summaryrefslogtreecommitdiff
path: root/gcc/explow.c
blob: 75af333c1c318bcd17ef166d6de27263eafb83cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
/* Subroutines for manipulating rtx's in semantically interesting ways.
   Copyright (C) 1987-2016 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "function.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "tm_p.h"
#include "expmed.h"
#include "optabs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "stor-layout.h"
#include "except.h"
#include "dojump.h"
#include "explow.h"
#include "expr.h"
#include "common/common-target.h"
#include "output.h"

static rtx break_out_memory_refs (rtx);


/* Truncate and perhaps sign-extend C as appropriate for MODE.  */

HOST_WIDE_INT
trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
{
  int width = GET_MODE_PRECISION (mode);

  /* You want to truncate to a _what_?  */
  gcc_assert (SCALAR_INT_MODE_P (mode)
	      || POINTER_BOUNDS_MODE_P (mode));

  /* Canonicalize BImode to 0 and STORE_FLAG_VALUE.  */
  if (mode == BImode)
    return c & 1 ? STORE_FLAG_VALUE : 0;

  /* Sign-extend for the requested mode.  */

  if (width < HOST_BITS_PER_WIDE_INT)
    {
      HOST_WIDE_INT sign = 1;
      sign <<= width - 1;
      c &= (sign << 1) - 1;
      c ^= sign;
      c -= sign;
    }

  return c;
}

/* Return an rtx for the sum of X and the integer C, given that X has
   mode MODE.  INPLACE is true if X can be modified inplace or false
   if it must be treated as immutable.  */

rtx
plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
	       bool inplace)
{
  RTX_CODE code;
  rtx y;
  rtx tem;
  int all_constant = 0;

  gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);

  if (c == 0)
    return x;

 restart:

  code = GET_CODE (x);
  y = x;

  switch (code)
    {
    CASE_CONST_SCALAR_INT:
      return immed_wide_int_const (wi::add (rtx_mode_t (x, mode), c), mode);
    case MEM:
      /* If this is a reference to the constant pool, try replacing it with
	 a reference to a new constant.  If the resulting address isn't
	 valid, don't return it because we have no way to validize it.  */
      if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
	{
	  rtx cst = get_pool_constant (XEXP (x, 0));

	  if (GET_CODE (cst) == CONST_VECTOR
	      && GET_MODE_INNER (GET_MODE (cst)) == mode)
	    {
	      cst = gen_lowpart (mode, cst);
	      gcc_assert (cst);
	    }
	  if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode)
	    {
	      tem = plus_constant (mode, cst, c);
	      tem = force_const_mem (GET_MODE (x), tem);
	      /* Targets may disallow some constants in the constant pool, thus
		 force_const_mem may return NULL_RTX.  */
	      if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
		return tem;
	    }
	}
      break;

    case CONST:
      /* If adding to something entirely constant, set a flag
	 so that we can add a CONST around the result.  */
      if (inplace && shared_const_p (x))
	inplace = false;
      x = XEXP (x, 0);
      all_constant = 1;
      goto restart;

    case SYMBOL_REF:
    case LABEL_REF:
      all_constant = 1;
      break;

    case PLUS:
      /* The interesting case is adding the integer to a sum.  Look
	 for constant term in the sum and combine with C.  For an
	 integer constant term or a constant term that is not an
	 explicit integer, we combine or group them together anyway.

	 We may not immediately return from the recursive call here, lest
	 all_constant gets lost.  */

      if (CONSTANT_P (XEXP (x, 1)))
	{
	  rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
	  if (term == const0_rtx)
	    x = XEXP (x, 0);
	  else if (inplace)
	    XEXP (x, 1) = term;
	  else
	    x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
	  c = 0;
	}
      else if (rtx *const_loc = find_constant_term_loc (&y))
	{
	  if (!inplace)
	    {
	      /* We need to be careful since X may be shared and we can't
		 modify it in place.  */
	      x = copy_rtx (x);
	      const_loc = find_constant_term_loc (&x);
	    }
	  *const_loc = plus_constant (mode, *const_loc, c, true);
	  c = 0;
	}
      break;

    default:
      break;
    }

  if (c != 0)
    x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));

  if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
    return x;
  else if (all_constant)
    return gen_rtx_CONST (mode, x);
  else
    return x;
}

/* If X is a sum, return a new sum like X but lacking any constant terms.
   Add all the removed constant terms into *CONSTPTR.
   X itself is not altered.  The result != X if and only if
   it is not isomorphic to X.  */

rtx
eliminate_constant_term (rtx x, rtx *constptr)
{
  rtx x0, x1;
  rtx tem;

  if (GET_CODE (x) != PLUS)
    return x;

  /* First handle constants appearing at this level explicitly.  */
  if (CONST_INT_P (XEXP (x, 1))
      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
						XEXP (x, 1)))
      && CONST_INT_P (tem))
    {
      *constptr = tem;
      return eliminate_constant_term (XEXP (x, 0), constptr);
    }

  tem = const0_rtx;
  x0 = eliminate_constant_term (XEXP (x, 0), &tem);
  x1 = eliminate_constant_term (XEXP (x, 1), &tem);
  if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
						*constptr, tem))
      && CONST_INT_P (tem))
    {
      *constptr = tem;
      return gen_rtx_PLUS (GET_MODE (x), x0, x1);
    }

  return x;
}


/* Return a copy of X in which all memory references
   and all constants that involve symbol refs
   have been replaced with new temporary registers.
   Also emit code to load the memory locations and constants
   into those registers.

   If X contains no such constants or memory references,
   X itself (not a copy) is returned.

   If a constant is found in the address that is not a legitimate constant
   in an insn, it is left alone in the hope that it might be valid in the
   address.

   X may contain no arithmetic except addition, subtraction and multiplication.
   Values returned by expand_expr with 1 for sum_ok fit this constraint.  */

static rtx
break_out_memory_refs (rtx x)
{
  if (MEM_P (x)
      || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
	  && GET_MODE (x) != VOIDmode))
    x = force_reg (GET_MODE (x), x);
  else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
	   || GET_CODE (x) == MULT)
    {
      rtx op0 = break_out_memory_refs (XEXP (x, 0));
      rtx op1 = break_out_memory_refs (XEXP (x, 1));

      if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
	x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
    }

  return x;
}

/* Given X, a memory address in address space AS' pointer mode, convert it to
   an address in the address space's address mode, or vice versa (TO_MODE says
   which way).  We take advantage of the fact that pointers are not allowed to
   overflow by commuting arithmetic operations over conversions so that address
   arithmetic insns can be used. IN_CONST is true if this conversion is inside
   a CONST. NO_EMIT is true if no insns should be emitted, and instead
   it should return NULL if it can't be simplified without emitting insns.  */

rtx
convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
				     rtx x, addr_space_t as ATTRIBUTE_UNUSED,
				     bool in_const ATTRIBUTE_UNUSED,
				     bool no_emit ATTRIBUTE_UNUSED)
{
#ifndef POINTERS_EXTEND_UNSIGNED
  gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
  return x;
#else /* defined(POINTERS_EXTEND_UNSIGNED) */
  machine_mode pointer_mode, address_mode, from_mode;
  rtx temp;
  enum rtx_code code;

  /* If X already has the right mode, just return it.  */
  if (GET_MODE (x) == to_mode)
    return x;

  pointer_mode = targetm.addr_space.pointer_mode (as);
  address_mode = targetm.addr_space.address_mode (as);
  from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;

  /* Here we handle some special cases.  If none of them apply, fall through
     to the default case.  */
  switch (GET_CODE (x))
    {
    CASE_CONST_SCALAR_INT:
      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
	code = TRUNCATE;
      else if (POINTERS_EXTEND_UNSIGNED < 0)
	break;
      else if (POINTERS_EXTEND_UNSIGNED > 0)
	code = ZERO_EXTEND;
      else
	code = SIGN_EXTEND;
      temp = simplify_unary_operation (code, to_mode, x, from_mode);
      if (temp)
	return temp;
      break;

    case SUBREG:
      if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
	  && GET_MODE (SUBREG_REG (x)) == to_mode)
	return SUBREG_REG (x);
      break;

    case LABEL_REF:
      temp = gen_rtx_LABEL_REF (to_mode, label_ref_label (x));
      LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
      return temp;

    case SYMBOL_REF:
      temp = shallow_copy_rtx (x);
      PUT_MODE (temp, to_mode);
      return temp;

    case CONST:
      temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
						  true, no_emit);
      return temp ? gen_rtx_CONST (to_mode, temp) : temp;

    case PLUS:
    case MULT:
      /* For addition we can safely permute the conversion and addition
	 operation if one operand is a constant and converting the constant
	 does not change it or if one operand is a constant and we are
	 using a ptr_extend instruction  (POINTERS_EXTEND_UNSIGNED < 0).
	 We can always safely permute them if we are making the address
	 narrower. Inside a CONST RTL, this is safe for both pointers
	 zero or sign extended as pointers cannot wrap. */
      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
	  || (GET_CODE (x) == PLUS
	      && CONST_INT_P (XEXP (x, 1))
	      && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
		  || XEXP (x, 1) == convert_memory_address_addr_space_1
				     (to_mode, XEXP (x, 1), as, in_const,
				      no_emit)
                  || POINTERS_EXTEND_UNSIGNED < 0)))
	{
	  temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
						      as, in_const, no_emit);
	  return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
					 temp, XEXP (x, 1))
		       : temp);
	}
      break;

    default:
      break;
    }

  if (no_emit)
    return NULL_RTX;

  return convert_modes (to_mode, from_mode,
			x, POINTERS_EXTEND_UNSIGNED);
#endif /* defined(POINTERS_EXTEND_UNSIGNED) */
}

/* Given X, a memory address in address space AS' pointer mode, convert it to
   an address in the address space's address mode, or vice versa (TO_MODE says
   which way).  We take advantage of the fact that pointers are not allowed to
   overflow by commuting arithmetic operations over conversions so that address
   arithmetic insns can be used.  */

rtx
convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
{
  return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
}


/* Return something equivalent to X but valid as a memory address for something
   of mode MODE in the named address space AS.  When X is not itself valid,
   this works by copying X or subexpressions of it into registers.  */

rtx
memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
{
  rtx oldx = x;
  machine_mode address_mode = targetm.addr_space.address_mode (as);

  x = convert_memory_address_addr_space (address_mode, x, as);

  /* By passing constant addresses through registers
     we get a chance to cse them.  */
  if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
    x = force_reg (address_mode, x);

  /* We get better cse by rejecting indirect addressing at this stage.
     Let the combiner create indirect addresses where appropriate.
     For now, generate the code so that the subexpressions useful to share
     are visible.  But not if cse won't be done!  */
  else
    {
      if (! cse_not_expected && !REG_P (x))
	x = break_out_memory_refs (x);

      /* At this point, any valid address is accepted.  */
      if (memory_address_addr_space_p (mode, x, as))
	goto done;

      /* If it was valid before but breaking out memory refs invalidated it,
	 use it the old way.  */
      if (memory_address_addr_space_p (mode, oldx, as))
	{
	  x = oldx;
	  goto done;
	}

      /* Perform machine-dependent transformations on X
	 in certain cases.  This is not necessary since the code
	 below can handle all possible cases, but machine-dependent
	 transformations can make better code.  */
      {
	rtx orig_x = x;
	x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
	if (orig_x != x && memory_address_addr_space_p (mode, x, as))
	  goto done;
      }

      /* PLUS and MULT can appear in special ways
	 as the result of attempts to make an address usable for indexing.
	 Usually they are dealt with by calling force_operand, below.
	 But a sum containing constant terms is special
	 if removing them makes the sum a valid address:
	 then we generate that address in a register
	 and index off of it.  We do this because it often makes
	 shorter code, and because the addresses thus generated
	 in registers often become common subexpressions.  */
      if (GET_CODE (x) == PLUS)
	{
	  rtx constant_term = const0_rtx;
	  rtx y = eliminate_constant_term (x, &constant_term);
	  if (constant_term == const0_rtx
	      || ! memory_address_addr_space_p (mode, y, as))
	    x = force_operand (x, NULL_RTX);
	  else
	    {
	      y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
	      if (! memory_address_addr_space_p (mode, y, as))
		x = force_operand (x, NULL_RTX);
	      else
		x = y;
	    }
	}

      else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
	x = force_operand (x, NULL_RTX);

      /* If we have a register that's an invalid address,
	 it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
      else if (REG_P (x))
	x = copy_to_reg (x);

      /* Last resort: copy the value to a register, since
	 the register is a valid address.  */
      else
	x = force_reg (address_mode, x);
    }

 done:

  gcc_assert (memory_address_addr_space_p (mode, x, as));
  /* If we didn't change the address, we are done.  Otherwise, mark
     a reg as a pointer if we have REG or REG + CONST_INT.  */
  if (oldx == x)
    return x;
  else if (REG_P (x))
    mark_reg_pointer (x, BITS_PER_UNIT);
  else if (GET_CODE (x) == PLUS
	   && REG_P (XEXP (x, 0))
	   && CONST_INT_P (XEXP (x, 1)))
    mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);

  /* OLDX may have been the address on a temporary.  Update the address
     to indicate that X is now used.  */
  update_temp_slot_address (oldx, x);

  return x;
}

/* Convert a mem ref into one with a valid memory address.
   Pass through anything else unchanged.  */

rtx
validize_mem (rtx ref)
{
  if (!MEM_P (ref))
    return ref;
  ref = use_anchored_address (ref);
  if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
				   MEM_ADDR_SPACE (ref)))
    return ref;

  /* Don't alter REF itself, since that is probably a stack slot.  */
  return replace_equiv_address (ref, XEXP (ref, 0));
}

/* If X is a memory reference to a member of an object block, try rewriting
   it to use an anchor instead.  Return the new memory reference on success
   and the old one on failure.  */

rtx
use_anchored_address (rtx x)
{
  rtx base;
  HOST_WIDE_INT offset;
  machine_mode mode;

  if (!flag_section_anchors)
    return x;

  if (!MEM_P (x))
    return x;

  /* Split the address into a base and offset.  */
  base = XEXP (x, 0);
  offset = 0;
  if (GET_CODE (base) == CONST
      && GET_CODE (XEXP (base, 0)) == PLUS
      && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
    {
      offset += INTVAL (XEXP (XEXP (base, 0), 1));
      base = XEXP (XEXP (base, 0), 0);
    }

  /* Check whether BASE is suitable for anchors.  */
  if (GET_CODE (base) != SYMBOL_REF
      || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
      || SYMBOL_REF_ANCHOR_P (base)
      || SYMBOL_REF_BLOCK (base) == NULL
      || !targetm.use_anchors_for_symbol_p (base))
    return x;

  /* Decide where BASE is going to be.  */
  place_block_symbol (base);

  /* Get the anchor we need to use.  */
  offset += SYMBOL_REF_BLOCK_OFFSET (base);
  base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
			     SYMBOL_REF_TLS_MODEL (base));

  /* Work out the offset from the anchor.  */
  offset -= SYMBOL_REF_BLOCK_OFFSET (base);

  /* If we're going to run a CSE pass, force the anchor into a register.
     We will then be able to reuse registers for several accesses, if the
     target costs say that that's worthwhile.  */
  mode = GET_MODE (base);
  if (!cse_not_expected)
    base = force_reg (mode, base);

  return replace_equiv_address (x, plus_constant (mode, base, offset));
}

/* Copy the value or contents of X to a new temp reg and return that reg.  */

rtx
copy_to_reg (rtx x)
{
  rtx temp = gen_reg_rtx (GET_MODE (x));

  /* If not an operand, must be an address with PLUS and MULT so
     do the computation.  */
  if (! general_operand (x, VOIDmode))
    x = force_operand (x, temp);

  if (x != temp)
    emit_move_insn (temp, x);

  return temp;
}

/* Like copy_to_reg but always give the new register mode Pmode
   in case X is a constant.  */

rtx
copy_addr_to_reg (rtx x)
{
  return copy_to_mode_reg (Pmode, x);
}

/* Like copy_to_reg but always give the new register mode MODE
   in case X is a constant.  */

rtx
copy_to_mode_reg (machine_mode mode, rtx x)
{
  rtx temp = gen_reg_rtx (mode);

  /* If not an operand, must be an address with PLUS and MULT so
     do the computation.  */
  if (! general_operand (x, VOIDmode))
    x = force_operand (x, temp);

  gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
  if (x != temp)
    emit_move_insn (temp, x);
  return temp;
}

/* Load X into a register if it is not already one.
   Use mode MODE for the register.
   X should be valid for mode MODE, but it may be a constant which
   is valid for all integer modes; that's why caller must specify MODE.

   The caller must not alter the value in the register we return,
   since we mark it as a "constant" register.  */

rtx
force_reg (machine_mode mode, rtx x)
{
  rtx temp, set;
  rtx_insn *insn;

  if (REG_P (x))
    return x;

  if (general_operand (x, mode))
    {
      temp = gen_reg_rtx (mode);
      insn = emit_move_insn (temp, x);
    }
  else
    {
      temp = force_operand (x, NULL_RTX);
      if (REG_P (temp))
	insn = get_last_insn ();
      else
	{
	  rtx temp2 = gen_reg_rtx (mode);
	  insn = emit_move_insn (temp2, temp);
	  temp = temp2;
	}
    }

  /* Let optimizers know that TEMP's value never changes
     and that X can be substituted for it.  Don't get confused
     if INSN set something else (such as a SUBREG of TEMP).  */
  if (CONSTANT_P (x)
      && (set = single_set (insn)) != 0
      && SET_DEST (set) == temp
      && ! rtx_equal_p (x, SET_SRC (set)))
    set_unique_reg_note (insn, REG_EQUAL, x);

  /* Let optimizers know that TEMP is a pointer, and if so, the
     known alignment of that pointer.  */
  {
    unsigned align = 0;
    if (GET_CODE (x) == SYMBOL_REF)
      {
        align = BITS_PER_UNIT;
	if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
	  align = DECL_ALIGN (SYMBOL_REF_DECL (x));
      }
    else if (GET_CODE (x) == LABEL_REF)
      align = BITS_PER_UNIT;
    else if (GET_CODE (x) == CONST
	     && GET_CODE (XEXP (x, 0)) == PLUS
	     && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
	     && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
      {
	rtx s = XEXP (XEXP (x, 0), 0);
	rtx c = XEXP (XEXP (x, 0), 1);
	unsigned sa, ca;

	sa = BITS_PER_UNIT;
	if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
	  sa = DECL_ALIGN (SYMBOL_REF_DECL (s));

	if (INTVAL (c) == 0)
	  align = sa;
	else
	  {
	    ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
	    align = MIN (sa, ca);
	  }
      }

    if (align || (MEM_P (x) && MEM_POINTER (x)))
      mark_reg_pointer (temp, align);
  }

  return temp;
}

/* If X is a memory ref, copy its contents to a new temp reg and return
   that reg.  Otherwise, return X.  */

rtx
force_not_mem (rtx x)
{
  rtx temp;

  if (!MEM_P (x) || GET_MODE (x) == BLKmode)
    return x;

  temp = gen_reg_rtx (GET_MODE (x));

  if (MEM_POINTER (x))
    REG_POINTER (temp) = 1;

  emit_move_insn (temp, x);
  return temp;
}

/* Copy X to TARGET (if it's nonzero and a reg)
   or to a new temp reg and return that reg.
   MODE is the mode to use for X in case it is a constant.  */

rtx
copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
{
  rtx temp;

  if (target && REG_P (target))
    temp = target;
  else
    temp = gen_reg_rtx (mode);

  emit_move_insn (temp, x);
  return temp;
}

/* Return the mode to use to pass or return a scalar of TYPE and MODE.
   PUNSIGNEDP points to the signedness of the type and may be adjusted
   to show what signedness to use on extension operations.

   FOR_RETURN is nonzero if the caller is promoting the return value
   of FNDECL, else it is for promoting args.  */

machine_mode
promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
		       const_tree funtype, int for_return)
{
  /* Called without a type node for a libcall.  */
  if (type == NULL_TREE)
    {
      if (INTEGRAL_MODE_P (mode))
	return targetm.calls.promote_function_mode (NULL_TREE, mode,
						    punsignedp, funtype,
						    for_return);
      else
	return mode;
    }

  switch (TREE_CODE (type))
    {
    case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
    case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
    case POINTER_TYPE:   case REFERENCE_TYPE:
      return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
						  for_return);

    default:
      return mode;
    }
}
/* Return the mode to use to store a scalar of TYPE and MODE.
   PUNSIGNEDP points to the signedness of the type and may be adjusted
   to show what signedness to use on extension operations.  */

machine_mode
promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
	      int *punsignedp ATTRIBUTE_UNUSED)
{
#ifdef PROMOTE_MODE
  enum tree_code code;
  int unsignedp;
#endif

  /* For libcalls this is invoked without TYPE from the backends
     TARGET_PROMOTE_FUNCTION_MODE hooks.  Don't do anything in that
     case.  */
  if (type == NULL_TREE)
    return mode;

  /* FIXME: this is the same logic that was there until GCC 4.4, but we
     probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
     is not defined.  The affected targets are M32C, S390, SPARC.  */
#ifdef PROMOTE_MODE
  code = TREE_CODE (type);
  unsignedp = *punsignedp;

  switch (code)
    {
    case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
    case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
      PROMOTE_MODE (mode, unsignedp, type);
      *punsignedp = unsignedp;
      return mode;

#ifdef POINTERS_EXTEND_UNSIGNED
    case REFERENCE_TYPE:
    case POINTER_TYPE:
      *punsignedp = POINTERS_EXTEND_UNSIGNED;
      return targetm.addr_space.address_mode
	       (TYPE_ADDR_SPACE (TREE_TYPE (type)));
#endif

    default:
      return mode;
    }
#else
  return mode;
#endif
}


/* Use one of promote_mode or promote_function_mode to find the promoted
   mode of DECL.  If PUNSIGNEDP is not NULL, store there the unsignedness
   of DECL after promotion.  */

machine_mode
promote_decl_mode (const_tree decl, int *punsignedp)
{
  tree type = TREE_TYPE (decl);
  int unsignedp = TYPE_UNSIGNED (type);
  machine_mode mode = DECL_MODE (decl);
  machine_mode pmode;

  if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
    pmode = promote_function_mode (type, mode, &unsignedp,
                                   TREE_TYPE (current_function_decl), 1);
  else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
    pmode = promote_function_mode (type, mode, &unsignedp,
                                   TREE_TYPE (current_function_decl), 2);
  else
    pmode = promote_mode (type, mode, &unsignedp);

  if (punsignedp)
    *punsignedp = unsignedp;
  return pmode;
}

/* Return the promoted mode for name.  If it is a named SSA_NAME, it
   is the same as promote_decl_mode.  Otherwise, it is the promoted
   mode of a temp decl of same type as the SSA_NAME, if we had created
   one.  */

machine_mode
promote_ssa_mode (const_tree name, int *punsignedp)
{
  gcc_assert (TREE_CODE (name) == SSA_NAME);

  /* Partitions holding parms and results must be promoted as expected
     by function.c.  */
  if (SSA_NAME_VAR (name)
      && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
	  || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
    {
      machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
      if (mode != BLKmode)
	return mode;
    }

  tree type = TREE_TYPE (name);
  int unsignedp = TYPE_UNSIGNED (type);
  machine_mode mode = TYPE_MODE (type);

  /* Bypass TYPE_MODE when it maps vector modes to BLKmode.  */
  if (mode == BLKmode)
    {
      gcc_assert (VECTOR_TYPE_P (type));
      mode = type->type_common.mode;
    }

  machine_mode pmode = promote_mode (type, mode, &unsignedp);
  if (punsignedp)
    *punsignedp = unsignedp;

  return pmode;
}



/* Controls the behavior of {anti_,}adjust_stack.  */
static bool suppress_reg_args_size;

/* A helper for adjust_stack and anti_adjust_stack.  */

static void
adjust_stack_1 (rtx adjust, bool anti_p)
{
  rtx temp;
  rtx_insn *insn;

  /* Hereafter anti_p means subtract_p.  */
  if (!STACK_GROWS_DOWNWARD)
    anti_p = !anti_p;

  temp = expand_binop (Pmode,
		       anti_p ? sub_optab : add_optab,
		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
		       OPTAB_LIB_WIDEN);

  if (temp != stack_pointer_rtx)
    insn = emit_move_insn (stack_pointer_rtx, temp);
  else
    {
      insn = get_last_insn ();
      temp = single_set (insn);
      gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
    }

  if (!suppress_reg_args_size)
    add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
}

/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
   This pops when ADJUST is positive.  ADJUST need not be constant.  */

void
adjust_stack (rtx adjust)
{
  if (adjust == const0_rtx)
    return;

  /* We expect all variable sized adjustments to be multiple of
     PREFERRED_STACK_BOUNDARY.  */
  if (CONST_INT_P (adjust))
    stack_pointer_delta -= INTVAL (adjust);

  adjust_stack_1 (adjust, false);
}

/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
   This pushes when ADJUST is positive.  ADJUST need not be constant.  */

void
anti_adjust_stack (rtx adjust)
{
  if (adjust == const0_rtx)
    return;

  /* We expect all variable sized adjustments to be multiple of
     PREFERRED_STACK_BOUNDARY.  */
  if (CONST_INT_P (adjust))
    stack_pointer_delta += INTVAL (adjust);

  adjust_stack_1 (adjust, true);
}

/* Round the size of a block to be pushed up to the boundary required
   by this machine.  SIZE is the desired size, which need not be constant.  */

static rtx
round_push (rtx size)
{
  rtx align_rtx, alignm1_rtx;

  if (!SUPPORTS_STACK_ALIGNMENT
      || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
    {
      int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;

      if (align == 1)
	return size;

      if (CONST_INT_P (size))
	{
	  HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;

	  if (INTVAL (size) != new_size)
	    size = GEN_INT (new_size);
	  return size;
	}

      align_rtx = GEN_INT (align);
      alignm1_rtx = GEN_INT (align - 1);
    }
  else
    {
      /* If crtl->preferred_stack_boundary might still grow, use
	 virtual_preferred_stack_boundary_rtx instead.  This will be
	 substituted by the right value in vregs pass and optimized
	 during combine.  */
      align_rtx = virtual_preferred_stack_boundary_rtx;
      alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
				   NULL_RTX);
    }

  /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
     but we know it can't.  So add ourselves and then do
     TRUNC_DIV_EXPR.  */
  size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
		       NULL_RTX, 1, OPTAB_LIB_WIDEN);
  size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
			NULL_RTX, 1);
  size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);

  return size;
}

/* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
   to a previously-created save area.  If no save area has been allocated,
   this function will allocate one.  If a save area is specified, it
   must be of the proper mode.  */

void
emit_stack_save (enum save_level save_level, rtx *psave)
{
  rtx sa = *psave;
  /* The default is that we use a move insn and save in a Pmode object.  */
  rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
  machine_mode mode = STACK_SAVEAREA_MODE (save_level);

  /* See if this machine has anything special to do for this kind of save.  */
  switch (save_level)
    {
    case SAVE_BLOCK:
      if (targetm.have_save_stack_block ())
	fcn = targetm.gen_save_stack_block;
      break;
    case SAVE_FUNCTION:
      if (targetm.have_save_stack_function ())
	fcn = targetm.gen_save_stack_function;
      break;
    case SAVE_NONLOCAL:
      if (targetm.have_save_stack_nonlocal ())
	fcn = targetm.gen_save_stack_nonlocal;
      break;
    default:
      break;
    }

  /* If there is no save area and we have to allocate one, do so.  Otherwise
     verify the save area is the proper mode.  */

  if (sa == 0)
    {
      if (mode != VOIDmode)
	{
	  if (save_level == SAVE_NONLOCAL)
	    *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
	  else
	    *psave = sa = gen_reg_rtx (mode);
	}
    }

  do_pending_stack_adjust ();
  if (sa != 0)
    sa = validize_mem (sa);
  emit_insn (fcn (sa, stack_pointer_rtx));
}

/* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
   area made by emit_stack_save.  If it is zero, we have nothing to do.  */

void
emit_stack_restore (enum save_level save_level, rtx sa)
{
  /* The default is that we use a move insn.  */
  rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;

  /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
     STACK_POINTER and HARD_FRAME_POINTER.
     If stack_realign_fp, the x86 backend emits a prologue that aligns only
     STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
     aligned variables, which is reflected in ix86_can_eliminate.
     We normally still have the realigned STACK_POINTER that we can use.
     But if there is a stack restore still present at reload, it can trigger 
     mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
     FRAME_POINTER into a hard reg.
     To prevent this situation, we force need_drap if we emit a stack
     restore.  */
  if (SUPPORTS_STACK_ALIGNMENT)
    crtl->need_drap = true;

  /* See if this machine has anything special to do for this kind of save.  */
  switch (save_level)
    {
    case SAVE_BLOCK:
      if (targetm.have_restore_stack_block ())
	fcn = targetm.gen_restore_stack_block;
      break;
    case SAVE_FUNCTION:
      if (targetm.have_restore_stack_function ())
	fcn = targetm.gen_restore_stack_function;
      break;
    case SAVE_NONLOCAL:
      if (targetm.have_restore_stack_nonlocal ())
	fcn = targetm.gen_restore_stack_nonlocal;
      break;
    default:
      break;
    }

  if (sa != 0)
    {
      sa = validize_mem (sa);
      /* These clobbers prevent the scheduler from moving
	 references to variable arrays below the code
	 that deletes (pops) the arrays.  */
      emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
      emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
    }

  discard_pending_stack_adjust ();

  emit_insn (fcn (stack_pointer_rtx, sa));
}

/* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
   function.  This should be called whenever we allocate or deallocate
   dynamic stack space.  */

void
update_nonlocal_goto_save_area (void)
{
  tree t_save;
  rtx r_save;

  /* The nonlocal_goto_save_area object is an array of N pointers.  The
     first one is used for the frame pointer save; the rest are sized by
     STACK_SAVEAREA_MODE.  Create a reference to array index 1, the first
     of the stack save area slots.  */
  t_save = build4 (ARRAY_REF,
		   TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
		   cfun->nonlocal_goto_save_area,
		   integer_one_node, NULL_TREE, NULL_TREE);
  r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);

  emit_stack_save (SAVE_NONLOCAL, &r_save);
}

/* Record a new stack level for the current function.  This should be called
   whenever we allocate or deallocate dynamic stack space.  */

void
record_new_stack_level (void)
{
  /* Record the new stack level for nonlocal gotos.  */
  if (cfun->nonlocal_goto_save_area)
    update_nonlocal_goto_save_area ();
 
  /* Record the new stack level for SJLJ exceptions.  */
  if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
    update_sjlj_context ();
}

/* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET.  */
static rtx
align_dynamic_address (rtx target, unsigned required_align)
{
  /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
     but we know it can't.  So add ourselves and then do
     TRUNC_DIV_EXPR.  */
  target = expand_binop (Pmode, add_optab, target,
			 gen_int_mode (required_align / BITS_PER_UNIT - 1,
				       Pmode),
			 NULL_RTX, 1, OPTAB_LIB_WIDEN);
  target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
			  gen_int_mode (required_align / BITS_PER_UNIT,
					Pmode),
			  NULL_RTX, 1);
  target = expand_mult (Pmode, target,
			gen_int_mode (required_align / BITS_PER_UNIT,
				      Pmode),
			NULL_RTX, 1);

  return target;
}

/* Return an rtx through *PSIZE, representing the size of an area of memory to
   be dynamically pushed on the stack.

   *PSIZE is an rtx representing the size of the area.

   SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
   parameter may be zero.  If so, a proper value will be extracted
   from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.

   REQUIRED_ALIGN is the alignment (in bits) required for the region
   of memory.

   If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
   the additional size returned.  */
void
get_dynamic_stack_size (rtx *psize, unsigned size_align,
			unsigned required_align,
			HOST_WIDE_INT *pstack_usage_size)
{
  unsigned extra = 0;
  rtx size = *psize;

  /* Ensure the size is in the proper mode.  */
  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
    size = convert_to_mode (Pmode, size, 1);

  if (CONST_INT_P (size))
    {
      unsigned HOST_WIDE_INT lsb;

      lsb = INTVAL (size);
      lsb &= -lsb;

      /* Watch out for overflow truncating to "unsigned".  */
      if (lsb > UINT_MAX / BITS_PER_UNIT)
	size_align = 1u << (HOST_BITS_PER_INT - 1);
      else
	size_align = (unsigned)lsb * BITS_PER_UNIT;
    }
  else if (size_align < BITS_PER_UNIT)
    size_align = BITS_PER_UNIT;

  /* We can't attempt to minimize alignment necessary, because we don't
     know the final value of preferred_stack_boundary yet while executing
     this code.  */
  if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
    crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;

  /* We will need to ensure that the address we return is aligned to
     REQUIRED_ALIGN.  At this point in the compilation, we don't always
     know the final value of the STACK_DYNAMIC_OFFSET used in function.c
     (it might depend on the size of the outgoing parameter lists, for
     example), so we must preventively align the value.  We leave space
     in SIZE for the hole that might result from the alignment operation.  */

  extra = (required_align - BITS_PER_UNIT) / BITS_PER_UNIT;
  size = plus_constant (Pmode, size, extra);
  size = force_operand (size, NULL_RTX);

  if (flag_stack_usage_info && pstack_usage_size)
    *pstack_usage_size += extra;

  if (extra && size_align > BITS_PER_UNIT)
    size_align = BITS_PER_UNIT;

  /* Round the size to a multiple of the required stack alignment.
     Since the stack is presumed to be rounded before this allocation,
     this will maintain the required alignment.

     If the stack grows downward, we could save an insn by subtracting
     SIZE from the stack pointer and then aligning the stack pointer.
     The problem with this is that the stack pointer may be unaligned
     between the execution of the subtraction and alignment insns and
     some machines do not allow this.  Even on those that do, some
     signal handlers malfunction if a signal should occur between those
     insns.  Since this is an extremely rare event, we have no reliable
     way of knowing which systems have this problem.  So we avoid even
     momentarily mis-aligning the stack.  */
  if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
    {
      size = round_push (size);

      if (flag_stack_usage_info && pstack_usage_size)
	{
	  int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
	  *pstack_usage_size =
	    (*pstack_usage_size + align - 1) / align * align;
	}
    }

  *psize = size;
}

/* Return an rtx representing the address of an area of memory dynamically
   pushed on the stack.

   Any required stack pointer alignment is preserved.

   SIZE is an rtx representing the size of the area.

   SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
   parameter may be zero.  If so, a proper value will be extracted
   from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.

   REQUIRED_ALIGN is the alignment (in bits) required for the region
   of memory.

   If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
   stack space allocated by the generated code cannot be added with itself
   in the course of the execution of the function.  It is always safe to
   pass FALSE here and the following criterion is sufficient in order to
   pass TRUE: every path in the CFG that starts at the allocation point and
   loops to it executes the associated deallocation code.  */

rtx
allocate_dynamic_stack_space (rtx size, unsigned size_align,
			      unsigned required_align, bool cannot_accumulate)
{
  HOST_WIDE_INT stack_usage_size = -1;
  rtx_code_label *final_label;
  rtx final_target, target;

  /* If we're asking for zero bytes, it doesn't matter what we point
     to since we can't dereference it.  But return a reasonable
     address anyway.  */
  if (size == const0_rtx)
    return virtual_stack_dynamic_rtx;

  /* Otherwise, show we're calling alloca or equivalent.  */
  cfun->calls_alloca = 1;

  /* If stack usage info is requested, look into the size we are passed.
     We need to do so this early to avoid the obfuscation that may be
     introduced later by the various alignment operations.  */
  if (flag_stack_usage_info)
    {
      if (CONST_INT_P (size))
	stack_usage_size = INTVAL (size);
      else if (REG_P (size))
        {
	  /* Look into the last emitted insn and see if we can deduce
	     something for the register.  */
	  rtx_insn *insn;
	  rtx set, note;
	  insn = get_last_insn ();
	  if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
	    {
	      if (CONST_INT_P (SET_SRC (set)))
		stack_usage_size = INTVAL (SET_SRC (set));
	      else if ((note = find_reg_equal_equiv_note (insn))
		       && CONST_INT_P (XEXP (note, 0)))
		stack_usage_size = INTVAL (XEXP (note, 0));
	    }
	}

      /* If the size is not constant, we can't say anything.  */
      if (stack_usage_size == -1)
	{
	  current_function_has_unbounded_dynamic_stack_size = 1;
	  stack_usage_size = 0;
	}
    }

  get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);

  target = gen_reg_rtx (Pmode);

  /* The size is supposed to be fully adjusted at this point so record it
     if stack usage info is requested.  */
  if (flag_stack_usage_info)
    {
      current_function_dynamic_stack_size += stack_usage_size;

      /* ??? This is gross but the only safe stance in the absence
	 of stack usage oriented flow analysis.  */
      if (!cannot_accumulate)
	current_function_has_unbounded_dynamic_stack_size = 1;
    }

  do_pending_stack_adjust ();

  final_label = NULL;
  final_target = NULL_RTX;

  /* If we are splitting the stack, we need to ask the backend whether
     there is enough room on the current stack.  If there isn't, or if
     the backend doesn't know how to tell is, then we need to call a
     function to allocate memory in some other way.  This memory will
     be released when we release the current stack segment.  The
     effect is that stack allocation becomes less efficient, but at
     least it doesn't cause a stack overflow.  */
  if (flag_split_stack)
    {
      rtx_code_label *available_label;
      rtx ask, space, func;

      available_label = NULL;

      if (targetm.have_split_stack_space_check ())
	{
	  available_label = gen_label_rtx ();

	  /* This instruction will branch to AVAILABLE_LABEL if there
	     are SIZE bytes available on the stack.  */
	  emit_insn (targetm.gen_split_stack_space_check
		     (size, available_label));
	}

      /* The __morestack_allocate_stack_space function will allocate
	 memory using malloc.  If the alignment of the memory returned
	 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
	 make sure we allocate enough space.  */
      if (MALLOC_ABI_ALIGNMENT >= required_align)
	ask = size;
      else
	ask = expand_binop (Pmode, add_optab, size,
			    gen_int_mode (required_align / BITS_PER_UNIT - 1,
					  Pmode),
			    NULL_RTX, 1, OPTAB_LIB_WIDEN);

      func = init_one_libfunc ("__morestack_allocate_stack_space");

      space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
				       1, ask, Pmode);

      if (available_label == NULL_RTX)
	return space;

      final_target = gen_reg_rtx (Pmode);

      emit_move_insn (final_target, space);

      final_label = gen_label_rtx ();
      emit_jump (final_label);

      emit_label (available_label);
    }

 /* We ought to be called always on the toplevel and stack ought to be aligned
    properly.  */
  gcc_assert (!(stack_pointer_delta
		% (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));

  /* If needed, check that we have the required amount of stack.  Take into
     account what has already been checked.  */
  if (STACK_CHECK_MOVING_SP)
    ;
  else if (flag_stack_check == GENERIC_STACK_CHECK)
    probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
		       size);
  else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
    probe_stack_range (STACK_CHECK_PROTECT, size);

  /* Don't let anti_adjust_stack emit notes.  */
  suppress_reg_args_size = true;

  /* Perform the required allocation from the stack.  Some systems do
     this differently than simply incrementing/decrementing from the
     stack pointer, such as acquiring the space by calling malloc().  */
  if (targetm.have_allocate_stack ())
    {
      struct expand_operand ops[2];
      /* We don't have to check against the predicate for operand 0 since
	 TARGET is known to be a pseudo of the proper mode, which must
	 be valid for the operand.  */
      create_fixed_operand (&ops[0], target);
      create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
      expand_insn (targetm.code_for_allocate_stack, 2, ops);
    }
  else
    {
      int saved_stack_pointer_delta;

      if (!STACK_GROWS_DOWNWARD)
	emit_move_insn (target, virtual_stack_dynamic_rtx);

      /* Check stack bounds if necessary.  */
      if (crtl->limit_stack)
	{
	  rtx available;
	  rtx_code_label *space_available = gen_label_rtx ();
	  if (STACK_GROWS_DOWNWARD)
	    available = expand_binop (Pmode, sub_optab,
				      stack_pointer_rtx, stack_limit_rtx,
				      NULL_RTX, 1, OPTAB_WIDEN);
	  else
	    available = expand_binop (Pmode, sub_optab,
				      stack_limit_rtx, stack_pointer_rtx,
				      NULL_RTX, 1, OPTAB_WIDEN);

	  emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
				   space_available);
	  if (targetm.have_trap ())
	    emit_insn (targetm.gen_trap ());
	  else
	    error ("stack limits not supported on this target");
	  emit_barrier ();
	  emit_label (space_available);
	}

      saved_stack_pointer_delta = stack_pointer_delta;

      if (flag_stack_check && STACK_CHECK_MOVING_SP)
	anti_adjust_stack_and_probe (size, false);
      else
	anti_adjust_stack (size);

      /* Even if size is constant, don't modify stack_pointer_delta.
	 The constant size alloca should preserve
	 crtl->preferred_stack_boundary alignment.  */
      stack_pointer_delta = saved_stack_pointer_delta;

      if (STACK_GROWS_DOWNWARD)
	emit_move_insn (target, virtual_stack_dynamic_rtx);
    }

  suppress_reg_args_size = false;

  /* Finish up the split stack handling.  */
  if (final_label != NULL_RTX)
    {
      gcc_assert (flag_split_stack);
      emit_move_insn (final_target, target);
      emit_label (final_label);
      target = final_target;
    }

  target = align_dynamic_address (target, required_align);

  /* Now that we've committed to a return value, mark its alignment.  */
  mark_reg_pointer (target, required_align);

  /* Record the new stack level.  */
  record_new_stack_level ();

  return target;
}

/* Return an rtx representing the address of an area of memory already
   statically pushed onto the stack in the virtual stack vars area.  (It is
   assumed that the area is allocated in the function prologue.)

   Any required stack pointer alignment is preserved.

   OFFSET is the offset of the area into the virtual stack vars area.

   REQUIRED_ALIGN is the alignment (in bits) required for the region
   of memory.  */

rtx
get_dynamic_stack_base (HOST_WIDE_INT offset, unsigned required_align)
{
  rtx target;

  if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
    crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;

  target = gen_reg_rtx (Pmode);
  emit_move_insn (target, virtual_stack_vars_rtx);
  target = expand_binop (Pmode, add_optab, target,
			 gen_int_mode (offset, Pmode),
			 NULL_RTX, 1, OPTAB_LIB_WIDEN);
  target = align_dynamic_address (target, required_align);

  /* Now that we've committed to a return value, mark its alignment.  */
  mark_reg_pointer (target, required_align);

  return target;
}

/* A front end may want to override GCC's stack checking by providing a
   run-time routine to call to check the stack, so provide a mechanism for
   calling that routine.  */

static GTY(()) rtx stack_check_libfunc;

void
set_stack_check_libfunc (const char *libfunc_name)
{
  gcc_assert (stack_check_libfunc == NULL_RTX);
  stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
}

/* Emit one stack probe at ADDRESS, an address within the stack.  */

void
emit_stack_probe (rtx address)
{
  if (targetm.have_probe_stack_address ())
    emit_insn (targetm.gen_probe_stack_address (address));
  else
    {
      rtx memref = gen_rtx_MEM (word_mode, address);

      MEM_VOLATILE_P (memref) = 1;

      /* See if we have an insn to probe the stack.  */
      if (targetm.have_probe_stack ())
        emit_insn (targetm.gen_probe_stack (memref));
      else
        emit_move_insn (memref, const0_rtx);
    }
}

/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
   FIRST is a constant and size is a Pmode RTX.  These are offsets from
   the current stack pointer.  STACK_GROWS_DOWNWARD says whether to add
   or subtract them from the stack pointer.  */

#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)

#if STACK_GROWS_DOWNWARD
#define STACK_GROW_OP MINUS
#define STACK_GROW_OPTAB sub_optab
#define STACK_GROW_OFF(off) -(off)
#else
#define STACK_GROW_OP PLUS
#define STACK_GROW_OPTAB add_optab
#define STACK_GROW_OFF(off) (off)
#endif

void
probe_stack_range (HOST_WIDE_INT first, rtx size)
{
  /* First ensure SIZE is Pmode.  */
  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
    size = convert_to_mode (Pmode, size, 1);

  /* Next see if we have a function to check the stack.  */
  if (stack_check_libfunc)
    {
      rtx addr = memory_address (Pmode,
				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
					         stack_pointer_rtx,
					         plus_constant (Pmode,
								size, first)));
      emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode, 1, addr,
			 Pmode);
    }

  /* Next see if we have an insn to check the stack.  */
  else if (targetm.have_check_stack ())
    {
      struct expand_operand ops[1];
      rtx addr = memory_address (Pmode,
				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
					         stack_pointer_rtx,
					         plus_constant (Pmode,
								size, first)));
      bool success;
      create_input_operand (&ops[0], addr, Pmode);
      success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
      gcc_assert (success);
    }

  /* Otherwise we have to generate explicit probes.  If we have a constant
     small number of them to generate, that's the easy case.  */
  else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
    {
      HOST_WIDE_INT isize = INTVAL (size), i;
      rtx addr;

      /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
	 it exceeds SIZE.  If only one probe is needed, this will not
	 generate any code.  Then probe at FIRST + SIZE.  */
      for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
	{
	  addr = memory_address (Pmode,
				 plus_constant (Pmode, stack_pointer_rtx,
				 		STACK_GROW_OFF (first + i)));
	  emit_stack_probe (addr);
	}

      addr = memory_address (Pmode,
			     plus_constant (Pmode, stack_pointer_rtx,
					    STACK_GROW_OFF (first + isize)));
      emit_stack_probe (addr);
    }

  /* In the variable case, do the same as above, but in a loop.  Note that we
     must be extra careful with variables wrapping around because we might be
     at the very top (or the very bottom) of the address space and we have to
     be able to handle this case properly; in particular, we use an equality
     test for the loop condition.  */
  else
    {
      rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
      rtx_code_label *loop_lab = gen_label_rtx ();
      rtx_code_label *end_lab = gen_label_rtx ();

      /* Step 1: round SIZE to the previous multiple of the interval.  */

      /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
      rounded_size
	= simplify_gen_binary (AND, Pmode, size,
			       gen_int_mode (-PROBE_INTERVAL, Pmode));
      rounded_size_op = force_operand (rounded_size, NULL_RTX);


      /* Step 2: compute initial and final value of the loop counter.  */

      /* TEST_ADDR = SP + FIRST.  */
      test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
					 	 stack_pointer_rtx,
						 gen_int_mode (first, Pmode)),
				 NULL_RTX);

      /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
      last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
						 test_addr,
						 rounded_size_op), NULL_RTX);


      /* Step 3: the loop

	 while (TEST_ADDR != LAST_ADDR)
	   {
	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
	     probe at TEST_ADDR
	   }

	 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
	 until it is equal to ROUNDED_SIZE.  */

      emit_label (loop_lab);

      /* Jump to END_LAB if TEST_ADDR == LAST_ADDR.  */
      emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
			       end_lab);

      /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
      temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
			   gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
			   1, OPTAB_WIDEN);

      gcc_assert (temp == test_addr);

      /* Probe at TEST_ADDR.  */
      emit_stack_probe (test_addr);

      emit_jump (loop_lab);

      emit_label (end_lab);


      /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
	 that SIZE is equal to ROUNDED_SIZE.  */

      /* TEMP = SIZE - ROUNDED_SIZE.  */
      temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
      if (temp != const0_rtx)
	{
	  rtx addr;

	  if (CONST_INT_P (temp))
	    {
	      /* Use [base + disp} addressing mode if supported.  */
	      HOST_WIDE_INT offset = INTVAL (temp);
	      addr = memory_address (Pmode,
				     plus_constant (Pmode, last_addr,
						    STACK_GROW_OFF (offset)));
	    }
	  else
	    {
	      /* Manual CSE if the difference is not known at compile-time.  */
	      temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
	      addr = memory_address (Pmode,
				     gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
						     last_addr, temp));
	    }

	  emit_stack_probe (addr);
	}
    }

  /* Make sure nothing is scheduled before we are done.  */
  emit_insn (gen_blockage ());
}

/* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
   while probing it.  This pushes when SIZE is positive.  SIZE need not
   be constant.  If ADJUST_BACK is true, adjust back the stack pointer
   by plus SIZE at the end.  */

void
anti_adjust_stack_and_probe (rtx size, bool adjust_back)
{
  /* We skip the probe for the first interval + a small dope of 4 words and
     probe that many bytes past the specified size to maintain a protection
     area at the botton of the stack.  */
  const int dope = 4 * UNITS_PER_WORD;

  /* First ensure SIZE is Pmode.  */
  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
    size = convert_to_mode (Pmode, size, 1);

  /* If we have a constant small number of probes to generate, that's the
     easy case.  */
  if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
    {
      HOST_WIDE_INT isize = INTVAL (size), i;
      bool first_probe = true;

      /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
	 values of N from 1 until it exceeds SIZE.  If only one probe is
	 needed, this will not generate any code.  Then adjust and probe
	 to PROBE_INTERVAL + SIZE.  */
      for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
	{
	  if (first_probe)
	    {
	      anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
	      first_probe = false;
	    }
	  else
	    anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
	  emit_stack_probe (stack_pointer_rtx);
	}

      if (first_probe)
	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
      else
	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
      emit_stack_probe (stack_pointer_rtx);
    }

  /* In the variable case, do the same as above, but in a loop.  Note that we
     must be extra careful with variables wrapping around because we might be
     at the very top (or the very bottom) of the address space and we have to
     be able to handle this case properly; in particular, we use an equality
     test for the loop condition.  */
  else
    {
      rtx rounded_size, rounded_size_op, last_addr, temp;
      rtx_code_label *loop_lab = gen_label_rtx ();
      rtx_code_label *end_lab = gen_label_rtx ();


      /* Step 1: round SIZE to the previous multiple of the interval.  */

      /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
      rounded_size
	= simplify_gen_binary (AND, Pmode, size,
			       gen_int_mode (-PROBE_INTERVAL, Pmode));
      rounded_size_op = force_operand (rounded_size, NULL_RTX);


      /* Step 2: compute initial and final value of the loop counter.  */

      /* SP = SP_0 + PROBE_INTERVAL.  */
      anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));

      /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE.  */
      last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
						 stack_pointer_rtx,
						 rounded_size_op), NULL_RTX);


      /* Step 3: the loop

	 while (SP != LAST_ADDR)
	   {
	     SP = SP + PROBE_INTERVAL
	     probe at SP
	   }

	 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
	 values of N from 1 until it is equal to ROUNDED_SIZE.  */

      emit_label (loop_lab);

      /* Jump to END_LAB if SP == LAST_ADDR.  */
      emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
			       Pmode, 1, end_lab);

      /* SP = SP + PROBE_INTERVAL and probe at SP.  */
      anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
      emit_stack_probe (stack_pointer_rtx);

      emit_jump (loop_lab);

      emit_label (end_lab);


      /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
	 assert at compile-time that SIZE is equal to ROUNDED_SIZE.  */

      /* TEMP = SIZE - ROUNDED_SIZE.  */
      temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
      if (temp != const0_rtx)
	{
	  /* Manual CSE if the difference is not known at compile-time.  */
	  if (GET_CODE (temp) != CONST_INT)
	    temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
	  anti_adjust_stack (temp);
	  emit_stack_probe (stack_pointer_rtx);
	}
    }

  /* Adjust back and account for the additional first interval.  */
  if (adjust_back)
    adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
  else
    adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
}

/* Return an rtx representing the register or memory location
   in which a scalar value of data type VALTYPE
   was returned by a function call to function FUNC.
   FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
   function is known, otherwise 0.
   OUTGOING is 1 if on a machine with register windows this function
   should return the register in which the function will put its result
   and 0 otherwise.  */

rtx
hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
		     int outgoing ATTRIBUTE_UNUSED)
{
  rtx val;

  val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);

  if (REG_P (val)
      && GET_MODE (val) == BLKmode)
    {
      unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
      machine_mode tmpmode;

      /* int_size_in_bytes can return -1.  We don't need a check here
	 since the value of bytes will then be large enough that no
	 mode will match anyway.  */

      for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
	   tmpmode != VOIDmode;
	   tmpmode = GET_MODE_WIDER_MODE (tmpmode))
	{
	  /* Have we found a large enough mode?  */
	  if (GET_MODE_SIZE (tmpmode) >= bytes)
	    break;
	}

      /* No suitable mode found.  */
      gcc_assert (tmpmode != VOIDmode);

      PUT_MODE (val, tmpmode);
    }
  return val;
}

/* Return an rtx representing the register or memory location
   in which a scalar value of mode MODE was returned by a library call.  */

rtx
hard_libcall_value (machine_mode mode, rtx fun)
{
  return targetm.calls.libcall_value (mode, fun);
}

/* Look up the tree code for a given rtx code
   to provide the arithmetic operation for real_arithmetic.
   The function returns an int because the caller may not know
   what `enum tree_code' means.  */

int
rtx_to_tree_code (enum rtx_code code)
{
  enum tree_code tcode;

  switch (code)
    {
    case PLUS:
      tcode = PLUS_EXPR;
      break;
    case MINUS:
      tcode = MINUS_EXPR;
      break;
    case MULT:
      tcode = MULT_EXPR;
      break;
    case DIV:
      tcode = RDIV_EXPR;
      break;
    case SMIN:
      tcode = MIN_EXPR;
      break;
    case SMAX:
      tcode = MAX_EXPR;
      break;
    default:
      tcode = LAST_AND_UNUSED_TREE_CODE;
      break;
    }
  return ((int) tcode);
}

#include "gt-explow.h"