summaryrefslogtreecommitdiff
path: root/gcc/ipa-cp.c
blob: eb8d20d94f644acc15b7c54bea1b91c0ecd199b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
/* Interprocedural constant propagation
   Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
   Free Software Foundation, Inc.

   Contributed by Razya Ladelsky <RAZYA@il.ibm.com> and Martin Jambor
   <mjambor@suse.cz>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Interprocedural constant propagation (IPA-CP).

   The goal of this transformation is to

   1) discover functions which are always invoked with some arguments with the
      same known constant values and modify the functions so that the
      subsequent optimizations can take advantage of the knowledge, and

   2) partial specialization - create specialized versions of functions
      transformed in this way if some parameters are known constants only in
      certain contexts but the estimated tradeoff between speedup and cost size
      is deemed good.

   The algorithm also propagates types and attempts to perform type based
   devirtualization.  Types are propagated much like constants.

   The algorithm basically consists of three stages.  In the first, functions
   are analyzed one at a time and jump functions are constructed for all known
   call-sites.  In the second phase, the pass propagates information from the
   jump functions across the call to reveal what values are available at what
   call sites, performs estimations of effects of known values on functions and
   their callees, and finally decides what specialized extra versions should be
   created.  In the third, the special versions materialize and appropriate
   calls are redirected.

   The algorithm used is to a certain extent based on "Interprocedural Constant
   Propagation", by David Callahan, Keith D Cooper, Ken Kennedy, Linda Torczon,
   Comp86, pg 152-161 and "A Methodology for Procedure Cloning" by Keith D
   Cooper, Mary W. Hall, and Ken Kennedy.


   First stage - intraprocedural analysis
   =======================================

   This phase computes jump_function and modification flags.

   A jump function for a call-site represents the values passed as an actual
   arguments of a given call-site. In principle, there are three types of
   values:

   Pass through - the caller's formal parameter is passed as an actual
                  argument, plus an operation on it can be performed.
   Constant - a constant is passed as an actual argument.
   Unknown - neither of the above.

   All jump function types are described in detail in ipa-prop.h, together with
   the data structures that represent them and methods of accessing them.

   ipcp_generate_summary() is the main function of the first stage.

   Second stage - interprocedural analysis
   ========================================

   This stage is itself divided into two phases.  In the first, we propagate
   known values over the call graph, in the second, we make cloning decisions.
   It uses a different algorithm than the original Callahan's paper.

   First, we traverse the functions topologically from callers to callees and,
   for each strongly connected component (SCC), we propagate constants
   according to previously computed jump functions.  We also record what known
   values depend on other known values and estimate local effects.  Finally, we
   propagate cumulative information about these effects from dependant values
   to those on which they depend.

   Second, we again traverse the call graph in the same topological order and
   make clones for functions which we know are called with the same values in
   all contexts and decide about extra specialized clones of functions just for
   some contexts - these decisions are based on both local estimates and
   cumulative estimates propagated from callees.

   ipcp_propagate_stage() and ipcp_decision_stage() together constitute the
   third stage.

   Third phase - materialization of clones, call statement updates.
   ============================================

   This stage is currently performed by call graph code (mainly in cgraphunit.c
   and tree-inline.c) according to instructions inserted to the call graph by
   the second stage.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "target.h"
#include "gimple.h"
#include "cgraph.h"
#include "ipa-prop.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "flags.h"
#include "timevar.h"
#include "diagnostic.h"
#include "tree-pretty-print.h"
#include "tree-dump.h"
#include "tree-inline.h"
#include "fibheap.h"
#include "params.h"
#include "ipa-inline.h"
#include "ipa-utils.h"

struct ipcp_value;

/* Describes a particular source for an IPA-CP value.  */

struct ipcp_value_source
{
  /* The incoming edge that brought the value.  */
  struct cgraph_edge *cs;
  /* If the jump function that resulted into his value was a pass-through or an
     ancestor, this is the ipcp_value of the caller from which the described
     value has been derived.  Otherwise it is NULL.  */
  struct ipcp_value *val;
  /* Next pointer in a linked list of sources of a value.  */
  struct ipcp_value_source *next;
  /* If the jump function that resulted into his value was a pass-through or an
     ancestor, this is the index of the parameter of the caller the jump
     function references.  */
  int index;
};

/* Describes one particular value stored in struct ipcp_lattice.  */

struct ipcp_value
{
  /* The actual value for the given parameter.  This is either an IPA invariant
     or a TREE_BINFO describing a type that can be used for
     devirtualization.  */
  tree value;
  /* The list of sources from which this value originates.  */
  struct ipcp_value_source *sources;
  /* Next pointers in a linked list of all values in a lattice.  */
  struct ipcp_value *next;
  /* Next pointers in a linked list of values in a strongly connected component
     of values. */
  struct ipcp_value *scc_next;
  /* Next pointers in a linked list of SCCs of values sorted topologically
     according their sources.  */
  struct ipcp_value  *topo_next;
  /* A specialized node created for this value, NULL if none has been (so far)
     created.  */
  struct cgraph_node *spec_node;
  /* Depth first search number and low link for topological sorting of
     values.  */
  int dfs, low_link;
  /* Time benefit and size cost that specializing the function for this value
     would bring about in this function alone.  */
  int local_time_benefit, local_size_cost;
  /* Time benefit and size cost that specializing the function for this value
     can bring about in it's callees (transitively).  */
  int prop_time_benefit, prop_size_cost;
  /* True if this valye is currently on the topo-sort stack.  */
  bool on_stack;
};

/* Allocation pools for values and their sources in ipa-cp.  */

alloc_pool ipcp_values_pool;
alloc_pool ipcp_sources_pool;

/* Lattice describing potential values of a formal parameter of a function and
   some of their other properties.  TOP is represented by a lattice with zero
   values and with contains_variable and bottom flags cleared.  BOTTOM is
   represented by a lattice with the bottom flag set.  In that case, values and
   contains_variable flag should be disregarded.  */

struct ipcp_lattice
{
  /* The list of known values and types in this lattice.  Note that values are
     not deallocated if a lattice is set to bottom because there may be value
     sources referencing them.  */
  struct ipcp_value *values;
  /* Number of known values and types in this lattice.  */
  int values_count;
  /* The lattice contains a variable component  (in addition to values).  */
  bool contains_variable;
  /* The value of the lattice is bottom (i.e. variable and unusable for any
     propagation).  */
  bool bottom;
  /* There is a virtual call based on this parameter.  */
  bool virt_call;
};

/* Maximal count found in program.  */

static gcov_type max_count;

/* Original overall size of the program.  */

static long overall_size, max_new_size;

/* Head of the linked list of topologically sorted values. */

static struct ipcp_value *values_topo;

/* Return the lattice corresponding to the Ith formal parameter of the function
   described by INFO.  */
static inline struct ipcp_lattice *
ipa_get_lattice (struct ipa_node_params *info, int i)
{
  gcc_assert (i >= 0 && i < ipa_get_param_count (info));
  gcc_checking_assert (!info->ipcp_orig_node);
  gcc_checking_assert (info->lattices);
  return &(info->lattices[i]);
}

/* Return whether LAT is a lattice with a single constant and without an
   undefined value.  */

static inline bool
ipa_lat_is_single_const (struct ipcp_lattice *lat)
{
  if (lat->bottom
      || lat->contains_variable
      || lat->values_count != 1)
    return false;
  else
    return true;
}

/* Return true iff the CS is an edge within a strongly connected component as
   computed by ipa_reduced_postorder.  */

static inline bool
edge_within_scc (struct cgraph_edge *cs)
{
  struct ipa_dfs_info *caller_dfs = (struct ipa_dfs_info *) cs->caller->symbol.aux;
  struct ipa_dfs_info *callee_dfs;
  struct cgraph_node *callee = cgraph_function_node (cs->callee, NULL);

  callee_dfs = (struct ipa_dfs_info *) callee->symbol.aux;
  return (caller_dfs
	  && callee_dfs
	  && caller_dfs->scc_no == callee_dfs->scc_no);
}

/* Print V which is extracted from a value in a lattice to F.  */

static void
print_ipcp_constant_value (FILE * f, tree v)
{
  if (TREE_CODE (v) == TREE_BINFO)
    {
      fprintf (f, "BINFO ");
      print_generic_expr (f, BINFO_TYPE (v), 0);
    }
  else if (TREE_CODE (v) == ADDR_EXPR
	   && TREE_CODE (TREE_OPERAND (v, 0)) == CONST_DECL)
    {
      fprintf (f, "& ");
      print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (v, 0)), 0);
    }
  else
    print_generic_expr (f, v, 0);
}

/* Print all ipcp_lattices of all functions to F.  */

static void
print_all_lattices (FILE * f, bool dump_sources, bool dump_benefits)
{
  struct cgraph_node *node;
  int i, count;

  fprintf (f, "\nLattices:\n");
  FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
    {
      struct ipa_node_params *info;

      info = IPA_NODE_REF (node);
      fprintf (f, "  Node: %s/%i:\n", cgraph_node_name (node), node->uid);
      count = ipa_get_param_count (info);
      for (i = 0; i < count; i++)
	{
	  struct ipcp_lattice *lat = ipa_get_lattice (info, i);
	  struct ipcp_value *val;
	  bool prev = false;

	  fprintf (f, "    param [%d]: ", i);
	  if (lat->bottom)
	    {
	      fprintf (f, "BOTTOM\n");
	      continue;
	    }

	  if (!lat->values_count && !lat->contains_variable)
	    {
	      fprintf (f, "TOP\n");
	      continue;
	    }

	  if (lat->contains_variable)
	    {
	      fprintf (f, "VARIABLE");
	      prev = true;
	      if (dump_benefits)
		fprintf (f, "\n");
	    }

	  for (val = lat->values; val; val = val->next)
	    {
	      if (dump_benefits && prev)
		fprintf (f, "               ");
	      else if (!dump_benefits && prev)
		fprintf (f, ", ");
	      else
		prev = true;

	      print_ipcp_constant_value (f, val->value);

	      if (dump_sources)
		{
		  struct ipcp_value_source *s;

		  fprintf (f, " [from:");
		  for (s = val->sources; s; s = s->next)
		    fprintf (f, " %i(%i)", s->cs->caller->uid,s->cs->frequency);
		  fprintf (f, "]");
		}

	      if (dump_benefits)
		fprintf (f, " [loc_time: %i, loc_size: %i, "
			 "prop_time: %i, prop_size: %i]\n",
			 val->local_time_benefit, val->local_size_cost,
			 val->prop_time_benefit, val->prop_size_cost);
	    }
	  if (!dump_benefits)
	    fprintf (f, "\n");
	}
    }
}

/* Determine whether it is at all technically possible to create clones of NODE
   and store this information in the ipa_node_params structure associated
   with NODE.  */

static void
determine_versionability (struct cgraph_node *node)
{
  const char *reason = NULL;

  /* There are a number of generic reasons functions cannot be versioned.  We
     also cannot remove parameters if there are type attributes such as fnspec
     present.  */
  if (node->alias || node->thunk.thunk_p)
    reason = "alias or thunk";
  else if (!node->local.versionable)
    reason = "not a tree_versionable_function";
  else if (cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE)
    reason = "insufficient body availability";

  if (reason && dump_file && !node->alias && !node->thunk.thunk_p)
    fprintf (dump_file, "Function %s/%i is not versionable, reason: %s.\n",
	     cgraph_node_name (node), node->uid, reason);

  node->local.versionable = (reason == NULL);
}

/* Return true if it is at all technically possible to create clones of a
   NODE.  */

static bool
ipcp_versionable_function_p (struct cgraph_node *node)
{
  return node->local.versionable;
}

/* Structure holding accumulated information about callers of a node.  */

struct caller_statistics
{
  gcov_type count_sum;
  int n_calls, n_hot_calls, freq_sum;
};

/* Initialize fields of STAT to zeroes.  */

static inline void
init_caller_stats (struct caller_statistics *stats)
{
  stats->count_sum = 0;
  stats->n_calls = 0;
  stats->n_hot_calls = 0;
  stats->freq_sum = 0;
}

/* Worker callback of cgraph_for_node_and_aliases accumulating statistics of
   non-thunk incoming edges to NODE.  */

static bool
gather_caller_stats (struct cgraph_node *node, void *data)
{
  struct caller_statistics *stats = (struct caller_statistics *) data;
  struct cgraph_edge *cs;

  for (cs = node->callers; cs; cs = cs->next_caller)
    if (cs->caller->thunk.thunk_p)
      cgraph_for_node_and_aliases (cs->caller, gather_caller_stats,
				   stats, false);
    else
      {
	stats->count_sum += cs->count;
	stats->freq_sum += cs->frequency;
	stats->n_calls++;
	if (cgraph_maybe_hot_edge_p (cs))
	  stats->n_hot_calls ++;
      }
  return false;

}

/* Return true if this NODE is viable candidate for cloning.  */

static bool
ipcp_cloning_candidate_p (struct cgraph_node *node)
{
  struct caller_statistics stats;

  gcc_checking_assert (cgraph_function_with_gimple_body_p (node));

  if (!flag_ipa_cp_clone)
    {
      if (dump_file)
        fprintf (dump_file, "Not considering %s for cloning; "
		 "-fipa-cp-clone disabled.\n",
 	         cgraph_node_name (node));
      return false;
    }

  if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->symbol.decl)))
    {
      if (dump_file)
        fprintf (dump_file, "Not considering %s for cloning; "
		 "optimizing it for size.\n",
 	         cgraph_node_name (node));
      return false;
    }

  init_caller_stats (&stats);
  cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);

  if (inline_summary (node)->self_size < stats.n_calls)
    {
      if (dump_file)
        fprintf (dump_file, "Considering %s for cloning; code might shrink.\n",
 	         cgraph_node_name (node));
      return true;
    }

  /* When profile is available and function is hot, propagate into it even if
     calls seems cold; constant propagation can improve function's speed
     significantly.  */
  if (max_count)
    {
      if (stats.count_sum > node->count * 90 / 100)
	{
	  if (dump_file)
	    fprintf (dump_file, "Considering %s for cloning; "
		     "usually called directly.\n",
		     cgraph_node_name (node));
	  return true;
        }
    }
  if (!stats.n_hot_calls)
    {
      if (dump_file)
	fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n",
		 cgraph_node_name (node));
      return false;
    }
  if (dump_file)
    fprintf (dump_file, "Considering %s for cloning.\n",
	     cgraph_node_name (node));
  return true;
}

/* Arrays representing a topological ordering of call graph nodes and a stack
   of noes used during constant propagation.  */

struct topo_info
{
  struct cgraph_node **order;
  struct cgraph_node **stack;
  int nnodes, stack_top;
};

/* Allocate the arrays in TOPO and topologically sort the nodes into order.  */

static void
build_toporder_info (struct topo_info *topo)
{
  topo->order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
  topo->stack = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
  topo->stack_top = 0;
  topo->nnodes = ipa_reduced_postorder (topo->order, true, true, NULL);
}

/* Free information about strongly connected components and the arrays in
   TOPO.  */

static void
free_toporder_info (struct topo_info *topo)
{
  ipa_free_postorder_info ();
  free (topo->order);
  free (topo->stack);
}

/* Add NODE to the stack in TOPO, unless it is already there.  */

static inline void
push_node_to_stack (struct topo_info *topo, struct cgraph_node *node)
{
  struct ipa_node_params *info = IPA_NODE_REF (node);
  if (info->node_enqueued)
    return;
  info->node_enqueued = 1;
  topo->stack[topo->stack_top++] = node;
}

/* Pop a node from the stack in TOPO and return it or return NULL if the stack
   is empty.  */

static struct cgraph_node *
pop_node_from_stack (struct topo_info *topo)
{
  if (topo->stack_top)
    {
      struct cgraph_node *node;
      topo->stack_top--;
      node = topo->stack[topo->stack_top];
      IPA_NODE_REF (node)->node_enqueued = 0;
      return node;
    }
  else
    return NULL;
}

/* Set lattice LAT to bottom and return true if it previously was not set as
   such.  */

static inline bool
set_lattice_to_bottom (struct ipcp_lattice *lat)
{
  bool ret = !lat->bottom;
  lat->bottom = true;
  return ret;
}

/* Mark lattice as containing an unknown value and return true if it previously
   was not marked as such.  */

static inline bool
set_lattice_contains_variable (struct ipcp_lattice *lat)
{
  bool ret = !lat->contains_variable;
  lat->contains_variable = true;
  return ret;
}

/* Initialize ipcp_lattices.  */

static void
initialize_node_lattices (struct cgraph_node *node)
{
  struct ipa_node_params *info = IPA_NODE_REF (node);
  struct cgraph_edge *ie;
  bool disable = false, variable = false;
  int i;

  gcc_checking_assert (cgraph_function_with_gimple_body_p (node));
  if (!node->local.local)
    {
      /* When cloning is allowed, we can assume that externally visible
	 functions are not called.  We will compensate this by cloning
	 later.  */
      if (ipcp_versionable_function_p (node)
	  && ipcp_cloning_candidate_p (node))
	variable = true;
      else
	disable = true;
    }

  if (disable || variable)
    {
      for (i = 0; i < ipa_get_param_count (info) ; i++)
	{
	  struct ipcp_lattice *lat = ipa_get_lattice (info, i);
	  if (disable)
	    set_lattice_to_bottom (lat);
	  else
	    set_lattice_contains_variable (lat);
	}
      if (dump_file && (dump_flags & TDF_DETAILS)
	  && node->alias && node->thunk.thunk_p)
	fprintf (dump_file, "Marking all lattices of %s/%i as %s\n",
		 cgraph_node_name (node), node->uid,
		 disable ? "BOTTOM" : "VARIABLE");
    }

  for (ie = node->indirect_calls; ie; ie = ie->next_callee)
    if (ie->indirect_info->polymorphic)
      {
	gcc_checking_assert (ie->indirect_info->param_index >= 0);
	ipa_get_lattice (info, ie->indirect_info->param_index)->virt_call = 1;
      }
}

/* Return the result of a (possibly arithmetic) pass through jump function
   JFUNC on the constant value INPUT.  Return NULL_TREE if that cannot be
   determined or itself is considered an interprocedural invariant.  */

static tree
ipa_get_jf_pass_through_result (struct ipa_jump_func *jfunc, tree input)
{
  tree restype, res;

  gcc_checking_assert (is_gimple_ip_invariant (input));
  if (jfunc->value.pass_through.operation == NOP_EXPR)
    return input;

  if (TREE_CODE_CLASS (jfunc->value.pass_through.operation)
      == tcc_comparison)
    restype = boolean_type_node;
  else
    restype = TREE_TYPE (input);
  res = fold_binary (jfunc->value.pass_through.operation, restype,
		     input, jfunc->value.pass_through.operand);

  if (res && !is_gimple_ip_invariant (res))
    return NULL_TREE;

  return res;
}

/* Return the result of an ancestor jump function JFUNC on the constant value
   INPUT.  Return NULL_TREE if that cannot be determined.  */

static tree
ipa_get_jf_ancestor_result (struct ipa_jump_func *jfunc, tree input)
{
  if (TREE_CODE (input) == ADDR_EXPR)
    {
      tree t = TREE_OPERAND (input, 0);
      t = build_ref_for_offset (EXPR_LOCATION (t), t,
				jfunc->value.ancestor.offset,
				jfunc->value.ancestor.type, NULL, false);
      return build_fold_addr_expr (t);
    }
  else
    return NULL_TREE;
}

/* Extract the acual BINFO being described by JFUNC which must be a known type
   jump function.  */

static tree
ipa_value_from_known_type_jfunc (struct ipa_jump_func *jfunc)
{
  tree base_binfo = TYPE_BINFO (jfunc->value.known_type.base_type);
  if (!base_binfo)
    return NULL_TREE;
  return get_binfo_at_offset (base_binfo,
			      jfunc->value.known_type.offset,
			      jfunc->value.known_type.component_type);
}

/* Determine whether JFUNC evaluates to a known value (that is either a
   constant or a binfo) and if so, return it.  Otherwise return NULL. INFO
   describes the caller node so that pass-through jump functions can be
   evaluated.  */

tree
ipa_value_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc)
{
  if (jfunc->type == IPA_JF_CONST)
    return jfunc->value.constant;
  else if (jfunc->type == IPA_JF_KNOWN_TYPE)
    return ipa_value_from_known_type_jfunc (jfunc);
  else if (jfunc->type == IPA_JF_PASS_THROUGH
	   || jfunc->type == IPA_JF_ANCESTOR)
    {
      tree input;
      int idx;

      if (jfunc->type == IPA_JF_PASS_THROUGH)
	idx = jfunc->value.pass_through.formal_id;
      else
	idx = jfunc->value.ancestor.formal_id;

      if (info->ipcp_orig_node)
	input = VEC_index (tree, info->known_vals, idx);
      else
	{
	  struct ipcp_lattice *lat;

	  if (!info->lattices)
	    {
	      gcc_checking_assert (!flag_ipa_cp);
	      return NULL_TREE;
	    }
	  lat = ipa_get_lattice (info, idx);
	  if (!ipa_lat_is_single_const (lat))
	    return NULL_TREE;
	  input = lat->values->value;
	}

      if (!input)
	return NULL_TREE;

      if (jfunc->type == IPA_JF_PASS_THROUGH)
	{
	  if (jfunc->value.pass_through.operation == NOP_EXPR)
	    return input;
	  else if (TREE_CODE (input) == TREE_BINFO)
	    return NULL_TREE;
	  else
	    return ipa_get_jf_pass_through_result (jfunc, input);
	}
      else
	{
	  if (TREE_CODE (input) == TREE_BINFO)
	    return get_binfo_at_offset (input, jfunc->value.ancestor.offset,
					jfunc->value.ancestor.type);
	  else
	    return ipa_get_jf_ancestor_result (jfunc, input);
	}
    }
  else
    return NULL_TREE;
}


/* If checking is enabled, verify that no lattice is in the TOP state, i.e. not
   bottom, not containing a variable component and without any known value at
   the same time.  */

DEBUG_FUNCTION void
ipcp_verify_propagated_values (void)
{
  struct cgraph_node *node;

  FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
    {
      struct ipa_node_params *info = IPA_NODE_REF (node);
      int i, count = ipa_get_param_count (info);

      for (i = 0; i < count; i++)
	{
	  struct ipcp_lattice *lat = ipa_get_lattice (info, i);

	  if (!lat->bottom
	      && !lat->contains_variable
	      && lat->values_count == 0)
	    {
	      if (dump_file)
		{
		  fprintf (dump_file, "\nIPA lattices after constant "
			   "propagation:\n");
		  print_all_lattices (dump_file, true, false);
		}

	      gcc_unreachable ();
	    }
	}
    }
}

/* Return true iff X and Y should be considered equal values by IPA-CP.  */

static bool
values_equal_for_ipcp_p (tree x, tree y)
{
  gcc_checking_assert (x != NULL_TREE && y != NULL_TREE);

  if (x == y)
    return true;

  if (TREE_CODE (x) == TREE_BINFO || TREE_CODE (y) == TREE_BINFO)
    return false;

  if (TREE_CODE (x) ==  ADDR_EXPR
      && TREE_CODE (y) ==  ADDR_EXPR
      && TREE_CODE (TREE_OPERAND (x, 0)) == CONST_DECL
      && TREE_CODE (TREE_OPERAND (y, 0)) == CONST_DECL)
    return operand_equal_p (DECL_INITIAL (TREE_OPERAND (x, 0)),
			    DECL_INITIAL (TREE_OPERAND (y, 0)), 0);
  else
    return operand_equal_p (x, y, 0);
}

/* Add a new value source to VAL, marking that a value comes from edge CS and
   (if the underlying jump function is a pass-through or an ancestor one) from
   a caller value SRC_VAL of a caller parameter described by SRC_INDEX.  */

static void
add_value_source (struct ipcp_value *val, struct cgraph_edge *cs,
		  struct ipcp_value *src_val, int src_idx)
{
  struct ipcp_value_source *src;

  src = (struct ipcp_value_source *) pool_alloc (ipcp_sources_pool);
  src->cs = cs;
  src->val = src_val;
  src->index = src_idx;

  src->next = val->sources;
  val->sources = src;
}


/* Try to add NEWVAL to LAT, potentially creating a new struct ipcp_value for
   it.  CS, SRC_VAL and SRC_INDEX are meant for add_value_source and have the
   same meaning.  */

static bool
add_value_to_lattice (struct ipcp_lattice *lat, tree newval,
		      struct cgraph_edge *cs, struct ipcp_value *src_val,
		      int src_idx)
{
  struct ipcp_value *val;

  if (lat->bottom)
    return false;


  for (val = lat->values; val; val = val->next)
    if (values_equal_for_ipcp_p (val->value, newval))
      {
	if (edge_within_scc (cs))
	  {
	    struct ipcp_value_source *s;
	    for (s = val->sources; s ; s = s->next)
	      if (s->cs == cs)
		break;
	    if (s)
	      return false;
	  }

	add_value_source (val, cs, src_val, src_idx);
	return false;
      }

  if (lat->values_count == PARAM_VALUE (PARAM_IPA_CP_VALUE_LIST_SIZE))
    {
      /* We can only free sources, not the values themselves, because sources
	 of other values in this this SCC might point to them.   */
      for (val = lat->values; val; val = val->next)
	{
	  while (val->sources)
	    {
	      struct ipcp_value_source *src = val->sources;
	      val->sources = src->next;
	      pool_free (ipcp_sources_pool, src);
	    }
	}

      lat->values = NULL;
      return set_lattice_to_bottom (lat);
    }

  lat->values_count++;
  val = (struct ipcp_value *) pool_alloc (ipcp_values_pool);
  memset (val, 0, sizeof (*val));

  add_value_source (val, cs, src_val, src_idx);
  val->value = newval;
  val->next = lat->values;
  lat->values = val;
  return true;
}

/* Propagate values through a pass-through jump function JFUNC associated with
   edge CS, taking values from SRC_LAT and putting them into DEST_LAT.  SRC_IDX
   is the index of the source parameter.  */

static bool
propagate_vals_accross_pass_through (struct cgraph_edge *cs,
				     struct ipa_jump_func *jfunc,
				     struct ipcp_lattice *src_lat,
				     struct ipcp_lattice *dest_lat,
				     int src_idx)
{
  struct ipcp_value *src_val;
  bool ret = false;

  if (jfunc->value.pass_through.operation == NOP_EXPR)
    for (src_val = src_lat->values; src_val; src_val = src_val->next)
      ret |= add_value_to_lattice (dest_lat, src_val->value, cs,
				   src_val, src_idx);
  /* Do not create new values when propagating within an SCC because if there
     arithmetic functions with circular dependencies, there is infinite number
     of them and we would just make lattices bottom.  */
  else if (edge_within_scc (cs))
    ret = set_lattice_contains_variable (dest_lat);
  else
    for (src_val = src_lat->values; src_val; src_val = src_val->next)
      {
	tree cstval = src_val->value;

	if (TREE_CODE (cstval) == TREE_BINFO)
	  {
	    ret |= set_lattice_contains_variable (dest_lat);
	    continue;
	  }
	cstval = ipa_get_jf_pass_through_result (jfunc, cstval);

	if (cstval)
	  ret |= add_value_to_lattice (dest_lat, cstval, cs, src_val, src_idx);
	else
	  ret |= set_lattice_contains_variable (dest_lat);
      }

  return ret;
}

/* Propagate values through an ancestor jump function JFUNC associated with
   edge CS, taking values from SRC_LAT and putting them into DEST_LAT.  SRC_IDX
   is the index of the source parameter.  */

static bool
propagate_vals_accross_ancestor (struct cgraph_edge *cs,
				 struct ipa_jump_func *jfunc,
				 struct ipcp_lattice *src_lat,
				 struct ipcp_lattice *dest_lat,
				 int src_idx)
{
  struct ipcp_value *src_val;
  bool ret = false;

  if (edge_within_scc (cs))
    return set_lattice_contains_variable (dest_lat);

  for (src_val = src_lat->values; src_val; src_val = src_val->next)
    {
      tree t = src_val->value;

      if (TREE_CODE (t) == TREE_BINFO)
	t = get_binfo_at_offset (t, jfunc->value.ancestor.offset,
				 jfunc->value.ancestor.type);
      else
	t = ipa_get_jf_ancestor_result (jfunc, t);

      if (t)
	ret |= add_value_to_lattice (dest_lat, t, cs, src_val, src_idx);
      else
	ret |= set_lattice_contains_variable (dest_lat);
    }

  return ret;
}

/* Propagate values across jump function JFUNC that is associated with edge CS
   and put the values into DEST_LAT.  */

static bool
propagate_accross_jump_function (struct cgraph_edge *cs,
				 struct ipa_jump_func *jfunc,
				 struct ipcp_lattice *dest_lat)
{
  if (dest_lat->bottom)
    return false;

  if (jfunc->type == IPA_JF_CONST
      || jfunc->type == IPA_JF_KNOWN_TYPE)
    {
      tree val;

      if (jfunc->type == IPA_JF_KNOWN_TYPE)
	{
	  val = ipa_value_from_known_type_jfunc (jfunc);
	  if (!val)
	    return set_lattice_contains_variable (dest_lat);
	}
      else
	val = jfunc->value.constant;
      return add_value_to_lattice (dest_lat, val, cs, NULL, 0);
    }
  else if (jfunc->type == IPA_JF_PASS_THROUGH
	   || jfunc->type == IPA_JF_ANCESTOR)
    {
      struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
      struct ipcp_lattice *src_lat;
      int src_idx;
      bool ret;

      if (jfunc->type == IPA_JF_PASS_THROUGH)
	src_idx = jfunc->value.pass_through.formal_id;
      else
	src_idx = jfunc->value.ancestor.formal_id;

      src_lat = ipa_get_lattice (caller_info, src_idx);
      if (src_lat->bottom)
	return set_lattice_contains_variable (dest_lat);

      /* If we would need to clone the caller and cannot, do not propagate.  */
      if (!ipcp_versionable_function_p (cs->caller)
	  && (src_lat->contains_variable
	      || (src_lat->values_count > 1)))
	return set_lattice_contains_variable (dest_lat);

      if (jfunc->type == IPA_JF_PASS_THROUGH)
	ret = propagate_vals_accross_pass_through (cs, jfunc, src_lat,
						   dest_lat, src_idx);
      else
	ret = propagate_vals_accross_ancestor (cs, jfunc, src_lat, dest_lat,
					       src_idx);

      if (src_lat->contains_variable)
	ret |= set_lattice_contains_variable (dest_lat);

      return ret;
    }

  /* TODO: We currently do not handle member method pointers in IPA-CP (we only
     use it for indirect inlining), we should propagate them too.  */
  return set_lattice_contains_variable (dest_lat);
}

/* Propagate constants from the caller to the callee of CS.  INFO describes the
   caller.  */

static bool
propagate_constants_accross_call (struct cgraph_edge *cs)
{
  struct ipa_node_params *callee_info;
  enum availability availability;
  struct cgraph_node *callee, *alias_or_thunk;
  struct ipa_edge_args *args;
  bool ret = false;
  int i, args_count, parms_count;

  callee = cgraph_function_node (cs->callee, &availability);
  if (!callee->analyzed)
    return false;
  gcc_checking_assert (cgraph_function_with_gimple_body_p (callee));
  callee_info = IPA_NODE_REF (callee);

  args = IPA_EDGE_REF (cs);
  args_count = ipa_get_cs_argument_count (args);
  parms_count = ipa_get_param_count (callee_info);

  /* If this call goes through a thunk we must not propagate to the first (0th)
     parameter.  However, we might need to uncover a thunk from below a series
     of aliases first.  */
  alias_or_thunk = cs->callee;
  while (alias_or_thunk->alias)
    alias_or_thunk = cgraph_alias_aliased_node (alias_or_thunk);
  if (alias_or_thunk->thunk.thunk_p)
    {
      ret |= set_lattice_contains_variable (ipa_get_lattice (callee_info, 0));
      i = 1;
    }
  else
    i = 0;

  for (; (i < args_count) && (i < parms_count); i++)
    {
      struct ipa_jump_func *jump_func = ipa_get_ith_jump_func (args, i);
      struct ipcp_lattice *dest_lat = ipa_get_lattice (callee_info, i);

      if (availability == AVAIL_OVERWRITABLE)
	ret |= set_lattice_contains_variable (dest_lat);
      else
	ret |= propagate_accross_jump_function (cs, jump_func, dest_lat);
    }
  for (; i < parms_count; i++)
    ret |= set_lattice_contains_variable (ipa_get_lattice (callee_info, i));

  return ret;
}

/* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
   (which can contain both constants and binfos) or KNOWN_BINFOS (which can be
   NULL) return the destination.  */

tree
ipa_get_indirect_edge_target (struct cgraph_edge *ie,
			      VEC (tree, heap) *known_vals,
			      VEC (tree, heap) *known_binfos)
{
  int param_index = ie->indirect_info->param_index;
  HOST_WIDE_INT token, anc_offset;
  tree otr_type;
  tree t;

  if (param_index == -1)
    return NULL_TREE;

  if (!ie->indirect_info->polymorphic)
    {
      tree t = (VEC_length (tree, known_vals) > (unsigned int) param_index
	        ? VEC_index (tree, known_vals, param_index) : NULL);
      if (t &&
	  TREE_CODE (t) == ADDR_EXPR
	  && TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL)
	return TREE_OPERAND (t, 0);
      else
	return NULL_TREE;
    }

  token = ie->indirect_info->otr_token;
  anc_offset = ie->indirect_info->anc_offset;
  otr_type = ie->indirect_info->otr_type;

  t = VEC_index (tree, known_vals, param_index);
  if (!t && known_binfos
      && VEC_length (tree, known_binfos) > (unsigned int) param_index)
    t = VEC_index (tree, known_binfos, param_index);
  if (!t)
    return NULL_TREE;

  if (TREE_CODE (t) != TREE_BINFO)
    {
      tree binfo;
      binfo = gimple_extract_devirt_binfo_from_cst (t);
      if (!binfo)
	return NULL_TREE;
      binfo = get_binfo_at_offset (binfo, anc_offset, otr_type);
      if (!binfo)
	return NULL_TREE;
      return gimple_get_virt_method_for_binfo (token, binfo);
    }
  else
    {
      tree binfo;

      binfo = get_binfo_at_offset (t, anc_offset, otr_type);
      if (!binfo)
	return NULL_TREE;
      return gimple_get_virt_method_for_binfo (token, binfo);
    }
}

/* Calculate devirtualization time bonus for NODE, assuming we know KNOWN_CSTS
   and KNOWN_BINFOS.  */

static int
devirtualization_time_bonus (struct cgraph_node *node,
			     VEC (tree, heap) *known_csts,
			     VEC (tree, heap) *known_binfos)
{
  struct cgraph_edge *ie;
  int res = 0;

  for (ie = node->indirect_calls; ie; ie = ie->next_callee)
    {
      struct cgraph_node *callee;
      struct inline_summary *isummary;
      tree target;

      target = ipa_get_indirect_edge_target (ie, known_csts, known_binfos);
      if (!target)
	continue;

      /* Only bare minimum benefit for clearly un-inlineable targets.  */
      res += 1;
      callee = cgraph_get_node (target);
      if (!callee || !callee->analyzed)
	continue;
      isummary = inline_summary (callee);
      if (!isummary->inlinable)
	continue;

      /* FIXME: The values below need re-considering and perhaps also
	 integrating into the cost metrics, at lest in some very basic way.  */
      if (isummary->size <= MAX_INLINE_INSNS_AUTO / 4)
	res += 31;
      else if (isummary->size <= MAX_INLINE_INSNS_AUTO / 2)
	res += 15;
      else if (isummary->size <= MAX_INLINE_INSNS_AUTO
	       || DECL_DECLARED_INLINE_P (callee->symbol.decl))
	res += 7;
    }

  return res;
}

/* Return true if cloning NODE is a good idea, given the estimated TIME_BENEFIT
   and SIZE_COST and with the sum of frequencies of incoming edges to the
   potential new clone in FREQUENCIES.  */

static bool
good_cloning_opportunity_p (struct cgraph_node *node, int time_benefit,
			    int freq_sum, gcov_type count_sum, int size_cost)
{
  if (time_benefit == 0
      || !flag_ipa_cp_clone
      || !optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->symbol.decl)))
    return false;

  gcc_assert (size_cost > 0);

  if (max_count)
    {
      int factor = (count_sum * 1000) / max_count;
      HOST_WIDEST_INT evaluation = (((HOST_WIDEST_INT) time_benefit * factor)
				    / size_cost);

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "     good_cloning_opportunity_p (time: %i, "
		 "size: %i, count_sum: " HOST_WIDE_INT_PRINT_DEC
		 ") -> evaluation: " HOST_WIDEST_INT_PRINT_DEC
		 ", threshold: %i\n",
		 time_benefit, size_cost, (HOST_WIDE_INT) count_sum,
		 evaluation, 500);

      return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
    }
  else
    {
      HOST_WIDEST_INT evaluation = (((HOST_WIDEST_INT) time_benefit * freq_sum)
				    / size_cost);

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "     good_cloning_opportunity_p (time: %i, "
		 "size: %i, freq_sum: %i) -> evaluation: "
		 HOST_WIDEST_INT_PRINT_DEC ", threshold: %i\n",
		 time_benefit, size_cost, freq_sum, evaluation,
		 CGRAPH_FREQ_BASE /2);

      return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
    }
}


/* Allocate KNOWN_CSTS and KNOWN_BINFOS and populate them with values of
   parameters that are known independent of the context.  INFO describes the
   function.  If REMOVABLE_PARAMS_COST is non-NULL, the movement cost of all
   removable parameters will be stored in it.  */

static bool
gather_context_independent_values (struct ipa_node_params *info,
				   VEC (tree, heap) **known_csts,
				   VEC (tree, heap) **known_binfos,
				   int *removable_params_cost)
{
  int i, count = ipa_get_param_count (info);
  bool ret = false;

  *known_csts = NULL;
  *known_binfos = NULL;
  VEC_safe_grow_cleared (tree, heap, *known_csts, count);
  VEC_safe_grow_cleared (tree, heap, *known_binfos, count);

  if (removable_params_cost)
    *removable_params_cost = 0;

  for (i = 0; i < count ; i++)
    {
      struct ipcp_lattice *lat = ipa_get_lattice (info, i);

      if (ipa_lat_is_single_const (lat))
	{
	  struct ipcp_value *val = lat->values;
	  if (TREE_CODE (val->value) != TREE_BINFO)
	    {
	      VEC_replace (tree, *known_csts, i, val->value);
	      if (removable_params_cost)
		*removable_params_cost
		  += estimate_move_cost (TREE_TYPE (val->value));
	      ret = true;
	    }
	  else if (lat->virt_call)
	    {
	      VEC_replace (tree, *known_binfos, i, val->value);
	      ret = true;
	    }
	  else if (removable_params_cost
		   && !ipa_is_param_used (info, i))
	    *removable_params_cost
	      += estimate_move_cost (TREE_TYPE (ipa_get_param (info, i)));
	}
      else if (removable_params_cost
	       && !ipa_is_param_used (info, i))
	*removable_params_cost
	  +=  estimate_move_cost (TREE_TYPE (ipa_get_param (info, i)));
    }

  return ret;
}

/* Iterate over known values of parameters of NODE and estimate the local
   effects in terms of time and size they have.  */

static void
estimate_local_effects (struct cgraph_node *node)
{
  struct ipa_node_params *info = IPA_NODE_REF (node);
  int i, count = ipa_get_param_count (info);
  VEC (tree, heap) *known_csts, *known_binfos;
  bool always_const;
  int base_time = inline_summary (node)->time;
  int removable_params_cost;

  if (!count || !ipcp_versionable_function_p (node))
    return;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\nEstimating effects for %s/%i, base_time: %i.\n",
	     cgraph_node_name (node), node->uid, base_time);

  always_const = gather_context_independent_values (info, &known_csts,
						    &known_binfos,
						    &removable_params_cost);
  if (always_const)
    {
      struct caller_statistics stats;
      int time, size;

      init_caller_stats (&stats);
      cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
      estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
					 &size, &time);
      time -= devirtualization_time_bonus (node, known_csts, known_binfos);
      time -= removable_params_cost;
      size -= stats.n_calls * removable_params_cost;

      if (dump_file)
	fprintf (dump_file, " - context independent values, size: %i, "
		 "time_benefit: %i\n", size, base_time - time);

      if (size <= 0
	  || cgraph_will_be_removed_from_program_if_no_direct_calls (node))
	{
	  info->clone_for_all_contexts = true;
	  base_time = time;

	  if (dump_file)
	    fprintf (dump_file, "     Decided to specialize for all "
		     "known contexts, code not going to grow.\n");
	}
      else if (good_cloning_opportunity_p (node, base_time - time,
					   stats.freq_sum, stats.count_sum,
					   size))
	{
	  if (size + overall_size <= max_new_size)
	    {
	      info->clone_for_all_contexts = true;
	      base_time = time;
	      overall_size += size;

	      if (dump_file)
		fprintf (dump_file, "     Decided to specialize for all "
			 "known contexts, growth deemed beneficial.\n");
	    }
	  else if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "   Not cloning for all contexts because "
		     "max_new_size would be reached with %li.\n",
		     size + overall_size);
	}
    }

  for (i = 0; i < count ; i++)
    {
      struct ipcp_lattice *lat = ipa_get_lattice (info, i);
      struct ipcp_value *val;
      int emc;

      if (lat->bottom
	  || !lat->values
	  || VEC_index (tree, known_csts, i)
	  || VEC_index (tree, known_binfos, i))
	continue;

      for (val = lat->values; val; val = val->next)
	{
	  int time, size, time_benefit;

	  if (TREE_CODE (val->value) != TREE_BINFO)
	    {
	      VEC_replace (tree, known_csts, i, val->value);
	      VEC_replace (tree, known_binfos, i, NULL_TREE);
	      emc = estimate_move_cost (TREE_TYPE (val->value));
	    }
	  else if (lat->virt_call)
	    {
	      VEC_replace (tree, known_csts, i, NULL_TREE);
	      VEC_replace (tree, known_binfos, i, val->value);
	      emc = 0;
	    }
	  else
	    continue;

	  estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
					     &size, &time);
	  time_benefit = base_time - time
	    + devirtualization_time_bonus (node, known_csts, known_binfos)
	    + removable_params_cost + emc;

	  gcc_checking_assert (size >=0);
	  /* The inliner-heuristics based estimates may think that in certain
	     contexts some functions do not have any size at all but we want
	     all specializations to have at least a tiny cost, not least not to
	     divide by zero.  */
	  if (size == 0)
	    size = 1;

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, " - estimates for value ");
	      print_ipcp_constant_value (dump_file, val->value);
	      fprintf (dump_file, " for parameter ");
	      print_generic_expr (dump_file, ipa_get_param (info, i), 0);
	      fprintf (dump_file, ": time_benefit: %i, size: %i\n",
		       time_benefit, size);
	    }

	  val->local_time_benefit = time_benefit;
	  val->local_size_cost = size;
	}
    }

  VEC_free (tree, heap, known_csts);
  VEC_free (tree, heap, known_binfos);
}


/* Add value CUR_VAL and all yet-unsorted values it is dependent on to the
   topological sort of values.  */

static void
add_val_to_toposort (struct ipcp_value *cur_val)
{
  static int dfs_counter = 0;
  static struct ipcp_value *stack;
  struct ipcp_value_source *src;

  if (cur_val->dfs)
    return;

  dfs_counter++;
  cur_val->dfs = dfs_counter;
  cur_val->low_link = dfs_counter;

  cur_val->topo_next = stack;
  stack = cur_val;
  cur_val->on_stack = true;

  for (src = cur_val->sources; src; src = src->next)
    if (src->val)
      {
	if (src->val->dfs == 0)
	  {
	    add_val_to_toposort (src->val);
	    if (src->val->low_link < cur_val->low_link)
	      cur_val->low_link = src->val->low_link;
	  }
	else if (src->val->on_stack
		 && src->val->dfs < cur_val->low_link)
	  cur_val->low_link = src->val->dfs;
      }

  if (cur_val->dfs == cur_val->low_link)
    {
      struct ipcp_value *v, *scc_list = NULL;

      do
	{
	  v = stack;
	  stack = v->topo_next;
	  v->on_stack = false;

	  v->scc_next = scc_list;
	  scc_list = v;
	}
      while (v != cur_val);

      cur_val->topo_next = values_topo;
      values_topo = cur_val;
    }
}

/* Add all values in lattices associated with NODE to the topological sort if
   they are not there yet.  */

static void
add_all_node_vals_to_toposort (struct cgraph_node *node)
{
  struct ipa_node_params *info = IPA_NODE_REF (node);
  int i, count = ipa_get_param_count (info);

  for (i = 0; i < count ; i++)
    {
      struct ipcp_lattice *lat = ipa_get_lattice (info, i);
      struct ipcp_value *val;

      if (lat->bottom || !lat->values)
	continue;
      for (val = lat->values; val; val = val->next)
	add_val_to_toposort (val);
    }
}

/* One pass of constants propagation along the call graph edges, from callers
   to callees (requires topological ordering in TOPO), iterate over strongly
   connected components.  */

static void
propagate_constants_topo (struct topo_info *topo)
{
  int i;

  for (i = topo->nnodes - 1; i >= 0; i--)
    {
      struct cgraph_node *v, *node = topo->order[i];
      struct ipa_dfs_info *node_dfs_info;

      if (!cgraph_function_with_gimple_body_p (node))
	continue;

      node_dfs_info = (struct ipa_dfs_info *) node->symbol.aux;
      /* First, iteratively propagate within the strongly connected component
	 until all lattices stabilize.  */
      v = node_dfs_info->next_cycle;
      while (v)
	{
	  push_node_to_stack (topo, v);
	  v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle;
	}

      v = node;
      while (v)
	{
	  struct cgraph_edge *cs;

	  for (cs = v->callees; cs; cs = cs->next_callee)
	    if (edge_within_scc (cs)
		&& propagate_constants_accross_call (cs))
	      push_node_to_stack (topo, cs->callee);
	  v = pop_node_from_stack (topo);
	}

      /* Afterwards, propagate along edges leading out of the SCC, calculates
	 the local effects of the discovered constants and all valid values to
	 their topological sort.  */
      v = node;
      while (v)
	{
	  struct cgraph_edge *cs;

	  estimate_local_effects (v);
	  add_all_node_vals_to_toposort (v);
	  for (cs = v->callees; cs; cs = cs->next_callee)
	    if (!edge_within_scc (cs))
	      propagate_constants_accross_call (cs);

	  v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle;
	}
    }
}


/* Return the sum of A and B if none of them is bigger than INT_MAX/2, return
   the bigger one if otherwise.  */

static int
safe_add (int a, int b)
{
  if (a > INT_MAX/2 || b > INT_MAX/2)
    return a > b ? a : b;
  else
    return a + b;
}


/* Propagate the estimated effects of individual values along the topological
   from the dependant values to those they depend on.  */

static void
propagate_effects (void)
{
  struct ipcp_value *base;

  for (base = values_topo; base; base = base->topo_next)
    {
      struct ipcp_value_source *src;
      struct ipcp_value *val;
      int time = 0, size = 0;

      for (val = base; val; val = val->scc_next)
	{
	  time = safe_add (time,
			   val->local_time_benefit + val->prop_time_benefit);
	  size = safe_add (size, val->local_size_cost + val->prop_size_cost);
	}

      for (val = base; val; val = val->scc_next)
	for (src = val->sources; src; src = src->next)
	  if (src->val
	      && cgraph_maybe_hot_edge_p (src->cs))
	    {
	      src->val->prop_time_benefit = safe_add (time,
						src->val->prop_time_benefit);
	      src->val->prop_size_cost = safe_add (size,
						   src->val->prop_size_cost);
	    }
    }
}


/* Propagate constants, binfos and their effects from the summaries
   interprocedurally.  */

static void
ipcp_propagate_stage (struct topo_info *topo)
{
  struct cgraph_node *node;

  if (dump_file)
    fprintf (dump_file, "\n Propagating constants:\n\n");

  if (in_lto_p)
    ipa_update_after_lto_read ();


  FOR_EACH_DEFINED_FUNCTION (node)
  {
    struct ipa_node_params *info = IPA_NODE_REF (node);

    determine_versionability (node);
    if (cgraph_function_with_gimple_body_p (node))
      {
	info->lattices = XCNEWVEC (struct ipcp_lattice,
				   ipa_get_param_count (info));
	initialize_node_lattices (node);
      }
    if (node->count > max_count)
      max_count = node->count;
    overall_size += inline_summary (node)->self_size;
  }

  max_new_size = overall_size;
  if (max_new_size < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
    max_new_size = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
  max_new_size += max_new_size * PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH) / 100 + 1;

  if (dump_file)
    fprintf (dump_file, "\noverall_size: %li, max_new_size: %li\n",
	     overall_size, max_new_size);

  propagate_constants_topo (topo);
#ifdef ENABLE_CHECKING
  ipcp_verify_propagated_values ();
#endif
  propagate_effects ();

  if (dump_file)
    {
      fprintf (dump_file, "\nIPA lattices after all propagation:\n");
      print_all_lattices (dump_file, (dump_flags & TDF_DETAILS), true);
    }
}

/* Discover newly direct outgoing edges from NODE which is a new clone with
   known KNOWN_VALS and make them direct.  */

static void
ipcp_discover_new_direct_edges (struct cgraph_node *node,
				VEC (tree, heap) *known_vals)
{
  struct cgraph_edge *ie, *next_ie;

  for (ie = node->indirect_calls; ie; ie = next_ie)
    {
      tree target;

      next_ie = ie->next_callee;
      target = ipa_get_indirect_edge_target (ie, known_vals, NULL);
      if (target)
	ipa_make_edge_direct_to_target (ie, target);
    }
}

/* Vector of pointers which for linked lists of clones of an original crgaph
   edge. */

static VEC (cgraph_edge_p, heap) *next_edge_clone;

static inline void
grow_next_edge_clone_vector (void)
{
  if (VEC_length (cgraph_edge_p, next_edge_clone)
      <=  (unsigned) cgraph_edge_max_uid)
    VEC_safe_grow_cleared (cgraph_edge_p, heap, next_edge_clone,
			   cgraph_edge_max_uid + 1);
}

/* Edge duplication hook to grow the appropriate linked list in
   next_edge_clone. */

static void
ipcp_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
			    __attribute__((unused)) void *data)
{
  grow_next_edge_clone_vector ();
  VEC_replace (cgraph_edge_p, next_edge_clone, dst->uid,
	       VEC_index (cgraph_edge_p, next_edge_clone, src->uid));
  VEC_replace (cgraph_edge_p, next_edge_clone, src->uid, dst);
}

/* Get the next clone in the linked list of clones of an edge.  */

static inline struct cgraph_edge *
get_next_cgraph_edge_clone (struct cgraph_edge *cs)
{
  return VEC_index (cgraph_edge_p, next_edge_clone, cs->uid);
}

/* Return true if edge CS does bring about the value described by SRC.  */

static bool
cgraph_edge_brings_value_p (struct cgraph_edge *cs,
			    struct ipcp_value_source *src)
{
  struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);

  if (IPA_NODE_REF (cs->callee)->ipcp_orig_node
      || caller_info->node_dead)
    return false;
  if (!src->val)
    return true;

  if (caller_info->ipcp_orig_node)
    {
      tree t = VEC_index (tree, caller_info->known_vals, src->index);
      return (t != NULL_TREE
	      && values_equal_for_ipcp_p (src->val->value, t));
    }
  else
    {
      struct ipcp_lattice *lat = ipa_get_lattice (caller_info, src->index);
      if (ipa_lat_is_single_const (lat)
	  && values_equal_for_ipcp_p (src->val->value, lat->values->value))
	return true;
      else
	return false;
    }
}

/* Given VAL, iterate over all its sources and if they still hold, add their
   edge frequency and their number into *FREQUENCY and *CALLER_COUNT
   respectively.  */

static bool
get_info_about_necessary_edges (struct ipcp_value *val, int *freq_sum,
				gcov_type *count_sum, int *caller_count)
{
  struct ipcp_value_source *src;
  int freq = 0, count = 0;
  gcov_type cnt = 0;
  bool hot = false;

  for (src = val->sources; src; src = src->next)
    {
      struct cgraph_edge *cs = src->cs;
      while (cs)
	{
	  if (cgraph_edge_brings_value_p (cs, src))
	    {
	      count++;
	      freq += cs->frequency;
	      cnt += cs->count;
	      hot |= cgraph_maybe_hot_edge_p (cs);
	    }
	  cs = get_next_cgraph_edge_clone (cs);
	}
    }

  *freq_sum = freq;
  *count_sum = cnt;
  *caller_count = count;
  return hot;
}

/* Return a vector of incoming edges that do bring value VAL.  It is assumed
   their number is known and equal to CALLER_COUNT.  */

static VEC (cgraph_edge_p,heap) *
gather_edges_for_value (struct ipcp_value *val, int caller_count)
{
  struct ipcp_value_source *src;
  VEC (cgraph_edge_p,heap) *ret;

  ret = VEC_alloc (cgraph_edge_p, heap, caller_count);
  for (src = val->sources; src; src = src->next)
    {
      struct cgraph_edge *cs = src->cs;
      while (cs)
	{
	  if (cgraph_edge_brings_value_p (cs, src))
	    VEC_quick_push (cgraph_edge_p, ret, cs);
	  cs = get_next_cgraph_edge_clone (cs);
	}
    }

  return ret;
}

/* Construct a replacement map for a know VALUE for a formal parameter PARAM.
   Return it or NULL if for some reason it cannot be created.  */

static struct ipa_replace_map *
get_replacement_map (tree value, tree parm)
{
  tree req_type = TREE_TYPE (parm);
  struct ipa_replace_map *replace_map;

  if (!useless_type_conversion_p (req_type, TREE_TYPE (value)))
    {
      if (fold_convertible_p (req_type, value))
	value = fold_build1 (NOP_EXPR, req_type, value);
      else if (TYPE_SIZE (req_type) == TYPE_SIZE (TREE_TYPE (value)))
	value = fold_build1 (VIEW_CONVERT_EXPR, req_type, value);
      else
	{
	  if (dump_file)
	    {
	      fprintf (dump_file, "    const ");
	      print_generic_expr (dump_file, value, 0);
	      fprintf (dump_file, "  can't be converted to param ");
	      print_generic_expr (dump_file, parm, 0);
	      fprintf (dump_file, "\n");
	    }
	  return NULL;
	}
    }

  replace_map = ggc_alloc_ipa_replace_map ();
  if (dump_file)
    {
      fprintf (dump_file, "    replacing param ");
      print_generic_expr (dump_file, parm, 0);
      fprintf (dump_file, " with const ");
      print_generic_expr (dump_file, value, 0);
      fprintf (dump_file, "\n");
    }
  replace_map->old_tree = parm;
  replace_map->new_tree = value;
  replace_map->replace_p = true;
  replace_map->ref_p = false;

  return replace_map;
}

/* Dump new profiling counts */

static void
dump_profile_updates (struct cgraph_node *orig_node,
		      struct cgraph_node *new_node)
{
  struct cgraph_edge *cs;

  fprintf (dump_file, "    setting count of the specialized node to "
	   HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) new_node->count);
  for (cs = new_node->callees; cs ; cs = cs->next_callee)
    fprintf (dump_file, "      edge to %s has count "
	     HOST_WIDE_INT_PRINT_DEC "\n",
	     cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);

  fprintf (dump_file, "    setting count of the original node to "
	   HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) orig_node->count);
  for (cs = orig_node->callees; cs ; cs = cs->next_callee)
    fprintf (dump_file, "      edge to %s is left with "
	     HOST_WIDE_INT_PRINT_DEC "\n",
	     cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);
}

/* After a specialized NEW_NODE version of ORIG_NODE has been created, update
   their profile information to reflect this.  */

static void
update_profiling_info (struct cgraph_node *orig_node,
		       struct cgraph_node *new_node)
{
  struct cgraph_edge *cs;
  struct caller_statistics stats;
  gcov_type new_sum, orig_sum;
  gcov_type remainder, orig_node_count = orig_node->count;

  if (orig_node_count == 0)
    return;

  init_caller_stats (&stats);
  cgraph_for_node_and_aliases (orig_node, gather_caller_stats, &stats, false);
  orig_sum = stats.count_sum;
  init_caller_stats (&stats);
  cgraph_for_node_and_aliases (new_node, gather_caller_stats, &stats, false);
  new_sum = stats.count_sum;

  if (orig_node_count < orig_sum + new_sum)
    {
      if (dump_file)
	fprintf (dump_file, "    Problem: node %s/%i has too low count "
		 HOST_WIDE_INT_PRINT_DEC " while the sum of incoming "
		 "counts is " HOST_WIDE_INT_PRINT_DEC "\n",
		 cgraph_node_name (orig_node), orig_node->uid,
		 (HOST_WIDE_INT) orig_node_count,
		 (HOST_WIDE_INT) (orig_sum + new_sum));

      orig_node_count = (orig_sum + new_sum) * 12 / 10;
      if (dump_file)
	fprintf (dump_file, "      proceeding by pretending it was "
		 HOST_WIDE_INT_PRINT_DEC "\n",
		 (HOST_WIDE_INT) orig_node_count);
    }

  new_node->count = new_sum;
  remainder = orig_node_count - new_sum;
  orig_node->count = remainder;

  for (cs = new_node->callees; cs ; cs = cs->next_callee)
    if (cs->frequency)
      cs->count = cs->count * (new_sum * REG_BR_PROB_BASE
			       / orig_node_count) / REG_BR_PROB_BASE;
    else
      cs->count = 0;

  for (cs = orig_node->callees; cs ; cs = cs->next_callee)
    cs->count = cs->count * (remainder * REG_BR_PROB_BASE
			     / orig_node_count) / REG_BR_PROB_BASE;

  if (dump_file)
    dump_profile_updates (orig_node, new_node);
}

/* Update the respective profile of specialized NEW_NODE and the original
   ORIG_NODE after additional edges with cumulative count sum REDIRECTED_SUM
   have been redirected to the specialized version.  */

static void
update_specialized_profile (struct cgraph_node *new_node,
			    struct cgraph_node *orig_node,
			    gcov_type redirected_sum)
{
  struct cgraph_edge *cs;
  gcov_type new_node_count, orig_node_count = orig_node->count;

  if (dump_file)
    fprintf (dump_file, "    the sum of counts of redirected  edges is "
	     HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) redirected_sum);
  if (orig_node_count == 0)
    return;

  gcc_assert (orig_node_count >= redirected_sum);

  new_node_count = new_node->count;
  new_node->count += redirected_sum;
  orig_node->count -= redirected_sum;

  for (cs = new_node->callees; cs ; cs = cs->next_callee)
    if (cs->frequency)
      cs->count += cs->count * redirected_sum / new_node_count;
    else
      cs->count = 0;

  for (cs = orig_node->callees; cs ; cs = cs->next_callee)
    {
      gcov_type dec = cs->count * (redirected_sum * REG_BR_PROB_BASE
				   / orig_node_count) / REG_BR_PROB_BASE;
      if (dec < cs->count)
	cs->count -= dec;
      else
	cs->count = 0;
    }

  if (dump_file)
    dump_profile_updates (orig_node, new_node);
}

/* Create a specialized version of NODE with known constants and types of
   parameters in KNOWN_VALS and redirect all edges in CALLERS to it.  */

static struct cgraph_node *
create_specialized_node (struct cgraph_node *node,
			 VEC (tree, heap) *known_vals,
			 VEC (cgraph_edge_p,heap) *callers)
{
  struct ipa_node_params *new_info, *info = IPA_NODE_REF (node);
  VEC (ipa_replace_map_p,gc)* replace_trees = NULL;
  struct cgraph_node *new_node;
  int i, count = ipa_get_param_count (info);
  bitmap args_to_skip;

  gcc_assert (!info->ipcp_orig_node);

  if (node->local.can_change_signature)
    {
      args_to_skip = BITMAP_GGC_ALLOC ();
      for (i = 0; i < count; i++)
	{
	  tree t = VEC_index (tree, known_vals, i);

	  if ((t && TREE_CODE (t) != TREE_BINFO)
	      || !ipa_is_param_used (info, i))
	    bitmap_set_bit (args_to_skip, i);
	}
    }
  else
    {
      args_to_skip = NULL;
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "      cannot change function signature\n");
    }

  for (i = 0; i < count ; i++)
    {
      tree t = VEC_index (tree, known_vals, i);
      if (t && TREE_CODE (t) != TREE_BINFO)
	{
	  struct ipa_replace_map *replace_map;

	  replace_map = get_replacement_map (t, ipa_get_param (info, i));
	  if (replace_map)
	    VEC_safe_push (ipa_replace_map_p, gc, replace_trees, replace_map);
	}
    }

  new_node = cgraph_create_virtual_clone (node, callers, replace_trees,
					  args_to_skip, "constprop");
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "     the new node is %s/%i.\n",
	     cgraph_node_name (new_node), new_node->uid);
  gcc_checking_assert (ipa_node_params_vector
		       && (VEC_length (ipa_node_params_t,
				       ipa_node_params_vector)
			   > (unsigned) cgraph_max_uid));
  update_profiling_info (node, new_node);
  new_info = IPA_NODE_REF (new_node);
  new_info->ipcp_orig_node = node;
  new_info->known_vals = known_vals;

  ipcp_discover_new_direct_edges (new_node, known_vals);

  VEC_free (cgraph_edge_p, heap, callers);
  return new_node;
}

/* Given a NODE, and a subset of its CALLERS, try to populate blanks slots in
   KNOWN_VALS with constants and types that are also known for all of the
   CALLERS.  */

static void
find_more_values_for_callers_subset (struct cgraph_node *node,
				     VEC (tree, heap) *known_vals,
				     VEC (cgraph_edge_p,heap) *callers)
{
  struct ipa_node_params *info = IPA_NODE_REF (node);
  int i, count = ipa_get_param_count (info);

  for (i = 0; i < count ; i++)
    {
      struct cgraph_edge *cs;
      tree newval = NULL_TREE;
      int j;

      if (ipa_get_lattice (info, i)->bottom
	  || VEC_index (tree, known_vals, i))
	continue;

      FOR_EACH_VEC_ELT (cgraph_edge_p, callers, j, cs)
	{
	  struct ipa_jump_func *jump_func;
	  tree t;

          if (i >= ipa_get_cs_argument_count (IPA_EDGE_REF (cs)))
            {
              newval = NULL_TREE;
              break;
            }
	  jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
	  t = ipa_value_from_jfunc (IPA_NODE_REF (cs->caller), jump_func);
	  if (!t
	      || (newval
		  && !values_equal_for_ipcp_p (t, newval)))
	    {
	      newval = NULL_TREE;
	      break;
	    }
	  else
	    newval = t;
	}

      if (newval)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "    adding an extra known value ");
	      print_ipcp_constant_value (dump_file, newval);
	      fprintf (dump_file, " for parameter ");
	      print_generic_expr (dump_file, ipa_get_param (info, i), 0);
	      fprintf (dump_file, "\n");
	    }

	  VEC_replace (tree, known_vals, i, newval);
	}
    }
}

/* Given an original NODE and a VAL for which we have already created a
   specialized clone, look whether there are incoming edges that still lead
   into the old node but now also bring the requested value and also conform to
   all other criteria such that they can be redirected the the special node.
   This function can therefore redirect the final edge in a SCC.  */

static void
perhaps_add_new_callers (struct cgraph_node *node, struct ipcp_value *val)
{
  struct ipa_node_params *dest_info = IPA_NODE_REF (val->spec_node);
  struct ipcp_value_source *src;
  int count = ipa_get_param_count (dest_info);
  gcov_type redirected_sum = 0;

  for (src = val->sources; src; src = src->next)
    {
      struct cgraph_edge *cs = src->cs;
      while (cs)
	{
	  enum availability availability;
	  bool insufficient = false;

	  if (cgraph_function_node (cs->callee, &availability) == node
	      && availability > AVAIL_OVERWRITABLE
	      && cgraph_edge_brings_value_p (cs, src))
	    {
	      struct ipa_node_params *caller_info;
	      struct ipa_edge_args *args;
	      int i;

	      caller_info = IPA_NODE_REF (cs->caller);
	      args = IPA_EDGE_REF (cs);
	      for (i = 0; i < count; i++)
		{
		  struct ipa_jump_func *jump_func;
		  tree val, t;

		  val = VEC_index (tree, dest_info->known_vals, i);
		  if (!val)
		    continue;

		  if (i >= ipa_get_cs_argument_count (args))
		    {
		      insufficient = true;
		      break;
		    }
		  jump_func = ipa_get_ith_jump_func (args, i);
		  t = ipa_value_from_jfunc (caller_info, jump_func);
		  if (!t || !values_equal_for_ipcp_p (val, t))
		    {
		      insufficient = true;
		      break;
		    }
		}

	      if (!insufficient)
		{
		  if (dump_file)
		    fprintf (dump_file, " - adding an extra caller %s/%i"
			     " of %s/%i\n",
			     xstrdup (cgraph_node_name (cs->caller)),
			     cs->caller->uid,
			     xstrdup (cgraph_node_name (val->spec_node)),
			     val->spec_node->uid);

		  cgraph_redirect_edge_callee (cs, val->spec_node);
		  redirected_sum += cs->count;
		}
	    }
	  cs = get_next_cgraph_edge_clone (cs);
	}
    }

  if (redirected_sum)
    update_specialized_profile (val->spec_node, node, redirected_sum);
}


/* Copy KNOWN_BINFOS to KNOWN_VALS.  */

static void
move_binfos_to_values (VEC (tree, heap) *known_vals,
		       VEC (tree, heap) *known_binfos)
{
  tree t;
  int i;

  for (i = 0; VEC_iterate (tree, known_binfos, i, t); i++)
    if (t)
      VEC_replace (tree, known_vals, i, t);
}


/* Decide whether and what specialized clones of NODE should be created.  */

static bool
decide_whether_version_node (struct cgraph_node *node)
{
  struct ipa_node_params *info = IPA_NODE_REF (node);
  int i, count = ipa_get_param_count (info);
  VEC (tree, heap) *known_csts, *known_binfos;
  bool ret = false;

  if (count == 0)
    return false;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\nEvaluating opportunities for %s/%i.\n",
	     cgraph_node_name (node), node->uid);

  gather_context_independent_values (info, &known_csts, &known_binfos,
				     NULL);

  for (i = 0; i < count ; i++)
    {
      struct ipcp_lattice *lat = ipa_get_lattice (info, i);
      struct ipcp_value *val;

      if (lat->bottom
	  || VEC_index (tree, known_csts, i)
	  || VEC_index (tree, known_binfos, i))
	continue;

      for (val = lat->values; val; val = val->next)
	{
	  int freq_sum, caller_count;
	  gcov_type count_sum;
	  VEC (cgraph_edge_p, heap) *callers;
	  VEC (tree, heap) *kv;

	  if (val->spec_node)
	    {
	      perhaps_add_new_callers (node, val);
	      continue;
	    }
	  else if (val->local_size_cost + overall_size > max_new_size)
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file, "   Ignoring candidate value because "
			 "max_new_size would be reached with %li.\n",
			 val->local_size_cost + overall_size);
	      continue;
	    }
	  else if (!get_info_about_necessary_edges (val, &freq_sum, &count_sum,
						    &caller_count))
	    continue;

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, " - considering value ");
	      print_ipcp_constant_value (dump_file, val->value);
	      fprintf (dump_file, " for parameter ");
	      print_generic_expr (dump_file, ipa_get_param (info, i), 0);
	      fprintf (dump_file, " (caller_count: %i)\n", caller_count);
	    }


	  if (!good_cloning_opportunity_p (node, val->local_time_benefit,
					   freq_sum, count_sum,
					   val->local_size_cost)
	      && !good_cloning_opportunity_p (node,
					      val->local_time_benefit
					      + val->prop_time_benefit,
					      freq_sum, count_sum,
					      val->local_size_cost
					      + val->prop_size_cost))
	    continue;

	  if (dump_file)
	    fprintf (dump_file, "  Creating a specialized node of %s/%i.\n",
		     cgraph_node_name (node), node->uid);

	  callers = gather_edges_for_value (val, caller_count);
	  kv = VEC_copy (tree, heap, known_csts);
	  move_binfos_to_values (kv, known_binfos);
	  VEC_replace (tree, kv, i, val->value);
	  find_more_values_for_callers_subset (node, kv, callers);
	  val->spec_node = create_specialized_node (node, kv, callers);
	  overall_size += val->local_size_cost;
	  info = IPA_NODE_REF (node);

	  /* TODO: If for some lattice there is only one other known value
	     left, make a special node for it too. */
	  ret = true;

	  VEC_replace (tree, kv, i, val->value);
	}
    }

  if (info->clone_for_all_contexts)
    {
      VEC (cgraph_edge_p, heap) *callers;

      if (dump_file)
	fprintf (dump_file, " - Creating a specialized node of %s/%i "
		 "for all known contexts.\n", cgraph_node_name (node),
		 node->uid);

      callers = collect_callers_of_node (node);
      move_binfos_to_values (known_csts, known_binfos);
      create_specialized_node (node, known_csts, callers);
      info = IPA_NODE_REF (node);
      info->clone_for_all_contexts = false;
      ret = true;
    }
  else
    VEC_free (tree, heap, known_csts);

  VEC_free (tree, heap, known_binfos);
  return ret;
}

/* Transitively mark all callees of NODE within the same SCC as not dead.  */

static void
spread_undeadness (struct cgraph_node *node)
{
  struct cgraph_edge *cs;

  for (cs = node->callees; cs; cs = cs->next_callee)
    if (edge_within_scc (cs))
      {
	struct cgraph_node *callee;
	struct ipa_node_params *info;

	callee = cgraph_function_node (cs->callee, NULL);
	info = IPA_NODE_REF (callee);

	if (info->node_dead)
	  {
	    info->node_dead = 0;
	    spread_undeadness (callee);
	  }
      }
}

/* Return true if NODE has a caller from outside of its SCC that is not
   dead.  Worker callback for cgraph_for_node_and_aliases.  */

static bool
has_undead_caller_from_outside_scc_p (struct cgraph_node *node,
				     void *data ATTRIBUTE_UNUSED)
{
  struct cgraph_edge *cs;

  for (cs = node->callers; cs; cs = cs->next_caller)
    if (cs->caller->thunk.thunk_p
	&& cgraph_for_node_and_aliases (cs->caller,
					has_undead_caller_from_outside_scc_p,
					NULL, true))
      return true;
    else if (!edge_within_scc (cs)
	     && !IPA_NODE_REF (cs->caller)->node_dead)
      return true;
  return false;
}


/* Identify nodes within the same SCC as NODE which are no longer needed
   because of new clones and will be removed as unreachable.  */

static void
identify_dead_nodes (struct cgraph_node *node)
{
  struct cgraph_node *v;
  for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
    if (cgraph_will_be_removed_from_program_if_no_direct_calls (v)
	&& !cgraph_for_node_and_aliases (v,
					 has_undead_caller_from_outside_scc_p,
					 NULL, true))
      IPA_NODE_REF (v)->node_dead = 1;

  for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
    if (!IPA_NODE_REF (v)->node_dead)
      spread_undeadness (v);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
	if (IPA_NODE_REF (v)->node_dead)
	  fprintf (dump_file, "  Marking node as dead: %s/%i.\n",
		   cgraph_node_name (v), v->uid);
    }
}

/* The decision stage.  Iterate over the topological order of call graph nodes
   TOPO and make specialized clones if deemed beneficial.  */

static void
ipcp_decision_stage (struct topo_info *topo)
{
  int i;

  if (dump_file)
    fprintf (dump_file, "\nIPA decision stage:\n\n");

  for (i = topo->nnodes - 1; i >= 0; i--)
    {
      struct cgraph_node *node = topo->order[i];
      bool change = false, iterate = true;

      while (iterate)
	{
	  struct cgraph_node *v;
	  iterate = false;
	  for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
	    if (cgraph_function_with_gimple_body_p (v)
		&& ipcp_versionable_function_p (v))
	      iterate |= decide_whether_version_node (v);

	  change |= iterate;
	}
      if (change)
	identify_dead_nodes (node);
    }
}

/* The IPCP driver.  */

static unsigned int
ipcp_driver (void)
{
  struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
  struct topo_info topo;

  cgraph_remove_unreachable_nodes (true,dump_file);
  ipa_check_create_node_params ();
  ipa_check_create_edge_args ();
  grow_next_edge_clone_vector ();
  edge_duplication_hook_holder =
    cgraph_add_edge_duplication_hook (&ipcp_edge_duplication_hook, NULL);
  ipcp_values_pool = create_alloc_pool ("IPA-CP values",
					sizeof (struct ipcp_value), 32);
  ipcp_sources_pool = create_alloc_pool ("IPA-CP value sources",
					 sizeof (struct ipcp_value_source), 64);
  if (dump_file)
    {
      fprintf (dump_file, "\nIPA structures before propagation:\n");
      if (dump_flags & TDF_DETAILS)
        ipa_print_all_params (dump_file);
      ipa_print_all_jump_functions (dump_file);
    }

  /* Topological sort.  */
  build_toporder_info (&topo);
  /* Do the interprocedural propagation.  */
  ipcp_propagate_stage (&topo);
  /* Decide what constant propagation and cloning should be performed.  */
  ipcp_decision_stage (&topo);

  /* Free all IPCP structures.  */
  free_toporder_info (&topo);
  VEC_free (cgraph_edge_p, heap, next_edge_clone);
  cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
  ipa_free_all_structures_after_ipa_cp ();
  if (dump_file)
    fprintf (dump_file, "\nIPA constant propagation end\n");
  return 0;
}

/* Initialization and computation of IPCP data structures.  This is the initial
   intraprocedural analysis of functions, which gathers information to be
   propagated later on.  */

static void
ipcp_generate_summary (void)
{
  struct cgraph_node *node;

  if (dump_file)
    fprintf (dump_file, "\nIPA constant propagation start:\n");
  ipa_register_cgraph_hooks ();

  FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
      {
	node->local.versionable
	  = tree_versionable_function_p (node->symbol.decl);
	ipa_analyze_node (node);
      }
}

/* Write ipcp summary for nodes in SET.  */

static void
ipcp_write_summary (cgraph_node_set set,
		    varpool_node_set vset ATTRIBUTE_UNUSED)
{
  ipa_prop_write_jump_functions (set);
}

/* Read ipcp summary.  */

static void
ipcp_read_summary (void)
{
  ipa_prop_read_jump_functions ();
}

/* Gate for IPCP optimization.  */

static bool
cgraph_gate_cp (void)
{
  /* FIXME: We should remove the optimize check after we ensure we never run
     IPA passes when not optimizing.  */
  return flag_ipa_cp && optimize;
}

struct ipa_opt_pass_d pass_ipa_cp =
{
 {
  IPA_PASS,
  "cp",				/* name */
  cgraph_gate_cp,		/* gate */
  ipcp_driver,			/* execute */
  NULL,				/* sub */
  NULL,				/* next */
  0,				/* static_pass_number */
  TV_IPA_CONSTANT_PROP,		/* tv_id */
  0,				/* properties_required */
  0,				/* properties_provided */
  0,				/* properties_destroyed */
  0,				/* todo_flags_start */
  TODO_dump_symtab |
  TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
 },
 ipcp_generate_summary,			/* generate_summary */
 ipcp_write_summary,			/* write_summary */
 ipcp_read_summary,			/* read_summary */
 NULL,					/* write_optimization_summary */
 NULL,					/* read_optimization_summary */
 NULL,			 		/* stmt_fixup */
 0,					/* TODOs */
 NULL,					/* function_transform */
 NULL,					/* variable_transform */
};