflict_nregs
		= hard_regno_nregs[conflict_hregno][ALLOCNO_MODE (conflict_a)];
	      if (best + nregs <= conflict_hregno
		  || conflict_hregno + conflict_nregs <= best)
		/* No intersection.  */
		continue;
	      ALLOCNO_HARD_REGNO (conflict_a) = -1;
	      sorted_allocnos[n++] = conflict_a;
	      if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
		fprintf (ira_dump_file, "Spilling a%dr%d for a%dr%d\n",
			 ALLOCNO_NUM (conflict_a), ALLOCNO_REGNO (conflict_a),
			 ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
	    }
	}
      /* Assign the best chosen hard register to A.  */
      ALLOCNO_HARD_REGNO (a) = best;
      if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
	fprintf (ira_dump_file, "Assigning %d to a%dr%d\n",
		 best, ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
    }
  if (n == 0)
    return;
  /* We spilled some allocnos to assign their hard registers to other
     allocnos.  The spilled allocnos are now in array
     'sorted_allocnos'.  There is still a possibility that some of the
     spilled allocnos can get hard registers.  So let us try assign
     them hard registers again (just a reminder -- function
     'assign_hard_reg' assigns hard registers only if it is possible
     and profitable).  We process the spilled allocnos with biggest
     benefit to get hard register first -- see function
     'allocno_cost_compare_func'.  */
  qsort (sorted_allocnos, n, sizeof (ira_allocno_t),
	 allocno_cost_compare_func);
  for (j = 0; j < n; j++)
    {
      a = sorted_allocnos[j];
      ALLOCNO_ASSIGNED_P (a) = false;
      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
	{
	  fprintf (ira_dump_file, "      ");
	  ira_print_expanded_allocno (a);
	  fprintf (ira_dump_file, "  -- ");
	}
      if (assign_hard_reg (a, false))
	{
	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
	    fprintf (ira_dump_file, "assign hard reg %d\n",
		     ALLOCNO_HARD_REGNO (a));
	}
      else
	{
	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
	    fprintf (ira_dump_file, "assign memory\n");
	}
    }
}

/* Sort allocnos according to their priorities.  */
static int
allocno_priority_compare_func (const void *v1p, const void *v2p)
{
  ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
  ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
  int pri1, pri2;

  pri1 = allocno_priorities[ALLOCNO_NUM (a1)];
  pri2 = allocno_priorities[ALLOCNO_NUM (a2)];
  if (pri2 != pri1)
    return SORTGT (pri2, pri1);

  /* If regs are equally good, sort by allocnos, so that the results of
     qsort leave nothing to chance.  */
  return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
}

/* Chaitin-Briggs coloring for allocnos in COLORING_ALLOCNO_BITMAP
   taking into account allocnos in CONSIDERATION_ALLOCNO_BITMAP.  */
static void
color_allocnos (void)
{
  unsigned int i, n;
  bitmap_iterator bi;
  ira_allocno_t a;

  setup_profitable_hard_regs ();
  EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
    {
      int l, nr;
      HARD_REG_SET conflict_hard_regs;
      allocno_color_data_t data;
      ira_pref_t pref, next_pref;

      a = ira_allocnos[i];
      nr = ALLOCNO_NUM_OBJECTS (a);
      CLEAR_HARD_REG_SET (conflict_hard_regs);
      for (l = 0; l < nr; l++)
	{
	  ira_object_t obj = ALLOCNO_OBJECT (a, l);
	  IOR_HARD_REG_SET (conflict_hard_regs,
			    OBJECT_CONFLICT_HARD_REGS (obj));
	}
      data = ALLOCNO_COLOR_DATA (a);
      for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = next_pref)
	{
	  next_pref = pref->next_pref;
	  if (! ira_hard_reg_in_set_p (pref->hard_regno,
				       ALLOCNO_MODE (a),
				       data->profitable_hard_regs))
	    ira_remove_pref (pref);
	}
    }
  if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
    {
      n = 0;
      EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
	{
	  a = ira_allocnos[i];
	  if (ALLOCNO_CLASS (a) == NO_REGS)
	    {
	      ALLOCNO_HARD_REGNO (a) = -1;
	      ALLOCNO_ASSIGNED_P (a) = true;
	      ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
	      ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
	      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
		{
		  fprintf (ira_dump_file, "      Spill");
		  ira_print_expanded_allocno (a);
		  fprintf (ira_dump_file, "\n");
		}
	      continue;
	    }
	  sorted_allocnos[n++] = a;
	}
      if (n != 0)
	{
	  setup_allocno_priorities (sorted_allocnos, n);
	  qsort (sorted_allocnos, n, sizeof (ira_allocno_t),
		 allocno_priority_compare_func);
	  for (i = 0; i < n; i++)
	    {
	      a = sorted_allocnos[i];
	      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
		{
		  fprintf (ira_dump_file, "      ");
		  ira_print_expanded_allocno (a);
		  fprintf (ira_dump_file, "  -- ");
		}
	      if (assign_hard_reg (a, false))
		{
		  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
		    fprintf (ira_dump_file, "assign hard reg %d\n",
			     ALLOCNO_HARD_REGNO (a));
		}
	      else
		{
		  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
		    fprintf (ira_dump_file, "assign memory\n");
		}
	    }
	}
    }
  else
    {
      form_allocno_hard_regs_nodes_forest ();
      if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
	print_hard_regs_forest (ira_dump_file);
      EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
	{
	  a = ira_allocnos[i];
	  if (ALLOCNO_CLASS (a) != NO_REGS && ! empty_profitable_hard_regs (a))
	    {
	      ALLOCNO_COLOR_DATA (a)->in_graph_p = true;
	      update_costs_from_prefs (a);
	    }
	  else
	    {
	      ALLOCNO_HARD_REGNO (a) = -1;
	      ALLOCNO_ASSIGNED_P (a) = true;
	      /* We don't need updated costs anymore.  */
	      ira_free_allocno_updated_costs (a);
	      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
		{
		  fprintf (ira_dump_file, "      Spill");
		  ira_print_expanded_allocno (a);
		  fprintf (ira_dump_file, "\n");
		}
	    }
	}
      /* Put the allocnos into the corresponding buckets.  */
      colorable_allocno_bucket = NULL;
      uncolorable_allocno_bucket = NULL;
      EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
	{
	  a = ira_allocnos[i];
	  if (ALLOCNO_COLOR_DATA (a)->in_graph_p)
	    put_allocno_into_bucket (a);
	}
      push_allocnos_to_stack ();
      pop_allocnos_from_stack ();
      finish_allocno_hard_regs_nodes_forest ();
    }
  improve_allocation ();
}



/* Output information about the loop given by its LOOP_TREE_NODE.  */
static void
print_loop_title (ira_loop_tree_node_t loop_tree_node)
{
  unsigned int j;
  bitmap_iterator bi;
  ira_loop_tree_node_t subloop_node, dest_loop_node;
  edge e;
  edge_iterator ei;

  if (loop_tree_node->parent == NULL)
    fprintf (ira_dump_file,
	     "\n  Loop 0 (parent -1, header bb%d, depth 0)\n    bbs:",
	     NUM_FIXED_BLOCKS);
  else
    {
      ira_assert (current_loops != NULL && loop_tree_node->loop != NULL);
      fprintf (ira_dump_file,
	       "\n  Loop %d (parent %d, header bb%d, depth %d)\n    bbs:",
	       loop_tree_node->loop_num, loop_tree_node->parent->loop_num,
	       loop_tree_node->loop->header->index,
	       loop_depth (loop_tree_node->loop));
    }
  for (subloop_node = loop_tree_node->children;
       subloop_node != NULL;
       subloop_node = subloop_node->next)
    if (subloop_node->bb != NULL)
      {
	fprintf (ira_dump_file, " %d", subloop_node->bb->index);
	FOR_EACH_EDGE (e, ei, subloop_node->bb->succs)
	  if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
	      && ((dest_loop_node = IRA_BB_NODE (e->dest)->parent)
		  != loop_tree_node))
	    fprintf (ira_dump_file, "(->%d:l%d)",
		     e->dest->index, dest_loop_node->loop_num);
      }
  fprintf (ira_dump_file, "\n    all:");
  EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->all_allocnos, 0, j, bi)
    fprintf (ira_dump_file, " %dr%d", j, ALLOCNO_REGNO (ira_allocnos[j]));
  fprintf (ira_dump_file, "\n    modified regnos:");
  EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->modified_regnos, 0, j, bi)
    fprintf (ira_dump_file, " %d", j);
  fprintf (ira_dump_file, "\n    border:");
  EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->border_allocnos, 0, j, bi)
    fprintf (ira_dump_file, " %dr%d", j, ALLOCNO_REGNO (ira_allocnos[j]));
  fprintf (ira_dump_file, "\n    Pressure:");
  for (j = 0; (int) j < ira_pressure_classes_num; j++)
    {
      enum reg_class pclass;

      pclass = ira_pressure_classes[j];
      if (loop_tree_node->reg_pressure[pclass] == 0)
	continue;
      fprintf (ira_dump_file, " %s=%d", reg_class_names[pclass],
	       loop_tree_node->reg_pressure[pclass]);
    }
  fprintf (ira_dump_file, "\n");
}

/* Color the allocnos inside loop (in the extreme case it can be all
   of the function) given the corresponding LOOP_TREE_NODE.  The
   function is called for each loop during top-down traverse of the
   loop tree.  */
static void
color_pass (ira_loop_tree_node_t loop_tree_node)
{
  int regno, hard_regno, index = -1, n;
  int cost, exit_freq, enter_freq;
  unsigned int j;
  bitmap_iterator bi;
  enum machine_mode mode;
  enum reg_class rclass, aclass, pclass;
  ira_allocno_t a, subloop_allocno;
  ira_loop_tree_node_t subloop_node;

  ira_assert (loop_tree_node->bb == NULL);
  if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
    print_loop_title (loop_tree_node);

  bitmap_copy (coloring_allocno_bitmap, loop_tree_node->all_allocnos);
  bitmap_copy (consideration_allocno_bitmap, coloring_allocno_bitmap);
  n = 0;
  EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
    {
      a = ira_allocnos[j];
      n++;
      if (! ALLOCNO_ASSIGNED_P (a))
	continue;
      bitmap_clear_bit (coloring_allocno_bitmap, ALLOCNO_NUM (a));
    }
  allocno_color_data
    = (allocno_color_data_t) ira_allocate (sizeof (struct allocno_color_data)
					   * n);
  memset (allocno_color_data, 0, sizeof (struct allocno_color_data) * n);
  curr_allocno_process = 0;
  n = 0;
  EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
    {
      a = ira_allocnos[j];
      ALLOCNO_ADD_DATA (a) = allocno_color_data + n;
      n++;
    }
  init_allocno_threads ();
  /* Color all mentioned allocnos including transparent ones.  */
  color_allocnos ();
  /* Process caps.  They are processed just once.  */
  if (flag_ira_region == IRA_REGION_MIXED
      || flag_ira_region == IRA_REGION_ALL)
    EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->all_allocnos, 0, j, bi)
      {
	a = ira_allocnos[j];
	if (ALLOCNO_CAP_MEMBER (a) == NULL)
	  continue;
	/* Remove from processing in the next loop.  */
	bitmap_clear_bit (consideration_allocno_bitmap, j);
	rclass = ALLOCNO_CLASS (a);
	pclass = ira_pressure_class_translate[rclass];
	if (flag_ira_region == IRA_REGION_MIXED
	    && (loop_tree_node->reg_pressure[pclass]
		<= ira_class_hard_regs_num[pclass]))
	  {
	    mode = ALLOCNO_MODE (a);
	    hard_regno = ALLOCNO_HARD_REGNO (a);
	    if (hard_regno >= 0)
	      {
		index = ira_class_hard_reg_index[rclass][hard_regno];
		ira_assert (index >= 0);
	      }
	    regno = ALLOCNO_REGNO (a);
	    subloop_allocno = ALLOCNO_CAP_MEMBER (a);
	    subloop_node = ALLOCNO_LOOP_TREE_NODE (subloop_allocno);
	    ira_assert (!ALLOCNO_ASSIGNED_P (subloop_allocno));
	    ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
	    ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
	    if (hard_regno >= 0)
	      update_costs_from_copies (subloop_allocno, true, true);
	    /* We don't need updated costs anymore.  */
	    ira_free_allocno_updated_costs (subloop_allocno);
	  }
      }
  /* Update costs of the corresponding allocnos (not caps) in the
     subloops.  */
  for (subloop_node = loop_tree_node->subloops;
       subloop_node != NULL;
       subloop_node = subloop_node->subloop_next)
    {
      ira_assert (subloop_node->bb == NULL);
      EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
        {
	  a = ira_allocnos[j];
	  ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
	  mode = ALLOCNO_MODE (a);
	  rclass = ALLOCNO_CLASS (a);
	  pclass = ira_pressure_class_translate[rclass];
	  hard_regno = ALLOCNO_HARD_REGNO (a);
	  /* Use hard register class here.  ??? */
	  if (hard_regno >= 0)
	    {
	      index = ira_class_hard_reg_index[rclass][hard_regno];
	      ira_assert (index >= 0);
	    }
	  regno = ALLOCNO_REGNO (a);
	  /* ??? conflict costs */
	  subloop_allocno = subloop_node->regno_allocno_map[regno];
	  if (subloop_allocno == NULL
	      || ALLOCNO_CAP (subloop_allocno) != NULL)
	    continue;
	  ira_assert (ALLOCNO_CLASS (subloop_allocno) == rclass);
	  ira_assert (bitmap_bit_p (subloop_node->all_allocnos,
				    ALLOCNO_NUM (subloop_allocno)));
	  if ((flag_ira_region == IRA_REGION_MIXED
	       && (loop_tree_node->reg_pressure[pclass]
		   <= ira_class_hard_regs_num[pclass]))
	      || (pic_offset_table_rtx != NULL
		  && regno == (int) REGNO (pic_offset_table_rtx)))
	    {
	      if (! ALLOCNO_ASSIGNED_P (subloop_allocno))
		{
		  ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
		  ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
		  if (hard_regno >= 0)
		    update_costs_from_copies (subloop_allocno, true, true);
		  /* We don't need updated costs anymore.  */
		  ira_free_allocno_updated_costs (subloop_allocno);
		}
	      continue;
	    }
	  exit_freq = ira_loop_edge_freq (subloop_node, regno, true);
	  enter_freq = ira_loop_edge_freq (subloop_node, regno, false);
	  ira_assert (regno < ira_reg_equiv_len);
	  if (ira_equiv_no_lvalue_p (regno))
	    {
	      if (! ALLOCNO_ASSIGNED_P (subloop_allocno))
		{
		  ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
		  ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
		  if (hard_regno >= 0)
		    update_costs_from_copies (subloop_allocno, true, true);
		  /* We don't need updated costs anymore.  */
		  ira_free_allocno_updated_costs (subloop_allocno);
		}
	    }
	  else if (hard_regno < 0)
	    {
	      ALLOCNO_UPDATED_MEMORY_COST (subloop_allocno)
		-= ((ira_memory_move_cost[mode][rclass][1] * enter_freq)
		    + (ira_memory_move_cost[mode][rclass][0] * exit_freq));
	    }
	  else
	    {
	      aclass = ALLOCNO_CLASS (subloop_allocno);
	      ira_init_register_move_cost_if_necessary (mode);
	      cost = (ira_register_move_cost[mode][rclass][rclass]
		      * (exit_freq + enter_freq));
	      ira_allocate_and_set_or_copy_costs
		(&ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno), aclass,
		 ALLOCNO_UPDATED_CLASS_COST (subloop_allocno),
		 ALLOCNO_HARD_REG_COSTS (subloop_allocno));
	      ira_allocate_and_set_or_copy_costs
		(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (subloop_allocno),
		 aclass, 0, ALLOCNO_CONFLICT_HARD_REG_COSTS (subloop_allocno));
	      ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index] -= cost;
	      ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (subloop_allocno)[index]
		-= cost;
	      if (ALLOCNO_UPDATED_CLASS_COST (subloop_allocno)
		  > ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index])
		ALLOCNO_UPDATED_CLASS_COST (subloop_allocno)
		  = ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index];
	      ALLOCNO_UPDATED_MEMORY_COST (subloop_allocno)
		+= (ira_memory_move_cost[mode][rclass][0] * enter_freq
		    + ira_memory_move_cost[mode][rclass][1] * exit_freq);
	    }
	}
    }
  ira_free (allocno_color_data);
  EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
    {
      a = ira_allocnos[j];
      ALLOCNO_ADD_DATA (a) = NULL;
    }
}

/* Initialize the common data for coloring and calls functions to do
   Chaitin-Briggs and regional coloring.  */
static void
do_coloring (void)
{
  coloring_allocno_bitmap = ira_allocate_bitmap ();
  if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
    fprintf (ira_dump_file, "\n**** Allocnos coloring:\n\n");

  ira_traverse_loop_tree (false, ira_loop_tree_root, color_pass, NULL);

  if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
    ira_print_disposition (ira_dump_file);

  ira_free_bitmap (coloring_allocno_bitmap);
}



/* Move spill/restore code, which are to be generated in ira-emit.c,
   to less frequent points (if it is profitable) by reassigning some
   allocnos (in loop with subloops containing in another loop) to
   memory which results in longer live-range where the corresponding
   pseudo-registers will be in memory.  */
static void
move_spill_restore (void)
{
  int cost, regno, hard_regno, hard_regno2, index;
  bool changed_p;
  int enter_freq, exit_freq;
  enum machine_mode mode;
  enum reg_class rclass;
  ira_allocno_t a, parent_allocno, subloop_allocno;
  ira_loop_tree_node_t parent, loop_node, subloop_node;
  ira_allocno_iterator ai;

  for (;;)
    {
      changed_p = false;
      if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
	fprintf (ira_dump_file, "New iteration of spill/restore move\n");
      FOR_EACH_ALLOCNO (a, ai)
	{
	  regno = ALLOCNO_REGNO (a);
	  loop_node = ALLOCNO_LOOP_TREE_NODE (a);
	  if (ALLOCNO_CAP_MEMBER (a) != NULL
	      || ALLOCNO_CAP (a) != NULL
	      || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0
	      || loop_node->children == NULL
	      /* don't do the optimization because it can create
		 copies and the reload pass can spill the allocno set
		 by copy although the allocno will not get memory
		 slot.  */
	      || ira_equiv_no_lvalue_p (regno)
	      || !bitmap_bit_p (loop_node->border_allocnos, ALLOCNO_NUM (a)))
	    continue;
	  mode = ALLOCNO_MODE (a);
	  rclass = ALLOCNO_CLASS (a);
	  index = ira_class_hard_reg_index[rclass][hard_regno];
	  ira_assert (index >= 0);
	  cost = (ALLOCNO_MEMORY_COST (a)
		  - (ALLOCNO_HARD_REG_COSTS (a) == NULL
		     ? ALLOCNO_CLASS_COST (a)
		     : ALLOCNO_HARD_REG_COSTS (a)[index]));
	  ira_init_register_move_cost_if_necessary (mode);
	  for (subloop_node = loop_node->subloops;
	       subloop_node != NULL;
	       subloop_node = subloop_node->subloop_next)
	    {
	      ira_assert (subloop_node->bb == NULL);
	      subloop_allocno = subloop_node->regno_allocno_map[regno];
	      if (subloop_allocno == NULL)
		continue;
	      ira_assert (rclass == ALLOCNO_CLASS (subloop_allocno));
	      /* We have accumulated cost.  To get the real cost of
		 allocno usage in the loop we should subtract costs of
		 the subloop allocnos.  */
	      cost -= (ALLOCNO_MEMORY_COST (subloop_allocno)
		       - (ALLOCNO_HARD_REG_COSTS (subloop_allocno) == NULL
			  ? ALLOCNO_CLASS_COST (subloop_allocno)
			  : ALLOCNO_HARD_REG_COSTS (subloop_allocno)[index]));
	      exit_freq = ira_loop_edge_freq (subloop_node, regno, true);
	      enter_freq = ira_loop_edge_freq (subloop_node, regno, false);
	      if ((hard_regno2 = ALLOCNO_HARD_REGNO (subloop_allocno)) < 0)
		cost -= (ira_memory_move_cost[mode][rclass][0] * exit_freq
			 + ira_memory_move_cost[mode][rclass][1] * enter_freq);
	      else
		{
		  cost
		    += (ira_memory_move_cost[mode][rclass][0] * exit_freq
			+ ira_memory_move_cost[mode][rclass][1] * enter_freq);
		  if (hard_regno2 != hard_regno)
		    cost -= (ira_register_move_cost[mode][rclass][rclass]
			     * (exit_freq + enter_freq));
		}
	    }
	  if ((parent = loop_node->parent) != NULL
	      && (parent_allocno = parent->regno_allocno_map[regno]) != NULL)
	    {
	      ira_assert (rclass == ALLOCNO_CLASS (parent_allocno));
	      exit_freq	= ira_loop_edge_freq (loop_node, regno, true);
	      enter_freq = ira_loop_edge_freq (loop_node, regno, false);
	      if ((hard_regno2 = ALLOCNO_HARD_REGNO (parent_allocno)) < 0)
		cost -= (ira_memory_move_cost[mode][rclass][0] * exit_freq
			 + ira_memory_move_cost[mode][rclass][1] * enter_freq);
	      else
		{
		  cost
		    += (ira_memory_move_cost[mode][rclass][1] * exit_freq
			+ ira_memory_move_cost[mode][rclass][0] * enter_freq);
		  if (hard_regno2 != hard_regno)
		    cost -= (ira_register_move_cost[mode][rclass][rclass]
			     * (exit_freq + enter_freq));
		}
	    }
	  if (cost < 0)
	    {
	      ALLOCNO_HARD_REGNO (a) = -1;
	      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
		{
		  fprintf
		    (ira_dump_file,
		     "      Moving spill/restore for a%dr%d up from loop %d",
		     ALLOCNO_NUM (a), regno, loop_node->loop_num);
		  fprintf (ira_dump_file, " - profit %d\n", -cost);
		}
	      changed_p = true;
	    }
	}
      if (! changed_p)
	break;
    }
}



/* Update current hard reg costs and current conflict hard reg costs
   for allocno A.  It is done by processing its copies containing
   other allocnos already assigned.  */
static void
update_curr_costs (ira_allocno_t a)
{
  int i, hard_regno, cost;
  enum machine_mode mode;
  enum reg_class aclass, rclass;
  ira_allocno_t another_a;
  ira_copy_t cp, next_cp;

  ira_free_allocno_updated_costs (a);
  ira_assert (! ALLOCNO_ASSIGNED_P (a));
  aclass = ALLOCNO_CLASS (a);
  if (aclass == NO_REGS)
    return;
  mode = ALLOCNO_MODE (a);
  ira_init_register_move_cost_if_necessary (mode);
  for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
    {
      if (cp->first == a)
	{
	  next_cp = cp->next_first_allocno_copy;
	  another_a = cp->second;
	}
      else if (cp->second == a)
	{
	  next_cp = cp->next_second_allocno_copy;
	  another_a = cp->first;
	}
      else
	gcc_unreachable ();
      if (! ira_reg_classes_intersect_p[aclass][ALLOCNO_CLASS (another_a)]
	  || ! ALLOCNO_ASSIGNED_P (another_a)
	  || (hard_regno = ALLOCNO_HARD_REGNO (another_a)) < 0)
	continue;
      rclass = REGNO_REG_CLASS (hard_regno);
      i = ira_class_hard_reg_index[aclass][hard_regno];
      if (i < 0)
	continue;
      cost = (cp->first == a
	      ? ira_register_move_cost[mode][rclass][aclass]
	      : ira_register_move_cost[mode][aclass][rclass]);
      ira_allocate_and_set_or_copy_costs
	(&ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a),
	 ALLOCNO_HARD_REG_COSTS (a));
      ira_allocate_and_set_or_copy_costs
	(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
	 aclass, 0, ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
      ALLOCNO_UPDATED_HARD_REG_COSTS (a)[i] -= cp->freq * cost;
      ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a)[i] -= cp->freq * cost;
    }
}

/* Try to assign hard registers to the unassigned allocnos and
   allocnos conflicting with them or conflicting with allocnos whose
   regno >= START_REGNO.  The function is called after ira_flattening,
   so more allocnos (including ones created in ira-emit.c) will have a
   chance to get a hard register.  We use simple assignment algorithm
   based on priorities.  */
void
ira_reassign_conflict_allocnos (int start_regno)
{
  int i, allocnos_to_color_num;
  ira_allocno_t a;
  enum reg_class aclass;
  bitmap allocnos_to_color;
  ira_allocno_iterator ai;

  allocnos_to_color = ira_allocate_bitmap ();
  allocnos_to_color_num = 0;
  FOR_EACH_ALLOCNO (a, ai)
    {
      int n = ALLOCNO_NUM_OBJECTS (a);

      if (! ALLOCNO_ASSIGNED_P (a)
	  && ! bitmap_bit_p (allocnos_to_color, ALLOCNO_NUM (a)))
	{
	  if (ALLOCNO_CLASS (a) != NO_REGS)
	    sorted_allocnos[allocnos_to_color_num++] = a;
	  else
	    {
	      ALLOCNO_ASSIGNED_P (a) = true;
	      ALLOCNO_HARD_REGNO (a) = -1;
	      ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
	      ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
	    }
	  bitmap_set_bit (allocnos_to_color, ALLOCNO_NUM (a));
	}
      if (ALLOCNO_REGNO (a) < start_regno
	  || (aclass = ALLOCNO_CLASS (a)) == NO_REGS)
	continue;
      for (i = 0; i < n; i++)
	{
	  ira_object_t obj = ALLOCNO_OBJECT (a, i);
	  ira_object_t conflict_obj;
	  ira_object_conflict_iterator oci;

	  FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
	    {
	      ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);

	      ira_assert (ira_reg_classes_intersect_p
			  [aclass][ALLOCNO_CLASS (conflict_a)]);
	      if (!bitmap_set_bit (allocnos_to_color, ALLOCNO_NUM (conflict_a)))
		continue;
	      sorted_allocnos[allocnos_to_color_num++] = conflict_a;
	    }
	}
    }
  ira_free_bitmap (allocnos_to_color);
  if (allocnos_to_color_num > 1)
    {
      setup_allocno_priorities (sorted_allocnos, allocnos_to_color_num);
      qsort (sorted_allocnos, allocnos_to_color_num, sizeof (ira_allocno_t),
	     allocno_priority_compare_func);
    }
  for (i = 0; i < allocnos_to_color_num; i++)
    {
      a = sorted_allocnos[i];
      ALLOCNO_ASSIGNED_P (a) = false;
      update_curr_costs (a);
    }
  for (i = 0; i < allocnos_to_color_num; i++)
    {
      a = sorted_allocnos[i];
      if (assign_hard_reg (a, true))
	{
	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
	    fprintf
	      (ira_dump_file,
	       "      Secondary allocation: assign hard reg %d to reg %d\n",
	       ALLOCNO_HARD_REGNO (a), ALLOCNO_REGNO (a));
	}
    }
}



/* This page contains functions used to find conflicts using allocno
   live ranges.  */

#ifdef ENABLE_IRA_CHECKING

/* Return TRUE if live ranges of pseudo-registers REGNO1 and REGNO2
   intersect.  This should be used when there is only one region.
   Currently this is used during reload.  */
static bool
conflict_by_live_ranges_p (int regno1, int regno2)
{
  ira_allocno_t a1, a2;

  ira_assert (regno1 >= FIRST_PSEUDO_REGISTER
	      && regno2 >= FIRST_PSEUDO_REGISTER);
  /* Reg info calculated by dataflow infrastructure can be different
     from one calculated by regclass.  */
  if ((a1 = ira_loop_tree_root->regno_allocno_map[regno1]) == NULL
      || (a2 = ira_loop_tree_root->regno_allocno_map[regno2]) == NULL)
    return false;
  return allocnos_conflict_by_live_ranges_p (a1, a2);
}

#endif



/* This page contains code to coalesce memory stack slots used by
   spilled allocnos.  This results in smaller stack frame, better data
   locality, and in smaller code for some architectures like
   x86/x86_64 where insn size depends on address displacement value.
   On the other hand, it can worsen insn scheduling after the RA but
   in practice it is less important than smaller stack frames.  */

/* TRUE if we coalesced some allocnos.  In other words, if we got
   loops formed by members first_coalesced_allocno and
   next_coalesced_allocno containing more one allocno.  */
static bool allocno_coalesced_p;

/* Bitmap used to prevent a repeated allocno processing because of
   coalescing.  */
static bitmap processed_coalesced_allocno_bitmap;

/* See below.  */
typedef struct coalesce_data *coalesce_data_t;

/* To decrease footprint of ira_allocno structure we store all data
   needed only for coalescing in the following structure.  */
struct coalesce_data
{
  /* Coalesced allocnos form a cyclic list.  One allocno given by
     FIRST represents all coalesced allocnos.  The
     list is chained by NEXT.  */
  ira_allocno_t first;
  ira_allocno_t next;
  int temp;
};

/* Container for storing allocno data concerning coalescing.  */
static coalesce_data_t allocno_coalesce_data;

/* Macro to access the data concerning coalescing.  */
#define ALLOCNO_COALESCE_DATA(a) ((coalesce_data_t) ALLOCNO_ADD_DATA (a))

/* Merge two sets of coalesced allocnos given correspondingly by
   allocnos A1 and A2 (more accurately merging A2 set into A1
   set).  */
static void
merge_allocnos (ira_allocno_t a1, ira_allocno_t a2)
{
  ira_allocno_t a, first, last, next;

  first = ALLOCNO_COALESCE_DATA (a1)->first;
  a = ALLOCNO_COALESCE_DATA (a2)->first;
  if (first == a)
    return;
  for (last = a2, a = ALLOCNO_COALESCE_DATA (a2)->next;;
       a = ALLOCNO_COALESCE_DATA (a)->next)
    {
      ALLOCNO_COALESCE_DATA (a)->first = first;
      if (a == a2)
	break;
      last = a;
    }
  next = allocno_coalesce_data[ALLOCNO_NUM (first)].next;
  allocno_coalesce_data[ALLOCNO_NUM (first)].next = a2;
  allocno_coalesce_data[ALLOCNO_NUM (last)].next = next;
}

/* Return TRUE if there are conflicting allocnos from two sets of
   coalesced allocnos given correspondingly by allocnos A1 and A2.  We
   use live ranges to find conflicts because conflicts are represented
   only for allocnos of the same allocno class and during the reload
   pass we coalesce allocnos for sharing stack memory slots.  */
static bool
coalesced_allocno_conflict_p (ira_allocno_t a1, ira_allocno_t a2)
{
  ira_allocno_t a, conflict_a;

  if (allocno_coalesced_p)
    {
      bitmap_clear (processed_coalesced_allocno_bitmap);
      for (a = ALLOCNO_COALESCE_DATA (a1)->next;;
	   a = ALLOCNO_COALESCE_DATA (a)->next)
	{
	  bitmap_set_bit (processed_coalesced_allocno_bitmap, ALLOCNO_NUM (a));
	  if (a == a1)
	    break;
	}
    }
  for (a = ALLOCNO_COALESCE_DATA (a2)->next;;
       a = ALLOCNO_COALESCE_DATA (a)->next)
    {
      for (conflict_a = ALLOCNO_COALESCE_DATA (a1)->next;;
	   conflict_a = ALLOCNO_COALESCE_DATA (conflict_a)->next)
	{
	  if (allocnos_conflict_by_live_ranges_p (a, conflict_a))
	    return true;
	  if (conflict_a == a1)
	    break;
	}
      if (a == a2)
	break;
    }
  return false;
}

/* The major function for aggressive allocno coalescing.  We coalesce
   only spilled allocnos.  If some allocnos have been coalesced, we
   set up flag allocno_coalesced_p.  */
static void
coalesce_allocnos (void)
{
  ira_allocno_t a;
  ira_copy_t cp, next_cp;
  unsigned int j;
  int i, n, cp_num, regno;
  bitmap_iterator bi;

  cp_num = 0;
  /* Collect copies.  */
  EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, j, bi)
    {
      a = ira_allocnos[j];
      regno = ALLOCNO_REGNO (a);
      if (! ALLOCNO_ASSIGNED_P (a) || ALLOCNO_HARD_REGNO (a) >= 0
	  || ira_equiv_no_lvalue_p (regno))
	continue;
      for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
	{
	  if (cp->first == a)
	    {
	      next_cp = cp->next_first_allocno_copy;
	      regno = ALLOCNO_REGNO (cp->second);
	      /* For priority coloring we coalesce allocnos only with
		 the same allocno class not with intersected allocno
		 classes as it were possible.  It is done for
		 simplicity.  */
	      if ((cp->insn != NULL || cp->constraint_p)
		  && ALLOCNO_ASSIGNED_P (cp->second)
		  && ALLOCNO_HARD_REGNO (cp->second) < 0
		  && ! ira_equiv_no_lvalue_p (regno))
		sorted_copies[cp_num++] = cp;
	    }
	  else if (cp->second == a)
	    next_cp = cp->next_second_allocno_copy;
	  else
	    gcc_unreachable ();
	}
    }
  qsort (sorted_copies, cp_num, sizeof (ira_copy_t), copy_freq_compare_func);
  /* Coalesced copies, most frequently executed first.  */
  for (; cp_num != 0;)
    {
      for (i = 0; i < cp_num; i++)
	{
	  cp = sorted_copies[i];
	  if (! coalesced_allocno_conflict_p (cp->first, cp->second))
	    {
	      allocno_coalesced_p = true;
	      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
		fprintf
		  (ira_dump_file,
		   "      Coalescing copy %d:a%dr%d-a%dr%d (freq=%d)\n",
		   cp->num, ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
		   ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second),
		   cp->freq);
	      merge_allocnos (cp->first, cp->second);
	      i++;
	      break;
	    }
	}
      /* Collect the rest of copies.  */
      for (n = 0; i < cp_num; i++)
	{
	  cp = sorted_copies[i];
	  if (allocno_coalesce_data[ALLOCNO_NUM (cp->first)].first
	      != allocno_coalesce_data[ALLOCNO_NUM (cp->second)].first)
	    sorted_copies[n++] = cp;
	}
      cp_num = n;
    }
}

/* Usage cost and order number of coalesced allocno set to which
   given pseudo register belongs to.  */
static int *regno_coalesced_allocno_cost;
static int *regno_coalesced_allocno_num;

/* Sort pseudos according frequencies of coalesced allocno sets they
   belong to (putting most frequently ones first), and according to
   coalesced allocno set order numbers.  */
static int
coalesced_pseudo_reg_freq_compare (const void *v1p, const void *v2p)
{
  const int regno1 = *(const int *) v1p;
  const int regno2 = *(const int *) v2p;
  int diff;

  if ((diff = (regno_coalesced_allocno_cost[regno2]
	       - regno_coalesced_allocno_cost[regno1])) != 0)
    return diff;
  if ((diff = (regno_coalesced_allocno_num[regno1]
	       - regno_coalesced_allocno_num[regno2])) != 0)
    return diff;
  return regno1 - regno2;
}

/* Widest width in which each pseudo reg is referred to (via subreg).
   It is used for sorting pseudo registers.  */
static unsigned int *regno_max_ref_width;

/* Redefine STACK_GROWS_DOWNWARD in terms of 0 or 1.  */
#ifdef STACK_GROWS_DOWNWARD
# undef STACK_GROWS_DOWNWARD
# define STACK_GROWS_DOWNWARD 1
#else
# define STACK_GROWS_DOWNWARD 0
#endif

/* Sort pseudos according their slot numbers (putting ones with
  smaller numbers first, or last when the frame pointer is not
  needed).  */
static int
coalesced_pseudo_reg_slot_compare (const void *v1p, const void *v2p)
{
  const int regno1 = *(const int *) v1p;
  const int regno2 = *(const int *) v2p;
  ira_allocno_t a1 = ira_regno_allocno_map[regno1];
  ira_allocno_t a2 = ira_regno_allocno_map[regno2];
  int diff, slot_num1, slot_num2;
  int total_size1, total_size2;

  if (a1 == NULL || ALLOCNO_HARD_REGNO (a1) >= 0)
    {
      if (a2 == NULL || ALLOCNO_HARD_REGNO (a2) >= 0)
	return regno1 - regno2;
      return 1;
    }
  else if (a2 == NULL || ALLOCNO_HARD_REGNO (a2) >= 0)
    return -1;
  slot_num1 = -ALLOCNO_HARD_REGNO (a1);
  slot_num2 = -ALLOCNO_HARD_REGNO (a2);
  if ((diff = slot_num1 - slot_num2) != 0)
    return (frame_pointer_needed
	    || (!FRAME_GROWS_DOWNWARD) == STACK_GROWS_DOWNWARD ? diff : -diff);
  total_size1 = MAX (PSEUDO_REGNO_BYTES (regno1),
		     regno_max_ref_width[regno1]);
  total_size2 = MAX (PSEUDO_REGNO_BYTES (regno2),
		     regno_max_ref_width[regno2]);
  if ((diff = total_size2 - total_size1) != 0)
    return diff;
  return regno1 - regno2;
}

/* Setup REGNO_COALESCED_ALLOCNO_COST and REGNO_COALESCED_ALLOCNO_NUM
   for coalesced allocno sets containing allocnos with their regnos
   given in array PSEUDO_REGNOS of length N.  */
static void
setup_coalesced_allocno_costs_and_nums (int *pseudo_regnos, int n)
{
  int i, num, regno, cost;
  ira_allocno_t allocno, a;

  for (num = i = 0; i < n; i++)
    {
      regno = pseudo_regnos[i];
      allocno = ira_regno_allocno_map[regno];
      if (allocno == NULL)
	{
	  regno_coalesced_allocno_cost[regno] = 0;
	  regno_coalesced_allocno_num[regno] = ++num;
	  continue;
	}
      if (ALLOCNO_COALESCE_DATA (allocno)->first != allocno)
	continue;
      num++;
      for (cost = 0, a = ALLOCNO_COALESCE_DATA (allocno)->next;;
	   a = ALLOCNO_COALESCE_DATA (a)->next)
	{
	  cost += ALLOCNO_FREQ (a);
	  if (a == allocno)
	    break;
	}
      for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
	   a = ALLOCNO_COALESCE_DATA (a)->next)
	{
	  regno_coalesced_allocno_num[ALLOCNO_REGNO (a)] = num;
	  regno_coalesced_allocno_cost[ALLOCNO_REGNO (a)] = cost;
	  if (a == allocno)
	    break;
	}
    }
}

/* Collect spilled allocnos representing coalesced allocno sets (the
   first coalesced allocno).  The collected allocnos are returned
   through array SPILLED_COALESCED_ALLOCNOS.  The function returns the
   number of the collected allocnos.  The allocnos are given by their
   regnos in array PSEUDO_REGNOS of length N.  */
static int
collect_spilled_coalesced_allocnos (int *pseudo_regnos, int n,
				    ira_allocno_t *spilled_coalesced_allocnos)
{
  int i, num, regno;
  ira_allocno_t allocno;

  for (num = i = 0; i < n; i++)
    {
      regno = pseudo_regnos[i];
      allocno = ira_regno_allocno_map[regno];
      if (allocno == NULL || ALLOCNO_HARD_REGNO (allocno) >= 0
	  || ALLOCNO_COALESCE_DATA (allocno)->first != allocno)
	continue;
      spilled_coalesced_allocnos[num++] = allocno;
    }
  return num;
}

/* Array of live ranges of size IRA_ALLOCNOS_NUM.  Live range for
   given slot contains live ranges of coalesced allocnos assigned to
   given slot.  */
static live_range_t *slot_coalesced_allocnos_live_ranges;

/* Return TRUE if coalesced allocnos represented by ALLOCNO has live
   ranges intersected with live ranges of coalesced allocnos assigned
   to slot with number N.  */
static bool
slot_coalesced_allocno_live_ranges_intersect_p (ira_allocno_t allocno, int n)
{
  ira_allocno_t a;

  for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
       a = ALLOCNO_COALESCE_DATA (a)->next)
    {
      int i;
      int nr = ALLOCNO_NUM_OBJECTS (a);

      for (i = 0; i < nr; i++)
	{
	  ira_object_t obj = ALLOCNO_OBJECT (a, i);

	  if (ira_live_ranges_intersect_p
	      (slot_coalesced_allocnos_live_ranges[n],
	       OBJECT_LIVE_RANGES (obj)))
	    return true;
	}
      if (a == allocno)
	break;
    }
  return false;
}

/* Update live ranges of slot to which coalesced allocnos represented
   by ALLOCNO were assigned.  */
static void
setup_slot_coalesced_allocno_live_ranges (ira_allocno_t allocno)
{
  int i, n;
  ira_allocno_t a;
  live_range_t r;

  n = ALLOCNO_COALESCE_DATA (allocno)->temp;
  for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
       a = ALLOCNO_COALESCE_DATA (a)->next)
    {
      int nr = ALLOCNO_NUM_OBJECTS (a);
      for (i = 0; i < nr; i++)
	{
	  ira_object_t obj = ALLOCNO_OBJECT (a, i);

	  r = ira_copy_live_range_list (OBJECT_LIVE_RANGES (obj));
	  slot_coalesced_allocnos_live_ranges[n]
	    = ira_merge_live_ranges
	      (slot_coalesced_allocnos_live_ranges[n], r);
	}
      if (a == allocno)
	break;
    }
}

/* We have coalesced allocnos involving in copies.  Coalesce allocnos
   further in order to share the same memory stack slot.  Allocnos
   representing sets of allocnos coalesced before the call are given
   in array SPILLED_COALESCED_ALLOCNOS of length NUM.  Return TRUE if
   some allocnos were coalesced in the function.  */
static bool
coalesce_spill_slots (ira_allocno_t *spilled_coalesced_allocnos, int num)
{
  int i, j, n, last_coalesced_allocno_num;
  ira_allocno_t allocno, a;
  bool merged_p = false;
  bitmap set_jump_crosses = regstat_get_setjmp_crosses ();

  slot_coalesced_allocnos_live_ranges
    = (live_range_t *) ira_allocate (sizeof (live_range_t) * ira_allocnos_num);
  memset (slot_coalesced_allocnos_live_ranges, 0,
	  sizeof (live_range_t) * ira_allocnos_num);
  last_coalesced_allocno_num = 0;
  /* Coalesce non-conflicting spilled allocnos preferring most
     frequently used.  */
  for (i = 0; i < num; i++)
    {
      allocno = spilled_coalesced_allocnos[i];
      if (ALLOCNO_COALESCE_DATA (allocno)->first != allocno
	  || bitmap_bit_p (set_jump_crosses, ALLOCNO_REGNO (allocno))
	  || ira_equiv_no_lvalue_p (ALLOCNO_REGNO (allocno)))
	continue;
      for (j = 0; j < i; j++)
	{
	  a = spilled_coalesced_allocnos[j];
	  n = ALLOCNO_COALESCE_DATA (a)->temp;
	  if (ALLOCNO_COALESCE_DATA (a)->first == a
	      && ! bitmap_bit_p (set_jump_crosses, ALLOCNO_REGNO (a))
	      && ! ira_equiv_no_lvalue_p (ALLOCNO_REGNO (a))
	      && ! slot_coalesced_allocno_live_ranges_intersect_p (allocno, n))
	    break;
	}
      if (j >= i)
	{
	  /* No coalescing: set up number for coalesced allocnos
	     represented by ALLOCNO.  */
	  ALLOCNO_COALESCE_DATA (allocno)->temp = last_coalesced_allocno_num++;
	  setup_slot_coalesced_allocno_live_ranges (allocno);
	}
      else
	{
	  allocno_coalesced_p = true;
	  merged_p = true;
	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
	    fprintf (ira_dump_file,
		     "      Coalescing spilled allocnos a%dr%d->a%dr%d\n",
		     ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno),
		     ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
	  ALLOCNO_COALESCE_DATA (allocno)->temp
	    = ALLOCNO_COALESCE_DATA (a)->temp;
	  setup_slot_coalesced_allocno_live_ranges (allocno);
	  merge_allocnos (a, allocno);
	  ira_assert (ALLOCNO_COALESCE_DATA (a)->first == a);
	}
    }
  for (i = 0; i < ira_allocnos_num; i++)
    ira_finish_live_range_list (slot_coalesced_allocnos_live_ranges[i]);
  ira_free (slot_coalesced_allocnos_live_ranges);
  return merged_p;
}

/* Sort pseudo-register numbers in array PSEUDO_REGNOS of length N for
   subsequent assigning stack slots to them in the reload pass.  To do
   this we coalesce spilled allocnos first to decrease the number of
   memory-memory move insns.  This function is called by the
   reload.  */
void
ira_sort_regnos_for_alter_reg (int *pseudo_regnos, int n,
			       unsigned int *reg_max_ref_width)
{
  int max_regno = max_reg_num ();
  int i, regno, num, slot_num;
  ira_allocno_t allocno, a;
  ira_allocno_iterator ai;
  ira_allocno_t *spilled_coalesced_allocnos;

  ira_assert (! ira_use_lra_p);

  /* Set up allocnos can be coalesced.  */
  coloring_allocno_bitmap = ira_allocate_bitmap ();
  for (i = 0; i < n; i++)
    {
      regno = pseudo_regnos[i];
      allocno = ira_regno_allocno_map[regno];
      if (allocno != NULL)
	bitmap_set_bit (coloring_allocno_bitmap, ALLOCNO_NUM (allocno));
    }
  allocno_coalesced_p = false;
  processed_coalesced_allocno_bitmap = ira_allocate_bitmap ();
  allocno_coalesce_data
    = (coalesce_data_t) ira_allocate (sizeof (struct coalesce_data)
				      * ira_allocnos_num);
  /* Initialize coalesce data for allocnos.  */
  FOR_EACH_ALLOCNO (a, ai)
    {
      ALLOCNO_ADD_DATA (a) = allocno_coalesce_data + ALLOCNO_NUM (a);
      ALLOCNO_COALESCE_DATA (a)->first = a;
      ALLOCNO_COALESCE_DATA (a)->next = a;
    }
  coalesce_allocnos ();
  ira_free_bitmap (coloring_allocno_bitmap);
  regno_coalesced_allocno_cost
    = (int *) ira_allocate (max_regno * sizeof (int));
  regno_coalesced_allocno_num
    = (int *) ira_allocate (max_regno * sizeof (int));
  memset (regno_coalesced_allocno_num, 0, max_regno * sizeof (int));
  setup_coalesced_allocno_costs_and_nums (pseudo_regnos, n);
  /* Sort regnos according frequencies of the corresponding coalesced
     allocno sets.  */
  qsort (pseudo_regnos, n, sizeof (int), coalesced_pseudo_reg_freq_compare);
  spilled_coalesced_allocnos
    = (ira_allocno_t *) ira_allocate (ira_allocnos_num
				      * sizeof (ira_allocno_t));
  /* Collect allocnos representing the spilled coalesced allocno
     sets.  */
  num = collect_spilled_coalesced_allocnos (pseudo_regnos, n,
					    spilled_coalesced_allocnos);
  if (flag_ira_share_spill_slots
      && coalesce_spill_slots (spilled_coalesced_allocnos, num))
    {
      setup_coalesced_allocno_costs_and_nums (pseudo_regnos, n);
      qsort (pseudo_regnos, n, sizeof (int),
	     coalesced_pseudo_reg_freq_compare);
      num = collect_spilled_coalesced_allocnos (pseudo_regnos, n,
						spilled_coalesced_allocnos);
    }
  ira_free_bitmap (processed_coalesced_allocno_bitmap);
  allocno_coalesced_p = false;
  /* Assign stack slot numbers to spilled allocno sets, use smaller
     numbers for most frequently used coalesced allocnos.  -1 is
     reserved for dynamic search of stack slots for pseudos spilled by
     the reload.  */
  slot_num = 1;
  for (i = 0; i < num; i++)
    {
      allocno = spilled_coalesced_allocnos[i];
      if (ALLOCNO_COALESCE_DATA (allocno)->first != allocno
	  || ALLOCNO_HARD_REGNO (allocno) >= 0
	  || ira_equiv_no_lvalue_p (ALLOCNO_REGNO (allocno)))
	continue;
      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
	fprintf (ira_dump_file, "      Slot %d (freq,size):", slot_num);
      slot_num++;
      for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
	   a = ALLOCNO_COALESCE_DATA (a)->next)
	{
	  ira_assert (ALLOCNO_HARD_REGNO (a) < 0);
	  ALLOCNO_HARD_REGNO (a) = -slot_num;
	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
	    fprintf (ira_dump_file, " a%dr%d(%d,%d)",
		     ALLOCNO_NUM (a), ALLOCNO_REGNO (a), ALLOCNO_FREQ (a),
		     MAX (PSEUDO_REGNO_BYTES (ALLOCNO_REGNO (a)),
			  reg_max_ref_width[ALLOCNO_REGNO (a)]));

	  if (a == allocno)
	    break;
	}
      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
	fprintf (ira_dump_file, "\n");
    }
  ira_spilled_reg_stack_slots_num = slot_num - 1;
  ira_free (spilled_coalesced_allocnos);
  /* Sort regnos according the slot numbers.  */
  regno_max_ref_width = reg_max_ref_width;
  qsort (pseudo_regnos, n, sizeof (int), coalesced_pseudo_reg_slot_compare);
  FOR_EACH_ALLOCNO (a, ai)
    ALLOCNO_ADD_DATA (a) = NULL;
  ira_free (allocno_coalesce_data);
  ira_free (regno_coalesced_allocno_num);
  ira_free (regno_coalesced_allocno_cost);
}



/* This page contains code used by the reload pass to improve the
   final code.  */

/* The function is called from reload to mark changes in the
   allocation of REGNO made by the reload.  Remember that reg_renumber
   reflects the change result.  */
void
ira_mark_allocation_change (int regno)
{
  ira_allocno_t a = ira_regno_allocno_map[regno];
  int old_hard_regno, hard_regno, cost;
  enum reg_class aclass = ALLOCNO_CLASS (a);

  ira_assert (a != NULL);
  hard_regno = reg_renumber[regno];
  if ((old_hard_regno = ALLOCNO_HARD_REGNO (a)) == hard_regno)
    return;
  if (old_hard_regno < 0)
    cost = -ALLOCNO_MEMORY_COST (a);
  else
    {
      ira_assert (ira_class_hard_reg_index[aclass][old_hard_regno] >= 0);
      cost = -(ALLOCNO_HARD_REG_COSTS (a) == NULL
	       ? ALLOCNO_CLASS_COST (a)
	       : ALLOCNO_HARD_REG_COSTS (a)
	         [ira_class_hard_reg_index[aclass][old_hard_regno]]);
      update_costs_from_copies (a, false, false);
    }
  ira_overall_cost -= cost;
  ALLOCNO_HARD_REGNO (a) = hard_regno;
  if (hard_regno < 0)
    {
      ALLOCNO_HARD_REGNO (a) = -1;
      cost += ALLOCNO_MEMORY_COST (a);
    }
  else if (ira_class_hard_reg_index[aclass][hard_regno] >= 0)
    {
      cost += (ALLOCNO_HARD_REG_COSTS (a) == NULL
	       ? ALLOCNO_CLASS_COST (a)
	       : ALLOCNO_HARD_REG_COSTS (a)
	         [ira_class_hard_reg_index[aclass][hard_regno]]);
      update_costs_from_copies (a, true, false);
    }
  else
    /* Reload changed class of the allocno.  */
    cost = 0;
  ira_overall_cost += cost;
}

/* This function is called when reload deletes memory-memory move.  In
   this case we marks that the allocation of the corresponding
   allocnos should be not changed in future.  Otherwise we risk to get
   a wrong code.  */
void
ira_mark_memory_move_deletion (int dst_regno, int src_regno)
{
  ira_allocno_t dst = ira_regno_allocno_map[dst_regno];
  ira_allocno_t src = ira_regno_allocno_map[src_regno];

  ira_assert (dst != NULL && src != NULL
	      && ALLOCNO_HARD_REGNO (dst) < 0
	      && ALLOCNO_HARD_REGNO (src) < 0);
  ALLOCNO_DONT_REASSIGN_P (dst) = true;
  ALLOCNO_DONT_REASSIGN_P (src) = true;
}

/* Try to assign a hard register (except for FORBIDDEN_REGS) to
   allocno A and return TRUE in the case of success.  */
static bool
allocno_reload_assign (ira_allocno_t a, HARD_REG_SET forbidden_regs)
{
  int hard_regno;
  enum reg_class aclass;
  int regno = ALLOCNO_REGNO (a);
  HARD_REG_SET saved[2];
  int i, n;

  n = ALLOCNO_NUM_OBJECTS (a);
  for (i = 0; i < n; i++)
    {
      ira_object_t obj = ALLOCNO_OBJECT (a, i);
      COPY_HARD_REG_SET (saved[i], OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
      IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), forbidden_regs);
      if (! flag_caller_saves && ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
	IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
			  call_used_reg_set);
    }
  ALLOCNO_ASSIGNED_P (a) = false;
  aclass = ALLOCNO_CLASS (a);
  update_curr_costs (a);
  assign_hard_reg (a, true);
  hard_regno = ALLOCNO_HARD_REGNO (a);
  reg_renumber[regno] = hard_regno;
  if (hard_regno < 0)
    ALLOCNO_HARD_REGNO (a) = -1;
  else
    {
      ira_assert (ira_class_hard_reg_index[aclass][hard_regno] >= 0);
      ira_overall_cost
	-= (ALLOCNO_MEMORY_COST (a)
	    - (ALLOCNO_HARD_REG_COSTS (a) == NULL
	       ? ALLOCNO_CLASS_COST (a)
	       : ALLOCNO_HARD_REG_COSTS (a)[ira_class_hard_reg_index
					    [aclass][hard_regno]]));
      if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
	  && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
					      call_used_reg_set))
	{
	  ira_assert (flag_caller_saves);
	  caller_save_needed = 1;
	}
    }

  /* If we found a hard register, modify the RTL for the pseudo
     register to show the hard register, and mark the pseudo register
     live.  */
  if (reg_renumber[regno] >= 0)
    {
      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
	fprintf (ira_dump_file, ": reassign to %d\n", reg_renumber[regno]);
      SET_REGNO (regno_reg_rtx[regno], reg_renumber[regno]);
      mark_home_live (regno);
    }
  else if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
    fprintf (ira_dump_file, "\n");
  for (i = 0; i < n; i++)
    {
      ira_object_t obj = ALLOCNO_OBJECT (a, i);
      COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), saved[i]);
    }
  return reg_renumber[regno] >= 0;
}

/* Sort pseudos according their usage frequencies (putting most
   frequently ones first).  */
static int
pseudo_reg_compare (const void *v1p, const void *v2p)
{
  int regno1 = *(const int *) v1p;
  int regno2 = *(const int *) v2p;
  int diff;

  if ((diff = REG_FREQ (regno2) - REG_FREQ (regno1)) != 0)
    return diff;
  return regno1 - regno2;
}

/* Try to allocate hard registers to SPILLED_PSEUDO_REGS (there are
   NUM of them) or spilled pseudos conflicting with pseudos in
   SPILLED_PSEUDO_REGS.  Return TRUE and update SPILLED, if the
   allocation has been changed.  The function doesn't use
   BAD_SPILL_REGS and hard registers in PSEUDO_FORBIDDEN_REGS and
   PSEUDO_PREVIOUS_REGS for the corresponding pseudos.  The function
   is called by the reload pass at the end of each reload
   iteration.  */
bool
ira_reassign_pseudos (int *spilled_pseudo_regs, int num,
		      HARD_REG_SET bad_spill_regs,
		      HARD_REG_SET *pseudo_forbidden_regs,
		      HARD_REG_SET *pseudo_previous_regs,
		      bitmap spilled)
{
  int i, n, regno;
  bool changed_p;
  ira_allocno_t a;
  HARD_REG_SET forbidden_regs;
  bitmap temp = BITMAP_ALLOC (NULL);

  /* Add pseudos which conflict with pseudos already in
     SPILLED_PSEUDO_REGS to SPILLED_PSEUDO_REGS.  This is preferable
     to allocating in two steps as some of the conflicts might have
     a higher priority than the pseudos passed in SPILLED_PSEUDO_REGS.  */
  for (i = 0; i < num; i++)
    bitmap_set_bit (temp, spilled_pseudo_regs[i]);

  for (i = 0, n = num; i < n; i++)
    {
      int nr, j;
      int regno = spilled_pseudo_regs[i];
      bitmap_set_bit (temp, regno);

      a = ira_regno_allocno_map[regno];
      nr = ALLOCNO_NUM_OBJECTS (a);
      for (j = 0; j < nr; j++)
	{
	  ira_object_t conflict_obj;
	  ira_object_t obj = ALLOCNO_OBJECT (a, j);
	  ira_object_conflict_iterator oci;

	  FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
	    {
	      ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
	      if (ALLOCNO_HARD_REGNO (conflict_a) < 0
		  && ! ALLOCNO_DONT_REASSIGN_P (conflict_a)
		  && bitmap_set_bit (temp, ALLOCNO_REGNO (conflict_a)))
		{
		  spilled_pseudo_regs[num++] = ALLOCNO_REGNO (conflict_a);
		  /* ?!? This seems wrong.  */
		  bitmap_set_bit (consideration_allocno_bitmap,
				  ALLOCNO_NUM (conflict_a));
		}
	    }
	}
    }

  if (num > 1)
    qsort (spilled_pseudo_regs, num, sizeof (int), pseudo_reg_compare);
  changed_p = false;
  /* Try to assign hard registers to pseudos from
     SPILLED_PSEUDO_REGS.  */
  for (i = 0; i < num; i++)
    {
      regno = spilled_pseudo_regs[i];
      COPY_HARD_REG_SET (forbidden_regs, bad_spill_regs);
      IOR_HARD_REG_SET (forbidden_regs, pseudo_forbidden_regs[regno]);
      IOR_HARD_REG_SET (forbidden_regs, pseudo_previous_regs[regno]);
      gcc_assert (reg_renumber[regno] < 0);
      a = ira_regno_allocno_map[regno];
      ira_mark_allocation_change (regno);
      ira_assert (reg_renumber[regno] < 0);
      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
	fprintf (ira_dump_file,
		 "      Try Assign %d(a%d), cost=%d", regno, ALLOCNO_NUM (a),
		 ALLOCNO_MEMORY_COST (a)
		 - ALLOCNO_CLASS_COST (a));
      allocno_reload_assign (a, forbidden_regs);
      if (reg_renumber[regno] >= 0)
	{
	  CLEAR_REGNO_REG_SET (spilled, regno);
	  changed_p = true;
	}
    }
  BITMAP_FREE (temp);
  return changed_p;
}

/* The function is called by reload and returns already allocated
   stack slot (if any) for REGNO with given INHERENT_SIZE and
   TOTAL_SIZE.  In the case of failure to find a slot which can be
   used for REGNO, the function returns NULL.  */
rtx
ira_reuse_stack_slot (int regno, unsigned int inherent_size,
		      unsigned int total_size)
{
  unsigned int i;
  int slot_num, best_slot_num;
  int cost, best_cost;
  ira_copy_t cp, next_cp;
  ira_allocno_t another_allocno, allocno = ira_regno_allocno_map[regno];
  rtx x;
  bitmap_iterator bi;
  struct ira_spilled_reg_stack_slot *slot = NULL;

  ira_assert (! ira_use_lra_p);

  ira_assert (inherent_size == PSEUDO_REGNO_BYTES (regno)
	      && inherent_size <= total_size
	      && ALLOCNO_HARD_REGNO (allocno) < 0);
  if (! flag_ira_share_spill_slots)
    return NULL_RTX;
  slot_num = -ALLOCNO_HARD_REGNO (allocno) - 2;
  if (slot_num != -1)
    {
      slot = &ira_spilled_reg_stack_slots[slot_num];
      x = slot->mem;
    }
  else
    {
      best_cost = best_slot_num = -1;
      x = NULL_RTX;
      /* It means that the pseudo was spilled in the reload pass, try
	 to reuse a slot.  */
      for (slot_num = 0;
	   slot_num < ira_spilled_reg_stack_slots_num;
	   slot_num++)
	{
	  slot = &ira_spilled_reg_stack_slots[slot_num];
	  if (slot->mem == NULL_RTX)
	    continue;
	  if (slot->width < total_size
	      || GET_MODE_SIZE (GET_MODE (slot->mem)) < inherent_size)
	    continue;

	  EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
				    FIRST_PSEUDO_REGISTER, i, bi)
	    {
	      another_allocno = ira_regno_allocno_map[i];
	      if (allocnos_conflict_by_live_ranges_p (allocno,
						      another_allocno))
		goto cont;
	    }
	  for (cost = 0, cp = ALLOCNO_COPIES (allocno);
	       cp != NULL;
	       cp = next_cp)
	    {
	      if (cp->first == allocno)
		{
		  next_cp = cp->next_first_allocno_copy;
		  another_allocno = cp->second;
		}
	      else if (cp->second == allocno)
		{
		  next_cp = cp->next_second_allocno_copy;
		  another_allocno = cp->first;
		}
	      else
		gcc_unreachable ();
	      if (cp->insn == NULL_RTX)
		continue;
	      if (bitmap_bit_p (&slot->spilled_regs,
				ALLOCNO_REGNO (another_allocno)))
		cost += cp->freq;
	    }
	  if (cost > best_cost)
	    {
	      best_cost = cost;
	      best_slot_num = slot_num;
	    }
	cont:
	  ;
	}
      if (best_cost >= 0)
	{
	  slot_num = best_slot_num;
	  slot = &ira_spilled_reg_stack_slots[slot_num];
	  SET_REGNO_REG_SET (&slot->spilled_regs, regno);
	  x = slot->mem;
	  ALLOCNO_HARD_REGNO (allocno) = -slot_num - 2;
	}
    }
  if (x != NULL_RTX)
    {
      ira_assert (slot->width >= total_size);
#ifdef ENABLE_IRA_CHECKING
      EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
				FIRST_PSEUDO_REGISTER, i, bi)
	{
	  ira_assert (! conflict_by_live_ranges_p (regno, i));
	}
#endif
      SET_REGNO_REG_SET (&slot->spilled_regs, regno);
      if (internal_flag_ira_verbose > 3 && ira_dump_file)
	{
	  fprintf (ira_dump_file, "      Assigning %d(freq=%d) slot %d of",
		   regno, REG_FREQ (regno), slot_num);
	  EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
				    FIRST_PSEUDO_REGISTER, i, bi)
	    {
	      if ((unsigned) regno != i)
		fprintf (ira_dump_file, " %d", i);
	    }
	  fprintf (ira_dump_file, "\n");
	}
    }
  return x;
}

/* This is called by reload every time a new stack slot X with
   TOTAL_SIZE was allocated for REGNO.  We store this info for
   subsequent ira_reuse_stack_slot calls.  */
void
ira_mark_new_stack_slot (rtx x, int regno, unsigned int total_size)
{
  struct ira_spilled_reg_stack_slot *slot;
  int slot_num;
  ira_allocno_t allocno;

  ira_assert (! ira_use_lra_p);

  ira_assert (PSEUDO_REGNO_BYTES (regno) <= total_size);
  allocno = ira_regno_allocno_map[regno];
  slot_num = -ALLOCNO_HARD_REGNO (allocno) - 2;
  if (slot_num == -1)
    {
      slot_num = ira_spilled_reg_stack_slots_num++;
      ALLOCNO_HARD_REGNO (allocno) = -slot_num - 2;
    }
  slot = &ira_spilled_reg_stack_slots[slot_num];
  INIT_REG_SET (&slot->spilled_regs);
  SET_REGNO_REG_SET (&slot->spilled_regs, regno);
  slot->mem = x;
  slot->width = total_size;
  if (internal_flag_ira_verbose > 3 && ira_dump_file)
    fprintf (ira_dump_file, "      Assigning %d(freq=%d) a new slot %d\n",
	     regno, REG_FREQ (regno), slot_num);
}


/* Return spill cost for pseudo-registers whose numbers are in array
   REGNOS (with a negative number as an end marker) for reload with
   given IN and OUT for INSN.  Return also number points (through
   EXCESS_PRESSURE_LIVE_LENGTH) where the pseudo-register lives and
   the register pressure is high, number of references of the
   pseudo-registers (through NREFS), number of callee-clobbered
   hard-registers occupied by the pseudo-registers (through
   CALL_USED_COUNT), and the first hard regno occupied by the
   pseudo-registers (through FIRST_HARD_REGNO).  */
static int
calculate_spill_cost (int *regnos, rtx in, rtx out, rtx insn,
		      int *excess_pressure_live_length,
		      int *nrefs, int *call_used_count, int *first_hard_regno)
{
  int i, cost, regno, hard_regno, j, count, saved_cost, nregs;
  bool in_p, out_p;
  int length;
  ira_allocno_t a;

  *nrefs = 0;
  for (length = count = cost = i = 0;; i++)
    {
      regno = regnos[i];
      if (regno < 0)
	break;
      *nrefs += REG_N_REFS (regno);
      hard_regno = reg_renumber[regno];
      ira_assert (hard_regno >= 0);
      a = ira_regno_allocno_map[regno];
      length += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) / ALLOCNO_NUM_OBJECTS (a);
      cost += ALLOCNO_MEMORY_COST (a) - ALLOCNO_CLASS_COST (a);
      nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
      for (j = 0; j < nregs; j++)
	if (! TEST_HARD_REG_BIT (call_used_reg_set, hard_regno + j))
	  break;
      if (j == nregs)
	count++;
      in_p = in && REG_P (in) && (int) REGNO (in) == hard_regno;
      out_p = out && REG_P (out) && (int) REGNO (out) == hard_regno;
      if ((in_p || out_p)
	  && find_regno_note (insn, REG_DEAD, hard_regno) != NULL_RTX)
	{
	  saved_cost = 0;
	  if (in_p)
	    saved_cost += ira_memory_move_cost
	                  [ALLOCNO_MODE (a)][ALLOCNO_CLASS (a)][1];
	  if (out_p)
	    saved_cost
	      += ira_memory_move_cost
	         [ALLOCNO_MODE (a)][ALLOCNO_CLASS (a)][0];
	  cost -= REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)) * saved_cost;
	}
    }
  *excess_pressure_live_length = length;
  *call_used_count = count;
  hard_regno = -1;
  if (regnos[0] >= 0)
    {
      hard_regno = reg_renumber[regnos[0]];
    }
  *first_hard_regno = hard_regno;
  return cost;
}

/* Return TRUE if spilling pseudo-registers whose numbers are in array
   REGNOS is better than spilling pseudo-registers with numbers in
   OTHER_REGNOS for reload with given IN and OUT for INSN.  The
   function used by the reload pass to make better register spilling
   decisions.  */
bool
ira_better_spill_reload_regno_p (int *regnos, int *other_regnos,
				 rtx in, rtx out, rtx insn)
{
  int cost, other_cost;
  int length, other_length;
  int nrefs, other_nrefs;
  int call_used_count, other_call_used_count;
  int hard_regno, other_hard_regno;

  cost = calculate_spill_cost (regnos, in, out, insn,
			       &length, &nrefs, &call_used_count, &hard_regno);
  other_cost = calculate_spill_cost (other_regnos, in, out, insn,
				     &other_length, &other_nrefs,
				     &other_call_used_count,
				     &other_hard_regno);
  if (nrefs == 0 && other_nrefs != 0)
    return true;
  if (nrefs != 0 && other_nrefs == 0)
    return false;
  if (cost != other_cost)
    return cost < other_cost;
  if (length != other_length)
    return length > other_length;
#ifdef REG_ALLOC_ORDER
  if (hard_regno >= 0 && other_hard_regno >= 0)
    return (inv_reg_alloc_order[hard_regno]
	    < inv_reg_alloc_order[other_hard_regno]);
#else
  if (call_used_count != other_call_used_count)
    return call_used_count > other_call_used_count;
#endif
  return false;
}



/* Allocate and initialize data necessary for assign_hard_reg.  */
void
ira_initiate_assign (void)
{
  sorted_allocnos
    = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
				      * ira_allocnos_num);
  consideration_allocno_bitmap = ira_allocate_bitmap ();
  initiate_cost_update ();
  allocno_priorities = (int *) ira_allocate (sizeof (int) * ira_allocnos_num);
  sorted_copies = (ira_copy_t *) ira_allocate (ira_copies_num
					       * sizeof (ira_copy_t));
}

/* Deallocate data used by assign_hard_reg.  */
void
ira_finish_assign (void)
{
  ira_free (sorted_allocnos);
  ira_free_bitmap (consideration_allocno_bitmap);
  finish_cost_update ();
  ira_free (allocno_priorities);
  ira_free (sorted_copies);
}



/* Entry function doing color-based register allocation.  */
static void
color (void)
{
  allocno_stack_vec.create (ira_allocnos_num);
  memset (allocated_hardreg_p, 0, sizeof (allocated_hardreg_p));
  ira_initiate_assign ();
  do_coloring ();
  ira_finish_assign ();
  allocno_stack_vec.release ();
  move_spill_restore ();
}



/* This page contains a simple register allocator without usage of
   allocno conflicts.  This is used for fast allocation for -O0.  */

/* Do register allocation by not using allocno conflicts.  It uses
   only allocno live ranges.  The algorithm is close to Chow's
   priority coloring.  */
static void
fast_allocation (void)
{
  int i, j, k, num, class_size, hard_regno;
#ifdef STACK_REGS
  bool no_stack_reg_p;
#endif
  enum reg_class aclass;
  enum machine_mode mode;
  ira_allocno_t a;
  ira_allocno_iterator ai;
  live_range_t r;
  HARD_REG_SET conflict_hard_regs, *used_hard_regs;

  sorted_allocnos = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
						    * ira_allocnos_num);
  num = 0;
  FOR_EACH_ALLOCNO (a, ai)
    sorted_allocnos[num++] = a;
  allocno_priorities = (int *) ira_allocate (sizeof (int) * ira_allocnos_num);
  setup_allocno_priorities (sorted_allocnos, num);
  used_hard_regs = (HARD_REG_SET *) ira_allocate (sizeof (HARD_REG_SET)
						  * ira_max_point);
  for (i = 0; i < ira_max_point; i++)
    CLEAR_HARD_REG_SET (used_hard_regs[i]);
  qsort (sorted_allocnos, num, sizeof (ira_allocno_t),
	 allocno_priority_compare_func);
  for (i = 0; i < num; i++)
    {
      int nr, l;

      a = sorted_allocnos[i];
      nr = ALLOCNO_NUM_OBJECTS (a);
      CLEAR_HARD_REG_SET (conflict_hard_regs);
      for (l = 0; l < nr; l++)
	{
	  ira_object_t obj = ALLOCNO_OBJECT (a, l);
	  IOR_HARD_REG_SET (conflict_hard_regs,
			    OBJECT_CONFLICT_HARD_REGS (obj));
	  for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
	    for (j = r->start; j <= r->finish; j++)
	      IOR_HARD_REG_SET (conflict_hard_regs, used_hard_regs[j]);
	}
      aclass = ALLOCNO_CLASS (a);
      ALLOCNO_ASSIGNED_P (a) = true;
      ALLOCNO_HARD_REGNO (a) = -1;
      if (hard_reg_set_subset_p (reg_class_contents[aclass],
				 conflict_hard_regs))
	continue;
      mode = ALLOCNO_MODE (a);
#ifdef STACK_REGS
      no_stack_reg_p = ALLOCNO_NO_STACK_REG_P (a);
#endif
      class_size = ira_class_hard_regs_num[aclass];
      for (j = 0; j < class_size; j++)
	{
	  hard_regno = ira_class_hard_regs[aclass][j];
#ifdef STACK_REGS
	  if (no_stack_reg_p && FIRST_STACK_REG <= hard_regno
	      && hard_regno <= LAST_STACK_REG)
	    continue;
#endif
	  if (ira_hard_reg_set_intersection_p (hard_regno, mode, conflict_hard_regs)
	      || (TEST_HARD_REG_BIT
		  (ira_prohibited_class_mode_regs[aclass][mode], hard_regno)))
	    continue;
	  ALLOCNO_HARD_REGNO (a) = hard_regno;
	  for (l = 0; l < nr; l++)
	    {
	      ira_object_t obj = ALLOCNO_OBJECT (a, l);
	      for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
		for (k = r->start; k <= r->finish; k++)
		  IOR_HARD_REG_SET (used_hard_regs[k],
				    ira_reg_mode_hard_regset[hard_regno][mode]);
	    }
	  break;
	}
    }
  ira_free (sorted_allocnos);
  ira_free (used_hard_regs);
  ira_free (allocno_priorities);
  if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
    ira_print_disposition (ira_dump_file);
}



/* Entry function doing coloring.  */
void
ira_color (void)
{
  ira_allocno_t a;
  ira_allocno_iterator ai;

  /* Setup updated costs.  */
  FOR_EACH_ALLOCNO (a, ai)
    {
      ALLOCNO_UPDATED_MEMORY_COST (a) = ALLOCNO_MEMORY_COST (a);
      ALLOCNO_UPDATED_CLASS_COST (a) = ALLOCNO_CLASS_COST (a);
    }
  if (ira_conflicts_p)
    color ();
  else
    fast_allocation ();
}