summaryrefslogtreecommitdiff
path: root/gcc/ipa-utils.cc
blob: 8badcc2c1109414373e89859452a0d6f7501a127 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
/* Utilities for ipa analysis.
   Copyright (C) 2005-2023 Free Software Foundation, Inc.
   Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "alloc-pool.h"
#include "cgraph.h"
#include "lto-streamer.h"
#include "dumpfile.h"
#include "splay-tree.h"
#include "ipa-utils.h"
#include "symbol-summary.h"
#include "tree-vrp.h"
#include "ipa-prop.h"
#include "ipa-fnsummary.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "ipa-modref-tree.h"
#include "ipa-modref.h"
#include "tree-ssa-loop-niter.h"
#include "calls.h"
#include "cfgloop.h"
#include "cfganal.h"

/* Debugging function for postorder and inorder code. NOTE is a string
   that is printed before the nodes are printed.  ORDER is an array of
   cgraph_nodes that has COUNT useful nodes in it.  */

void
ipa_print_order (FILE* out,
		 const char * note,
		 struct cgraph_node** order,
		 int count)
{
  int i;
  fprintf (out, "\n\n ordered call graph: %s\n", note);

  for (i = count - 1; i >= 0; i--)
    order[i]->dump (out);
  fprintf (out, "\n");
  fflush (out);
}


struct searchc_env {
  struct cgraph_node **stack;
  struct cgraph_node **result;
  int stack_size;
  int order_pos;
  splay_tree nodes_marked_new;
  bool reduce;
  int count;
};

/* This is an implementation of Tarjan's strongly connected region
   finder as reprinted in Aho Hopcraft and Ullman's The Design and
   Analysis of Computer Programs (1975) pages 192-193.  This version
   has been customized for cgraph_nodes.  The env parameter is because
   it is recursive and there are no nested functions here.  This
   function should only be called from itself or
   ipa_reduced_postorder.  ENV is a stack env and would be
   unnecessary if C had nested functions.  V is the node to start
   searching from.  */

static void
searchc (struct searchc_env* env, struct cgraph_node *v,
	 bool (*ignore_edge) (struct cgraph_edge *))
{
  struct cgraph_edge *edge;
  struct ipa_dfs_info *v_info = (struct ipa_dfs_info *) v->aux;

  /* mark node as old */
  v_info->new_node = false;
  splay_tree_remove (env->nodes_marked_new, v->get_uid ());

  v_info->dfn_number = env->count;
  v_info->low_link = env->count;
  env->count++;
  env->stack[(env->stack_size)++] = v;
  v_info->on_stack = true;

  for (edge = v->callees; edge; edge = edge->next_callee)
    {
      struct ipa_dfs_info * w_info;
      enum availability avail;
      struct cgraph_node *w = edge->callee->ultimate_alias_target (&avail);

      if (!w || (ignore_edge && ignore_edge (edge)))
        continue;

      if (w->aux
	  && (avail >= AVAIL_INTERPOSABLE))
	{
	  w_info = (struct ipa_dfs_info *) w->aux;
	  if (w_info->new_node)
	    {
	      searchc (env, w, ignore_edge);
	      v_info->low_link =
		(v_info->low_link < w_info->low_link) ?
		v_info->low_link : w_info->low_link;
	    }
	  else
	    if ((w_info->dfn_number < v_info->dfn_number)
		&& (w_info->on_stack))
	      v_info->low_link =
		(w_info->dfn_number < v_info->low_link) ?
		w_info->dfn_number : v_info->low_link;
	}
    }


  if (v_info->low_link == v_info->dfn_number)
    {
      struct cgraph_node *last = NULL;
      struct cgraph_node *x;
      struct ipa_dfs_info *x_info;
      do {
	x = env->stack[--(env->stack_size)];
	x_info = (struct ipa_dfs_info *) x->aux;
	x_info->on_stack = false;
	x_info->scc_no = v_info->dfn_number;

	if (env->reduce)
	  {
	    x_info->next_cycle = last;
	    last = x;
	  }
	else
	  env->result[env->order_pos++] = x;
      }
      while (v != x);
      if (env->reduce)
	env->result[env->order_pos++] = v;
    }
}

/* Topsort the call graph by caller relation.  Put the result in ORDER.

   The REDUCE flag is true if you want the cycles reduced to single nodes.
   You can use ipa_get_nodes_in_cycle to obtain a vector containing all real
   call graph nodes in a reduced node.

   Set ALLOW_OVERWRITABLE if nodes with such availability should be included.
   IGNORE_EDGE, if non-NULL is a hook that may make some edges insignificant
   for the topological sort.   */

int
ipa_reduced_postorder (struct cgraph_node **order,
		       bool reduce,
		       bool (*ignore_edge) (struct cgraph_edge *))
{
  struct cgraph_node *node;
  struct searchc_env env;
  splay_tree_node result;
  env.stack = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
  env.stack_size = 0;
  env.result = order;
  env.order_pos = 0;
  env.nodes_marked_new = splay_tree_new (splay_tree_compare_ints, 0, 0);
  env.count = 1;
  env.reduce = reduce;

  FOR_EACH_DEFINED_FUNCTION (node)
    {
      enum availability avail = node->get_availability ();

      if (avail > AVAIL_INTERPOSABLE
	  || avail == AVAIL_INTERPOSABLE)
	{
	  /* Reuse the info if it is already there.  */
	  struct ipa_dfs_info *info = (struct ipa_dfs_info *) node->aux;
	  if (!info)
	    info = XCNEW (struct ipa_dfs_info);
	  info->new_node = true;
	  info->on_stack = false;
	  info->next_cycle = NULL;
	  node->aux = info;

	  splay_tree_insert (env.nodes_marked_new,
			     (splay_tree_key)node->get_uid (),
			     (splay_tree_value)node);
	}
      else
	node->aux = NULL;
    }
  result = splay_tree_min (env.nodes_marked_new);
  while (result)
    {
      node = (struct cgraph_node *)result->value;
      searchc (&env, node, ignore_edge);
      result = splay_tree_min (env.nodes_marked_new);
    }
  splay_tree_delete (env.nodes_marked_new);
  free (env.stack);

  return env.order_pos;
}

/* Deallocate all ipa_dfs_info structures pointed to by the aux pointer of call
   graph nodes.  */

void
ipa_free_postorder_info (void)
{
  struct cgraph_node *node;
  FOR_EACH_DEFINED_FUNCTION (node)
    {
      /* Get rid of the aux information.  */
      if (node->aux)
	{
	  free (node->aux);
	  node->aux = NULL;
	}
    }
}

/* Get the set of nodes for the cycle in the reduced call graph starting
   from NODE.  */

vec<cgraph_node *>
ipa_get_nodes_in_cycle (struct cgraph_node *node)
{
  vec<cgraph_node *> v = vNULL;
  struct ipa_dfs_info *node_dfs_info;
  while (node)
    {
      v.safe_push (node);
      node_dfs_info = (struct ipa_dfs_info *) node->aux;
      node = node_dfs_info->next_cycle;
    }
  return v;
}

/* Return true iff the CS is an edge within a strongly connected component as
   computed by ipa_reduced_postorder.  */

bool
ipa_edge_within_scc (struct cgraph_edge *cs)
{
  struct ipa_dfs_info *caller_dfs = (struct ipa_dfs_info *) cs->caller->aux;
  struct ipa_dfs_info *callee_dfs;
  struct cgraph_node *callee = cs->callee->function_symbol ();

  callee_dfs = (struct ipa_dfs_info *) callee->aux;
  return (caller_dfs
	  && callee_dfs
	  && caller_dfs->scc_no == callee_dfs->scc_no);
}

struct postorder_stack
{
  struct cgraph_node *node;
  struct cgraph_edge *edge;
  int ref;
};

/* Fill array order with all nodes with output flag set in the reverse
   topological order.  Return the number of elements in the array.
   FIXME: While walking, consider aliases, too.  */

int
ipa_reverse_postorder (struct cgraph_node **order)
{
  struct cgraph_node *node, *node2;
  int stack_size = 0;
  int order_pos = 0;
  struct cgraph_edge *edge;
  int pass;
  struct ipa_ref *ref = NULL;

  struct postorder_stack *stack =
    XCNEWVEC (struct postorder_stack, symtab->cgraph_count);

  /* We have to deal with cycles nicely, so use a depth first traversal
     output algorithm.  Ignore the fact that some functions won't need
     to be output and put them into order as well, so we get dependencies
     right through inline functions.  */
  FOR_EACH_FUNCTION (node)
    node->aux = NULL;
  for (pass = 0; pass < 2; pass++)
    FOR_EACH_FUNCTION (node)
      if (!node->aux
	  && (pass
	      || (!node->address_taken
		  && !node->inlined_to
		  && !node->alias && !node->thunk
		  && !node->only_called_directly_p ())))
	{
	  stack_size = 0;
          stack[stack_size].node = node;
	  stack[stack_size].edge = node->callers;
	  stack[stack_size].ref = 0;
	  node->aux = (void *)(size_t)1;
	  while (stack_size >= 0)
	    {
	      while (true)
		{
		  node2 = NULL;
		  while (stack[stack_size].edge && !node2)
		    {
		      edge = stack[stack_size].edge;
		      node2 = edge->caller;
		      stack[stack_size].edge = edge->next_caller;
		      /* Break possible cycles involving always-inline
			 functions by ignoring edges from always-inline
			 functions to non-always-inline functions.  */
		      if (DECL_DISREGARD_INLINE_LIMITS (edge->caller->decl)
			  && !DECL_DISREGARD_INLINE_LIMITS
			    (edge->callee->function_symbol ()->decl))
			node2 = NULL;
		    }
		  for (; stack[stack_size].node->iterate_referring (
						       stack[stack_size].ref,
						       ref) && !node2;
		       stack[stack_size].ref++)
		    {
		      if (ref->use == IPA_REF_ALIAS)
			node2 = dyn_cast <cgraph_node *> (ref->referring);
		    }
		  if (!node2)
		    break;
		  if (!node2->aux)
		    {
		      stack[++stack_size].node = node2;
		      stack[stack_size].edge = node2->callers;
		      stack[stack_size].ref = 0;
		      node2->aux = (void *)(size_t)1;
		    }
		}
	      order[order_pos++] = stack[stack_size--].node;
	    }
	}
  free (stack);
  FOR_EACH_FUNCTION (node)
    node->aux = NULL;
  return order_pos;
}



/* Given a memory reference T, will return the variable at the bottom
   of the access.  Unlike get_base_address, this will recurse through
   INDIRECT_REFS.  */

tree
get_base_var (tree t)
{
  while (!SSA_VAR_P (t)
	 && (!CONSTANT_CLASS_P (t))
	 && TREE_CODE (t) != LABEL_DECL
	 && TREE_CODE (t) != FUNCTION_DECL
	 && TREE_CODE (t) != CONST_DECL
	 && TREE_CODE (t) != CONSTRUCTOR)
    {
      t = TREE_OPERAND (t, 0);
    }
  return t;
}

/* Scale function of calls in NODE by ratio ORIG_COUNT/NODE->count.  */

void
scale_ipa_profile_for_fn (struct cgraph_node *node, profile_count orig_count)
{
  profile_count to = node->count;
  profile_count::adjust_for_ipa_scaling (&to, &orig_count);
  struct cgraph_edge *e;
  
  for (e = node->callees; e; e = e->next_callee)
    e->count = e->count.apply_scale (to, orig_count);
  for (e = node->indirect_calls; e; e = e->next_callee)
    e->count = e->count.apply_scale (to, orig_count);
}

/* SRC and DST are going to be merged.  Take SRC's profile and merge it into
   DST so it is not going to be lost.  Possibly destroy SRC's body on the way
   unless PRESERVE_BODY is set.  */

void
ipa_merge_profiles (struct cgraph_node *dst,
		    struct cgraph_node *src,
		    bool preserve_body)
{
  tree oldsrcdecl = src->decl;
  struct function *srccfun, *dstcfun;
  bool match = true;
  bool copy_counts = false;

  if (!src->definition
      || !dst->definition)
    return;

  if (src->frequency < dst->frequency)
    src->frequency = dst->frequency;

  /* Time profiles are merged.  */
  if (dst->tp_first_run > src->tp_first_run && src->tp_first_run)
    dst->tp_first_run = src->tp_first_run;

  if (src->profile_id && !dst->profile_id)
    dst->profile_id = src->profile_id;

  /* Merging zero profile to dst is no-op.  */
  if (src->count.ipa () == profile_count::zero ())
    return;

  /* FIXME when we merge in unknown profile, we ought to set counts as
     unsafe.  */
  if (!src->count.initialized_p ()
      || !(src->count.ipa () == src->count))
    return;
  profile_count orig_count = dst->count;

  /* Either sum the profiles if both are IPA and not global0, or
     pick more informative one (that is nonzero IPA if other is
     uninitialized, guessed or global0).   */

  if ((dst->count.ipa ().nonzero_p ()
       || src->count.ipa ().nonzero_p ())
      && dst->count.ipa ().initialized_p ()
      && src->count.ipa ().initialized_p ())
    dst->count = dst->count.ipa () + src->count.ipa ();
  else if (dst->count.ipa ().initialized_p ())
    ;
  else if (src->count.ipa ().initialized_p ())
    {
      copy_counts = true;
      dst->count = src->count.ipa ();
    }

  /* If no updating needed return early.  */
  if (dst->count == orig_count)
    return;

  if (symtab->dump_file)
    {
      fprintf (symtab->dump_file, "Merging profiles of %s count:",
	       src->dump_name ());
      src->count.dump (symtab->dump_file);
      fprintf (symtab->dump_file, " to %s count:",
	       dst->dump_name ());
      orig_count.dump (symtab->dump_file);
      fprintf (symtab->dump_file, " resulting count:");
      dst->count.dump (symtab->dump_file);
      fprintf (symtab->dump_file, "\n");
    }

  /* First handle functions with no gimple body.  */
  if (dst->thunk || dst->alias
      || src->thunk || src->alias)
    {
      scale_ipa_profile_for_fn (dst, orig_count);
      return;
    }

  /* This is ugly.  We need to get both function bodies into memory.
     If declaration is merged, we need to duplicate it to be able
     to load body that is being replaced.  This makes symbol table
     temporarily inconsistent.  */
  if (src->decl == dst->decl)
    {
      struct lto_in_decl_state temp;
      struct lto_in_decl_state *state;

      /* We are going to move the decl, we want to remove its file decl data.
	 and link these with the new decl. */
      temp.fn_decl = src->decl;
      lto_in_decl_state **slot
	= src->lto_file_data->function_decl_states->find_slot (&temp,
							       NO_INSERT);
      state = *slot;
      src->lto_file_data->function_decl_states->clear_slot (slot);
      gcc_assert (state);

      /* Duplicate the decl and be sure it does not link into body of DST.  */
      src->decl = copy_node (src->decl);
      DECL_STRUCT_FUNCTION (src->decl) = NULL;
      DECL_ARGUMENTS (src->decl) = NULL;
      DECL_INITIAL (src->decl) = NULL;
      DECL_RESULT (src->decl) = NULL;

      /* Associate the decl state with new declaration, so LTO streamer
 	 can look it up.  */
      state->fn_decl = src->decl;
      slot
	= src->lto_file_data->function_decl_states->find_slot (state, INSERT);
      gcc_assert (!*slot);
      *slot = state;
    }
  src->get_untransformed_body ();
  dst->get_untransformed_body ();
  srccfun = DECL_STRUCT_FUNCTION (src->decl);
  dstcfun = DECL_STRUCT_FUNCTION (dst->decl);
  if (n_basic_blocks_for_fn (srccfun)
      != n_basic_blocks_for_fn (dstcfun))
    {
      if (symtab->dump_file)
	fprintf (symtab->dump_file,
		 "Giving up; number of basic block mismatch.\n");
      match = false;
    }
  else if (last_basic_block_for_fn (srccfun)
	   != last_basic_block_for_fn (dstcfun))
    {
      if (symtab->dump_file)
	fprintf (symtab->dump_file,
		 "Giving up; last block mismatch.\n");
      match = false;
    }
  else 
    {
      basic_block srcbb, dstbb;
      struct cgraph_edge *e, *e2;

      for (e = dst->callees, e2 = src->callees; e && e2 && match;
	   e2 = e2->next_callee, e = e->next_callee)
	{
	  if (gimple_bb (e->call_stmt)->index
	      != gimple_bb (e2->call_stmt)->index)
	    {
	      if (symtab->dump_file)
		fprintf (symtab->dump_file,
			 "Giving up; call stmt mismatch.\n");
	      match = false;
	    }
	}
      if (e || e2)
	{
	  if (symtab->dump_file)
	    fprintf (symtab->dump_file,
		     "Giving up; number of calls differs.\n");
	  match = false;
	}
      for (e = dst->indirect_calls, e2 = src->indirect_calls; e && e2 && match;
	   e2 = e2->next_callee, e = e->next_callee)
	{
	  if (gimple_bb (e->call_stmt)->index
	      != gimple_bb (e2->call_stmt)->index)
	    {
	      if (symtab->dump_file)
		fprintf (symtab->dump_file,
			 "Giving up; indirect call stmt mismatch.\n");
	      match = false;
	    }
	}
      if (e || e2)
	{
	  if (symtab->dump_file)
	    fprintf (symtab->dump_file,
		     "Giving up; number of indirect calls differs.\n");
	  match=false;
	}

      if (match)
	FOR_ALL_BB_FN (srcbb, srccfun)
	  {
	    unsigned int i;

	    dstbb = BASIC_BLOCK_FOR_FN (dstcfun, srcbb->index);
	    if (dstbb == NULL)
	      {
		if (symtab->dump_file)
		  fprintf (symtab->dump_file,
			   "No matching block for bb %i.\n",
			   srcbb->index);
		match = false;
		break;
	      }
	    if (EDGE_COUNT (srcbb->succs) != EDGE_COUNT (dstbb->succs))
	      {
		if (symtab->dump_file)
		  fprintf (symtab->dump_file,
			   "Edge count mismatch for bb %i.\n",
			   srcbb->index);
		match = false;
		break;
	      }
	    for (i = 0; i < EDGE_COUNT (srcbb->succs); i++)
	      {
		edge srce = EDGE_SUCC (srcbb, i);
		edge dste = EDGE_SUCC (dstbb, i);
		if (srce->dest->index != dste->dest->index)
		  {
		    if (symtab->dump_file)
		      fprintf (symtab->dump_file,
			       "Succ edge mismatch for bb %i.\n",
			       srce->dest->index);
		    match = false;
		    break;
		  }
	      }
	  }
    }
  if (match)
    {
      struct cgraph_edge *e, *e2;
      basic_block srcbb, dstbb;

      /* Function and global profile may be out of sync.  First scale it same
	 way as fixup_cfg would.  */
      profile_count srcnum = src->count;
      profile_count srcden = ENTRY_BLOCK_PTR_FOR_FN (srccfun)->count;
      bool srcscale = srcnum.initialized_p () && !(srcnum == srcden);
      profile_count dstnum = orig_count;
      profile_count dstden = ENTRY_BLOCK_PTR_FOR_FN (dstcfun)->count;
      bool dstscale = !copy_counts
		      && dstnum.initialized_p () && !(dstnum == dstden);

      /* TODO: merge also statement histograms.  */
      FOR_ALL_BB_FN (srcbb, srccfun)
	{
	  unsigned int i;

	  dstbb = BASIC_BLOCK_FOR_FN (dstcfun, srcbb->index);

	  profile_count srccount = srcbb->count;
	  if (srcscale)
	    srccount = srccount.apply_scale (srcnum, srcden);
	  if (dstscale)
	    dstbb->count = dstbb->count.apply_scale (dstnum, dstden);

	  if (copy_counts)
	    {
	      dstbb->count = srccount;
	      for (i = 0; i < EDGE_COUNT (srcbb->succs); i++)
		{
		  edge srce = EDGE_SUCC (srcbb, i);
		  edge dste = EDGE_SUCC (dstbb, i);
		  if (srce->probability.initialized_p ())
		    dste->probability = srce->probability;
		}
	    }	
	  else 
	    {
	      for (i = 0; i < EDGE_COUNT (srcbb->succs); i++)
		{
		  edge srce = EDGE_SUCC (srcbb, i);
		  edge dste = EDGE_SUCC (dstbb, i);
		  dste->probability = 
		    dste->probability * dstbb->count.ipa ().probability_in
						 (dstbb->count.ipa ()
						  + srccount.ipa ())
		    + srce->probability * srcbb->count.ipa ().probability_in
						 (dstbb->count.ipa ()
						  + srccount.ipa ());
		}
	      dstbb->count = dstbb->count.ipa () + srccount.ipa ();
	    }
	}
      push_cfun (dstcfun);
      update_max_bb_count ();
      compute_function_frequency ();
      pop_cfun ();
      for (e = dst->callees; e; e = e->next_callee)
	{
	  if (e->speculative)
	    continue;
	  e->count = gimple_bb (e->call_stmt)->count;
	}
      for (e = dst->indirect_calls, e2 = src->indirect_calls; e;
	   e2 = (e2 ? e2->next_callee : NULL), e = e->next_callee)
	{
	  if (!e->speculative && !e2->speculative)
	    {
	      /* FIXME: we need to also merge ipa-profile histograms
		 because with LTO merging happens from lto-symtab before
		 these are converted to indirect edges.  */
	      e->count = gimple_bb (e->call_stmt)->count;
	      continue;
	    }

	  /* When copying just remove all speuclations on dst and then copy
	     one from src.  */
	  if (copy_counts)
	    {
	      while (e->speculative)
		cgraph_edge::resolve_speculation (e, NULL);
	      e->count = gimple_bb (e->call_stmt)->count;
	      if (e2->speculative)
		{
		  for (cgraph_edge *e3 = e2->first_speculative_call_target ();
		       e3;
		       e3 = e3->next_speculative_call_target ())
		    {
		      cgraph_edge *ns;
		      ns = e->make_speculative
			 (dyn_cast <cgraph_node *>
			    (e3->speculative_call_target_ref ()->referred),
			     e3->count, e3->speculative_id);
		      /* Target may differ from ref (for example it may be
			 redirected to local alias.  */
		      ns->redirect_callee (e3->callee);
		    }
		}
	      continue;
	    }

	  /* Iterate all speculations in SRC, see if corresponding ones exist
	     int DST and if so, sum the counts.  Otherwise create new
	     speculation.  */
	  int max_spec = 0;
	  for (cgraph_edge *e3 = e->first_speculative_call_target ();
	       e3;
	       e3 = e3->next_speculative_call_target ())
	    if (e3->speculative_id > max_spec)
	      max_spec = e3->speculative_id;
	  for (cgraph_edge *e3 = e2->first_speculative_call_target ();
	       e3;
	       e3 = e3->next_speculative_call_target ())
	    {
	      cgraph_edge *te
		 = e->speculative_call_for_target
			 (dyn_cast <cgraph_node *>
			    (e3->speculative_call_target_ref ()->referred));
	      if (te)
		te->count = te->count + e3->count;
	      else
		{
		  e->count = e->count + e3->count;
		  cgraph_edge *ns;
		  ns = e->make_speculative
			 (dyn_cast <cgraph_node *>
			    (e3->speculative_call_target_ref ()
			     ->referred),
			  e3->count,
			  e3->speculative_id + max_spec + 1);
		  /* Target may differ from ref (for example it may be
		     redirected to local alias.  */
		  ns->redirect_callee (e3->callee);
		}
	    }
	}
      if (!preserve_body)
        src->release_body ();
      /* Update summary.  */
      compute_fn_summary (dst, 0);
    }
  /* We can't update CFG profile, but we can scale IPA profile. CFG
     will be scaled according to dst->count after IPA passes.  */
  else
    scale_ipa_profile_for_fn (dst, orig_count);
  src->decl = oldsrcdecl;
}

/* Return true if call to DEST is known to be self-recusive
   call withing FUNC.  */

bool
recursive_call_p (tree func, tree dest)
{
  struct cgraph_node *dest_node = cgraph_node::get_create (dest);
  struct cgraph_node *cnode = cgraph_node::get_create (func);
  ipa_ref *alias;
  enum availability avail;

  gcc_assert (!cnode->alias);
  if (cnode != dest_node->ultimate_alias_target (&avail))
    return false;
  if (avail >= AVAIL_AVAILABLE)
    return true;
  if (!dest_node->semantically_equivalent_p (cnode))
    return false;
  /* If there is only one way to call the fuction or we know all of them
     are semantically equivalent, we still can consider call recursive.  */
  FOR_EACH_ALIAS (cnode, alias)
    if (!dest_node->semantically_equivalent_p (alias->referring))
      return false;
  return true;
}

/* Return true if stmt may terminate execution of function.
   If assume_return_or_eh we can further assume that the function ends
   either by retrn statement or EH (no trapping or infinite loops).  */

bool
stmt_may_terminate_function_p (function *fun, gimple *stmt, bool assume_return_or_eh)
{
  if (stmt_can_throw_external (fun, stmt))
    return true;
  if (assume_return_or_eh)
    return false;
  gasm *astmt = dyn_cast <gasm *> (stmt);
  if (astmt && gimple_asm_volatile_p (astmt))
    return true;
  if (gimple_could_trap_p (stmt))
    return true;
  if (gcall *call = dyn_cast <gcall *> (stmt))
    {
      int flags = gimple_call_flags (call);
      if (flags & (ECF_PURE | ECF_CONST) && ! (flags & ECF_LOOPING_CONST_OR_PURE))
	return false;
      modref_summary *s = get_modref_function_summary (call, NULL);
      if (s && !s->side_effects)
	return false;
      return true;
    }
  return false;
}

/* Return bitmap of all basic blocks whose first statements are known to
   execute on every invocation of the function.

   If assume_return_or_eh we can further assume that the function ends
   either by retrn statement or EH (no trapping or infinite loops).
   This is useful when sumarizing function in passes like ipa-modref.
 
   Seeing assume_return_or_eh to false is used to prove that given
   statmeent will be executed even if the function gets into infinite
   loop or trap.  */
bitmap
find_always_executed_bbs (function *fun, bool assume_return_or_eh)
{
  auto_vec<basic_block, 20> stack;
  auto_vec<basic_block, 20> terminating_bbs;
  hash_set<basic_block> visited;
  hash_set<basic_block> terminating_bbs_set;
  edge e;
  edge_iterator ei;
  int flags = flags_from_decl_or_type (fun->decl);
  /* PUre and const functions always return.  */
  assume_return_or_eh |= (flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE);
  if (!assume_return_or_eh)
    mark_dfs_back_edges (fun);

  /* First walk all BBs reachable from entry stopping on statements that may
     terminate execution.  Everything past this statement is not going to be executed
     each invocation.  */
  stack.safe_push (ENTRY_BLOCK_PTR_FOR_FN (fun));
  while (!stack.is_empty ())
    {
      basic_block bb = stack.pop ();
      bool found = false, found_exit = false;
      if (bb->index == EXIT_BLOCK)
	continue;
      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  if (e->dest == EXIT_BLOCK_PTR_FOR_FN (fun))
	    {
	      found_exit = true;
	      break;
	    }
	  /* Watch for infinite loops.  */
	  if (!found
	      && !assume_return_or_eh && (e->flags & EDGE_DFS_BACK))
	    {
	      if (!dom_info_available_p (CDI_DOMINATORS))
		calculate_dominance_info (CDI_DOMINATORS);
	      /* If this is not a loop latch edge it is an irreducible region.
		 Assume that it is infinite.
		 TODO: with C++ forced progression we can still walk the
		 irreducible region and see if it contains any side effects.
		 Similarly for loops.  -ffinite-loops does not really imply
		 this since we allow inlining across -ffinite-loops bondary
		 and thus it can be used only as a loop flag.  */
	      if (e->dest->loop_father->header != e->dest
		  || !dominated_by_p (CDI_DOMINATORS, bb, e->dest))
		found = true;
	      else if (!finite_loop_p (e->dest->loop_father))
		found = true;
	    }
	}
      if (!assume_return_or_eh
	  && (EDGE_COUNT (bb->succs) == 0 || (bb->flags & BB_IRREDUCIBLE_LOOP)))
	found = true;
      for (gimple_stmt_iterator si = gsi_start_nondebug_after_labels_bb (bb);
	   !gsi_end_p (si) && !found; gsi_next_nondebug (&si))
	if (stmt_may_terminate_function_p (fun, gsi_stmt (si), assume_return_or_eh))
	  {
	    found = true;
	    break;
	  }
      if (found)
	{
	  visited.add (EXIT_BLOCK_PTR_FOR_FN (fun));
	  if (!found_exit)
	    {
	      terminating_bbs.safe_push (bb);
	      terminating_bbs_set.add (bb);
	    }
	}
      else
	FOR_EACH_EDGE (e, ei, bb->succs)
	  if (!visited.add (e->dest))
	    stack.safe_push (e->dest);
    }

  /* Next walk from exit block and find all articulations in the CFG.
     Add all terminating basic blocks as "fake" predecessors of the
     exit block.  */

  bitmap ret = BITMAP_ALLOC (NULL);
  /* A degenerated case when there is no path to exit.  */
  if (!visited.contains (EXIT_BLOCK_PTR_FOR_FN (fun)))
    {
      bitmap_set_bit (ret,
		      single_succ_edge
		        (ENTRY_BLOCK_PTR_FOR_FN (fun))->dest->index);
      return ret;
    }

  struct astate
  {
    unsigned int dfs_preorder;
    unsigned int dfs_postorder;

    unsigned int low, high;
  };

  struct worklist
  {
    basic_block bb;
    astate *cstate;
  };

  struct obstack state_obstack;
  gcc_obstack_init (&state_obstack);
  hash_map<basic_block, astate *> state;
  auto_vec<worklist, 32> worklist_vec;
  unsigned int next_dfs_num = 1;

  /* Always executed blocks are blocks that are on every path from entry to exit.
     We proceed in two steps.  First we do backward DFS walk (so we know that entry
     is always reached) and record preorder and postorder visiting times.

     In second step we proceed in postorder and for every block A we compute
     minimal preorder (A.low) and maximal postorder (A.high) of block reachable
     from the BBs in DFS subtree of A.  If A is always executed there are no
     edges out of this subtree.  This can be tested by checking that A.low == A.preorder
     and B.high == A.postorder.
    
     This is first step. Do backward DFS walk and record preorder, postorder
     and predecessor info.  Initialize stack in postorder.  */
  worklist we = {EXIT_BLOCK_PTR_FOR_FN (fun), NULL};
  worklist_vec.safe_push (we);
  while (!worklist_vec.is_empty ())
    {
      worklist &w = worklist_vec.last ();
      basic_block bb = w.bb;
      astate *cstate = w.cstate;

      if (!cstate)
	{
	  astate **slot = &state.get_or_insert (bb);

	  cstate = *slot;
	  /* Already processed by DFS?  */
	  if (cstate)
	    {
	      worklist_vec.pop ();
	      continue;
	    }
	  /* DFS is visiting BB for first time.  */
	  *slot = cstate = XOBNEW (&state_obstack, struct astate);
	  cstate->low = cstate->high = cstate->dfs_preorder = next_dfs_num++;
	  w.cstate = cstate;
	  /* Exit block is special; process all fake edges we identified.  */
	  if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
	    for (basic_block bb2 : terminating_bbs)
	      {
		worklist we = {bb2, NULL};
		worklist_vec.safe_push (we);
	      }
	  FOR_EACH_EDGE (e, ei, bb->preds)
	    if (visited.contains (e->src))
	      {
		worklist we = {e->src, NULL};
		worklist_vec.safe_push (we);
	      }
	  /* Keep BB on worklist so we process it last time.  */
	  continue;
	}
      /* We are finished with processing reachable BBs, see if we have articulation.  */
      worklist_vec.pop ();
      cstate->high = cstate->dfs_postorder = next_dfs_num++;
      stack.safe_push (bb);
    }
  /* This is the final postorder walk.  Determine low and high values and mark
     always executed blocks.  */
  for (basic_block bb : stack)
    {
      astate *cstate = *state.get (bb);
      FOR_EACH_EDGE (e, ei, bb->preds)
	{
	  astate **cstate2 = state.get (e->src);
	  /* We skip walking part of CFG reached only after first edge to exit.
	     No BB reachable from the skipped part is always executed */
	  if (!cstate2)
	    {
	      if (e->src != ENTRY_BLOCK_PTR_FOR_FN (fun))
		cstate->low = 0;
	      continue;
	    }
	  cstate->low = MIN (cstate->low, (*cstate2)->low);
	  cstate->high = MAX (cstate->high, (*cstate2)->high);
	}
      if (dump_file && (dump_flags & TDF_DETAILS) && bb != EXIT_BLOCK_PTR_FOR_FN (fun))
	fprintf (dump_file, "BB %i %s preorder %i posorder %i low %i high %i\n",
		 bb->index, terminating_bbs_set.contains (bb) ? "(terminating)": "",
		 cstate->dfs_preorder, cstate->dfs_postorder, cstate->low, cstate->high);
      if (cstate->low == cstate->dfs_preorder && cstate->high == cstate->dfs_postorder
	  && bb != EXIT_BLOCK_PTR_FOR_FN (fun))
	bitmap_set_bit (ret, bb->index);
      if (terminating_bbs_set.contains (bb))
	cstate->low = 0;
      else
	FOR_EACH_EDGE (e, ei, bb->succs)
	  {
	    astate **cstate2 = state.get (e->dest);
	    if (!cstate2)
	      continue;
	    cstate->low = MIN (cstate->low, (*cstate2)->low);
	    cstate->high = MAX (cstate->high, (*cstate2)->high);
	  }
      }
  obstack_free (&state_obstack, NULL);
  if (dump_file)
    {
      fprintf (dump_file, "Always executed bbbs %s: ",
	       assume_return_or_eh ? "(assuming return or EH)": "");
      bitmap_print (dump_file, ret, "", "\n");
    }

  return ret;
}