1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
|
/* Interprocedural constant propagation
Copyright (C) 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
Contributed by Razya Ladelsky <RAZYA@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Interprocedural constant propagation. The aim of interprocedural constant
propagation (IPCP) is to find which function's argument has the same
constant value in each invocation throughout the whole program. For example,
consider the following program:
int g (int y)
{
printf ("value is %d",y);
}
int f (int x)
{
g (x);
}
int h (int y)
{
g (y);
}
void main (void)
{
f (3);
h (3);
}
The IPCP algorithm will find that g's formal argument y is always called
with the value 3.
The algorithm used is based on "Interprocedural Constant Propagation", by
Challahan David, Keith D Cooper, Ken Kennedy, Linda Torczon, Comp86, pg
152-161
The optimization is divided into three stages:
First stage - intraprocedural analysis
=======================================
This phase computes jump_function and modification flags.
A jump function for a callsite represents the values passed as an actual
arguments of a given callsite. There are three types of values:
Pass through - the caller's formal parameter is passed as an actual argument.
Constant - a constant is passed as an actual argument.
Unknown - neither of the above.
The jump function info, ipa_jump_func, is stored in ipa_edge_args
structure (defined in ipa_prop.h and pointed to by cgraph_node->aux)
modified_flags are defined in ipa_node_params structure
(defined in ipa_prop.h and pointed to by cgraph_edge->aux).
-ipcp_init_stage() is the first stage driver.
Second stage - interprocedural analysis
========================================
This phase does the interprocedural constant propagation.
It computes lattices for all formal parameters in the program
and their value that may be:
TOP - unknown.
BOTTOM - non constant.
CONSTANT - constant value.
Lattice describing a formal parameter p will have a constant value if all
callsites invoking this function have the same constant value passed to p.
The lattices are stored in ipcp_lattice which is itself in ipa_node_params
structure (defined in ipa_prop.h and pointed to by cgraph_edge->aux).
-ipcp_iterate_stage() is the second stage driver.
Third phase - transformation of function code
============================================
Propagates the constant-valued formals into the function.
For each function whose parameters are constants, we create its clone.
Then we process the clone in two ways:
1. We insert an assignment statement 'parameter = const' at the beginning
of the cloned function.
2. For read-only parameters that do not live in memory, we replace all their
uses with the constant.
We also need to modify some callsites to call the cloned functions instead
of the original ones. For a callsite passing an argument found to be a
constant by IPCP, there are two different cases to handle:
1. A constant is passed as an argument. In this case the callsite in the
should be redirected to call the cloned callee.
2. A parameter (of the caller) passed as an argument (pass through
argument). In such cases both the caller and the callee have clones and
only the callsite in the cloned caller is redirected to call to the
cloned callee.
This update is done in two steps: First all cloned functions are created
during a traversal of the call graph, during which all callsites are
redirected to call the cloned function. Then the callsites are traversed
and many calls redirected back to fit the description above.
-ipcp_insert_stage() is the third phase driver.
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "target.h"
#include "cgraph.h"
#include "ipa-prop.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "flags.h"
#include "timevar.h"
#include "diagnostic.h"
#include "tree-dump.h"
#include "tree-inline.h"
#include "fibheap.h"
#include "params.h"
/* Number of functions identified as candidates for cloning. When not cloning
we can simplify iterate stage not forcing it to go through the decision
on what is profitable and what not. */
static int n_cloning_candidates;
/* Maximal count found in program. */
static gcov_type max_count;
/* Cgraph nodes that has been completely replaced by cloning during iterate
* stage and will be removed after ipcp is finished. */
static bitmap dead_nodes;
static void ipcp_print_profile_data (FILE *);
static void ipcp_function_scale_print (FILE *);
/* Get the original node field of ipa_node_params associated with node NODE. */
static inline struct cgraph_node *
ipcp_get_orig_node (struct cgraph_node *node)
{
return IPA_NODE_REF (node)->ipcp_orig_node;
}
/* Return true if NODE describes a cloned/versioned function. */
static inline bool
ipcp_node_is_clone (struct cgraph_node *node)
{
return (ipcp_get_orig_node (node) != NULL);
}
/* Create ipa_node_params and its data structures for NEW_NODE. Set ORIG_NODE
as the ipcp_orig_node field in ipa_node_params. */
static void
ipcp_init_cloned_node (struct cgraph_node *orig_node,
struct cgraph_node *new_node)
{
ipa_check_create_node_params ();
ipa_initialize_node_params (new_node);
IPA_NODE_REF (new_node)->ipcp_orig_node = orig_node;
}
/* Perform intraprocedrual analysis needed for ipcp. */
static void
ipcp_analyze_node (struct cgraph_node *node)
{
/* Unreachable nodes should have been eliminated before ipcp. */
gcc_assert (node->needed || node->reachable);
ipa_initialize_node_params (node);
ipa_detect_param_modifications (node);
}
/* Recompute all local information since node might've got new
direct calls after cloning. */
static void
ipcp_update_cloned_node (struct cgraph_node *new_node)
{
/* We might've introduced new direct calls. */
push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
current_function_decl = new_node->decl;
rebuild_cgraph_edges ();
/* Indirect inlinng rely on fact that we've already analyzed
the body.. */
if (flag_indirect_inlining)
{
struct cgraph_edge *cs;
ipcp_analyze_node (new_node);
for (cs = new_node->callees; cs; cs = cs->next_callee)
{
ipa_count_arguments (cs);
ipa_compute_jump_functions (cs);
}
}
pop_cfun ();
current_function_decl = NULL;
}
/* Return scale for NODE. */
static inline gcov_type
ipcp_get_node_scale (struct cgraph_node *node)
{
return IPA_NODE_REF (node)->count_scale;
}
/* Set COUNT as scale for NODE. */
static inline void
ipcp_set_node_scale (struct cgraph_node *node, gcov_type count)
{
IPA_NODE_REF (node)->count_scale = count;
}
/* Return whether LAT is a constant lattice. */
static inline bool
ipcp_lat_is_const (struct ipcp_lattice *lat)
{
if (lat->type == IPA_CONST_VALUE)
return true;
else
return false;
}
/* Return whether LAT is a constant lattice that ipa-cp can actually insert
into the code (i.e. constants excluding member pointers and pointers). */
static inline bool
ipcp_lat_is_insertable (struct ipcp_lattice *lat)
{
return lat->type == IPA_CONST_VALUE;
}
/* Return true if LAT1 and LAT2 are equal. */
static inline bool
ipcp_lats_are_equal (struct ipcp_lattice *lat1, struct ipcp_lattice *lat2)
{
gcc_assert (ipcp_lat_is_const (lat1) && ipcp_lat_is_const (lat2));
if (lat1->type != lat2->type)
return false;
if (operand_equal_p (lat1->constant, lat2->constant, 0))
return true;
return false;
}
/* Compute Meet arithmetics:
Meet (IPA_BOTTOM, x) = IPA_BOTTOM
Meet (IPA_TOP,x) = x
Meet (const_a,const_b) = IPA_BOTTOM, if const_a != const_b.
MEET (const_a,const_b) = const_a, if const_a == const_b.*/
static void
ipa_lattice_meet (struct ipcp_lattice *res, struct ipcp_lattice *lat1,
struct ipcp_lattice *lat2)
{
if (lat1->type == IPA_BOTTOM || lat2->type == IPA_BOTTOM)
{
res->type = IPA_BOTTOM;
return;
}
if (lat1->type == IPA_TOP)
{
res->type = lat2->type;
res->constant = lat2->constant;
return;
}
if (lat2->type == IPA_TOP)
{
res->type = lat1->type;
res->constant = lat1->constant;
return;
}
if (!ipcp_lats_are_equal (lat1, lat2))
{
res->type = IPA_BOTTOM;
return;
}
res->type = lat1->type;
res->constant = lat1->constant;
}
/* Return the lattice corresponding to the Ith formal parameter of the function
described by INFO. */
static inline struct ipcp_lattice *
ipcp_get_lattice (struct ipa_node_params *info, int i)
{
return &(info->params[i].ipcp_lattice);
}
/* Given the jump function JFUNC, compute the lattice LAT that describes the
value coming down the callsite. INFO describes the caller node so that
pass-through jump functions can be evaluated. */
static void
ipcp_lattice_from_jfunc (struct ipa_node_params *info, struct ipcp_lattice *lat,
struct ipa_jump_func *jfunc)
{
if (jfunc->type == IPA_CONST)
{
lat->type = IPA_CONST_VALUE;
lat->constant = jfunc->value.constant;
}
else if (jfunc->type == IPA_PASS_THROUGH)
{
struct ipcp_lattice *caller_lat;
caller_lat = ipcp_get_lattice (info, jfunc->value.formal_id);
lat->type = caller_lat->type;
lat->constant = caller_lat->constant;
}
else
lat->type = IPA_BOTTOM;
}
/* True when OLD_LAT and NEW_LAT values are not the same. */
static bool
ipcp_lattice_changed (struct ipcp_lattice *old_lat,
struct ipcp_lattice *new_lat)
{
if (old_lat->type == new_lat->type)
{
if (!ipcp_lat_is_const (old_lat))
return false;
if (ipcp_lats_are_equal (old_lat, new_lat))
return false;
}
return true;
}
/* Print all ipcp_lattices of all functions to F. */
static void
ipcp_print_all_lattices (FILE * f)
{
struct cgraph_node *node;
int i, count;
fprintf (f, "\nLattice:\n");
for (node = cgraph_nodes; node; node = node->next)
{
struct ipa_node_params *info;
if (!node->analyzed)
continue;
info = IPA_NODE_REF (node);
fprintf (f, " Node: %s:\n", cgraph_node_name (node));
count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
{
struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
fprintf (f, " param [%d]: ", i);
if (lat->type == IPA_CONST_VALUE)
{
fprintf (f, "type is CONST ");
print_generic_expr (f, lat->constant, 0);
fprintf (f, "\n");
}
else if (lat->type == IPA_TOP)
fprintf (f, "type is TOP\n");
else
fprintf (f, "type is BOTTOM\n");
}
}
}
/* Return true if this NODE is viable candidate for cloning. */
static bool
ipcp_cloning_candidate_p (struct cgraph_node *node)
{
int n_calls = 0;
int n_hot_calls = 0;
gcov_type direct_call_sum = 0;
struct cgraph_edge *e;
/* We never clone functions that are not visible from outside.
FIXME: in future we should clone such functions when they are called with
different constants, but current ipcp implementation is not good on this.
*/
if (!node->needed || !node->analyzed)
return false;
if (cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE)
{
if (dump_file)
fprintf (dump_file, "Not considering %s for cloning; body is overwrittable.\n",
cgraph_node_name (node));
return false;
}
if (!tree_versionable_function_p (node->decl))
{
if (dump_file)
fprintf (dump_file, "Not considering %s for cloning; body is not versionable.\n",
cgraph_node_name (node));
return false;
}
for (e = node->callers; e; e = e->next_caller)
{
direct_call_sum += e->count;
n_calls ++;
if (cgraph_maybe_hot_edge_p (e))
n_hot_calls ++;
}
if (!n_calls)
{
if (dump_file)
fprintf (dump_file, "Not considering %s for cloning; no direct calls.\n",
cgraph_node_name (node));
return false;
}
if (node->local.inline_summary.self_insns < n_calls)
{
if (dump_file)
fprintf (dump_file, "Considering %s for cloning; code would shrink.\n",
cgraph_node_name (node));
return true;
}
if (!flag_ipa_cp_clone)
{
if (dump_file)
fprintf (dump_file, "Not considering %s for cloning; -fipa-cp-clone disabled.\n",
cgraph_node_name (node));
return false;
}
if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl)))
{
if (dump_file)
fprintf (dump_file, "Not considering %s for cloning; optimizing it for size.\n",
cgraph_node_name (node));
return false;
}
/* When profile is available and function is hot, propagate into it even if
calls seems cold; constant propagation can improve function's speed
significandly. */
if (max_count)
{
if (direct_call_sum > node->count * 90 / 100)
{
if (dump_file)
fprintf (dump_file, "Considering %s for cloning; usually called directly.\n",
cgraph_node_name (node));
return true;
}
}
if (!n_hot_calls)
{
if (dump_file)
fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n",
cgraph_node_name (node));
}
if (dump_file)
fprintf (dump_file, "Considering %s for cloning.\n",
cgraph_node_name (node));
return true;
}
/* Initialize ipcp_lattices array. The lattices corresponding to supported
types (integers, real types and Fortran constants defined as const_decls)
are initialized to IPA_TOP, the rest of them to IPA_BOTTOM. */
static void
ipcp_initialize_node_lattices (struct cgraph_node *node)
{
int i;
struct ipa_node_params *info = IPA_NODE_REF (node);
enum ipa_lattice_type type;
if (ipa_is_called_with_var_arguments (info))
type = IPA_BOTTOM;
else if (!node->needed)
type = IPA_TOP;
/* When cloning is allowed, we can assume that externally visible functions
are not called. We will compensate this by cloning later. */
else if (ipcp_cloning_candidate_p (node))
type = IPA_TOP, n_cloning_candidates ++;
else
type = IPA_BOTTOM;
for (i = 0; i < ipa_get_param_count (info) ; i++)
ipcp_get_lattice (info, i)->type = type;
}
/* build INTEGER_CST tree with type TREE_TYPE and value according to LAT.
Return the tree. */
static tree
build_const_val (struct ipcp_lattice *lat, tree tree_type)
{
tree val;
gcc_assert (ipcp_lat_is_const (lat));
val = lat->constant;
if (!useless_type_conversion_p (tree_type, TREE_TYPE (val)))
{
if (fold_convertible_p (tree_type, val))
return fold_build1 (NOP_EXPR, tree_type, val);
else
return fold_build1 (VIEW_CONVERT_EXPR, tree_type, val);
}
return val;
}
/* Compute the proper scale for NODE. It is the ratio between the number of
direct calls (represented on the incoming cgraph_edges) and sum of all
invocations of NODE (represented as count in cgraph_node). */
static void
ipcp_compute_node_scale (struct cgraph_node *node)
{
gcov_type sum;
struct cgraph_edge *cs;
sum = 0;
/* Compute sum of all counts of callers. */
for (cs = node->callers; cs != NULL; cs = cs->next_caller)
sum += cs->count;
if (node->count == 0)
ipcp_set_node_scale (node, 0);
else
ipcp_set_node_scale (node, sum * REG_BR_PROB_BASE / node->count);
}
/* Initialization and computation of IPCP data structures. This is the initial
intraprocedural analysis of functions, which gathers information to be
propagated later on. */
static void
ipcp_init_stage (void)
{
struct cgraph_node *node;
struct cgraph_edge *cs;
for (node = cgraph_nodes; node; node = node->next)
if (node->analyzed)
ipcp_analyze_node (node);
for (node = cgraph_nodes; node; node = node->next)
{
if (!node->analyzed)
continue;
/* building jump functions */
for (cs = node->callees; cs; cs = cs->next_callee)
{
if (!cs->callee->analyzed)
continue;
ipa_count_arguments (cs);
if (ipa_get_cs_argument_count (IPA_EDGE_REF (cs))
!= ipa_get_param_count (IPA_NODE_REF (cs->callee)))
{
/* Handle cases of functions with
a variable number of parameters. */
ipa_set_called_with_variable_arg (IPA_NODE_REF (cs->callee));
if (flag_indirect_inlining)
ipa_compute_jump_functions (cs);
}
else
ipa_compute_jump_functions (cs);
}
}
}
/* Return true if there are some formal parameters whose value is IPA_TOP (in
the whole compilation unit). Change their values to IPA_BOTTOM, since they
most probably get their values from outside of this compilation unit. */
static bool
ipcp_change_tops_to_bottom (void)
{
int i, count;
struct cgraph_node *node;
bool prop_again;
prop_again = false;
for (node = cgraph_nodes; node; node = node->next)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
{
struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
if (lat->type == IPA_TOP)
{
prop_again = true;
if (dump_file)
{
fprintf (dump_file, "Forcing param ");
print_generic_expr (dump_file, ipa_get_param (info, i), 0);
fprintf (dump_file, " of node %s to bottom.\n",
cgraph_node_name (node));
}
lat->type = IPA_BOTTOM;
}
}
}
return prop_again;
}
/* Interprocedural analysis. The algorithm propagates constants from the
caller's parameters to the callee's arguments. */
static void
ipcp_propagate_stage (void)
{
int i;
struct ipcp_lattice inc_lat = { IPA_BOTTOM, NULL };
struct ipcp_lattice new_lat = { IPA_BOTTOM, NULL };
struct ipcp_lattice *dest_lat;
struct cgraph_edge *cs;
struct ipa_jump_func *jump_func;
struct ipa_func_list *wl;
int count;
ipa_check_create_node_params ();
ipa_check_create_edge_args ();
/* Initialize worklist to contain all functions. */
wl = ipa_init_func_list ();
while (wl)
{
struct cgraph_node *node = ipa_pop_func_from_list (&wl);
struct ipa_node_params *info = IPA_NODE_REF (node);
for (cs = node->callees; cs; cs = cs->next_callee)
{
struct ipa_node_params *callee_info = IPA_NODE_REF (cs->callee);
struct ipa_edge_args *args = IPA_EDGE_REF (cs);
if (ipa_is_called_with_var_arguments (callee_info))
continue;
count = ipa_get_cs_argument_count (args);
for (i = 0; i < count; i++)
{
jump_func = ipa_get_ith_jump_func (args, i);
ipcp_lattice_from_jfunc (info, &inc_lat, jump_func);
dest_lat = ipcp_get_lattice (callee_info, i);
ipa_lattice_meet (&new_lat, &inc_lat, dest_lat);
if (ipcp_lattice_changed (&new_lat, dest_lat))
{
dest_lat->type = new_lat.type;
dest_lat->constant = new_lat.constant;
ipa_push_func_to_list (&wl, cs->callee);
}
}
}
}
}
/* Call the constant propagation algorithm and re-call it if necessary
(if there are undetermined values left). */
static void
ipcp_iterate_stage (void)
{
struct cgraph_node *node;
n_cloning_candidates = 0;
if (dump_file)
fprintf (dump_file, "\nIPA iterate stage:\n\n");
for (node = cgraph_nodes; node; node = node->next)
{
ipcp_initialize_node_lattices (node);
ipcp_compute_node_scale (node);
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
ipcp_print_all_lattices (dump_file);
ipcp_function_scale_print (dump_file);
}
ipcp_propagate_stage ();
if (ipcp_change_tops_to_bottom ())
/* Some lattices have changed from IPA_TOP to IPA_BOTTOM.
This change should be propagated. */
{
gcc_assert (n_cloning_candidates);
ipcp_propagate_stage ();
}
if (dump_file)
{
fprintf (dump_file, "\nIPA lattices after propagation:\n");
ipcp_print_all_lattices (dump_file);
if (dump_flags & TDF_DETAILS)
ipcp_print_profile_data (dump_file);
}
}
/* Check conditions to forbid constant insertion to function described by
NODE. */
static inline bool
ipcp_node_modifiable_p (struct cgraph_node *node)
{
/* Once we will be able to do in-place replacement, we can be more
lax here. */
return tree_versionable_function_p (node->decl);
}
/* Print count scale data structures. */
static void
ipcp_function_scale_print (FILE * f)
{
struct cgraph_node *node;
for (node = cgraph_nodes; node; node = node->next)
{
if (!node->analyzed)
continue;
fprintf (f, "printing scale for %s: ", cgraph_node_name (node));
fprintf (f, "value is " HOST_WIDE_INT_PRINT_DEC
" \n", (HOST_WIDE_INT) ipcp_get_node_scale (node));
}
}
/* Print counts of all cgraph nodes. */
static void
ipcp_print_func_profile_counts (FILE * f)
{
struct cgraph_node *node;
for (node = cgraph_nodes; node; node = node->next)
{
fprintf (f, "function %s: ", cgraph_node_name (node));
fprintf (f, "count is " HOST_WIDE_INT_PRINT_DEC
" \n", (HOST_WIDE_INT) node->count);
}
}
/* Print counts of all cgraph edges. */
static void
ipcp_print_call_profile_counts (FILE * f)
{
struct cgraph_node *node;
struct cgraph_edge *cs;
for (node = cgraph_nodes; node; node = node->next)
{
for (cs = node->callees; cs; cs = cs->next_callee)
{
fprintf (f, "%s -> %s ", cgraph_node_name (cs->caller),
cgraph_node_name (cs->callee));
fprintf (f, "count is " HOST_WIDE_INT_PRINT_DEC " \n",
(HOST_WIDE_INT) cs->count);
}
}
}
/* Print all counts and probabilities of cfg edges of all functions. */
static void
ipcp_print_edge_profiles (FILE * f)
{
struct cgraph_node *node;
basic_block bb;
edge_iterator ei;
edge e;
for (node = cgraph_nodes; node; node = node->next)
{
fprintf (f, "function %s: \n", cgraph_node_name (node));
if (node->analyzed)
{
bb =
ENTRY_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (node->decl));
fprintf (f, "ENTRY: ");
fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
" %d\n", (HOST_WIDE_INT) bb->count, bb->frequency);
if (bb->succs)
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->dest ==
EXIT_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION
(node->decl)))
fprintf (f, "edge ENTRY -> EXIT, Count");
else
fprintf (f, "edge ENTRY -> %d, Count", e->dest->index);
fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
" Prob %d\n", (HOST_WIDE_INT) e->count,
e->probability);
}
FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
{
fprintf (f, "bb[%d]: ", bb->index);
fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
" %d\n", (HOST_WIDE_INT) bb->count, bb->frequency);
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->dest ==
EXIT_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION
(node->decl)))
fprintf (f, "edge %d -> EXIT, Count", e->src->index);
else
fprintf (f, "edge %d -> %d, Count", e->src->index,
e->dest->index);
fprintf (f, " " HOST_WIDE_INT_PRINT_DEC " Prob %d\n",
(HOST_WIDE_INT) e->count, e->probability);
}
}
}
}
}
/* Print counts and frequencies for all basic blocks of all functions. */
static void
ipcp_print_bb_profiles (FILE * f)
{
basic_block bb;
struct cgraph_node *node;
for (node = cgraph_nodes; node; node = node->next)
{
fprintf (f, "function %s: \n", cgraph_node_name (node));
if (node->analyzed)
{
bb =
ENTRY_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (node->decl));
fprintf (f, "ENTRY: Count");
fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
" Frequency %d\n", (HOST_WIDE_INT) bb->count,
bb->frequency);
FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
{
fprintf (f, "bb[%d]: Count", bb->index);
fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
" Frequency %d\n", (HOST_WIDE_INT) bb->count,
bb->frequency);
}
bb =
EXIT_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (node->decl));
fprintf (f, "EXIT: Count");
fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
" Frequency %d\n", (HOST_WIDE_INT) bb->count,
bb->frequency);
}
}
}
/* Print profile info for all functions. */
static void
ipcp_print_profile_data (FILE * f)
{
fprintf (f, "\nNODE COUNTS :\n");
ipcp_print_func_profile_counts (f);
fprintf (f, "\nCS COUNTS stage:\n");
ipcp_print_call_profile_counts (f);
fprintf (f, "\nBB COUNTS and FREQUENCIES :\n");
ipcp_print_bb_profiles (f);
fprintf (f, "\nCFG EDGES COUNTS and PROBABILITIES :\n");
ipcp_print_edge_profiles (f);
}
/* Build and initialize ipa_replace_map struct according to LAT. This struct is
processed by versioning, which operates according to the flags set.
PARM_TREE is the formal parameter found to be constant. LAT represents the
constant. */
static struct ipa_replace_map *
ipcp_create_replace_map (tree parm_tree, struct ipcp_lattice *lat)
{
struct ipa_replace_map *replace_map;
tree const_val;
replace_map = XCNEW (struct ipa_replace_map);
const_val = build_const_val (lat, TREE_TYPE (parm_tree));
if (dump_file)
{
fprintf (dump_file, " replacing param ");
print_generic_expr (dump_file, parm_tree, 0);
fprintf (dump_file, " with const ");
print_generic_expr (dump_file, const_val, 0);
fprintf (dump_file, "\n");
}
replace_map->old_tree = parm_tree;
replace_map->new_tree = const_val;
replace_map->replace_p = true;
replace_map->ref_p = false;
return replace_map;
}
/* Return true if this callsite should be redirected to the original callee
(instead of the cloned one). */
static bool
ipcp_need_redirect_p (struct cgraph_edge *cs)
{
struct ipa_node_params *orig_callee_info;
int i, count;
struct ipa_jump_func *jump_func;
struct cgraph_node *node = cs->callee, *orig;
if (!n_cloning_candidates)
return false;
if ((orig = ipcp_get_orig_node (node)) != NULL)
node = orig;
if (ipcp_get_orig_node (cs->caller))
return false;
orig_callee_info = IPA_NODE_REF (node);
count = ipa_get_param_count (orig_callee_info);
for (i = 0; i < count; i++)
{
struct ipcp_lattice *lat = ipcp_get_lattice (orig_callee_info, i);
if (ipcp_lat_is_const (lat))
{
jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
if (jump_func->type != IPA_CONST)
return true;
}
}
return false;
}
/* Fix the callsites and the call graph after function cloning was done. */
static void
ipcp_update_callgraph (void)
{
struct cgraph_node *node;
for (node = cgraph_nodes; node; node = node->next)
if (node->analyzed && ipcp_node_is_clone (node))
{
bitmap args_to_skip = BITMAP_ALLOC (NULL);
struct cgraph_node *orig_node = ipcp_get_orig_node (node);
struct ipa_node_params *info = IPA_NODE_REF (orig_node);
int i, count = ipa_get_param_count (info);
struct cgraph_edge *cs, *next;
for (i = 0; i < count; i++)
{
struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
tree parm_tree = ipa_get_param (info, i);
/* We can proactively remove obviously unused arguments. */
if (is_gimple_reg (parm_tree)
&& !gimple_default_def (DECL_STRUCT_FUNCTION (orig_node->decl),
parm_tree))
{
bitmap_set_bit (args_to_skip, i);
continue;
}
if (lat->type == IPA_CONST_VALUE)
bitmap_set_bit (args_to_skip, i);
}
for (cs = node->callers; cs; cs = next)
{
next = cs->next_caller;
if (ipcp_node_is_clone (cs->caller) || !ipcp_need_redirect_p (cs))
{
gimple new_stmt;
gimple_stmt_iterator gsi;
current_function_decl = cs->caller->decl;
push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
new_stmt = giple_copy_call_skip_args (cs->call_stmt, args_to_skip);
gsi = gsi_for_stmt (cs->call_stmt);
gsi_replace (&gsi, new_stmt, true);
cgraph_set_call_stmt (cs, new_stmt);
pop_cfun ();
current_function_decl = NULL;
}
else
{
cgraph_redirect_edge_callee (cs, orig_node);
gimple_call_set_fndecl (cs->call_stmt, orig_node->decl);
}
}
}
}
/* Update all cfg basic blocks in NODE according to SCALE. */
static void
ipcp_update_bb_counts (struct cgraph_node *node, gcov_type scale)
{
basic_block bb;
FOR_ALL_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
bb->count = bb->count * scale / REG_BR_PROB_BASE;
}
/* Update all cfg edges in NODE according to SCALE. */
static void
ipcp_update_edges_counts (struct cgraph_node *node, gcov_type scale)
{
basic_block bb;
edge_iterator ei;
edge e;
FOR_ALL_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
FOR_EACH_EDGE (e, ei, bb->succs)
e->count = e->count * scale / REG_BR_PROB_BASE;
}
/* Update profiling info for versioned functions and the functions they were
versioned from. */
static void
ipcp_update_profiling (void)
{
struct cgraph_node *node, *orig_node;
gcov_type scale, scale_complement;
struct cgraph_edge *cs;
for (node = cgraph_nodes; node; node = node->next)
{
if (ipcp_node_is_clone (node))
{
orig_node = ipcp_get_orig_node (node);
scale = ipcp_get_node_scale (orig_node);
node->count = orig_node->count * scale / REG_BR_PROB_BASE;
scale_complement = REG_BR_PROB_BASE - scale;
orig_node->count =
orig_node->count * scale_complement / REG_BR_PROB_BASE;
for (cs = node->callees; cs; cs = cs->next_callee)
cs->count = cs->count * scale / REG_BR_PROB_BASE;
for (cs = orig_node->callees; cs; cs = cs->next_callee)
cs->count = cs->count * scale_complement / REG_BR_PROB_BASE;
ipcp_update_bb_counts (node, scale);
ipcp_update_bb_counts (orig_node, scale_complement);
ipcp_update_edges_counts (node, scale);
ipcp_update_edges_counts (orig_node, scale_complement);
}
}
}
/* If NODE was cloned, how much would program grow? */
static long
ipcp_estimate_growth (struct cgraph_node *node)
{
struct cgraph_edge *cs;
int redirectable_node_callers = 0;
int removable_args = 0;
bool need_original = node->needed;
struct ipa_node_params *info;
int i, count;
int growth;
for (cs = node->callers; cs != NULL; cs = cs->next_caller)
if (!ipcp_need_redirect_p (cs))
redirectable_node_callers++;
else
need_original = true;
/* If we will be able to fully replace orignal node, we never increase
program size. */
if (!need_original)
return 0;
info = IPA_NODE_REF (node);
count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
{
struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
tree parm_tree = ipa_get_param (info, i);
/* We can proactively remove obviously unused arguments. */
if (is_gimple_reg (parm_tree)
&& !gimple_default_def (DECL_STRUCT_FUNCTION (node->decl),
parm_tree))
removable_args++;
if (lat->type == IPA_CONST_VALUE)
removable_args++;
}
/* We make just very simple estimate of savings for removal of operand from
call site. Precise cost is dificult to get, as our size metric counts
constants and moves as free. Generally we are looking for cases that
small function is called very many times. */
growth = node->local.inline_summary.self_insns
- removable_args * redirectable_node_callers;
if (growth < 0)
return 0;
return growth;
}
/* Estimate cost of cloning NODE. */
static long
ipcp_estimate_cloning_cost (struct cgraph_node *node)
{
int freq_sum = 1;
gcov_type count_sum = 1;
struct cgraph_edge *e;
int cost;
cost = ipcp_estimate_growth (node) * 1000;
if (!cost)
{
if (dump_file)
fprintf (dump_file, "Versioning of %s will save code size\n",
cgraph_node_name (node));
return 0;
}
for (e = node->callers; e; e = e->next_caller)
if (!bitmap_bit_p (dead_nodes, e->caller->uid)
&& !ipcp_need_redirect_p (e))
{
count_sum += e->count;
freq_sum += e->frequency + 1;
}
if (max_count)
cost /= count_sum * 1000 / max_count + 1;
else
cost /= freq_sum * 1000 / REG_BR_PROB_BASE + 1;
if (dump_file)
fprintf (dump_file, "Cost of versioning %s is %i, (size: %i, freq: %i)\n",
cgraph_node_name (node), cost, node->local.inline_summary.self_insns,
freq_sum);
return cost + 1;
}
/* Return number of live constant parameters. */
static int
ipcp_const_param_count (struct cgraph_node *node)
{
int const_param = 0;
struct ipa_node_params *info = IPA_NODE_REF (node);
int count = ipa_get_param_count (info);
int i;
for (i = 0; i < count; i++)
{
struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
tree parm_tree = ipa_get_param (info, i);
if (ipcp_lat_is_insertable (lat)
/* Do not count obviously unused arguments. */
&& (!is_gimple_reg (parm_tree)
|| gimple_default_def (DECL_STRUCT_FUNCTION (node->decl),
parm_tree)))
const_param++;
}
return const_param;
}
/* Propagate the constant parameters found by ipcp_iterate_stage()
to the function's code. */
static void
ipcp_insert_stage (void)
{
struct cgraph_node *node, *node1 = NULL;
int i;
VEC (cgraph_edge_p, heap) * redirect_callers;
varray_type replace_trees;
struct cgraph_edge *cs;
int node_callers, count;
tree parm_tree;
struct ipa_replace_map *replace_param;
fibheap_t heap;
long overall_insns = 0, new_insns = 0;
long max_new_insns;
ipa_check_create_node_params ();
ipa_check_create_edge_args ();
if (dump_file)
fprintf (dump_file, "\nIPA insert stage:\n\n");
dead_nodes = BITMAP_ALLOC (NULL);
for (node = cgraph_nodes; node; node = node->next)
if (node->analyzed)
{
if (node->count > max_count)
max_count = node->count;
overall_insns += node->local.inline_summary.self_insns;
}
max_new_insns = overall_insns;
if (max_new_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
max_new_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
max_new_insns = max_new_insns * PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH) / 100 + 1;
/* First collect all functions we proved to have constant arguments to heap. */
heap = fibheap_new ();
for (node = cgraph_nodes; node; node = node->next)
{
struct ipa_node_params *info;
/* Propagation of the constant is forbidden in certain conditions. */
if (!node->analyzed || !ipcp_node_modifiable_p (node))
continue;
info = IPA_NODE_REF (node);
if (ipa_is_called_with_var_arguments (info))
continue;
if (ipcp_const_param_count (node))
node->aux = fibheap_insert (heap, ipcp_estimate_cloning_cost (node), node);
}
/* Now clone in priority order until code size growth limits are met or
heap is emptied. */
while (!fibheap_empty (heap))
{
struct ipa_node_params *info;
int growth = 0;
bitmap args_to_skip;
node = (struct cgraph_node *)fibheap_extract_min (heap);
node->aux = NULL;
if (dump_file)
fprintf (dump_file, "considering function %s\n",
cgraph_node_name (node));
growth = ipcp_estimate_growth (node);
if (new_insns + growth > max_new_insns)
break;
if (growth
&& optimize_function_for_size_p (DECL_STRUCT_FUNCTION (node->decl)))
{
if (dump_file)
fprintf (dump_file, "Not versioning, cold code would grow");
continue;
}
new_insns += growth;
info = IPA_NODE_REF (node);
count = ipa_get_param_count (info);
VARRAY_GENERIC_PTR_INIT (replace_trees, ipcp_const_param_count (node),
"replace_trees");
args_to_skip = BITMAP_ALLOC (NULL);
for (i = 0; i < count; i++)
{
struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
parm_tree = ipa_get_param (info, i);
/* We can proactively remove obviously unused arguments. */
if (is_gimple_reg (parm_tree)
&& !gimple_default_def (DECL_STRUCT_FUNCTION (node->decl),
parm_tree))
{
bitmap_set_bit (args_to_skip, i);
continue;
}
if (lat->type == IPA_CONST_VALUE)
{
replace_param =
ipcp_create_replace_map (parm_tree, lat);
VARRAY_PUSH_GENERIC_PTR (replace_trees, replace_param);
bitmap_set_bit (args_to_skip, i);
}
}
/* Compute how many callers node has. */
node_callers = 0;
for (cs = node->callers; cs != NULL; cs = cs->next_caller)
node_callers++;
redirect_callers = VEC_alloc (cgraph_edge_p, heap, node_callers);
for (cs = node->callers; cs != NULL; cs = cs->next_caller)
VEC_quick_push (cgraph_edge_p, redirect_callers, cs);
/* Redirecting all the callers of the node to the
new versioned node. */
node1 =
cgraph_function_versioning (node, redirect_callers, replace_trees,
args_to_skip);
BITMAP_FREE (args_to_skip);
VEC_free (cgraph_edge_p, heap, redirect_callers);
VARRAY_CLEAR (replace_trees);
if (node1 == NULL)
continue;
if (dump_file)
fprintf (dump_file, "versioned function %s with growth %i, overall %i\n",
cgraph_node_name (node), (int)growth, (int)new_insns);
ipcp_init_cloned_node (node, node1);
/* We've possibly introduced direct calls. */
ipcp_update_cloned_node (node1);
if (dump_file)
dump_function_to_file (node1->decl, dump_file, dump_flags);
for (cs = node->callees; cs; cs = cs->next_callee)
if (cs->callee->aux)
{
fibheap_delete_node (heap, (fibnode_t) cs->callee->aux);
cs->callee->aux = fibheap_insert (heap,
ipcp_estimate_cloning_cost (cs->callee),
cs->callee);
}
}
while (!fibheap_empty (heap))
{
if (dump_file)
fprintf (dump_file, "skipping function %s\n",
cgraph_node_name (node));
node = (struct cgraph_node *) fibheap_extract_min (heap);
node->aux = NULL;
}
fibheap_delete (heap);
BITMAP_FREE (dead_nodes);
ipcp_update_callgraph ();
ipcp_update_profiling ();
}
/* The IPCP driver. */
static unsigned int
ipcp_driver (void)
{
cgraph_remove_unreachable_nodes (true,dump_file);
if (dump_file)
{
fprintf (dump_file, "\nIPA structures before propagation:\n");
if (dump_flags & TDF_DETAILS)
ipa_print_all_params (dump_file);
ipa_print_all_jump_functions (dump_file);
}
/* 2. Do the interprocedural propagation. */
ipcp_iterate_stage ();
/* 3. Insert the constants found to the functions. */
ipcp_insert_stage ();
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nProfiling info after insert stage:\n");
ipcp_print_profile_data (dump_file);
}
/* Free all IPCP structures. */
free_all_ipa_structures_after_ipa_cp ();
if (dump_file)
fprintf (dump_file, "\nIPA constant propagation end\n");
return 0;
}
/* Note function body size. */
static void
ipcp_generate_summary (void)
{
if (dump_file)
fprintf (dump_file, "\nIPA constant propagation start:\n");
ipa_check_create_node_params ();
ipa_check_create_edge_args ();
ipa_register_cgraph_hooks ();
/* 1. Call the init stage to initialize
the ipa_node_params and ipa_edge_args structures. */
ipcp_init_stage ();
}
/* Gate for IPCP optimization. */
static bool
cgraph_gate_cp (void)
{
return flag_ipa_cp;
}
struct ipa_opt_pass pass_ipa_cp =
{
{
IPA_PASS,
"cp", /* name */
cgraph_gate_cp, /* gate */
ipcp_driver, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_IPA_CONSTANT_PROP, /* tv_id */
0, /* properties_required */
PROP_trees, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_cgraph | TODO_dump_func |
TODO_remove_functions /* todo_flags_finish */
},
ipcp_generate_summary, /* generate_summary */
NULL, /* write_summary */
NULL, /* read_summary */
NULL, /* function_read_summary */
0, /* TODOs */
NULL, /* function_transform */
NULL, /* variable_transform */
};
|