1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
|
/* Building internal representation for IRA.
Copyright (C) 2006-2017 Free Software Foundation, Inc.
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "predict.h"
#include "df.h"
#include "insn-config.h"
#include "regs.h"
#include "memmodel.h"
#include "ira.h"
#include "ira-int.h"
#include "params.h"
#include "sparseset.h"
#include "cfgloop.h"
static ira_copy_t find_allocno_copy (ira_allocno_t, ira_allocno_t, rtx_insn *,
ira_loop_tree_node_t);
/* The root of the loop tree corresponding to the all function. */
ira_loop_tree_node_t ira_loop_tree_root;
/* Height of the loop tree. */
int ira_loop_tree_height;
/* All nodes representing basic blocks are referred through the
following array. We can not use basic block member `aux' for this
because it is used for insertion of insns on edges. */
ira_loop_tree_node_t ira_bb_nodes;
/* All nodes representing loops are referred through the following
array. */
ira_loop_tree_node_t ira_loop_nodes;
/* And size of the ira_loop_nodes array. */
unsigned int ira_loop_nodes_count;
/* Map regno -> allocnos with given regno (see comments for
allocno member `next_regno_allocno'). */
ira_allocno_t *ira_regno_allocno_map;
/* Array of references to all allocnos. The order number of the
allocno corresponds to the index in the array. Removed allocnos
have NULL element value. */
ira_allocno_t *ira_allocnos;
/* Sizes of the previous array. */
int ira_allocnos_num;
/* Count of conflict record structures we've created, used when creating
a new conflict id. */
int ira_objects_num;
/* Map a conflict id to its conflict record. */
ira_object_t *ira_object_id_map;
/* Array of references to all allocno preferences. The order number
of the preference corresponds to the index in the array. */
ira_pref_t *ira_prefs;
/* Size of the previous array. */
int ira_prefs_num;
/* Array of references to all copies. The order number of the copy
corresponds to the index in the array. Removed copies have NULL
element value. */
ira_copy_t *ira_copies;
/* Size of the previous array. */
int ira_copies_num;
/* LAST_BASIC_BLOCK before generating additional insns because of live
range splitting. Emitting insns on a critical edge creates a new
basic block. */
static int last_basic_block_before_change;
/* Initialize some members in loop tree node NODE. Use LOOP_NUM for
the member loop_num. */
static void
init_loop_tree_node (struct ira_loop_tree_node *node, int loop_num)
{
int max_regno = max_reg_num ();
node->regno_allocno_map
= (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) * max_regno);
memset (node->regno_allocno_map, 0, sizeof (ira_allocno_t) * max_regno);
memset (node->reg_pressure, 0, sizeof (node->reg_pressure));
node->all_allocnos = ira_allocate_bitmap ();
node->modified_regnos = ira_allocate_bitmap ();
node->border_allocnos = ira_allocate_bitmap ();
node->local_copies = ira_allocate_bitmap ();
node->loop_num = loop_num;
node->children = NULL;
node->subloops = NULL;
}
/* The following function allocates the loop tree nodes. If
CURRENT_LOOPS is NULL, the nodes corresponding to the loops (except
the root which corresponds the all function) will be not allocated
but nodes will still be allocated for basic blocks. */
static void
create_loop_tree_nodes (void)
{
unsigned int i, j;
bool skip_p;
edge_iterator ei;
edge e;
vec<edge> edges;
loop_p loop;
ira_bb_nodes
= ((struct ira_loop_tree_node *)
ira_allocate (sizeof (struct ira_loop_tree_node)
* last_basic_block_for_fn (cfun)));
last_basic_block_before_change = last_basic_block_for_fn (cfun);
for (i = 0; i < (unsigned int) last_basic_block_for_fn (cfun); i++)
{
ira_bb_nodes[i].regno_allocno_map = NULL;
memset (ira_bb_nodes[i].reg_pressure, 0,
sizeof (ira_bb_nodes[i].reg_pressure));
ira_bb_nodes[i].all_allocnos = NULL;
ira_bb_nodes[i].modified_regnos = NULL;
ira_bb_nodes[i].border_allocnos = NULL;
ira_bb_nodes[i].local_copies = NULL;
}
if (current_loops == NULL)
{
ira_loop_nodes_count = 1;
ira_loop_nodes = ((struct ira_loop_tree_node *)
ira_allocate (sizeof (struct ira_loop_tree_node)));
init_loop_tree_node (ira_loop_nodes, 0);
return;
}
ira_loop_nodes_count = number_of_loops (cfun);
ira_loop_nodes = ((struct ira_loop_tree_node *)
ira_allocate (sizeof (struct ira_loop_tree_node)
* ira_loop_nodes_count));
FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
{
if (loop_outer (loop) != NULL)
{
ira_loop_nodes[i].regno_allocno_map = NULL;
skip_p = false;
FOR_EACH_EDGE (e, ei, loop->header->preds)
if (e->src != loop->latch
&& (e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
{
skip_p = true;
break;
}
if (skip_p)
continue;
edges = get_loop_exit_edges (loop);
FOR_EACH_VEC_ELT (edges, j, e)
if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
{
skip_p = true;
break;
}
edges.release ();
if (skip_p)
continue;
}
init_loop_tree_node (&ira_loop_nodes[i], loop->num);
}
}
/* The function returns TRUE if there are more one allocation
region. */
static bool
more_one_region_p (void)
{
unsigned int i;
loop_p loop;
if (current_loops != NULL)
FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
if (ira_loop_nodes[i].regno_allocno_map != NULL
&& ira_loop_tree_root != &ira_loop_nodes[i])
return true;
return false;
}
/* Free the loop tree node of a loop. */
static void
finish_loop_tree_node (ira_loop_tree_node_t loop)
{
if (loop->regno_allocno_map != NULL)
{
ira_assert (loop->bb == NULL);
ira_free_bitmap (loop->local_copies);
ira_free_bitmap (loop->border_allocnos);
ira_free_bitmap (loop->modified_regnos);
ira_free_bitmap (loop->all_allocnos);
ira_free (loop->regno_allocno_map);
loop->regno_allocno_map = NULL;
}
}
/* Free the loop tree nodes. */
static void
finish_loop_tree_nodes (void)
{
unsigned int i;
for (i = 0; i < ira_loop_nodes_count; i++)
finish_loop_tree_node (&ira_loop_nodes[i]);
ira_free (ira_loop_nodes);
for (i = 0; i < (unsigned int) last_basic_block_before_change; i++)
{
if (ira_bb_nodes[i].local_copies != NULL)
ira_free_bitmap (ira_bb_nodes[i].local_copies);
if (ira_bb_nodes[i].border_allocnos != NULL)
ira_free_bitmap (ira_bb_nodes[i].border_allocnos);
if (ira_bb_nodes[i].modified_regnos != NULL)
ira_free_bitmap (ira_bb_nodes[i].modified_regnos);
if (ira_bb_nodes[i].all_allocnos != NULL)
ira_free_bitmap (ira_bb_nodes[i].all_allocnos);
if (ira_bb_nodes[i].regno_allocno_map != NULL)
ira_free (ira_bb_nodes[i].regno_allocno_map);
}
ira_free (ira_bb_nodes);
}
/* The following recursive function adds LOOP to the loop tree
hierarchy. LOOP is added only once. If LOOP is NULL we adding
loop designating the whole function when CFG loops are not
built. */
static void
add_loop_to_tree (struct loop *loop)
{
int loop_num;
struct loop *parent;
ira_loop_tree_node_t loop_node, parent_node;
/* We can not use loop node access macros here because of potential
checking and because the nodes are not initialized enough
yet. */
if (loop != NULL && loop_outer (loop) != NULL)
add_loop_to_tree (loop_outer (loop));
loop_num = loop != NULL ? loop->num : 0;
if (ira_loop_nodes[loop_num].regno_allocno_map != NULL
&& ira_loop_nodes[loop_num].children == NULL)
{
/* We have not added loop node to the tree yet. */
loop_node = &ira_loop_nodes[loop_num];
loop_node->loop = loop;
loop_node->bb = NULL;
if (loop == NULL)
parent = NULL;
else
{
for (parent = loop_outer (loop);
parent != NULL;
parent = loop_outer (parent))
if (ira_loop_nodes[parent->num].regno_allocno_map != NULL)
break;
}
if (parent == NULL)
{
loop_node->next = NULL;
loop_node->subloop_next = NULL;
loop_node->parent = NULL;
}
else
{
parent_node = &ira_loop_nodes[parent->num];
loop_node->next = parent_node->children;
parent_node->children = loop_node;
loop_node->subloop_next = parent_node->subloops;
parent_node->subloops = loop_node;
loop_node->parent = parent_node;
}
}
}
/* The following recursive function sets up levels of nodes of the
tree given its root LOOP_NODE. The enumeration starts with LEVEL.
The function returns maximal value of level in the tree + 1. */
static int
setup_loop_tree_level (ira_loop_tree_node_t loop_node, int level)
{
int height, max_height;
ira_loop_tree_node_t subloop_node;
ira_assert (loop_node->bb == NULL);
loop_node->level = level;
max_height = level + 1;
for (subloop_node = loop_node->subloops;
subloop_node != NULL;
subloop_node = subloop_node->subloop_next)
{
ira_assert (subloop_node->bb == NULL);
height = setup_loop_tree_level (subloop_node, level + 1);
if (height > max_height)
max_height = height;
}
return max_height;
}
/* Create the loop tree. The algorithm is designed to provide correct
order of loops (they are ordered by their last loop BB) and basic
blocks in the chain formed by member next. */
static void
form_loop_tree (void)
{
basic_block bb;
struct loop *parent;
ira_loop_tree_node_t bb_node, loop_node;
/* We can not use loop/bb node access macros because of potential
checking and because the nodes are not initialized enough
yet. */
FOR_EACH_BB_FN (bb, cfun)
{
bb_node = &ira_bb_nodes[bb->index];
bb_node->bb = bb;
bb_node->loop = NULL;
bb_node->subloops = NULL;
bb_node->children = NULL;
bb_node->subloop_next = NULL;
bb_node->next = NULL;
if (current_loops == NULL)
parent = NULL;
else
{
for (parent = bb->loop_father;
parent != NULL;
parent = loop_outer (parent))
if (ira_loop_nodes[parent->num].regno_allocno_map != NULL)
break;
}
add_loop_to_tree (parent);
loop_node = &ira_loop_nodes[parent == NULL ? 0 : parent->num];
bb_node->next = loop_node->children;
bb_node->parent = loop_node;
loop_node->children = bb_node;
}
ira_loop_tree_root = IRA_LOOP_NODE_BY_INDEX (0);
ira_loop_tree_height = setup_loop_tree_level (ira_loop_tree_root, 0);
ira_assert (ira_loop_tree_root->regno_allocno_map != NULL);
}
/* Rebuild IRA_REGNO_ALLOCNO_MAP and REGNO_ALLOCNO_MAPs of the loop
tree nodes. */
static void
rebuild_regno_allocno_maps (void)
{
unsigned int l;
int max_regno, regno;
ira_allocno_t a;
ira_loop_tree_node_t loop_tree_node;
loop_p loop;
ira_allocno_iterator ai;
ira_assert (current_loops != NULL);
max_regno = max_reg_num ();
FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), l, loop)
if (ira_loop_nodes[l].regno_allocno_map != NULL)
{
ira_free (ira_loop_nodes[l].regno_allocno_map);
ira_loop_nodes[l].regno_allocno_map
= (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
* max_regno);
memset (ira_loop_nodes[l].regno_allocno_map, 0,
sizeof (ira_allocno_t) * max_regno);
}
ira_free (ira_regno_allocno_map);
ira_regno_allocno_map
= (ira_allocno_t *) ira_allocate (max_regno * sizeof (ira_allocno_t));
memset (ira_regno_allocno_map, 0, max_regno * sizeof (ira_allocno_t));
FOR_EACH_ALLOCNO (a, ai)
{
if (ALLOCNO_CAP_MEMBER (a) != NULL)
/* Caps are not in the regno allocno maps. */
continue;
regno = ALLOCNO_REGNO (a);
loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno];
ira_regno_allocno_map[regno] = a;
if (loop_tree_node->regno_allocno_map[regno] == NULL)
/* Remember that we can create temporary allocnos to break
cycles in register shuffle. */
loop_tree_node->regno_allocno_map[regno] = a;
}
}
/* Pools for allocnos, allocno live ranges and objects. */
static object_allocator<live_range> live_range_pool ("live ranges");
static object_allocator<ira_allocno> allocno_pool ("allocnos");
static object_allocator<ira_object> object_pool ("objects");
/* Vec containing references to all created allocnos. It is a
container of array allocnos. */
static vec<ira_allocno_t> allocno_vec;
/* Vec containing references to all created ira_objects. It is a
container of ira_object_id_map. */
static vec<ira_object_t> ira_object_id_map_vec;
/* Initialize data concerning allocnos. */
static void
initiate_allocnos (void)
{
allocno_vec.create (max_reg_num () * 2);
ira_allocnos = NULL;
ira_allocnos_num = 0;
ira_objects_num = 0;
ira_object_id_map_vec.create (max_reg_num () * 2);
ira_object_id_map = NULL;
ira_regno_allocno_map
= (ira_allocno_t *) ira_allocate (max_reg_num ()
* sizeof (ira_allocno_t));
memset (ira_regno_allocno_map, 0, max_reg_num () * sizeof (ira_allocno_t));
}
/* Create and return an object corresponding to a new allocno A. */
static ira_object_t
ira_create_object (ira_allocno_t a, int subword)
{
enum reg_class aclass = ALLOCNO_CLASS (a);
ira_object_t obj = object_pool.allocate ();
OBJECT_ALLOCNO (obj) = a;
OBJECT_SUBWORD (obj) = subword;
OBJECT_CONFLICT_ID (obj) = ira_objects_num;
OBJECT_CONFLICT_VEC_P (obj) = false;
OBJECT_CONFLICT_ARRAY (obj) = NULL;
OBJECT_NUM_CONFLICTS (obj) = 0;
COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs);
COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs);
IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
reg_class_contents[aclass]);
IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
reg_class_contents[aclass]);
OBJECT_MIN (obj) = INT_MAX;
OBJECT_MAX (obj) = -1;
OBJECT_LIVE_RANGES (obj) = NULL;
ira_object_id_map_vec.safe_push (obj);
ira_object_id_map
= ira_object_id_map_vec.address ();
ira_objects_num = ira_object_id_map_vec.length ();
return obj;
}
/* Create and return the allocno corresponding to REGNO in
LOOP_TREE_NODE. Add the allocno to the list of allocnos with the
same regno if CAP_P is FALSE. */
ira_allocno_t
ira_create_allocno (int regno, bool cap_p,
ira_loop_tree_node_t loop_tree_node)
{
ira_allocno_t a;
a = allocno_pool.allocate ();
ALLOCNO_REGNO (a) = regno;
ALLOCNO_LOOP_TREE_NODE (a) = loop_tree_node;
if (! cap_p)
{
ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno];
ira_regno_allocno_map[regno] = a;
if (loop_tree_node->regno_allocno_map[regno] == NULL)
/* Remember that we can create temporary allocnos to break
cycles in register shuffle on region borders (see
ira-emit.c). */
loop_tree_node->regno_allocno_map[regno] = a;
}
ALLOCNO_CAP (a) = NULL;
ALLOCNO_CAP_MEMBER (a) = NULL;
ALLOCNO_NUM (a) = ira_allocnos_num;
bitmap_set_bit (loop_tree_node->all_allocnos, ALLOCNO_NUM (a));
ALLOCNO_NREFS (a) = 0;
ALLOCNO_FREQ (a) = 0;
ALLOCNO_HARD_REGNO (a) = -1;
ALLOCNO_CALL_FREQ (a) = 0;
ALLOCNO_CALLS_CROSSED_NUM (a) = 0;
ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a) = 0;
CLEAR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
#ifdef STACK_REGS
ALLOCNO_NO_STACK_REG_P (a) = false;
ALLOCNO_TOTAL_NO_STACK_REG_P (a) = false;
#endif
ALLOCNO_DONT_REASSIGN_P (a) = false;
ALLOCNO_BAD_SPILL_P (a) = false;
ALLOCNO_ASSIGNED_P (a) = false;
ALLOCNO_MODE (a) = (regno < 0 ? VOIDmode : PSEUDO_REGNO_MODE (regno));
ALLOCNO_WMODE (a) = ALLOCNO_MODE (a);
ALLOCNO_PREFS (a) = NULL;
ALLOCNO_COPIES (a) = NULL;
ALLOCNO_HARD_REG_COSTS (a) = NULL;
ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL;
ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
ALLOCNO_CLASS (a) = NO_REGS;
ALLOCNO_UPDATED_CLASS_COST (a) = 0;
ALLOCNO_CLASS_COST (a) = 0;
ALLOCNO_MEMORY_COST (a) = 0;
ALLOCNO_UPDATED_MEMORY_COST (a) = 0;
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) = 0;
ALLOCNO_NUM_OBJECTS (a) = 0;
ALLOCNO_ADD_DATA (a) = NULL;
allocno_vec.safe_push (a);
ira_allocnos = allocno_vec.address ();
ira_allocnos_num = allocno_vec.length ();
return a;
}
/* Set up register class for A and update its conflict hard
registers. */
void
ira_set_allocno_class (ira_allocno_t a, enum reg_class aclass)
{
ira_allocno_object_iterator oi;
ira_object_t obj;
ALLOCNO_CLASS (a) = aclass;
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
{
IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
reg_class_contents[aclass]);
IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
reg_class_contents[aclass]);
}
}
/* Determine the number of objects we should associate with allocno A
and allocate them. */
void
ira_create_allocno_objects (ira_allocno_t a)
{
machine_mode mode = ALLOCNO_MODE (a);
enum reg_class aclass = ALLOCNO_CLASS (a);
int n = ira_reg_class_max_nregs[aclass][mode];
int i;
if (n != 2 || may_ne (GET_MODE_SIZE (mode), n * UNITS_PER_WORD))
n = 1;
ALLOCNO_NUM_OBJECTS (a) = n;
for (i = 0; i < n; i++)
ALLOCNO_OBJECT (a, i) = ira_create_object (a, i);
}
/* For each allocno, set ALLOCNO_NUM_OBJECTS and create the
ALLOCNO_OBJECT structures. This must be called after the allocno
classes are known. */
static void
create_allocno_objects (void)
{
ira_allocno_t a;
ira_allocno_iterator ai;
FOR_EACH_ALLOCNO (a, ai)
ira_create_allocno_objects (a);
}
/* Merge hard register conflict information for all objects associated with
allocno TO into the corresponding objects associated with FROM.
If TOTAL_ONLY is true, we only merge OBJECT_TOTAL_CONFLICT_HARD_REGS. */
static void
merge_hard_reg_conflicts (ira_allocno_t from, ira_allocno_t to,
bool total_only)
{
int i;
gcc_assert (ALLOCNO_NUM_OBJECTS (to) == ALLOCNO_NUM_OBJECTS (from));
for (i = 0; i < ALLOCNO_NUM_OBJECTS (to); i++)
{
ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
if (!total_only)
IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (to_obj),
OBJECT_CONFLICT_HARD_REGS (from_obj));
IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (to_obj),
OBJECT_TOTAL_CONFLICT_HARD_REGS (from_obj));
}
#ifdef STACK_REGS
if (!total_only && ALLOCNO_NO_STACK_REG_P (from))
ALLOCNO_NO_STACK_REG_P (to) = true;
if (ALLOCNO_TOTAL_NO_STACK_REG_P (from))
ALLOCNO_TOTAL_NO_STACK_REG_P (to) = true;
#endif
}
/* Update hard register conflict information for all objects associated with
A to include the regs in SET. */
void
ior_hard_reg_conflicts (ira_allocno_t a, HARD_REG_SET *set)
{
ira_allocno_object_iterator i;
ira_object_t obj;
FOR_EACH_ALLOCNO_OBJECT (a, obj, i)
{
IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), *set);
IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), *set);
}
}
/* Return TRUE if a conflict vector with NUM elements is more
profitable than a conflict bit vector for OBJ. */
bool
ira_conflict_vector_profitable_p (ira_object_t obj, int num)
{
int nw;
int max = OBJECT_MAX (obj);
int min = OBJECT_MIN (obj);
if (max < min)
/* We prefer a bit vector in such case because it does not result
in allocation. */
return false;
nw = (max - min + IRA_INT_BITS) / IRA_INT_BITS;
return (2 * sizeof (ira_object_t) * (num + 1)
< 3 * nw * sizeof (IRA_INT_TYPE));
}
/* Allocates and initialize the conflict vector of OBJ for NUM
conflicting objects. */
void
ira_allocate_conflict_vec (ira_object_t obj, int num)
{
int size;
ira_object_t *vec;
ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL);
num++; /* for NULL end marker */
size = sizeof (ira_object_t) * num;
OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size);
vec = (ira_object_t *) OBJECT_CONFLICT_ARRAY (obj);
vec[0] = NULL;
OBJECT_NUM_CONFLICTS (obj) = 0;
OBJECT_CONFLICT_ARRAY_SIZE (obj) = size;
OBJECT_CONFLICT_VEC_P (obj) = true;
}
/* Allocate and initialize the conflict bit vector of OBJ. */
static void
allocate_conflict_bit_vec (ira_object_t obj)
{
unsigned int size;
ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL);
size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj) + IRA_INT_BITS)
/ IRA_INT_BITS * sizeof (IRA_INT_TYPE));
OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size);
memset (OBJECT_CONFLICT_ARRAY (obj), 0, size);
OBJECT_CONFLICT_ARRAY_SIZE (obj) = size;
OBJECT_CONFLICT_VEC_P (obj) = false;
}
/* Allocate and initialize the conflict vector or conflict bit vector
of OBJ for NUM conflicting allocnos whatever is more profitable. */
void
ira_allocate_object_conflicts (ira_object_t obj, int num)
{
if (ira_conflict_vector_profitable_p (obj, num))
ira_allocate_conflict_vec (obj, num);
else
allocate_conflict_bit_vec (obj);
}
/* Add OBJ2 to the conflicts of OBJ1. */
static void
add_to_conflicts (ira_object_t obj1, ira_object_t obj2)
{
int num;
unsigned int size;
if (OBJECT_CONFLICT_VEC_P (obj1))
{
ira_object_t *vec = OBJECT_CONFLICT_VEC (obj1);
int curr_num = OBJECT_NUM_CONFLICTS (obj1);
num = curr_num + 2;
if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < num * sizeof (ira_object_t))
{
ira_object_t *newvec;
size = (3 * num / 2 + 1) * sizeof (ira_allocno_t);
newvec = (ira_object_t *) ira_allocate (size);
memcpy (newvec, vec, curr_num * sizeof (ira_object_t));
ira_free (vec);
vec = newvec;
OBJECT_CONFLICT_ARRAY (obj1) = vec;
OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
}
vec[num - 2] = obj2;
vec[num - 1] = NULL;
OBJECT_NUM_CONFLICTS (obj1)++;
}
else
{
int nw, added_head_nw, id;
IRA_INT_TYPE *vec = OBJECT_CONFLICT_BITVEC (obj1);
id = OBJECT_CONFLICT_ID (obj2);
if (OBJECT_MIN (obj1) > id)
{
/* Expand head of the bit vector. */
added_head_nw = (OBJECT_MIN (obj1) - id - 1) / IRA_INT_BITS + 1;
nw = (OBJECT_MAX (obj1) - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1;
size = (nw + added_head_nw) * sizeof (IRA_INT_TYPE);
if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) >= size)
{
memmove ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE),
vec, nw * sizeof (IRA_INT_TYPE));
memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE));
}
else
{
size
= (3 * (nw + added_head_nw) / 2 + 1) * sizeof (IRA_INT_TYPE);
vec = (IRA_INT_TYPE *) ira_allocate (size);
memcpy ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE),
OBJECT_CONFLICT_ARRAY (obj1), nw * sizeof (IRA_INT_TYPE));
memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE));
memset ((char *) vec
+ (nw + added_head_nw) * sizeof (IRA_INT_TYPE),
0, size - (nw + added_head_nw) * sizeof (IRA_INT_TYPE));
ira_free (OBJECT_CONFLICT_ARRAY (obj1));
OBJECT_CONFLICT_ARRAY (obj1) = vec;
OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
}
OBJECT_MIN (obj1) -= added_head_nw * IRA_INT_BITS;
}
else if (OBJECT_MAX (obj1) < id)
{
nw = (id - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1;
size = nw * sizeof (IRA_INT_TYPE);
if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < size)
{
/* Expand tail of the bit vector. */
size = (3 * nw / 2 + 1) * sizeof (IRA_INT_TYPE);
vec = (IRA_INT_TYPE *) ira_allocate (size);
memcpy (vec, OBJECT_CONFLICT_ARRAY (obj1), OBJECT_CONFLICT_ARRAY_SIZE (obj1));
memset ((char *) vec + OBJECT_CONFLICT_ARRAY_SIZE (obj1),
0, size - OBJECT_CONFLICT_ARRAY_SIZE (obj1));
ira_free (OBJECT_CONFLICT_ARRAY (obj1));
OBJECT_CONFLICT_ARRAY (obj1) = vec;
OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
}
OBJECT_MAX (obj1) = id;
}
SET_MINMAX_SET_BIT (vec, id, OBJECT_MIN (obj1), OBJECT_MAX (obj1));
}
}
/* Add OBJ1 to the conflicts of OBJ2 and vice versa. */
static void
ira_add_conflict (ira_object_t obj1, ira_object_t obj2)
{
add_to_conflicts (obj1, obj2);
add_to_conflicts (obj2, obj1);
}
/* Clear all conflicts of OBJ. */
static void
clear_conflicts (ira_object_t obj)
{
if (OBJECT_CONFLICT_VEC_P (obj))
{
OBJECT_NUM_CONFLICTS (obj) = 0;
OBJECT_CONFLICT_VEC (obj)[0] = NULL;
}
else if (OBJECT_CONFLICT_ARRAY_SIZE (obj) != 0)
{
int nw;
nw = (OBJECT_MAX (obj) - OBJECT_MIN (obj)) / IRA_INT_BITS + 1;
memset (OBJECT_CONFLICT_BITVEC (obj), 0, nw * sizeof (IRA_INT_TYPE));
}
}
/* The array used to find duplications in conflict vectors of
allocnos. */
static int *conflict_check;
/* The value used to mark allocation presence in conflict vector of
the current allocno. */
static int curr_conflict_check_tick;
/* Remove duplications in conflict vector of OBJ. */
static void
compress_conflict_vec (ira_object_t obj)
{
ira_object_t *vec, conflict_obj;
int i, j;
ira_assert (OBJECT_CONFLICT_VEC_P (obj));
vec = OBJECT_CONFLICT_VEC (obj);
curr_conflict_check_tick++;
for (i = j = 0; (conflict_obj = vec[i]) != NULL; i++)
{
int id = OBJECT_CONFLICT_ID (conflict_obj);
if (conflict_check[id] != curr_conflict_check_tick)
{
conflict_check[id] = curr_conflict_check_tick;
vec[j++] = conflict_obj;
}
}
OBJECT_NUM_CONFLICTS (obj) = j;
vec[j] = NULL;
}
/* Remove duplications in conflict vectors of all allocnos. */
static void
compress_conflict_vecs (void)
{
ira_object_t obj;
ira_object_iterator oi;
conflict_check = (int *) ira_allocate (sizeof (int) * ira_objects_num);
memset (conflict_check, 0, sizeof (int) * ira_objects_num);
curr_conflict_check_tick = 0;
FOR_EACH_OBJECT (obj, oi)
{
if (OBJECT_CONFLICT_VEC_P (obj))
compress_conflict_vec (obj);
}
ira_free (conflict_check);
}
/* This recursive function outputs allocno A and if it is a cap the
function outputs its members. */
void
ira_print_expanded_allocno (ira_allocno_t a)
{
basic_block bb;
fprintf (ira_dump_file, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
fprintf (ira_dump_file, ",b%d", bb->index);
else
fprintf (ira_dump_file, ",l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
if (ALLOCNO_CAP_MEMBER (a) != NULL)
{
fprintf (ira_dump_file, ":");
ira_print_expanded_allocno (ALLOCNO_CAP_MEMBER (a));
}
fprintf (ira_dump_file, ")");
}
/* Create and return the cap representing allocno A in the
parent loop. */
static ira_allocno_t
create_cap_allocno (ira_allocno_t a)
{
ira_allocno_t cap;
ira_loop_tree_node_t parent;
enum reg_class aclass;
parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
cap = ira_create_allocno (ALLOCNO_REGNO (a), true, parent);
ALLOCNO_MODE (cap) = ALLOCNO_MODE (a);
ALLOCNO_WMODE (cap) = ALLOCNO_WMODE (a);
aclass = ALLOCNO_CLASS (a);
ira_set_allocno_class (cap, aclass);
ira_create_allocno_objects (cap);
ALLOCNO_CAP_MEMBER (cap) = a;
ALLOCNO_CAP (a) = cap;
ALLOCNO_CLASS_COST (cap) = ALLOCNO_CLASS_COST (a);
ALLOCNO_MEMORY_COST (cap) = ALLOCNO_MEMORY_COST (a);
ira_allocate_and_copy_costs
(&ALLOCNO_HARD_REG_COSTS (cap), aclass, ALLOCNO_HARD_REG_COSTS (a));
ira_allocate_and_copy_costs
(&ALLOCNO_CONFLICT_HARD_REG_COSTS (cap), aclass,
ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
ALLOCNO_BAD_SPILL_P (cap) = ALLOCNO_BAD_SPILL_P (a);
ALLOCNO_NREFS (cap) = ALLOCNO_NREFS (a);
ALLOCNO_FREQ (cap) = ALLOCNO_FREQ (a);
ALLOCNO_CALL_FREQ (cap) = ALLOCNO_CALL_FREQ (a);
merge_hard_reg_conflicts (a, cap, false);
ALLOCNO_CALLS_CROSSED_NUM (cap) = ALLOCNO_CALLS_CROSSED_NUM (a);
ALLOCNO_CHEAP_CALLS_CROSSED_NUM (cap) = ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (cap),
ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
{
fprintf (ira_dump_file, " Creating cap ");
ira_print_expanded_allocno (cap);
fprintf (ira_dump_file, "\n");
}
return cap;
}
/* Create and return a live range for OBJECT with given attributes. */
live_range_t
ira_create_live_range (ira_object_t obj, int start, int finish,
live_range_t next)
{
live_range_t p;
p = live_range_pool.allocate ();
p->object = obj;
p->start = start;
p->finish = finish;
p->next = next;
return p;
}
/* Create a new live range for OBJECT and queue it at the head of its
live range list. */
void
ira_add_live_range_to_object (ira_object_t object, int start, int finish)
{
live_range_t p;
p = ira_create_live_range (object, start, finish,
OBJECT_LIVE_RANGES (object));
OBJECT_LIVE_RANGES (object) = p;
}
/* Copy allocno live range R and return the result. */
static live_range_t
copy_live_range (live_range_t r)
{
live_range_t p;
p = live_range_pool.allocate ();
*p = *r;
return p;
}
/* Copy allocno live range list given by its head R and return the
result. */
live_range_t
ira_copy_live_range_list (live_range_t r)
{
live_range_t p, first, last;
if (r == NULL)
return NULL;
for (first = last = NULL; r != NULL; r = r->next)
{
p = copy_live_range (r);
if (first == NULL)
first = p;
else
last->next = p;
last = p;
}
return first;
}
/* Merge ranges R1 and R2 and returns the result. The function
maintains the order of ranges and tries to minimize number of the
result ranges. */
live_range_t
ira_merge_live_ranges (live_range_t r1, live_range_t r2)
{
live_range_t first, last;
if (r1 == NULL)
return r2;
if (r2 == NULL)
return r1;
for (first = last = NULL; r1 != NULL && r2 != NULL;)
{
if (r1->start < r2->start)
std::swap (r1, r2);
if (r1->start <= r2->finish + 1)
{
/* Intersected ranges: merge r1 and r2 into r1. */
r1->start = r2->start;
if (r1->finish < r2->finish)
r1->finish = r2->finish;
live_range_t temp = r2;
r2 = r2->next;
ira_finish_live_range (temp);
if (r2 == NULL)
{
/* To try to merge with subsequent ranges in r1. */
r2 = r1->next;
r1->next = NULL;
}
}
else
{
/* Add r1 to the result. */
if (first == NULL)
first = last = r1;
else
{
last->next = r1;
last = r1;
}
r1 = r1->next;
if (r1 == NULL)
{
/* To try to merge with subsequent ranges in r2. */
r1 = r2->next;
r2->next = NULL;
}
}
}
if (r1 != NULL)
{
if (first == NULL)
first = r1;
else
last->next = r1;
ira_assert (r1->next == NULL);
}
else if (r2 != NULL)
{
if (first == NULL)
first = r2;
else
last->next = r2;
ira_assert (r2->next == NULL);
}
else
{
ira_assert (last->next == NULL);
}
return first;
}
/* Return TRUE if live ranges R1 and R2 intersect. */
bool
ira_live_ranges_intersect_p (live_range_t r1, live_range_t r2)
{
/* Remember the live ranges are always kept ordered. */
while (r1 != NULL && r2 != NULL)
{
if (r1->start > r2->finish)
r1 = r1->next;
else if (r2->start > r1->finish)
r2 = r2->next;
else
return true;
}
return false;
}
/* Free allocno live range R. */
void
ira_finish_live_range (live_range_t r)
{
live_range_pool.remove (r);
}
/* Free list of allocno live ranges starting with R. */
void
ira_finish_live_range_list (live_range_t r)
{
live_range_t next_r;
for (; r != NULL; r = next_r)
{
next_r = r->next;
ira_finish_live_range (r);
}
}
/* Free updated register costs of allocno A. */
void
ira_free_allocno_updated_costs (ira_allocno_t a)
{
enum reg_class aclass;
aclass = ALLOCNO_CLASS (a);
if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL)
ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass);
ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL)
ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
aclass);
ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
}
/* Free and nullify all cost vectors allocated earlier for allocno
A. */
static void
ira_free_allocno_costs (ira_allocno_t a)
{
enum reg_class aclass = ALLOCNO_CLASS (a);
ira_object_t obj;
ira_allocno_object_iterator oi;
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
{
ira_finish_live_range_list (OBJECT_LIVE_RANGES (obj));
ira_object_id_map[OBJECT_CONFLICT_ID (obj)] = NULL;
if (OBJECT_CONFLICT_ARRAY (obj) != NULL)
ira_free (OBJECT_CONFLICT_ARRAY (obj));
object_pool.remove (obj);
}
ira_allocnos[ALLOCNO_NUM (a)] = NULL;
if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
ira_free_cost_vector (ALLOCNO_HARD_REG_COSTS (a), aclass);
if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL)
ira_free_cost_vector (ALLOCNO_CONFLICT_HARD_REG_COSTS (a), aclass);
if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL)
ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass);
if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL)
ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
aclass);
ALLOCNO_HARD_REG_COSTS (a) = NULL;
ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL;
ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
}
/* Free the memory allocated for allocno A. */
static void
finish_allocno (ira_allocno_t a)
{
ira_free_allocno_costs (a);
allocno_pool.remove (a);
}
/* Free the memory allocated for all allocnos. */
static void
finish_allocnos (void)
{
ira_allocno_t a;
ira_allocno_iterator ai;
FOR_EACH_ALLOCNO (a, ai)
finish_allocno (a);
ira_free (ira_regno_allocno_map);
ira_object_id_map_vec.release ();
allocno_vec.release ();
allocno_pool.release ();
object_pool.release ();
live_range_pool.release ();
}
/* Pools for allocno preferences. */
static object_allocator <ira_allocno_pref> pref_pool ("prefs");
/* Vec containing references to all created preferences. It is a
container of array ira_prefs. */
static vec<ira_pref_t> pref_vec;
/* The function initializes data concerning allocno prefs. */
static void
initiate_prefs (void)
{
pref_vec.create (get_max_uid ());
ira_prefs = NULL;
ira_prefs_num = 0;
}
/* Return pref for A and HARD_REGNO if any. */
static ira_pref_t
find_allocno_pref (ira_allocno_t a, int hard_regno)
{
ira_pref_t pref;
for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
if (pref->allocno == a && pref->hard_regno == hard_regno)
return pref;
return NULL;
}
/* Create and return pref with given attributes A, HARD_REGNO, and FREQ. */
ira_pref_t
ira_create_pref (ira_allocno_t a, int hard_regno, int freq)
{
ira_pref_t pref;
pref = pref_pool.allocate ();
pref->num = ira_prefs_num;
pref->allocno = a;
pref->hard_regno = hard_regno;
pref->freq = freq;
pref_vec.safe_push (pref);
ira_prefs = pref_vec.address ();
ira_prefs_num = pref_vec.length ();
return pref;
}
/* Attach a pref PREF to the corresponding allocno. */
static void
add_allocno_pref_to_list (ira_pref_t pref)
{
ira_allocno_t a = pref->allocno;
pref->next_pref = ALLOCNO_PREFS (a);
ALLOCNO_PREFS (a) = pref;
}
/* Create (or update frequency if the pref already exists) the pref of
allocnos A preferring HARD_REGNO with frequency FREQ. */
void
ira_add_allocno_pref (ira_allocno_t a, int hard_regno, int freq)
{
ira_pref_t pref;
if (freq <= 0)
return;
if ((pref = find_allocno_pref (a, hard_regno)) != NULL)
{
pref->freq += freq;
return;
}
pref = ira_create_pref (a, hard_regno, freq);
ira_assert (a != NULL);
add_allocno_pref_to_list (pref);
}
/* Print info about PREF into file F. */
static void
print_pref (FILE *f, ira_pref_t pref)
{
fprintf (f, " pref%d:a%d(r%d)<-hr%d@%d\n", pref->num,
ALLOCNO_NUM (pref->allocno), ALLOCNO_REGNO (pref->allocno),
pref->hard_regno, pref->freq);
}
/* Print info about PREF into stderr. */
void
ira_debug_pref (ira_pref_t pref)
{
print_pref (stderr, pref);
}
/* Print info about all prefs into file F. */
static void
print_prefs (FILE *f)
{
ira_pref_t pref;
ira_pref_iterator pi;
FOR_EACH_PREF (pref, pi)
print_pref (f, pref);
}
/* Print info about all prefs into stderr. */
void
ira_debug_prefs (void)
{
print_prefs (stderr);
}
/* Print info about prefs involving allocno A into file F. */
static void
print_allocno_prefs (FILE *f, ira_allocno_t a)
{
ira_pref_t pref;
fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
fprintf (f, " pref%d:hr%d@%d", pref->num, pref->hard_regno, pref->freq);
fprintf (f, "\n");
}
/* Print info about prefs involving allocno A into stderr. */
void
ira_debug_allocno_prefs (ira_allocno_t a)
{
print_allocno_prefs (stderr, a);
}
/* The function frees memory allocated for PREF. */
static void
finish_pref (ira_pref_t pref)
{
ira_prefs[pref->num] = NULL;
pref_pool.remove (pref);
}
/* Remove PREF from the list of allocno prefs and free memory for
it. */
void
ira_remove_pref (ira_pref_t pref)
{
ira_pref_t cpref, prev;
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Removing pref%d:hr%d@%d\n",
pref->num, pref->hard_regno, pref->freq);
for (prev = NULL, cpref = ALLOCNO_PREFS (pref->allocno);
cpref != NULL;
prev = cpref, cpref = cpref->next_pref)
if (cpref == pref)
break;
ira_assert (cpref != NULL);
if (prev == NULL)
ALLOCNO_PREFS (pref->allocno) = pref->next_pref;
else
prev->next_pref = pref->next_pref;
finish_pref (pref);
}
/* Remove all prefs of allocno A. */
void
ira_remove_allocno_prefs (ira_allocno_t a)
{
ira_pref_t pref, next_pref;
for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = next_pref)
{
next_pref = pref->next_pref;
finish_pref (pref);
}
ALLOCNO_PREFS (a) = NULL;
}
/* Free memory allocated for all prefs. */
static void
finish_prefs (void)
{
ira_pref_t pref;
ira_pref_iterator pi;
FOR_EACH_PREF (pref, pi)
finish_pref (pref);
pref_vec.release ();
pref_pool.release ();
}
/* Pools for copies. */
static object_allocator<ira_allocno_copy> copy_pool ("copies");
/* Vec containing references to all created copies. It is a
container of array ira_copies. */
static vec<ira_copy_t> copy_vec;
/* The function initializes data concerning allocno copies. */
static void
initiate_copies (void)
{
copy_vec.create (get_max_uid ());
ira_copies = NULL;
ira_copies_num = 0;
}
/* Return copy connecting A1 and A2 and originated from INSN of
LOOP_TREE_NODE if any. */
static ira_copy_t
find_allocno_copy (ira_allocno_t a1, ira_allocno_t a2, rtx_insn *insn,
ira_loop_tree_node_t loop_tree_node)
{
ira_copy_t cp, next_cp;
ira_allocno_t another_a;
for (cp = ALLOCNO_COPIES (a1); cp != NULL; cp = next_cp)
{
if (cp->first == a1)
{
next_cp = cp->next_first_allocno_copy;
another_a = cp->second;
}
else if (cp->second == a1)
{
next_cp = cp->next_second_allocno_copy;
another_a = cp->first;
}
else
gcc_unreachable ();
if (another_a == a2 && cp->insn == insn
&& cp->loop_tree_node == loop_tree_node)
return cp;
}
return NULL;
}
/* Create and return copy with given attributes LOOP_TREE_NODE, FIRST,
SECOND, FREQ, CONSTRAINT_P, and INSN. */
ira_copy_t
ira_create_copy (ira_allocno_t first, ira_allocno_t second, int freq,
bool constraint_p, rtx_insn *insn,
ira_loop_tree_node_t loop_tree_node)
{
ira_copy_t cp;
cp = copy_pool.allocate ();
cp->num = ira_copies_num;
cp->first = first;
cp->second = second;
cp->freq = freq;
cp->constraint_p = constraint_p;
cp->insn = insn;
cp->loop_tree_node = loop_tree_node;
copy_vec.safe_push (cp);
ira_copies = copy_vec.address ();
ira_copies_num = copy_vec.length ();
return cp;
}
/* Attach a copy CP to allocnos involved into the copy. */
static void
add_allocno_copy_to_list (ira_copy_t cp)
{
ira_allocno_t first = cp->first, second = cp->second;
cp->prev_first_allocno_copy = NULL;
cp->prev_second_allocno_copy = NULL;
cp->next_first_allocno_copy = ALLOCNO_COPIES (first);
if (cp->next_first_allocno_copy != NULL)
{
if (cp->next_first_allocno_copy->first == first)
cp->next_first_allocno_copy->prev_first_allocno_copy = cp;
else
cp->next_first_allocno_copy->prev_second_allocno_copy = cp;
}
cp->next_second_allocno_copy = ALLOCNO_COPIES (second);
if (cp->next_second_allocno_copy != NULL)
{
if (cp->next_second_allocno_copy->second == second)
cp->next_second_allocno_copy->prev_second_allocno_copy = cp;
else
cp->next_second_allocno_copy->prev_first_allocno_copy = cp;
}
ALLOCNO_COPIES (first) = cp;
ALLOCNO_COPIES (second) = cp;
}
/* Make a copy CP a canonical copy where number of the
first allocno is less than the second one. */
static void
swap_allocno_copy_ends_if_necessary (ira_copy_t cp)
{
if (ALLOCNO_NUM (cp->first) <= ALLOCNO_NUM (cp->second))
return;
std::swap (cp->first, cp->second);
std::swap (cp->prev_first_allocno_copy, cp->prev_second_allocno_copy);
std::swap (cp->next_first_allocno_copy, cp->next_second_allocno_copy);
}
/* Create (or update frequency if the copy already exists) and return
the copy of allocnos FIRST and SECOND with frequency FREQ
corresponding to move insn INSN (if any) and originated from
LOOP_TREE_NODE. */
ira_copy_t
ira_add_allocno_copy (ira_allocno_t first, ira_allocno_t second, int freq,
bool constraint_p, rtx_insn *insn,
ira_loop_tree_node_t loop_tree_node)
{
ira_copy_t cp;
if ((cp = find_allocno_copy (first, second, insn, loop_tree_node)) != NULL)
{
cp->freq += freq;
return cp;
}
cp = ira_create_copy (first, second, freq, constraint_p, insn,
loop_tree_node);
ira_assert (first != NULL && second != NULL);
add_allocno_copy_to_list (cp);
swap_allocno_copy_ends_if_necessary (cp);
return cp;
}
/* Print info about copy CP into file F. */
static void
print_copy (FILE *f, ira_copy_t cp)
{
fprintf (f, " cp%d:a%d(r%d)<->a%d(r%d)@%d:%s\n", cp->num,
ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second), cp->freq,
cp->insn != NULL
? "move" : cp->constraint_p ? "constraint" : "shuffle");
}
DEBUG_FUNCTION void
debug (ira_allocno_copy &ref)
{
print_copy (stderr, &ref);
}
DEBUG_FUNCTION void
debug (ira_allocno_copy *ptr)
{
if (ptr)
debug (*ptr);
else
fprintf (stderr, "<nil>\n");
}
/* Print info about copy CP into stderr. */
void
ira_debug_copy (ira_copy_t cp)
{
print_copy (stderr, cp);
}
/* Print info about all copies into file F. */
static void
print_copies (FILE *f)
{
ira_copy_t cp;
ira_copy_iterator ci;
FOR_EACH_COPY (cp, ci)
print_copy (f, cp);
}
/* Print info about all copies into stderr. */
void
ira_debug_copies (void)
{
print_copies (stderr);
}
/* Print info about copies involving allocno A into file F. */
static void
print_allocno_copies (FILE *f, ira_allocno_t a)
{
ira_allocno_t another_a;
ira_copy_t cp, next_cp;
fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
{
if (cp->first == a)
{
next_cp = cp->next_first_allocno_copy;
another_a = cp->second;
}
else if (cp->second == a)
{
next_cp = cp->next_second_allocno_copy;
another_a = cp->first;
}
else
gcc_unreachable ();
fprintf (f, " cp%d:a%d(r%d)@%d", cp->num,
ALLOCNO_NUM (another_a), ALLOCNO_REGNO (another_a), cp->freq);
}
fprintf (f, "\n");
}
DEBUG_FUNCTION void
debug (ira_allocno &ref)
{
print_allocno_copies (stderr, &ref);
}
DEBUG_FUNCTION void
debug (ira_allocno *ptr)
{
if (ptr)
debug (*ptr);
else
fprintf (stderr, "<nil>\n");
}
/* Print info about copies involving allocno A into stderr. */
void
ira_debug_allocno_copies (ira_allocno_t a)
{
print_allocno_copies (stderr, a);
}
/* The function frees memory allocated for copy CP. */
static void
finish_copy (ira_copy_t cp)
{
copy_pool.remove (cp);
}
/* Free memory allocated for all copies. */
static void
finish_copies (void)
{
ira_copy_t cp;
ira_copy_iterator ci;
FOR_EACH_COPY (cp, ci)
finish_copy (cp);
copy_vec.release ();
copy_pool.release ();
}
/* Pools for cost vectors. It is defined only for allocno classes. */
static pool_allocator *cost_vector_pool[N_REG_CLASSES];
/* The function initiates work with hard register cost vectors. It
creates allocation pool for each allocno class. */
static void
initiate_cost_vectors (void)
{
int i;
enum reg_class aclass;
for (i = 0; i < ira_allocno_classes_num; i++)
{
aclass = ira_allocno_classes[i];
cost_vector_pool[aclass] = new pool_allocator
("cost vectors", sizeof (int) * (ira_class_hard_regs_num[aclass]));
}
}
/* Allocate and return a cost vector VEC for ACLASS. */
int *
ira_allocate_cost_vector (reg_class_t aclass)
{
return (int*) cost_vector_pool[(int) aclass]->allocate ();
}
/* Free a cost vector VEC for ACLASS. */
void
ira_free_cost_vector (int *vec, reg_class_t aclass)
{
ira_assert (vec != NULL);
cost_vector_pool[(int) aclass]->remove (vec);
}
/* Finish work with hard register cost vectors. Release allocation
pool for each allocno class. */
static void
finish_cost_vectors (void)
{
int i;
enum reg_class aclass;
for (i = 0; i < ira_allocno_classes_num; i++)
{
aclass = ira_allocno_classes[i];
delete cost_vector_pool[aclass];
}
}
/* Compute a post-ordering of the reverse control flow of the loop body
designated by the children nodes of LOOP_NODE, whose body nodes in
pre-order are input as LOOP_PREORDER. Return a VEC with a post-order
of the reverse loop body.
For the post-order of the reverse CFG, we visit the basic blocks in
LOOP_PREORDER array in the reverse order of where they appear.
This is important: We do not just want to compute a post-order of
the reverse CFG, we want to make a best-guess for a visiting order that
minimizes the number of chain elements per allocno live range. If the
blocks would be visited in a different order, we would still compute a
correct post-ordering but it would be less likely that two nodes
connected by an edge in the CFG are neighbors in the topsort. */
static vec<ira_loop_tree_node_t>
ira_loop_tree_body_rev_postorder (ira_loop_tree_node_t loop_node ATTRIBUTE_UNUSED,
vec<ira_loop_tree_node_t> loop_preorder)
{
vec<ira_loop_tree_node_t> topsort_nodes = vNULL;
unsigned int n_loop_preorder;
n_loop_preorder = loop_preorder.length ();
if (n_loop_preorder != 0)
{
ira_loop_tree_node_t subloop_node;
unsigned int i;
auto_vec<ira_loop_tree_node_t> dfs_stack;
/* This is a bit of strange abuse of the BB_VISITED flag: We use
the flag to mark blocks we still have to visit to add them to
our post-order. Define an alias to avoid confusion. */
#define BB_TO_VISIT BB_VISITED
FOR_EACH_VEC_ELT (loop_preorder, i, subloop_node)
{
gcc_checking_assert (! (subloop_node->bb->flags & BB_TO_VISIT));
subloop_node->bb->flags |= BB_TO_VISIT;
}
topsort_nodes.create (n_loop_preorder);
dfs_stack.create (n_loop_preorder);
FOR_EACH_VEC_ELT_REVERSE (loop_preorder, i, subloop_node)
{
if (! (subloop_node->bb->flags & BB_TO_VISIT))
continue;
subloop_node->bb->flags &= ~BB_TO_VISIT;
dfs_stack.quick_push (subloop_node);
while (! dfs_stack.is_empty ())
{
edge e;
edge_iterator ei;
ira_loop_tree_node_t n = dfs_stack.last ();
FOR_EACH_EDGE (e, ei, n->bb->preds)
{
ira_loop_tree_node_t pred_node;
basic_block pred_bb = e->src;
if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
continue;
pred_node = IRA_BB_NODE_BY_INDEX (pred_bb->index);
if (pred_node != n
&& (pred_node->bb->flags & BB_TO_VISIT))
{
pred_node->bb->flags &= ~BB_TO_VISIT;
dfs_stack.quick_push (pred_node);
}
}
if (n == dfs_stack.last ())
{
dfs_stack.pop ();
topsort_nodes.quick_push (n);
}
}
}
#undef BB_TO_VISIT
}
gcc_assert (topsort_nodes.length () == n_loop_preorder);
return topsort_nodes;
}
/* The current loop tree node and its regno allocno map. */
ira_loop_tree_node_t ira_curr_loop_tree_node;
ira_allocno_t *ira_curr_regno_allocno_map;
/* This recursive function traverses loop tree with root LOOP_NODE
calling non-null functions PREORDER_FUNC and POSTORDER_FUNC
correspondingly in preorder and postorder. The function sets up
IRA_CURR_LOOP_TREE_NODE and IRA_CURR_REGNO_ALLOCNO_MAP. If BB_P,
basic block nodes of LOOP_NODE is also processed (before its
subloop nodes).
If BB_P is set and POSTORDER_FUNC is given, the basic blocks in
the loop are passed in the *reverse* post-order of the *reverse*
CFG. This is only used by ira_create_allocno_live_ranges, which
wants to visit basic blocks in this order to minimize the number
of elements per live range chain.
Note that the loop tree nodes are still visited in the normal,
forward post-order of the loop tree. */
void
ira_traverse_loop_tree (bool bb_p, ira_loop_tree_node_t loop_node,
void (*preorder_func) (ira_loop_tree_node_t),
void (*postorder_func) (ira_loop_tree_node_t))
{
ira_loop_tree_node_t subloop_node;
ira_assert (loop_node->bb == NULL);
ira_curr_loop_tree_node = loop_node;
ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map;
if (preorder_func != NULL)
(*preorder_func) (loop_node);
if (bb_p)
{
auto_vec<ira_loop_tree_node_t> loop_preorder;
unsigned int i;
/* Add all nodes to the set of nodes to visit. The IRA loop tree
is set up such that nodes in the loop body appear in a pre-order
of their place in the CFG. */
for (subloop_node = loop_node->children;
subloop_node != NULL;
subloop_node = subloop_node->next)
if (subloop_node->bb != NULL)
loop_preorder.safe_push (subloop_node);
if (preorder_func != NULL)
FOR_EACH_VEC_ELT (loop_preorder, i, subloop_node)
(*preorder_func) (subloop_node);
if (postorder_func != NULL)
{
vec<ira_loop_tree_node_t> loop_rev_postorder =
ira_loop_tree_body_rev_postorder (loop_node, loop_preorder);
FOR_EACH_VEC_ELT_REVERSE (loop_rev_postorder, i, subloop_node)
(*postorder_func) (subloop_node);
loop_rev_postorder.release ();
}
}
for (subloop_node = loop_node->subloops;
subloop_node != NULL;
subloop_node = subloop_node->subloop_next)
{
ira_assert (subloop_node->bb == NULL);
ira_traverse_loop_tree (bb_p, subloop_node,
preorder_func, postorder_func);
}
ira_curr_loop_tree_node = loop_node;
ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map;
if (postorder_func != NULL)
(*postorder_func) (loop_node);
}
/* The basic block currently being processed. */
static basic_block curr_bb;
/* This recursive function creates allocnos corresponding to
pseudo-registers containing in X. True OUTPUT_P means that X is
an lvalue. PARENT corresponds to the parent expression of X. */
static void
create_insn_allocnos (rtx x, rtx outer, bool output_p)
{
int i, j;
const char *fmt;
enum rtx_code code = GET_CODE (x);
if (code == REG)
{
int regno;
if ((regno = REGNO (x)) >= FIRST_PSEUDO_REGISTER)
{
ira_allocno_t a;
if ((a = ira_curr_regno_allocno_map[regno]) == NULL)
{
a = ira_create_allocno (regno, false, ira_curr_loop_tree_node);
if (outer != NULL && GET_CODE (outer) == SUBREG)
{
machine_mode wmode = GET_MODE (outer);
if (partial_subreg_p (ALLOCNO_WMODE (a), wmode))
ALLOCNO_WMODE (a) = wmode;
}
}
ALLOCNO_NREFS (a)++;
ALLOCNO_FREQ (a) += REG_FREQ_FROM_BB (curr_bb);
if (output_p)
bitmap_set_bit (ira_curr_loop_tree_node->modified_regnos, regno);
}
return;
}
else if (code == SET)
{
create_insn_allocnos (SET_DEST (x), NULL, true);
create_insn_allocnos (SET_SRC (x), NULL, false);
return;
}
else if (code == CLOBBER)
{
create_insn_allocnos (XEXP (x, 0), NULL, true);
return;
}
else if (code == MEM)
{
create_insn_allocnos (XEXP (x, 0), NULL, false);
return;
}
else if (code == PRE_DEC || code == POST_DEC || code == PRE_INC ||
code == POST_INC || code == POST_MODIFY || code == PRE_MODIFY)
{
create_insn_allocnos (XEXP (x, 0), NULL, true);
create_insn_allocnos (XEXP (x, 0), NULL, false);
return;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
create_insn_allocnos (XEXP (x, i), x, output_p);
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
create_insn_allocnos (XVECEXP (x, i, j), x, output_p);
}
}
/* Create allocnos corresponding to pseudo-registers living in the
basic block represented by the corresponding loop tree node
BB_NODE. */
static void
create_bb_allocnos (ira_loop_tree_node_t bb_node)
{
basic_block bb;
rtx_insn *insn;
unsigned int i;
bitmap_iterator bi;
curr_bb = bb = bb_node->bb;
ira_assert (bb != NULL);
FOR_BB_INSNS_REVERSE (bb, insn)
if (NONDEBUG_INSN_P (insn))
create_insn_allocnos (PATTERN (insn), NULL, false);
/* It might be a allocno living through from one subloop to
another. */
EXECUTE_IF_SET_IN_REG_SET (df_get_live_in (bb), FIRST_PSEUDO_REGISTER, i, bi)
if (ira_curr_regno_allocno_map[i] == NULL)
ira_create_allocno (i, false, ira_curr_loop_tree_node);
}
/* Create allocnos corresponding to pseudo-registers living on edge E
(a loop entry or exit). Also mark the allocnos as living on the
loop border. */
static void
create_loop_allocnos (edge e)
{
unsigned int i;
bitmap live_in_regs, border_allocnos;
bitmap_iterator bi;
ira_loop_tree_node_t parent;
live_in_regs = df_get_live_in (e->dest);
border_allocnos = ira_curr_loop_tree_node->border_allocnos;
EXECUTE_IF_SET_IN_REG_SET (df_get_live_out (e->src),
FIRST_PSEUDO_REGISTER, i, bi)
if (bitmap_bit_p (live_in_regs, i))
{
if (ira_curr_regno_allocno_map[i] == NULL)
{
/* The order of creations is important for right
ira_regno_allocno_map. */
if ((parent = ira_curr_loop_tree_node->parent) != NULL
&& parent->regno_allocno_map[i] == NULL)
ira_create_allocno (i, false, parent);
ira_create_allocno (i, false, ira_curr_loop_tree_node);
}
bitmap_set_bit (border_allocnos,
ALLOCNO_NUM (ira_curr_regno_allocno_map[i]));
}
}
/* Create allocnos corresponding to pseudo-registers living in loop
represented by the corresponding loop tree node LOOP_NODE. This
function is called by ira_traverse_loop_tree. */
static void
create_loop_tree_node_allocnos (ira_loop_tree_node_t loop_node)
{
if (loop_node->bb != NULL)
create_bb_allocnos (loop_node);
else if (loop_node != ira_loop_tree_root)
{
int i;
edge_iterator ei;
edge e;
vec<edge> edges;
ira_assert (current_loops != NULL);
FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds)
if (e->src != loop_node->loop->latch)
create_loop_allocnos (e);
edges = get_loop_exit_edges (loop_node->loop);
FOR_EACH_VEC_ELT (edges, i, e)
create_loop_allocnos (e);
edges.release ();
}
}
/* Propagate information about allocnos modified inside the loop given
by its LOOP_TREE_NODE to its parent. */
static void
propagate_modified_regnos (ira_loop_tree_node_t loop_tree_node)
{
if (loop_tree_node == ira_loop_tree_root)
return;
ira_assert (loop_tree_node->bb == NULL);
bitmap_ior_into (loop_tree_node->parent->modified_regnos,
loop_tree_node->modified_regnos);
}
/* Propagate new info about allocno A (see comments about accumulated
info in allocno definition) to the corresponding allocno on upper
loop tree level. So allocnos on upper levels accumulate
information about the corresponding allocnos in nested regions.
The new info means allocno info finally calculated in this
file. */
static void
propagate_allocno_info (void)
{
int i;
ira_allocno_t a, parent_a;
ira_loop_tree_node_t parent;
enum reg_class aclass;
if (flag_ira_region != IRA_REGION_ALL
&& flag_ira_region != IRA_REGION_MIXED)
return;
for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
for (a = ira_regno_allocno_map[i];
a != NULL;
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
&& (parent_a = parent->regno_allocno_map[i]) != NULL
/* There are no caps yet at this point. So use
border_allocnos to find allocnos for the propagation. */
&& bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE (a)->border_allocnos,
ALLOCNO_NUM (a)))
{
if (! ALLOCNO_BAD_SPILL_P (a))
ALLOCNO_BAD_SPILL_P (parent_a) = false;
ALLOCNO_NREFS (parent_a) += ALLOCNO_NREFS (a);
ALLOCNO_FREQ (parent_a) += ALLOCNO_FREQ (a);
ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a);
merge_hard_reg_conflicts (a, parent_a, true);
ALLOCNO_CALLS_CROSSED_NUM (parent_a)
+= ALLOCNO_CALLS_CROSSED_NUM (a);
ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a)
+= ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (parent_a),
ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
+= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
aclass = ALLOCNO_CLASS (a);
ira_assert (aclass == ALLOCNO_CLASS (parent_a));
ira_allocate_and_accumulate_costs
(&ALLOCNO_HARD_REG_COSTS (parent_a), aclass,
ALLOCNO_HARD_REG_COSTS (a));
ira_allocate_and_accumulate_costs
(&ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a),
aclass,
ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
ALLOCNO_CLASS_COST (parent_a)
+= ALLOCNO_CLASS_COST (a);
ALLOCNO_MEMORY_COST (parent_a) += ALLOCNO_MEMORY_COST (a);
}
}
/* Create allocnos corresponding to pseudo-registers in the current
function. Traverse the loop tree for this. */
static void
create_allocnos (void)
{
/* We need to process BB first to correctly link allocnos by member
next_regno_allocno. */
ira_traverse_loop_tree (true, ira_loop_tree_root,
create_loop_tree_node_allocnos, NULL);
if (optimize)
ira_traverse_loop_tree (false, ira_loop_tree_root, NULL,
propagate_modified_regnos);
}
/* The page contains function to remove some regions from a separate
register allocation. We remove regions whose separate allocation
will hardly improve the result. As a result we speed up regional
register allocation. */
/* The function changes the object in range list given by R to OBJ. */
static void
change_object_in_range_list (live_range_t r, ira_object_t obj)
{
for (; r != NULL; r = r->next)
r->object = obj;
}
/* Move all live ranges associated with allocno FROM to allocno TO. */
static void
move_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to)
{
int i;
int n = ALLOCNO_NUM_OBJECTS (from);
gcc_assert (n == ALLOCNO_NUM_OBJECTS (to));
for (i = 0; i < n; i++)
{
ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
live_range_t lr = OBJECT_LIVE_RANGES (from_obj);
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
{
fprintf (ira_dump_file,
" Moving ranges of a%dr%d to a%dr%d: ",
ALLOCNO_NUM (from), ALLOCNO_REGNO (from),
ALLOCNO_NUM (to), ALLOCNO_REGNO (to));
ira_print_live_range_list (ira_dump_file, lr);
}
change_object_in_range_list (lr, to_obj);
OBJECT_LIVE_RANGES (to_obj)
= ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj));
OBJECT_LIVE_RANGES (from_obj) = NULL;
}
}
static void
copy_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to)
{
int i;
int n = ALLOCNO_NUM_OBJECTS (from);
gcc_assert (n == ALLOCNO_NUM_OBJECTS (to));
for (i = 0; i < n; i++)
{
ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
live_range_t lr = OBJECT_LIVE_RANGES (from_obj);
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
{
fprintf (ira_dump_file, " Copying ranges of a%dr%d to a%dr%d: ",
ALLOCNO_NUM (from), ALLOCNO_REGNO (from),
ALLOCNO_NUM (to), ALLOCNO_REGNO (to));
ira_print_live_range_list (ira_dump_file, lr);
}
lr = ira_copy_live_range_list (lr);
change_object_in_range_list (lr, to_obj);
OBJECT_LIVE_RANGES (to_obj)
= ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj));
}
}
/* Return TRUE if NODE represents a loop with low register
pressure. */
static bool
low_pressure_loop_node_p (ira_loop_tree_node_t node)
{
int i;
enum reg_class pclass;
if (node->bb != NULL)
return false;
for (i = 0; i < ira_pressure_classes_num; i++)
{
pclass = ira_pressure_classes[i];
if (node->reg_pressure[pclass] > ira_class_hard_regs_num[pclass]
&& ira_class_hard_regs_num[pclass] > 1)
return false;
}
return true;
}
#ifdef STACK_REGS
/* Return TRUE if LOOP has a complex enter or exit edge. We don't
form a region from such loop if the target use stack register
because reg-stack.c can not deal with such edges. */
static bool
loop_with_complex_edge_p (struct loop *loop)
{
int i;
edge_iterator ei;
edge e;
vec<edge> edges;
bool res;
FOR_EACH_EDGE (e, ei, loop->header->preds)
if (e->flags & EDGE_EH)
return true;
edges = get_loop_exit_edges (loop);
res = false;
FOR_EACH_VEC_ELT (edges, i, e)
if (e->flags & EDGE_COMPLEX)
{
res = true;
break;
}
edges.release ();
return res;
}
#endif
/* Sort loops for marking them for removal. We put already marked
loops first, then less frequent loops next, and then outer loops
next. */
static int
loop_compare_func (const void *v1p, const void *v2p)
{
int diff;
ira_loop_tree_node_t l1 = *(const ira_loop_tree_node_t *) v1p;
ira_loop_tree_node_t l2 = *(const ira_loop_tree_node_t *) v2p;
ira_assert (l1->parent != NULL && l2->parent != NULL);
if (l1->to_remove_p && ! l2->to_remove_p)
return -1;
if (! l1->to_remove_p && l2->to_remove_p)
return 1;
if ((diff = l1->loop->header->count.to_frequency (cfun)
- l2->loop->header->count.to_frequency (cfun)) != 0)
return diff;
if ((diff = (int) loop_depth (l1->loop) - (int) loop_depth (l2->loop)) != 0)
return diff;
/* Make sorting stable. */
return l1->loop_num - l2->loop_num;
}
/* Mark loops which should be removed from regional allocation. We
remove a loop with low register pressure inside another loop with
register pressure. In this case a separate allocation of the loop
hardly helps (for irregular register file architecture it could
help by choosing a better hard register in the loop but we prefer
faster allocation even in this case). We also remove cheap loops
if there are more than IRA_MAX_LOOPS_NUM of them. Loop with EH
exit or enter edges are removed too because the allocation might
require put pseudo moves on the EH edges (we could still do this
for pseudos with caller saved hard registers in some cases but it
is impossible to say here or during top-down allocation pass what
hard register the pseudos get finally). */
static void
mark_loops_for_removal (void)
{
int i, n;
ira_loop_tree_node_t *sorted_loops;
loop_p loop;
ira_assert (current_loops != NULL);
sorted_loops
= (ira_loop_tree_node_t *) ira_allocate (sizeof (ira_loop_tree_node_t)
* number_of_loops (cfun));
for (n = i = 0; vec_safe_iterate (get_loops (cfun), i, &loop); i++)
if (ira_loop_nodes[i].regno_allocno_map != NULL)
{
if (ira_loop_nodes[i].parent == NULL)
{
/* Don't remove the root. */
ira_loop_nodes[i].to_remove_p = false;
continue;
}
sorted_loops[n++] = &ira_loop_nodes[i];
ira_loop_nodes[i].to_remove_p
= ((low_pressure_loop_node_p (ira_loop_nodes[i].parent)
&& low_pressure_loop_node_p (&ira_loop_nodes[i]))
#ifdef STACK_REGS
|| loop_with_complex_edge_p (ira_loop_nodes[i].loop)
#endif
);
}
qsort (sorted_loops, n, sizeof (ira_loop_tree_node_t), loop_compare_func);
for (i = 0; i < n - IRA_MAX_LOOPS_NUM; i++)
{
sorted_loops[i]->to_remove_p = true;
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
fprintf
(ira_dump_file,
" Mark loop %d (header %d, freq %d, depth %d) for removal (%s)\n",
sorted_loops[i]->loop_num, sorted_loops[i]->loop->header->index,
sorted_loops[i]->loop->header->count.to_frequency (cfun),
loop_depth (sorted_loops[i]->loop),
low_pressure_loop_node_p (sorted_loops[i]->parent)
&& low_pressure_loop_node_p (sorted_loops[i])
? "low pressure" : "cheap loop");
}
ira_free (sorted_loops);
}
/* Mark all loops but root for removing. */
static void
mark_all_loops_for_removal (void)
{
int i;
loop_p loop;
ira_assert (current_loops != NULL);
FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
if (ira_loop_nodes[i].regno_allocno_map != NULL)
{
if (ira_loop_nodes[i].parent == NULL)
{
/* Don't remove the root. */
ira_loop_nodes[i].to_remove_p = false;
continue;
}
ira_loop_nodes[i].to_remove_p = true;
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
fprintf
(ira_dump_file,
" Mark loop %d (header %d, freq %d, depth %d) for removal\n",
ira_loop_nodes[i].loop_num,
ira_loop_nodes[i].loop->header->index,
ira_loop_nodes[i].loop->header->count.to_frequency (cfun),
loop_depth (ira_loop_nodes[i].loop));
}
}
/* Definition of vector of loop tree nodes. */
/* Vec containing references to all removed loop tree nodes. */
static vec<ira_loop_tree_node_t> removed_loop_vec;
/* Vec containing references to all children of loop tree nodes. */
static vec<ira_loop_tree_node_t> children_vec;
/* Remove subregions of NODE if their separate allocation will not
improve the result. */
static void
remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_node_t node)
{
unsigned int start;
bool remove_p;
ira_loop_tree_node_t subnode;
remove_p = node->to_remove_p;
if (! remove_p)
children_vec.safe_push (node);
start = children_vec.length ();
for (subnode = node->children; subnode != NULL; subnode = subnode->next)
if (subnode->bb == NULL)
remove_uneccesary_loop_nodes_from_loop_tree (subnode);
else
children_vec.safe_push (subnode);
node->children = node->subloops = NULL;
if (remove_p)
{
removed_loop_vec.safe_push (node);
return;
}
while (children_vec.length () > start)
{
subnode = children_vec.pop ();
subnode->parent = node;
subnode->next = node->children;
node->children = subnode;
if (subnode->bb == NULL)
{
subnode->subloop_next = node->subloops;
node->subloops = subnode;
}
}
}
/* Return TRUE if NODE is inside PARENT. */
static bool
loop_is_inside_p (ira_loop_tree_node_t node, ira_loop_tree_node_t parent)
{
for (node = node->parent; node != NULL; node = node->parent)
if (node == parent)
return true;
return false;
}
/* Sort allocnos according to their order in regno allocno list. */
static int
regno_allocno_order_compare_func (const void *v1p, const void *v2p)
{
ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
ira_loop_tree_node_t n1 = ALLOCNO_LOOP_TREE_NODE (a1);
ira_loop_tree_node_t n2 = ALLOCNO_LOOP_TREE_NODE (a2);
if (loop_is_inside_p (n1, n2))
return -1;
else if (loop_is_inside_p (n2, n1))
return 1;
/* If allocnos are equally good, sort by allocno numbers, so that
the results of qsort leave nothing to chance. We put allocnos
with higher number first in the list because it is the original
order for allocnos from loops on the same levels. */
return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1);
}
/* This array is used to sort allocnos to restore allocno order in
the regno allocno list. */
static ira_allocno_t *regno_allocnos;
/* Restore allocno order for REGNO in the regno allocno list. */
static void
ira_rebuild_regno_allocno_list (int regno)
{
int i, n;
ira_allocno_t a;
for (n = 0, a = ira_regno_allocno_map[regno];
a != NULL;
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
regno_allocnos[n++] = a;
ira_assert (n > 0);
qsort (regno_allocnos, n, sizeof (ira_allocno_t),
regno_allocno_order_compare_func);
for (i = 1; i < n; i++)
ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[i - 1]) = regno_allocnos[i];
ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[n - 1]) = NULL;
ira_regno_allocno_map[regno] = regno_allocnos[0];
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Rebuilding regno allocno list for %d\n", regno);
}
/* Propagate info from allocno FROM_A to allocno A. */
static void
propagate_some_info_from_allocno (ira_allocno_t a, ira_allocno_t from_a)
{
enum reg_class aclass;
merge_hard_reg_conflicts (from_a, a, false);
ALLOCNO_NREFS (a) += ALLOCNO_NREFS (from_a);
ALLOCNO_FREQ (a) += ALLOCNO_FREQ (from_a);
ALLOCNO_CALL_FREQ (a) += ALLOCNO_CALL_FREQ (from_a);
ALLOCNO_CALLS_CROSSED_NUM (a) += ALLOCNO_CALLS_CROSSED_NUM (from_a);
ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)
+= ALLOCNO_CHEAP_CALLS_CROSSED_NUM (from_a);
IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (from_a));
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a)
+= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (from_a);
if (! ALLOCNO_BAD_SPILL_P (from_a))
ALLOCNO_BAD_SPILL_P (a) = false;
aclass = ALLOCNO_CLASS (from_a);
ira_assert (aclass == ALLOCNO_CLASS (a));
ira_allocate_and_accumulate_costs (&ALLOCNO_HARD_REG_COSTS (a), aclass,
ALLOCNO_HARD_REG_COSTS (from_a));
ira_allocate_and_accumulate_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
aclass,
ALLOCNO_CONFLICT_HARD_REG_COSTS (from_a));
ALLOCNO_CLASS_COST (a) += ALLOCNO_CLASS_COST (from_a);
ALLOCNO_MEMORY_COST (a) += ALLOCNO_MEMORY_COST (from_a);
}
/* Remove allocnos from loops removed from the allocation
consideration. */
static void
remove_unnecessary_allocnos (void)
{
int regno;
bool merged_p, rebuild_p;
ira_allocno_t a, prev_a, next_a, parent_a;
ira_loop_tree_node_t a_node, parent;
merged_p = false;
regno_allocnos = NULL;
for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
{
rebuild_p = false;
for (prev_a = NULL, a = ira_regno_allocno_map[regno];
a != NULL;
a = next_a)
{
next_a = ALLOCNO_NEXT_REGNO_ALLOCNO (a);
a_node = ALLOCNO_LOOP_TREE_NODE (a);
if (! a_node->to_remove_p)
prev_a = a;
else
{
for (parent = a_node->parent;
(parent_a = parent->regno_allocno_map[regno]) == NULL
&& parent->to_remove_p;
parent = parent->parent)
;
if (parent_a == NULL)
{
/* There are no allocnos with the same regno in
upper region -- just move the allocno to the
upper region. */
prev_a = a;
ALLOCNO_LOOP_TREE_NODE (a) = parent;
parent->regno_allocno_map[regno] = a;
bitmap_set_bit (parent->all_allocnos, ALLOCNO_NUM (a));
rebuild_p = true;
}
else
{
/* Remove the allocno and update info of allocno in
the upper region. */
if (prev_a == NULL)
ira_regno_allocno_map[regno] = next_a;
else
ALLOCNO_NEXT_REGNO_ALLOCNO (prev_a) = next_a;
move_allocno_live_ranges (a, parent_a);
merged_p = true;
propagate_some_info_from_allocno (parent_a, a);
/* Remove it from the corresponding regno allocno
map to avoid info propagation of subsequent
allocno into this already removed allocno. */
a_node->regno_allocno_map[regno] = NULL;
ira_remove_allocno_prefs (a);
finish_allocno (a);
}
}
}
if (rebuild_p)
/* We need to restore the order in regno allocno list. */
{
if (regno_allocnos == NULL)
regno_allocnos
= (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
* ira_allocnos_num);
ira_rebuild_regno_allocno_list (regno);
}
}
if (merged_p)
ira_rebuild_start_finish_chains ();
if (regno_allocnos != NULL)
ira_free (regno_allocnos);
}
/* Remove allocnos from all loops but the root. */
static void
remove_low_level_allocnos (void)
{
int regno;
bool merged_p, propagate_p;
ira_allocno_t a, top_a;
ira_loop_tree_node_t a_node, parent;
ira_allocno_iterator ai;
merged_p = false;
FOR_EACH_ALLOCNO (a, ai)
{
a_node = ALLOCNO_LOOP_TREE_NODE (a);
if (a_node == ira_loop_tree_root || ALLOCNO_CAP_MEMBER (a) != NULL)
continue;
regno = ALLOCNO_REGNO (a);
if ((top_a = ira_loop_tree_root->regno_allocno_map[regno]) == NULL)
{
ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root;
ira_loop_tree_root->regno_allocno_map[regno] = a;
continue;
}
propagate_p = a_node->parent->regno_allocno_map[regno] == NULL;
/* Remove the allocno and update info of allocno in the upper
region. */
move_allocno_live_ranges (a, top_a);
merged_p = true;
if (propagate_p)
propagate_some_info_from_allocno (top_a, a);
}
FOR_EACH_ALLOCNO (a, ai)
{
a_node = ALLOCNO_LOOP_TREE_NODE (a);
if (a_node == ira_loop_tree_root)
continue;
parent = a_node->parent;
regno = ALLOCNO_REGNO (a);
if (ALLOCNO_CAP_MEMBER (a) != NULL)
ira_assert (ALLOCNO_CAP (a) != NULL);
else if (ALLOCNO_CAP (a) == NULL)
ira_assert (parent->regno_allocno_map[regno] != NULL);
}
FOR_EACH_ALLOCNO (a, ai)
{
regno = ALLOCNO_REGNO (a);
if (ira_loop_tree_root->regno_allocno_map[regno] == a)
{
ira_object_t obj;
ira_allocno_object_iterator oi;
ira_regno_allocno_map[regno] = a;
ALLOCNO_NEXT_REGNO_ALLOCNO (a) = NULL;
ALLOCNO_CAP_MEMBER (a) = NULL;
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
#ifdef STACK_REGS
if (ALLOCNO_TOTAL_NO_STACK_REG_P (a))
ALLOCNO_NO_STACK_REG_P (a) = true;
#endif
}
else
{
ira_remove_allocno_prefs (a);
finish_allocno (a);
}
}
if (merged_p)
ira_rebuild_start_finish_chains ();
}
/* Remove loops from consideration. We remove all loops except for
root if ALL_P or loops for which a separate allocation will not
improve the result. We have to do this after allocno creation and
their costs and allocno class evaluation because only after that
the register pressure can be known and is calculated. */
static void
remove_unnecessary_regions (bool all_p)
{
if (current_loops == NULL)
return;
if (all_p)
mark_all_loops_for_removal ();
else
mark_loops_for_removal ();
children_vec.create (last_basic_block_for_fn (cfun)
+ number_of_loops (cfun));
removed_loop_vec.create (last_basic_block_for_fn (cfun)
+ number_of_loops (cfun));
remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_root);
children_vec.release ();
if (all_p)
remove_low_level_allocnos ();
else
remove_unnecessary_allocnos ();
while (removed_loop_vec.length () > 0)
finish_loop_tree_node (removed_loop_vec.pop ());
removed_loop_vec.release ();
}
/* At this point true value of allocno attribute bad_spill_p means
that there is an insn where allocno occurs and where the allocno
can not be used as memory. The function updates the attribute, now
it can be true only for allocnos which can not be used as memory in
an insn and in whose live ranges there is other allocno deaths.
Spilling allocnos with true value will not improve the code because
it will not make other allocnos colorable and additional reloads
for the corresponding pseudo will be generated in reload pass for
each insn it occurs.
This is a trick mentioned in one classic article of Chaitin etc
which is frequently omitted in other implementations of RA based on
graph coloring. */
static void
update_bad_spill_attribute (void)
{
int i;
ira_allocno_t a;
ira_allocno_iterator ai;
ira_allocno_object_iterator aoi;
ira_object_t obj;
live_range_t r;
enum reg_class aclass;
bitmap_head dead_points[N_REG_CLASSES];
for (i = 0; i < ira_allocno_classes_num; i++)
{
aclass = ira_allocno_classes[i];
bitmap_initialize (&dead_points[aclass], ®_obstack);
}
FOR_EACH_ALLOCNO (a, ai)
{
aclass = ALLOCNO_CLASS (a);
if (aclass == NO_REGS)
continue;
FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi)
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
bitmap_set_bit (&dead_points[aclass], r->finish);
}
FOR_EACH_ALLOCNO (a, ai)
{
aclass = ALLOCNO_CLASS (a);
if (aclass == NO_REGS)
continue;
if (! ALLOCNO_BAD_SPILL_P (a))
continue;
FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi)
{
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
{
for (i = r->start + 1; i < r->finish; i++)
if (bitmap_bit_p (&dead_points[aclass], i))
break;
if (i < r->finish)
break;
}
if (r != NULL)
{
ALLOCNO_BAD_SPILL_P (a) = false;
break;
}
}
}
for (i = 0; i < ira_allocno_classes_num; i++)
{
aclass = ira_allocno_classes[i];
bitmap_clear (&dead_points[aclass]);
}
}
/* Set up minimal and maximal live range points for allocnos. */
static void
setup_min_max_allocno_live_range_point (void)
{
int i;
ira_allocno_t a, parent_a, cap;
ira_allocno_iterator ai;
#ifdef ENABLE_IRA_CHECKING
ira_object_iterator oi;
ira_object_t obj;
#endif
live_range_t r;
ira_loop_tree_node_t parent;
FOR_EACH_ALLOCNO (a, ai)
{
int n = ALLOCNO_NUM_OBJECTS (a);
for (i = 0; i < n; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
r = OBJECT_LIVE_RANGES (obj);
if (r == NULL)
continue;
OBJECT_MAX (obj) = r->finish;
for (; r->next != NULL; r = r->next)
;
OBJECT_MIN (obj) = r->start;
}
}
for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
for (a = ira_regno_allocno_map[i];
a != NULL;
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
{
int j;
int n = ALLOCNO_NUM_OBJECTS (a);
for (j = 0; j < n; j++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, j);
ira_object_t parent_obj;
if (OBJECT_MAX (obj) < 0)
continue;
ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
/* Accumulation of range info. */
if (ALLOCNO_CAP (a) != NULL)
{
for (cap = ALLOCNO_CAP (a); cap != NULL; cap = ALLOCNO_CAP (cap))
{
ira_object_t cap_obj = ALLOCNO_OBJECT (cap, j);
if (OBJECT_MAX (cap_obj) < OBJECT_MAX (obj))
OBJECT_MAX (cap_obj) = OBJECT_MAX (obj);
if (OBJECT_MIN (cap_obj) > OBJECT_MIN (obj))
OBJECT_MIN (cap_obj) = OBJECT_MIN (obj);
}
continue;
}
if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL)
continue;
parent_a = parent->regno_allocno_map[i];
parent_obj = ALLOCNO_OBJECT (parent_a, j);
if (OBJECT_MAX (parent_obj) < OBJECT_MAX (obj))
OBJECT_MAX (parent_obj) = OBJECT_MAX (obj);
if (OBJECT_MIN (parent_obj) > OBJECT_MIN (obj))
OBJECT_MIN (parent_obj) = OBJECT_MIN (obj);
}
}
#ifdef ENABLE_IRA_CHECKING
FOR_EACH_OBJECT (obj, oi)
{
if ((0 <= OBJECT_MIN (obj) && OBJECT_MIN (obj) <= ira_max_point)
&& (0 <= OBJECT_MAX (obj) && OBJECT_MAX (obj) <= ira_max_point))
continue;
gcc_unreachable ();
}
#endif
}
/* Sort allocnos according to their live ranges. Allocnos with
smaller allocno class are put first unless we use priority
coloring. Allocnos with the same class are ordered according
their start (min). Allocnos with the same start are ordered
according their finish (max). */
static int
object_range_compare_func (const void *v1p, const void *v2p)
{
int diff;
ira_object_t obj1 = *(const ira_object_t *) v1p;
ira_object_t obj2 = *(const ira_object_t *) v2p;
ira_allocno_t a1 = OBJECT_ALLOCNO (obj1);
ira_allocno_t a2 = OBJECT_ALLOCNO (obj2);
if ((diff = OBJECT_MIN (obj1) - OBJECT_MIN (obj2)) != 0)
return diff;
if ((diff = OBJECT_MAX (obj1) - OBJECT_MAX (obj2)) != 0)
return diff;
return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
}
/* Sort ira_object_id_map and set up conflict id of allocnos. */
static void
sort_conflict_id_map (void)
{
int i, num;
ira_allocno_t a;
ira_allocno_iterator ai;
num = 0;
FOR_EACH_ALLOCNO (a, ai)
{
ira_allocno_object_iterator oi;
ira_object_t obj;
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
ira_object_id_map[num++] = obj;
}
if (num > 1)
qsort (ira_object_id_map, num, sizeof (ira_object_t),
object_range_compare_func);
for (i = 0; i < num; i++)
{
ira_object_t obj = ira_object_id_map[i];
gcc_assert (obj != NULL);
OBJECT_CONFLICT_ID (obj) = i;
}
for (i = num; i < ira_objects_num; i++)
ira_object_id_map[i] = NULL;
}
/* Set up minimal and maximal conflict ids of allocnos with which
given allocno can conflict. */
static void
setup_min_max_conflict_allocno_ids (void)
{
int aclass;
int i, j, min, max, start, finish, first_not_finished, filled_area_start;
int *live_range_min, *last_lived;
int word0_min, word0_max;
ira_allocno_t a;
ira_allocno_iterator ai;
live_range_min = (int *) ira_allocate (sizeof (int) * ira_objects_num);
aclass = -1;
first_not_finished = -1;
for (i = 0; i < ira_objects_num; i++)
{
ira_object_t obj = ira_object_id_map[i];
if (obj == NULL)
continue;
a = OBJECT_ALLOCNO (obj);
if (aclass < 0)
{
aclass = ALLOCNO_CLASS (a);
min = i;
first_not_finished = i;
}
else
{
start = OBJECT_MIN (obj);
/* If we skip an allocno, the allocno with smaller ids will
be also skipped because of the secondary sorting the
range finishes (see function
object_range_compare_func). */
while (first_not_finished < i
&& start > OBJECT_MAX (ira_object_id_map
[first_not_finished]))
first_not_finished++;
min = first_not_finished;
}
if (min == i)
/* We could increase min further in this case but it is good
enough. */
min++;
live_range_min[i] = OBJECT_MIN (obj);
OBJECT_MIN (obj) = min;
}
last_lived = (int *) ira_allocate (sizeof (int) * ira_max_point);
aclass = -1;
filled_area_start = -1;
for (i = ira_objects_num - 1; i >= 0; i--)
{
ira_object_t obj = ira_object_id_map[i];
if (obj == NULL)
continue;
a = OBJECT_ALLOCNO (obj);
if (aclass < 0)
{
aclass = ALLOCNO_CLASS (a);
for (j = 0; j < ira_max_point; j++)
last_lived[j] = -1;
filled_area_start = ira_max_point;
}
min = live_range_min[i];
finish = OBJECT_MAX (obj);
max = last_lived[finish];
if (max < 0)
/* We could decrease max further in this case but it is good
enough. */
max = OBJECT_CONFLICT_ID (obj) - 1;
OBJECT_MAX (obj) = max;
/* In filling, we can go further A range finish to recognize
intersection quickly because if the finish of subsequently
processed allocno (it has smaller conflict id) range is
further A range finish than they are definitely intersected
(the reason for this is the allocnos with bigger conflict id
have their range starts not smaller than allocnos with
smaller ids. */
for (j = min; j < filled_area_start; j++)
last_lived[j] = i;
filled_area_start = min;
}
ira_free (last_lived);
ira_free (live_range_min);
/* For allocnos with more than one object, we may later record extra conflicts in
subobject 0 that we cannot really know about here.
For now, simply widen the min/max range of these subobjects. */
word0_min = INT_MAX;
word0_max = INT_MIN;
FOR_EACH_ALLOCNO (a, ai)
{
int n = ALLOCNO_NUM_OBJECTS (a);
ira_object_t obj0;
if (n < 2)
continue;
obj0 = ALLOCNO_OBJECT (a, 0);
if (OBJECT_CONFLICT_ID (obj0) < word0_min)
word0_min = OBJECT_CONFLICT_ID (obj0);
if (OBJECT_CONFLICT_ID (obj0) > word0_max)
word0_max = OBJECT_CONFLICT_ID (obj0);
}
FOR_EACH_ALLOCNO (a, ai)
{
int n = ALLOCNO_NUM_OBJECTS (a);
ira_object_t obj0;
if (n < 2)
continue;
obj0 = ALLOCNO_OBJECT (a, 0);
if (OBJECT_MIN (obj0) > word0_min)
OBJECT_MIN (obj0) = word0_min;
if (OBJECT_MAX (obj0) < word0_max)
OBJECT_MAX (obj0) = word0_max;
}
}
static void
create_caps (void)
{
ira_allocno_t a;
ira_allocno_iterator ai;
ira_loop_tree_node_t loop_tree_node;
FOR_EACH_ALLOCNO (a, ai)
{
if (ALLOCNO_LOOP_TREE_NODE (a) == ira_loop_tree_root)
continue;
if (ALLOCNO_CAP_MEMBER (a) != NULL)
create_cap_allocno (a);
else if (ALLOCNO_CAP (a) == NULL)
{
loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
if (!bitmap_bit_p (loop_tree_node->border_allocnos, ALLOCNO_NUM (a)))
create_cap_allocno (a);
}
}
}
/* The page contains code transforming more one region internal
representation (IR) to one region IR which is necessary for reload.
This transformation is called IR flattening. We might just rebuild
the IR for one region but we don't do it because it takes a lot of
time. */
/* Map: regno -> allocnos which will finally represent the regno for
IR with one region. */
static ira_allocno_t *regno_top_level_allocno_map;
/* Find the allocno that corresponds to A at a level one higher up in the
loop tree. Returns NULL if A is a cap, or if it has no parent. */
ira_allocno_t
ira_parent_allocno (ira_allocno_t a)
{
ira_loop_tree_node_t parent;
if (ALLOCNO_CAP (a) != NULL)
return NULL;
parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
if (parent == NULL)
return NULL;
return parent->regno_allocno_map[ALLOCNO_REGNO (a)];
}
/* Find the allocno that corresponds to A at a level one higher up in the
loop tree. If ALLOCNO_CAP is set for A, return that. */
ira_allocno_t
ira_parent_or_cap_allocno (ira_allocno_t a)
{
if (ALLOCNO_CAP (a) != NULL)
return ALLOCNO_CAP (a);
return ira_parent_allocno (a);
}
/* Process all allocnos originated from pseudo REGNO and copy live
ranges, hard reg conflicts, and allocno stack reg attributes from
low level allocnos to final allocnos which are destinations of
removed stores at a loop exit. Return true if we copied live
ranges. */
static bool
copy_info_to_removed_store_destinations (int regno)
{
ira_allocno_t a;
ira_allocno_t parent_a = NULL;
ira_loop_tree_node_t parent;
bool merged_p;
merged_p = false;
for (a = ira_regno_allocno_map[regno];
a != NULL;
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
{
if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))])
/* This allocno will be removed. */
continue;
/* Caps will be removed. */
ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
for (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
parent != NULL;
parent = parent->parent)
if ((parent_a = parent->regno_allocno_map[regno]) == NULL
|| (parent_a
== regno_top_level_allocno_map[REGNO
(allocno_emit_reg (parent_a))]
&& ALLOCNO_EMIT_DATA (parent_a)->mem_optimized_dest_p))
break;
if (parent == NULL || parent_a == NULL)
continue;
copy_allocno_live_ranges (a, parent_a);
merge_hard_reg_conflicts (a, parent_a, true);
ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a);
ALLOCNO_CALLS_CROSSED_NUM (parent_a)
+= ALLOCNO_CALLS_CROSSED_NUM (a);
ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a)
+= ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (parent_a),
ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
+= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
merged_p = true;
}
return merged_p;
}
/* Flatten the IR. In other words, this function transforms IR as if
it were built with one region (without loops). We could make it
much simpler by rebuilding IR with one region, but unfortunately it
takes a lot of time. MAX_REGNO_BEFORE_EMIT and
IRA_MAX_POINT_BEFORE_EMIT are correspondingly MAX_REG_NUM () and
IRA_MAX_POINT before emitting insns on the loop borders. */
void
ira_flattening (int max_regno_before_emit, int ira_max_point_before_emit)
{
int i, j;
bool keep_p;
int hard_regs_num;
bool new_pseudos_p, merged_p, mem_dest_p;
unsigned int n;
enum reg_class aclass;
ira_allocno_t a, parent_a, first, second, node_first, node_second;
ira_copy_t cp;
ira_loop_tree_node_t node;
live_range_t r;
ira_allocno_iterator ai;
ira_copy_iterator ci;
regno_top_level_allocno_map
= (ira_allocno_t *) ira_allocate (max_reg_num ()
* sizeof (ira_allocno_t));
memset (regno_top_level_allocno_map, 0,
max_reg_num () * sizeof (ira_allocno_t));
new_pseudos_p = merged_p = false;
FOR_EACH_ALLOCNO (a, ai)
{
ira_allocno_object_iterator oi;
ira_object_t obj;
if (ALLOCNO_CAP_MEMBER (a) != NULL)
/* Caps are not in the regno allocno maps and they are never
will be transformed into allocnos existing after IR
flattening. */
continue;
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
OBJECT_CONFLICT_HARD_REGS (obj));
#ifdef STACK_REGS
ALLOCNO_TOTAL_NO_STACK_REG_P (a) = ALLOCNO_NO_STACK_REG_P (a);
#endif
}
/* Fix final allocno attributes. */
for (i = max_regno_before_emit - 1; i >= FIRST_PSEUDO_REGISTER; i--)
{
mem_dest_p = false;
for (a = ira_regno_allocno_map[i];
a != NULL;
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
{
ira_emit_data_t parent_data, data = ALLOCNO_EMIT_DATA (a);
ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
if (data->somewhere_renamed_p)
new_pseudos_p = true;
parent_a = ira_parent_allocno (a);
if (parent_a == NULL)
{
ALLOCNO_COPIES (a) = NULL;
regno_top_level_allocno_map[REGNO (data->reg)] = a;
continue;
}
ira_assert (ALLOCNO_CAP_MEMBER (parent_a) == NULL);
if (data->mem_optimized_dest != NULL)
mem_dest_p = true;
parent_data = ALLOCNO_EMIT_DATA (parent_a);
if (REGNO (data->reg) == REGNO (parent_data->reg))
{
merge_hard_reg_conflicts (a, parent_a, true);
move_allocno_live_ranges (a, parent_a);
merged_p = true;
parent_data->mem_optimized_dest_p
= (parent_data->mem_optimized_dest_p
|| data->mem_optimized_dest_p);
continue;
}
new_pseudos_p = true;
for (;;)
{
ALLOCNO_NREFS (parent_a) -= ALLOCNO_NREFS (a);
ALLOCNO_FREQ (parent_a) -= ALLOCNO_FREQ (a);
ALLOCNO_CALL_FREQ (parent_a) -= ALLOCNO_CALL_FREQ (a);
ALLOCNO_CALLS_CROSSED_NUM (parent_a)
-= ALLOCNO_CALLS_CROSSED_NUM (a);
ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a)
-= ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
-= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
ira_assert (ALLOCNO_CALLS_CROSSED_NUM (parent_a) >= 0
&& ALLOCNO_NREFS (parent_a) >= 0
&& ALLOCNO_FREQ (parent_a) >= 0);
aclass = ALLOCNO_CLASS (parent_a);
hard_regs_num = ira_class_hard_regs_num[aclass];
if (ALLOCNO_HARD_REG_COSTS (a) != NULL
&& ALLOCNO_HARD_REG_COSTS (parent_a) != NULL)
for (j = 0; j < hard_regs_num; j++)
ALLOCNO_HARD_REG_COSTS (parent_a)[j]
-= ALLOCNO_HARD_REG_COSTS (a)[j];
if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL
&& ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a) != NULL)
for (j = 0; j < hard_regs_num; j++)
ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a)[j]
-= ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[j];
ALLOCNO_CLASS_COST (parent_a)
-= ALLOCNO_CLASS_COST (a);
ALLOCNO_MEMORY_COST (parent_a) -= ALLOCNO_MEMORY_COST (a);
parent_a = ira_parent_allocno (parent_a);
if (parent_a == NULL)
break;
}
ALLOCNO_COPIES (a) = NULL;
regno_top_level_allocno_map[REGNO (data->reg)] = a;
}
if (mem_dest_p && copy_info_to_removed_store_destinations (i))
merged_p = true;
}
ira_assert (new_pseudos_p || ira_max_point_before_emit == ira_max_point);
if (merged_p || ira_max_point_before_emit != ira_max_point)
ira_rebuild_start_finish_chains ();
if (new_pseudos_p)
{
sparseset objects_live;
/* Rebuild conflicts. */
FOR_EACH_ALLOCNO (a, ai)
{
ira_allocno_object_iterator oi;
ira_object_t obj;
if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
|| ALLOCNO_CAP_MEMBER (a) != NULL)
continue;
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
{
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
ira_assert (r->object == obj);
clear_conflicts (obj);
}
}
objects_live = sparseset_alloc (ira_objects_num);
for (i = 0; i < ira_max_point; i++)
{
for (r = ira_start_point_ranges[i]; r != NULL; r = r->start_next)
{
ira_object_t obj = r->object;
a = OBJECT_ALLOCNO (obj);
if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
|| ALLOCNO_CAP_MEMBER (a) != NULL)
continue;
aclass = ALLOCNO_CLASS (a);
EXECUTE_IF_SET_IN_SPARSESET (objects_live, n)
{
ira_object_t live_obj = ira_object_id_map[n];
ira_allocno_t live_a = OBJECT_ALLOCNO (live_obj);
enum reg_class live_aclass = ALLOCNO_CLASS (live_a);
if (ira_reg_classes_intersect_p[aclass][live_aclass]
/* Don't set up conflict for the allocno with itself. */
&& live_a != a)
ira_add_conflict (obj, live_obj);
}
sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
}
for (r = ira_finish_point_ranges[i]; r != NULL; r = r->finish_next)
sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (r->object));
}
sparseset_free (objects_live);
compress_conflict_vecs ();
}
/* Mark some copies for removing and change allocnos in the rest
copies. */
FOR_EACH_COPY (cp, ci)
{
if (ALLOCNO_CAP_MEMBER (cp->first) != NULL
|| ALLOCNO_CAP_MEMBER (cp->second) != NULL)
{
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
fprintf
(ira_dump_file, " Remove cp%d:%c%dr%d-%c%dr%d\n",
cp->num, ALLOCNO_CAP_MEMBER (cp->first) != NULL ? 'c' : 'a',
ALLOCNO_NUM (cp->first),
REGNO (allocno_emit_reg (cp->first)),
ALLOCNO_CAP_MEMBER (cp->second) != NULL ? 'c' : 'a',
ALLOCNO_NUM (cp->second),
REGNO (allocno_emit_reg (cp->second)));
cp->loop_tree_node = NULL;
continue;
}
first
= regno_top_level_allocno_map[REGNO (allocno_emit_reg (cp->first))];
second
= regno_top_level_allocno_map[REGNO (allocno_emit_reg (cp->second))];
node = cp->loop_tree_node;
if (node == NULL)
keep_p = true; /* It copy generated in ira-emit.c. */
else
{
/* Check that the copy was not propagated from level on
which we will have different pseudos. */
node_first = node->regno_allocno_map[ALLOCNO_REGNO (cp->first)];
node_second = node->regno_allocno_map[ALLOCNO_REGNO (cp->second)];
keep_p = ((REGNO (allocno_emit_reg (first))
== REGNO (allocno_emit_reg (node_first)))
&& (REGNO (allocno_emit_reg (second))
== REGNO (allocno_emit_reg (node_second))));
}
if (keep_p)
{
cp->loop_tree_node = ira_loop_tree_root;
cp->first = first;
cp->second = second;
}
else
{
cp->loop_tree_node = NULL;
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Remove cp%d:a%dr%d-a%dr%d\n",
cp->num, ALLOCNO_NUM (cp->first),
REGNO (allocno_emit_reg (cp->first)),
ALLOCNO_NUM (cp->second),
REGNO (allocno_emit_reg (cp->second)));
}
}
/* Remove unnecessary allocnos on lower levels of the loop tree. */
FOR_EACH_ALLOCNO (a, ai)
{
if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
|| ALLOCNO_CAP_MEMBER (a) != NULL)
{
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Remove a%dr%d\n",
ALLOCNO_NUM (a), REGNO (allocno_emit_reg (a)));
ira_remove_allocno_prefs (a);
finish_allocno (a);
continue;
}
ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root;
ALLOCNO_REGNO (a) = REGNO (allocno_emit_reg (a));
ALLOCNO_CAP (a) = NULL;
/* Restore updated costs for assignments from reload. */
ALLOCNO_UPDATED_MEMORY_COST (a) = ALLOCNO_MEMORY_COST (a);
ALLOCNO_UPDATED_CLASS_COST (a) = ALLOCNO_CLASS_COST (a);
if (! ALLOCNO_ASSIGNED_P (a))
ira_free_allocno_updated_costs (a);
ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
}
/* Remove unnecessary copies. */
FOR_EACH_COPY (cp, ci)
{
if (cp->loop_tree_node == NULL)
{
ira_copies[cp->num] = NULL;
finish_copy (cp);
continue;
}
ira_assert
(ALLOCNO_LOOP_TREE_NODE (cp->first) == ira_loop_tree_root
&& ALLOCNO_LOOP_TREE_NODE (cp->second) == ira_loop_tree_root);
add_allocno_copy_to_list (cp);
swap_allocno_copy_ends_if_necessary (cp);
}
rebuild_regno_allocno_maps ();
if (ira_max_point != ira_max_point_before_emit)
ira_compress_allocno_live_ranges ();
ira_free (regno_top_level_allocno_map);
}
#ifdef ENABLE_IRA_CHECKING
/* Check creation of all allocnos. Allocnos on lower levels should
have allocnos or caps on all upper levels. */
static void
check_allocno_creation (void)
{
ira_allocno_t a;
ira_allocno_iterator ai;
ira_loop_tree_node_t loop_tree_node;
FOR_EACH_ALLOCNO (a, ai)
{
loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
ira_assert (bitmap_bit_p (loop_tree_node->all_allocnos,
ALLOCNO_NUM (a)));
if (loop_tree_node == ira_loop_tree_root)
continue;
if (ALLOCNO_CAP_MEMBER (a) != NULL)
ira_assert (ALLOCNO_CAP (a) != NULL);
else if (ALLOCNO_CAP (a) == NULL)
ira_assert (loop_tree_node->parent
->regno_allocno_map[ALLOCNO_REGNO (a)] != NULL
&& bitmap_bit_p (loop_tree_node->border_allocnos,
ALLOCNO_NUM (a)));
}
}
#endif
/* Identify allocnos which prefer a register class with a single hard register.
Adjust ALLOCNO_CONFLICT_HARD_REG_COSTS so that conflicting allocnos are
less likely to use the preferred singleton register. */
static void
update_conflict_hard_reg_costs (void)
{
ira_allocno_t a;
ira_allocno_iterator ai;
int i, index, min;
FOR_EACH_ALLOCNO (a, ai)
{
reg_class_t aclass = ALLOCNO_CLASS (a);
reg_class_t pref = reg_preferred_class (ALLOCNO_REGNO (a));
int singleton = ira_class_singleton[pref][ALLOCNO_MODE (a)];
if (singleton < 0)
continue;
index = ira_class_hard_reg_index[(int) aclass][singleton];
if (index < 0)
continue;
if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) == NULL
|| ALLOCNO_HARD_REG_COSTS (a) == NULL)
continue;
min = INT_MAX;
for (i = ira_class_hard_regs_num[(int) aclass] - 1; i >= 0; i--)
if (ALLOCNO_HARD_REG_COSTS (a)[i] > ALLOCNO_CLASS_COST (a)
&& min > ALLOCNO_HARD_REG_COSTS (a)[i])
min = ALLOCNO_HARD_REG_COSTS (a)[i];
if (min == INT_MAX)
continue;
ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
aclass, 0);
ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[index]
-= min - ALLOCNO_CLASS_COST (a);
}
}
/* Create a internal representation (IR) for IRA (allocnos, copies,
loop tree nodes). The function returns TRUE if we generate loop
structure (besides nodes representing all function and the basic
blocks) for regional allocation. A true return means that we
really need to flatten IR before the reload. */
bool
ira_build (void)
{
bool loops_p;
df_analyze ();
initiate_cost_vectors ();
initiate_allocnos ();
initiate_prefs ();
initiate_copies ();
create_loop_tree_nodes ();
form_loop_tree ();
create_allocnos ();
ira_costs ();
create_allocno_objects ();
ira_create_allocno_live_ranges ();
remove_unnecessary_regions (false);
ira_compress_allocno_live_ranges ();
update_bad_spill_attribute ();
loops_p = more_one_region_p ();
if (loops_p)
{
propagate_allocno_info ();
create_caps ();
}
ira_tune_allocno_costs ();
#ifdef ENABLE_IRA_CHECKING
check_allocno_creation ();
#endif
setup_min_max_allocno_live_range_point ();
sort_conflict_id_map ();
setup_min_max_conflict_allocno_ids ();
ira_build_conflicts ();
update_conflict_hard_reg_costs ();
if (! ira_conflicts_p)
{
ira_allocno_t a;
ira_allocno_iterator ai;
/* Remove all regions but root one. */
if (loops_p)
{
remove_unnecessary_regions (true);
loops_p = false;
}
/* We don't save hard registers around calls for fast allocation
-- add caller clobbered registers as conflicting ones to
allocno crossing calls. */
FOR_EACH_ALLOCNO (a, ai)
if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
ior_hard_reg_conflicts (a, &call_used_reg_set);
}
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
print_copies (ira_dump_file);
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
print_prefs (ira_dump_file);
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
{
int n, nr, nr_big;
ira_allocno_t a;
live_range_t r;
ira_allocno_iterator ai;
n = 0;
nr = 0;
nr_big = 0;
FOR_EACH_ALLOCNO (a, ai)
{
int j, nobj = ALLOCNO_NUM_OBJECTS (a);
if (nobj > 1)
nr_big++;
for (j = 0; j < nobj; j++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, j);
n += OBJECT_NUM_CONFLICTS (obj);
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
nr++;
}
}
fprintf (ira_dump_file, " regions=%d, blocks=%d, points=%d\n",
current_loops == NULL ? 1 : number_of_loops (cfun),
n_basic_blocks_for_fn (cfun), ira_max_point);
fprintf (ira_dump_file,
" allocnos=%d (big %d), copies=%d, conflicts=%d, ranges=%d\n",
ira_allocnos_num, nr_big, ira_copies_num, n, nr);
}
return loops_p;
}
/* Release the data created by function ira_build. */
void
ira_destroy (void)
{
finish_loop_tree_nodes ();
finish_prefs ();
finish_copies ();
finish_allocnos ();
finish_cost_vectors ();
ira_finish_allocno_live_ranges ();
}
|