summaryrefslogtreecommitdiff
path: root/gcc/doc/extend.texi
blob: 89d1d143d9f2a0bfbcfd966b8dfcfe58b88de4fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
c Copyright (C) 1988-2022 Free Software Foundation, Inc.

@c This is part of the GCC manual.
@c For copying conditions, see the file gcc.texi.

@node C Extensions
@chapter Extensions to the C Language Family
@cindex extensions, C language
@cindex C language extensions

@opindex pedantic
GNU C provides several language features not found in ISO standard C@.
(The @option{-pedantic} option directs GCC to print a warning message if
any of these features is used.)  To test for the availability of these
features in conditional compilation, check for a predefined macro
@code{__GNUC__}, which is always defined under GCC@.

These extensions are available in C and Objective-C@.  Most of them are
also available in C++.  @xref{C++ Extensions,,Extensions to the
C++ Language}, for extensions that apply @emph{only} to C++.

Some features that are in ISO C99 but not C90 or C++ are also, as
extensions, accepted by GCC in C90 mode and in C++.

@menu
* Statement Exprs::     Putting statements and declarations inside expressions.
* Local Labels::        Labels local to a block.
* Labels as Values::    Getting pointers to labels, and computed gotos.
* Nested Functions::    Nested function in GNU C.
* Nonlocal Gotos::      Nonlocal gotos.
* Constructing Calls::  Dispatching a call to another function.
* Typeof::              @code{typeof}: referring to the type of an expression.
* Conditionals::        Omitting the middle operand of a @samp{?:} expression.
* __int128::		128-bit integers---@code{__int128}.
* Long Long::           Double-word integers---@code{long long int}.
* Complex::             Data types for complex numbers.
* Floating Types::      Additional Floating Types.
* Half-Precision::      Half-Precision Floating Point.
* Decimal Float::       Decimal Floating Types.
* Hex Floats::          Hexadecimal floating-point constants.
* Fixed-Point::         Fixed-Point Types.
* Named Address Spaces::Named address spaces.
* Zero Length::         Zero-length arrays.
* Empty Structures::    Structures with no members.
* Variable Length::     Arrays whose length is computed at run time.
* Variadic Macros::     Macros with a variable number of arguments.
* Escaped Newlines::    Slightly looser rules for escaped newlines.
* Subscripting::        Any array can be subscripted, even if not an lvalue.
* Pointer Arith::       Arithmetic on @code{void}-pointers and function pointers.
* Variadic Pointer Args::  Pointer arguments to variadic functions.
* Pointers to Arrays::  Pointers to arrays with qualifiers work as expected.
* Initializers::        Non-constant initializers.
* Compound Literals::   Compound literals give structures, unions
                        or arrays as values.
* Designated Inits::    Labeling elements of initializers.
* Case Ranges::         `case 1 ... 9' and such.
* Cast to Union::       Casting to union type from any member of the union.
* Mixed Labels and Declarations::  Mixing declarations, labels and code.
* Function Attributes:: Declaring that functions have no side effects,
                        or that they can never return.
* Variable Attributes:: Specifying attributes of variables.
* Type Attributes::     Specifying attributes of types.
* Label Attributes::    Specifying attributes on labels.
* Enumerator Attributes:: Specifying attributes on enumerators.
* Statement Attributes:: Specifying attributes on statements.
* Attribute Syntax::    Formal syntax for attributes.
* Function Prototypes:: Prototype declarations and old-style definitions.
* C++ Comments::        C++ comments are recognized.
* Dollar Signs::        Dollar sign is allowed in identifiers.
* Character Escapes::   @samp{\e} stands for the character @key{ESC}.
* Alignment::           Determining the alignment of a function, type or variable.
* Inline::              Defining inline functions (as fast as macros).
* Volatiles::           What constitutes an access to a volatile object.
* Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler.
* Alternate Keywords::  @code{__const__}, @code{__asm__}, etc., for header files.
* Incomplete Enums::    @code{enum foo;}, with details to follow.
* Function Names::      Printable strings which are the name of the current
                        function.
* Return Address::      Getting the return or frame address of a function.
* Vector Extensions::   Using vector instructions through built-in functions.
* Offsetof::            Special syntax for implementing @code{offsetof}.
* __sync Builtins::     Legacy built-in functions for atomic memory access.
* __atomic Builtins::   Atomic built-in functions with memory model.
* Integer Overflow Builtins:: Built-in functions to perform arithmetics and
                        arithmetic overflow checking.
* x86 specific memory model extensions for transactional memory:: x86 memory models.
* Object Size Checking:: Built-in functions for limited buffer overflow
                        checking.
* Other Builtins::      Other built-in functions.
* Target Builtins::     Built-in functions specific to particular targets.
* Target Format Checks:: Format checks specific to particular targets.
* Pragmas::             Pragmas accepted by GCC.
* Unnamed Fields::      Unnamed struct/union fields within structs/unions.
* Thread-Local::        Per-thread variables.
* Binary constants::    Binary constants using the @samp{0b} prefix.
@end menu

@node Statement Exprs
@section Statements and Declarations in Expressions
@cindex statements inside expressions
@cindex declarations inside expressions
@cindex expressions containing statements
@cindex macros, statements in expressions

@c the above section title wrapped and causes an underfull hbox.. i
@c changed it from "within" to "in". --mew 4feb93
A compound statement enclosed in parentheses may appear as an expression
in GNU C@.  This allows you to use loops, switches, and local variables
within an expression.

Recall that a compound statement is a sequence of statements surrounded
by braces; in this construct, parentheses go around the braces.  For
example:

@smallexample
(@{ int y = foo (); int z;
   if (y > 0) z = y;
   else z = - y;
   z; @})
@end smallexample

@noindent
is a valid (though slightly more complex than necessary) expression
for the absolute value of @code{foo ()}.

The last thing in the compound statement should be an expression
followed by a semicolon; the value of this subexpression serves as the
value of the entire construct.  (If you use some other kind of statement
last within the braces, the construct has type @code{void}, and thus
effectively no value.)

This feature is especially useful in making macro definitions ``safe'' (so
that they evaluate each operand exactly once).  For example, the
``maximum'' function is commonly defined as a macro in standard C as
follows:

@smallexample
#define max(a,b) ((a) > (b) ? (a) : (b))
@end smallexample

@noindent
@cindex side effects, macro argument
But this definition computes either @var{a} or @var{b} twice, with bad
results if the operand has side effects.  In GNU C, if you know the
type of the operands (here taken as @code{int}), you can avoid this
problem by defining the macro as follows:

@smallexample
#define maxint(a,b) \
  (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
@end smallexample

Note that introducing variable declarations (as we do in @code{maxint}) can
cause variable shadowing, so while this example using the @code{max} macro
produces correct results:
@smallexample
int _a = 1, _b = 2, c;
c = max (_a, _b);
@end smallexample
@noindent
this example using maxint will not:
@smallexample
int _a = 1, _b = 2, c;
c = maxint (_a, _b);
@end smallexample

This problem may for instance occur when we use this pattern recursively, like
so:

@smallexample
#define maxint3(a, b, c) \
  (@{int _a = (a), _b = (b), _c = (c); maxint (maxint (_a, _b), _c); @})
@end smallexample

Embedded statements are not allowed in constant expressions, such as
the value of an enumeration constant, the width of a bit-field, or
the initial value of a static variable.

If you don't know the type of the operand, you can still do this, but you
must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}).

In G++, the result value of a statement expression undergoes array and
function pointer decay, and is returned by value to the enclosing
expression.  For instance, if @code{A} is a class, then

@smallexample
        A a;

        (@{a;@}).Foo ()
@end smallexample

@noindent
constructs a temporary @code{A} object to hold the result of the
statement expression, and that is used to invoke @code{Foo}.
Therefore the @code{this} pointer observed by @code{Foo} is not the
address of @code{a}.

In a statement expression, any temporaries created within a statement
are destroyed at that statement's end.  This makes statement
expressions inside macros slightly different from function calls.  In
the latter case temporaries introduced during argument evaluation are
destroyed at the end of the statement that includes the function
call.  In the statement expression case they are destroyed during
the statement expression.  For instance,

@smallexample
#define macro(a)  (@{__typeof__(a) b = (a); b + 3; @})
template<typename T> T function(T a) @{ T b = a; return b + 3; @}

void foo ()
@{
  macro (X ());
  function (X ());
@}
@end smallexample

@noindent
has different places where temporaries are destroyed.  For the
@code{macro} case, the temporary @code{X} is destroyed just after
the initialization of @code{b}.  In the @code{function} case that
temporary is destroyed when the function returns.

These considerations mean that it is probably a bad idea to use
statement expressions of this form in header files that are designed to
work with C++.  (Note that some versions of the GNU C Library contained
header files using statement expressions that lead to precisely this
bug.)

Jumping into a statement expression with @code{goto} or using a
@code{switch} statement outside the statement expression with a
@code{case} or @code{default} label inside the statement expression is
not permitted.  Jumping into a statement expression with a computed
@code{goto} (@pxref{Labels as Values}) has undefined behavior.
Jumping out of a statement expression is permitted, but if the
statement expression is part of a larger expression then it is
unspecified which other subexpressions of that expression have been
evaluated except where the language definition requires certain
subexpressions to be evaluated before or after the statement
expression.  A @code{break} or @code{continue} statement inside of
a statement expression used in @code{while}, @code{do} or @code{for}
loop or @code{switch} statement condition
or @code{for} statement init or increment expressions jumps to an
outer loop or @code{switch} statement if any (otherwise it is an error),
rather than to the loop or @code{switch} statement in whose condition
or init or increment expression it appears.
In any case, as with a function call, the evaluation of a
statement expression is not interleaved with the evaluation of other
parts of the containing expression.  For example,

@smallexample
  foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
@end smallexample

@noindent
calls @code{foo} and @code{bar1} and does not call @code{baz} but
may or may not call @code{bar2}.  If @code{bar2} is called, it is
called after @code{foo} and before @code{bar1}.

@node Local Labels
@section Locally Declared Labels
@cindex local labels
@cindex macros, local labels

GCC allows you to declare @dfn{local labels} in any nested block
scope.  A local label is just like an ordinary label, but you can
only reference it (with a @code{goto} statement, or by taking its
address) within the block in which it is declared.

A local label declaration looks like this:

@smallexample
__label__ @var{label};
@end smallexample

@noindent
or

@smallexample
__label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
@end smallexample

Local label declarations must come at the beginning of the block,
before any ordinary declarations or statements.

The label declaration defines the label @emph{name}, but does not define
the label itself.  You must do this in the usual way, with
@code{@var{label}:}, within the statements of the statement expression.

The local label feature is useful for complex macros.  If a macro
contains nested loops, a @code{goto} can be useful for breaking out of
them.  However, an ordinary label whose scope is the whole function
cannot be used: if the macro can be expanded several times in one
function, the label is multiply defined in that function.  A
local label avoids this problem.  For example:

@smallexample
#define SEARCH(value, array, target)              \
do @{                                              \
  __label__ found;                                \
  typeof (target) _SEARCH_target = (target);      \
  typeof (*(array)) *_SEARCH_array = (array);     \
  int i, j;                                       \
  int value;                                      \
  for (i = 0; i < max; i++)                       \
    for (j = 0; j < max; j++)                     \
      if (_SEARCH_array[i][j] == _SEARCH_target)  \
        @{ (value) = i; goto found; @}              \
  (value) = -1;                                   \
 found:;                                          \
@} while (0)
@end smallexample

This could also be written using a statement expression:

@smallexample
#define SEARCH(array, target)                     \
(@{                                                \
  __label__ found;                                \
  typeof (target) _SEARCH_target = (target);      \
  typeof (*(array)) *_SEARCH_array = (array);     \
  int i, j;                                       \
  int value;                                      \
  for (i = 0; i < max; i++)                       \
    for (j = 0; j < max; j++)                     \
      if (_SEARCH_array[i][j] == _SEARCH_target)  \
        @{ value = i; goto found; @}                \
  value = -1;                                     \
 found:                                           \
  value;                                          \
@})
@end smallexample

Local label declarations also make the labels they declare visible to
nested functions, if there are any.  @xref{Nested Functions}, for details.

@node Labels as Values
@section Labels as Values
@cindex labels as values
@cindex computed gotos
@cindex goto with computed label
@cindex address of a label

You can get the address of a label defined in the current function
(or a containing function) with the unary operator @samp{&&}.  The
value has type @code{void *}.  This value is a constant and can be used
wherever a constant of that type is valid.  For example:

@smallexample
void *ptr;
/* @r{@dots{}} */
ptr = &&foo;
@end smallexample

To use these values, you need to be able to jump to one.  This is done
with the computed goto statement@footnote{The analogous feature in
Fortran is called an assigned goto, but that name seems inappropriate in
C, where one can do more than simply store label addresses in label
variables.}, @code{goto *@var{exp};}.  For example,

@smallexample
goto *ptr;
@end smallexample

@noindent
Any expression of type @code{void *} is allowed.

One way of using these constants is in initializing a static array that
serves as a jump table:

@smallexample
static void *array[] = @{ &&foo, &&bar, &&hack @};
@end smallexample

@noindent
Then you can select a label with indexing, like this:

@smallexample
goto *array[i];
@end smallexample

@noindent
Note that this does not check whether the subscript is in bounds---array
indexing in C never does that.

Such an array of label values serves a purpose much like that of the
@code{switch} statement.  The @code{switch} statement is cleaner, so
use that rather than an array unless the problem does not fit a
@code{switch} statement very well.

Another use of label values is in an interpreter for threaded code.
The labels within the interpreter function can be stored in the
threaded code for super-fast dispatching.

You may not use this mechanism to jump to code in a different function.
If you do that, totally unpredictable things happen.  The best way to
avoid this is to store the label address only in automatic variables and
never pass it as an argument.

An alternate way to write the above example is

@smallexample
static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
                             &&hack - &&foo @};
goto *(&&foo + array[i]);
@end smallexample

@noindent
This is more friendly to code living in shared libraries, as it reduces
the number of dynamic relocations that are needed, and by consequence,
allows the data to be read-only.
This alternative with label differences is not supported for the AVR target,
please use the first approach for AVR programs.

The @code{&&foo} expressions for the same label might have different
values if the containing function is inlined or cloned.  If a program
relies on them being always the same,
@code{__attribute__((__noinline__,__noclone__))} should be used to
prevent inlining and cloning.  If @code{&&foo} is used in a static
variable initializer, inlining and cloning is forbidden.

@node Nested Functions
@section Nested Functions
@cindex nested functions
@cindex downward funargs
@cindex thunks

A @dfn{nested function} is a function defined inside another function.
Nested functions are supported as an extension in GNU C, but are not
supported by GNU C++.

The nested function's name is local to the block where it is defined.
For example, here we define a nested function named @code{square}, and
call it twice:

@smallexample
@group
foo (double a, double b)
@{
  double square (double z) @{ return z * z; @}

  return square (a) + square (b);
@}
@end group
@end smallexample

The nested function can access all the variables of the containing
function that are visible at the point of its definition.  This is
called @dfn{lexical scoping}.  For example, here we show a nested
function which uses an inherited variable named @code{offset}:

@smallexample
@group
bar (int *array, int offset, int size)
@{
  int access (int *array, int index)
    @{ return array[index + offset]; @}
  int i;
  /* @r{@dots{}} */
  for (i = 0; i < size; i++)
    /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
@}
@end group
@end smallexample

Nested function definitions are permitted within functions in the places
where variable definitions are allowed; that is, in any block, mixed
with the other declarations and statements in the block.

It is possible to call the nested function from outside the scope of its
name by storing its address or passing the address to another function:

@smallexample
hack (int *array, int size)
@{
  void store (int index, int value)
    @{ array[index] = value; @}

  intermediate (store, size);
@}
@end smallexample

Here, the function @code{intermediate} receives the address of
@code{store} as an argument.  If @code{intermediate} calls @code{store},
the arguments given to @code{store} are used to store into @code{array}.
But this technique works only so long as the containing function
(@code{hack}, in this example) does not exit.

If you try to call the nested function through its address after the
containing function exits, all hell breaks loose.  If you try
to call it after a containing scope level exits, and if it refers
to some of the variables that are no longer in scope, you may be lucky,
but it's not wise to take the risk.  If, however, the nested function
does not refer to anything that has gone out of scope, you should be
safe.

GCC implements taking the address of a nested function using a technique
called @dfn{trampolines}.  This technique was described in
@cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
C++ Conference Proceedings, October 17-21, 1988).

A nested function can jump to a label inherited from a containing
function, provided the label is explicitly declared in the containing
function (@pxref{Local Labels}).  Such a jump returns instantly to the
containing function, exiting the nested function that did the
@code{goto} and any intermediate functions as well.  Here is an example:

@smallexample
@group
bar (int *array, int offset, int size)
@{
  __label__ failure;
  int access (int *array, int index)
    @{
      if (index > size)
        goto failure;
      return array[index + offset];
    @}
  int i;
  /* @r{@dots{}} */
  for (i = 0; i < size; i++)
    /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
  /* @r{@dots{}} */
  return 0;

 /* @r{Control comes here from @code{access}
    if it detects an error.}  */
 failure:
  return -1;
@}
@end group
@end smallexample

A nested function always has no linkage.  Declaring one with
@code{extern} or @code{static} is erroneous.  If you need to declare the nested function
before its definition, use @code{auto} (which is otherwise meaningless
for function declarations).

@smallexample
bar (int *array, int offset, int size)
@{
  __label__ failure;
  auto int access (int *, int);
  /* @r{@dots{}} */
  int access (int *array, int index)
    @{
      if (index > size)
        goto failure;
      return array[index + offset];
    @}
  /* @r{@dots{}} */
@}
@end smallexample

@node Nonlocal Gotos
@section Nonlocal Gotos
@cindex nonlocal gotos

GCC provides the built-in functions @code{__builtin_setjmp} and
@code{__builtin_longjmp} which are similar to, but not interchangeable
with, the C library functions @code{setjmp} and @code{longjmp}.  
The built-in versions are used internally by GCC's libraries
to implement exception handling on some targets.  You should use the 
standard C library functions declared in @code{<setjmp.h>} in user code
instead of the builtins.

The built-in versions of these functions use GCC's normal
mechanisms to save and restore registers using the stack on function
entry and exit.  The jump buffer argument @var{buf} holds only the
information needed to restore the stack frame, rather than the entire 
set of saved register values.  

An important caveat is that GCC arranges to save and restore only
those registers known to the specific architecture variant being
compiled for.  This can make @code{__builtin_setjmp} and
@code{__builtin_longjmp} more efficient than their library
counterparts in some cases, but it can also cause incorrect and
mysterious behavior when mixing with code that uses the full register
set.

You should declare the jump buffer argument @var{buf} to the
built-in functions as:

@smallexample
#include <stdint.h>
intptr_t @var{buf}[5];
@end smallexample

@deftypefn {Built-in Function} {int} __builtin_setjmp (intptr_t *@var{buf})
This function saves the current stack context in @var{buf}.  
@code{__builtin_setjmp} returns 0 when returning directly,
and 1 when returning from @code{__builtin_longjmp} using the same
@var{buf}.
@end deftypefn

@deftypefn {Built-in Function} {void} __builtin_longjmp (intptr_t *@var{buf}, int @var{val})
This function restores the stack context in @var{buf}, 
saved by a previous call to @code{__builtin_setjmp}.  After
@code{__builtin_longjmp} is finished, the program resumes execution as
if the matching @code{__builtin_setjmp} returns the value @var{val},
which must be 1.

Because @code{__builtin_longjmp} depends on the function return
mechanism to restore the stack context, it cannot be called
from the same function calling @code{__builtin_setjmp} to
initialize @var{buf}.  It can only be called from a function called
(directly or indirectly) from the function calling @code{__builtin_setjmp}.
@end deftypefn

@node Constructing Calls
@section Constructing Function Calls
@cindex constructing calls
@cindex forwarding calls

Using the built-in functions described below, you can record
the arguments a function received, and call another function
with the same arguments, without knowing the number or types
of the arguments.

You can also record the return value of that function call,
and later return that value, without knowing what data type
the function tried to return (as long as your caller expects
that data type).

However, these built-in functions may interact badly with some
sophisticated features or other extensions of the language.  It
is, therefore, not recommended to use them outside very simple
functions acting as mere forwarders for their arguments.

@deftypefn {Built-in Function} {void *} __builtin_apply_args ()
This built-in function returns a pointer to data
describing how to perform a call with the same arguments as are passed
to the current function.

The function saves the arg pointer register, structure value address,
and all registers that might be used to pass arguments to a function
into a block of memory allocated on the stack.  Then it returns the
address of that block.
@end deftypefn

@deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
This built-in function invokes @var{function}
with a copy of the parameters described by @var{arguments}
and @var{size}.

The value of @var{arguments} should be the value returned by
@code{__builtin_apply_args}.  The argument @var{size} specifies the size
of the stack argument data, in bytes.

This function returns a pointer to data describing
how to return whatever value is returned by @var{function}.  The data
is saved in a block of memory allocated on the stack.

It is not always simple to compute the proper value for @var{size}.  The
value is used by @code{__builtin_apply} to compute the amount of data
that should be pushed on the stack and copied from the incoming argument
area.
@end deftypefn

@deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
This built-in function returns the value described by @var{result} from
the containing function.  You should specify, for @var{result}, a value
returned by @code{__builtin_apply}.
@end deftypefn

@deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
This built-in function represents all anonymous arguments of an inline
function.  It can be used only in inline functions that are always
inlined, never compiled as a separate function, such as those using
@code{__attribute__ ((__always_inline__))} or
@code{__attribute__ ((__gnu_inline__))} extern inline functions.
It must be only passed as last argument to some other function
with variable arguments.  This is useful for writing small wrapper
inlines for variable argument functions, when using preprocessor
macros is undesirable.  For example:
@smallexample
extern int myprintf (FILE *f, const char *format, ...);
extern inline __attribute__ ((__gnu_inline__)) int
myprintf (FILE *f, const char *format, ...)
@{
  int r = fprintf (f, "myprintf: ");
  if (r < 0)
    return r;
  int s = fprintf (f, format, __builtin_va_arg_pack ());
  if (s < 0)
    return s;
  return r + s;
@}
@end smallexample
@end deftypefn

@deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
This built-in function returns the number of anonymous arguments of
an inline function.  It can be used only in inline functions that
are always inlined, never compiled as a separate function, such
as those using @code{__attribute__ ((__always_inline__))} or
@code{__attribute__ ((__gnu_inline__))} extern inline functions.
For example following does link- or run-time checking of open
arguments for optimized code:
@smallexample
#ifdef __OPTIMIZE__
extern inline __attribute__((__gnu_inline__)) int
myopen (const char *path, int oflag, ...)
@{
  if (__builtin_va_arg_pack_len () > 1)
    warn_open_too_many_arguments ();

  if (__builtin_constant_p (oflag))
    @{
      if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
        @{
          warn_open_missing_mode ();
          return __open_2 (path, oflag);
        @}
      return open (path, oflag, __builtin_va_arg_pack ());
    @}

  if (__builtin_va_arg_pack_len () < 1)
    return __open_2 (path, oflag);

  return open (path, oflag, __builtin_va_arg_pack ());
@}
#endif
@end smallexample
@end deftypefn

@node Typeof
@section Referring to a Type with @code{typeof}
@findex typeof
@findex sizeof
@cindex macros, types of arguments

Another way to refer to the type of an expression is with @code{typeof}.
The syntax of using of this keyword looks like @code{sizeof}, but the
construct acts semantically like a type name defined with @code{typedef}.

There are two ways of writing the argument to @code{typeof}: with an
expression or with a type.  Here is an example with an expression:

@smallexample
typeof (x[0](1))
@end smallexample

@noindent
This assumes that @code{x} is an array of pointers to functions;
the type described is that of the values of the functions.

Here is an example with a typename as the argument:

@smallexample
typeof (int *)
@end smallexample

@noindent
Here the type described is that of pointers to @code{int}.

If you are writing a header file that must work when included in ISO C
programs, write @code{__typeof__} instead of @code{typeof}.
@xref{Alternate Keywords}.

A @code{typeof} construct can be used anywhere a typedef name can be
used.  For example, you can use it in a declaration, in a cast, or inside
of @code{sizeof} or @code{typeof}.

The operand of @code{typeof} is evaluated for its side effects if and
only if it is an expression of variably modified type or the name of
such a type.

@code{typeof} is often useful in conjunction with
statement expressions (@pxref{Statement Exprs}).
Here is how the two together can
be used to define a safe ``maximum'' macro which operates on any
arithmetic type and evaluates each of its arguments exactly once:

@smallexample
#define max(a,b) \
  (@{ typeof (a) _a = (a); \
      typeof (b) _b = (b); \
    _a > _b ? _a : _b; @})
@end smallexample

@cindex underscores in variables in macros
@cindex @samp{_} in variables in macros
@cindex local variables in macros
@cindex variables, local, in macros
@cindex macros, local variables in

The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within the
expressions that are substituted for @code{a} and @code{b}.  Eventually we
hope to design a new form of declaration syntax that allows you to declare
variables whose scopes start only after their initializers; this will be a
more reliable way to prevent such conflicts.

@noindent
Some more examples of the use of @code{typeof}:

@itemize @bullet
@item
This declares @code{y} with the type of what @code{x} points to.

@smallexample
typeof (*x) y;
@end smallexample

@item
This declares @code{y} as an array of such values.

@smallexample
typeof (*x) y[4];
@end smallexample

@item
This declares @code{y} as an array of pointers to characters:

@smallexample
typeof (typeof (char *)[4]) y;
@end smallexample

@noindent
It is equivalent to the following traditional C declaration:

@smallexample
char *y[4];
@end smallexample

To see the meaning of the declaration using @code{typeof}, and why it
might be a useful way to write, rewrite it with these macros:

@smallexample
#define pointer(T)  typeof(T *)
#define array(T, N) typeof(T [N])
@end smallexample

@noindent
Now the declaration can be rewritten this way:

@smallexample
array (pointer (char), 4) y;
@end smallexample

@noindent
Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
pointers to @code{char}.
@end itemize

In GNU C, but not GNU C++, you may also declare the type of a variable
as @code{__auto_type}.  In that case, the declaration must declare
only one variable, whose declarator must just be an identifier, the
declaration must be initialized, and the type of the variable is
determined by the initializer; the name of the variable is not in
scope until after the initializer.  (In C++, you should use C++11
@code{auto} for this purpose.)  Using @code{__auto_type}, the
``maximum'' macro above could be written as:

@smallexample
#define max(a,b) \
  (@{ __auto_type _a = (a); \
      __auto_type _b = (b); \
    _a > _b ? _a : _b; @})
@end smallexample

Using @code{__auto_type} instead of @code{typeof} has two advantages:

@itemize @bullet
@item Each argument to the macro appears only once in the expansion of
the macro.  This prevents the size of the macro expansion growing
exponentially when calls to such macros are nested inside arguments of
such macros.

@item If the argument to the macro has variably modified type, it is
evaluated only once when using @code{__auto_type}, but twice if
@code{typeof} is used.
@end itemize

@node Conditionals
@section Conditionals with Omitted Operands
@cindex conditional expressions, extensions
@cindex omitted middle-operands
@cindex middle-operands, omitted
@cindex extensions, @code{?:}
@cindex @code{?:} extensions

The middle operand in a conditional expression may be omitted.  Then
if the first operand is nonzero, its value is the value of the conditional
expression.

Therefore, the expression

@smallexample
x ? : y
@end smallexample

@noindent
has the value of @code{x} if that is nonzero; otherwise, the value of
@code{y}.

This example is perfectly equivalent to

@smallexample
x ? x : y
@end smallexample

@cindex side effect in @code{?:}
@cindex @code{?:} side effect
@noindent
In this simple case, the ability to omit the middle operand is not
especially useful.  When it becomes useful is when the first operand does,
or may (if it is a macro argument), contain a side effect.  Then repeating
the operand in the middle would perform the side effect twice.  Omitting
the middle operand uses the value already computed without the undesirable
effects of recomputing it.

@node __int128
@section 128-bit Integers
@cindex @code{__int128} data types

As an extension the integer scalar type @code{__int128} is supported for
targets which have an integer mode wide enough to hold 128 bits.
Simply write @code{__int128} for a signed 128-bit integer, or
@code{unsigned __int128} for an unsigned 128-bit integer.  There is no
support in GCC for expressing an integer constant of type @code{__int128}
for targets with @code{long long} integer less than 128 bits wide.

@node Long Long
@section Double-Word Integers
@cindex @code{long long} data types
@cindex double-word arithmetic
@cindex multiprecision arithmetic
@cindex @code{LL} integer suffix
@cindex @code{ULL} integer suffix

ISO C99 and ISO C++11 support data types for integers that are at least
64 bits wide, and as an extension GCC supports them in C90 and C++98 modes.
Simply write @code{long long int} for a signed integer, or
@code{unsigned long long int} for an unsigned integer.  To make an
integer constant of type @code{long long int}, add the suffix @samp{LL}
to the integer.  To make an integer constant of type @code{unsigned long
long int}, add the suffix @samp{ULL} to the integer.

You can use these types in arithmetic like any other integer types.
Addition, subtraction, and bitwise boolean operations on these types
are open-coded on all types of machines.  Multiplication is open-coded
if the machine supports a fullword-to-doubleword widening multiply
instruction.  Division and shifts are open-coded only on machines that
provide special support.  The operations that are not open-coded use
special library routines that come with GCC@.

There may be pitfalls when you use @code{long long} types for function
arguments without function prototypes.  If a function
expects type @code{int} for its argument, and you pass a value of type
@code{long long int}, confusion results because the caller and the
subroutine disagree about the number of bytes for the argument.
Likewise, if the function expects @code{long long int} and you pass
@code{int}.  The best way to avoid such problems is to use prototypes.

@node Complex
@section Complex Numbers
@cindex complex numbers
@cindex @code{_Complex} keyword
@cindex @code{__complex__} keyword

ISO C99 supports complex floating data types, and as an extension GCC
supports them in C90 mode and in C++.  GCC also supports complex integer data
types which are not part of ISO C99.  You can declare complex types
using the keyword @code{_Complex}.  As an extension, the older GNU
keyword @code{__complex__} is also supported.

For example, @samp{_Complex double x;} declares @code{x} as a
variable whose real part and imaginary part are both of type
@code{double}.  @samp{_Complex short int y;} declares @code{y} to
have real and imaginary parts of type @code{short int}; this is not
likely to be useful, but it shows that the set of complex types is
complete.

To write a constant with a complex data type, use the suffix @samp{i} or
@samp{j} (either one; they are equivalent).  For example, @code{2.5fi}
has type @code{_Complex float} and @code{3i} has type
@code{_Complex int}.  Such a constant always has a pure imaginary
value, but you can form any complex value you like by adding one to a
real constant.  This is a GNU extension; if you have an ISO C99
conforming C library (such as the GNU C Library), and want to construct complex
constants of floating type, you should include @code{<complex.h>} and
use the macros @code{I} or @code{_Complex_I} instead.

The ISO C++14 library also defines the @samp{i} suffix, so C++14 code
that includes the @samp{<complex>} header cannot use @samp{i} for the
GNU extension.  The @samp{j} suffix still has the GNU meaning.

GCC can handle both implicit and explicit casts between the @code{_Complex}
types and other @code{_Complex} types as casting both the real and imaginary
parts to the scalar type.
GCC can handle implicit and explicit casts from a scalar type to a @code{_Complex}
type and where the imaginary part will be considered zero.
The C front-end can handle implicit and explicit casts from a @code{_Complex} type
to a scalar type where the imaginary part will be ignored. In C++ code, this cast
is considered illformed and G++ will error out.

GCC provides a built-in function @code{__builtin_complex} will can be used to
construct a complex value.

@cindex @code{__real__} keyword
@cindex @code{__imag__} keyword

GCC has a few extensions which can be used to extract the real
and the imaginary part of the complex-valued expression. Note
these expressions are lvalues if the @var{exp} is an lvalue.
These expressions operands have the type of a complex type
which might get prompoted to a complex type from a scalar type.
E.g. @code{__real__ (int)@var{x}} is the same as casting to
@code{_Complex int} before @code{__real__} is done.

@multitable @columnfractions .4 .6
@headitem Expression @tab Description
@item @code{__real__ @var{exp}}
@tab Extract the real part of @var{exp}.
@item @code{__imag__ @var{exp}}
@tab Extract the imaginary part of @var{exp}.
@end multitable

For values of floating point, you should use the ISO C99
functions, declared in @code{<complex.h>} and also provided as
built-in functions by GCC@.

@multitable @columnfractions .4 .2 .2 .2
@headitem Expression @tab float @tab double @tab long double
@item @code{__real__ @var{exp}}
@tab @code{crealf} @tab @code{creal} @tab @code{creall}
@item @code{__imag__ @var{exp}}
@tab @code{cimagf} @tab @code{cimag} @tab @code{cimagl}
@end multitable

@cindex complex conjugation
The operator @samp{~} performs complex conjugation when used on a value
with a complex type.  This is a GNU extension; for values of
floating type, you should use the ISO C99 functions @code{conjf},
@code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
provided as built-in functions by GCC@. Note unlike the @code{__real__}
and @code{__imag__} operators, this operator will not do an implicit cast
to the complex type because the @samp{~} is already a normal operator.

GCC can allocate complex automatic variables in a noncontiguous
fashion; it's even possible for the real part to be in a register while
the imaginary part is on the stack (or vice versa).  Only the DWARF
debug info format can represent this, so use of DWARF is recommended.
If you are using the stabs debug info format, GCC describes a noncontiguous
complex variable as if it were two separate variables of noncomplex type.
If the variable's actual name is @code{foo}, the two fictitious
variables are named @code{foo$real} and @code{foo$imag}.  You can
examine and set these two fictitious variables with your debugger.

@deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})

The built-in function @code{__builtin_complex} is provided for use in
implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
@code{CMPLXL}.  @var{real} and @var{imag} must have the same type, a
real binary floating-point type, and the result has the corresponding
complex type with real and imaginary parts @var{real} and @var{imag}.
Unlike @samp{@var{real} + I * @var{imag}}, this works even when
infinities, NaNs and negative zeros are involved.

@end deftypefn

@node Floating Types
@section Additional Floating Types
@cindex additional floating types
@cindex @code{_Float@var{n}} data types
@cindex @code{_Float@var{n}x} data types
@cindex @code{__float80} data type
@cindex @code{__float128} data type
@cindex @code{__ibm128} data type
@cindex @code{w} floating point suffix
@cindex @code{q} floating point suffix
@cindex @code{W} floating point suffix
@cindex @code{Q} floating point suffix

ISO/IEC TS 18661-3:2015 defines C support for additional floating
types @code{_Float@var{n}} and @code{_Float@var{n}x}, and GCC supports
these type names; the set of types supported depends on the target
architecture.  These types are not supported when compiling C++.
Constants with these types use suffixes @code{f@var{n}} or
@code{F@var{n}} and @code{f@var{n}x} or @code{F@var{n}x}.  These type
names can be used together with @code{_Complex} to declare complex
types.

As an extension, GNU C and GNU C++ support additional floating
types, which are not supported by all targets.
@itemize @bullet
@item @code{__float128} is available on i386, x86_64, IA-64, and
hppa HP-UX, as well as on PowerPC GNU/Linux targets that enable
the vector scalar (VSX) instruction set.  @code{__float128} supports
the 128-bit floating type.  On i386, x86_64, PowerPC, and IA-64
other than HP-UX, @code{__float128} is an alias for @code{_Float128}.
On hppa and IA-64 HP-UX, @code{__float128} is an alias for @code{long
double}.

@item @code{__float80} is available on the i386, x86_64, and IA-64
targets, and supports the 80-bit (@code{XFmode}) floating type.  It is
an alias for the type name @code{_Float64x} on these targets.

@item @code{__ibm128} is available on PowerPC targets, and provides
access to the IBM extended double format which is the current format
used for @code{long double}.  When @code{long double} transitions to
@code{__float128} on PowerPC in the future, @code{__ibm128} will remain
for use in conversions between the two types.
@end itemize

Support for these additional types includes the arithmetic operators:
add, subtract, multiply, divide; unary arithmetic operators;
relational operators; equality operators; and conversions to and from
integer and other floating types.  Use a suffix @samp{w} or @samp{W}
in a literal constant of type @code{__float80} or type
@code{__ibm128}.  Use a suffix @samp{q} or @samp{Q} for @code{__float128}.

In order to use @code{_Float128}, @code{__float128}, and @code{__ibm128}
on PowerPC Linux systems, you must use the @option{-mfloat128} option. It is
expected in future versions of GCC that @code{_Float128} and @code{__float128}
will be enabled automatically.

The @code{_Float128} type is supported on all systems where
@code{__float128} is supported or where @code{long double} has the
IEEE binary128 format.  The @code{_Float64x} type is supported on all
systems where @code{__float128} is supported.  The @code{_Float32}
type is supported on all systems supporting IEEE binary32; the
@code{_Float64} and @code{_Float32x} types are supported on all systems
supporting IEEE binary64.  The @code{_Float16} type is supported on AArch64
systems by default, on ARM systems when the IEEE format for 16-bit
floating-point types is selected with @option{-mfp16-format=ieee} and,
for both C and C++, on x86 systems with SSE2 enabled. GCC does not currently
support @code{_Float128x} on any systems.

On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex
types using the corresponding internal complex type, @code{XCmode} for
@code{__float80} type and @code{TCmode} for @code{__float128} type:

@smallexample
typedef _Complex float __attribute__((mode(TC))) _Complex128;
typedef _Complex float __attribute__((mode(XC))) _Complex80;
@end smallexample

On the PowerPC Linux VSX targets, you can declare complex types using
the corresponding internal complex type, @code{KCmode} for
@code{__float128} type and @code{ICmode} for @code{__ibm128} type:

@smallexample
typedef _Complex float __attribute__((mode(KC))) _Complex_float128;
typedef _Complex float __attribute__((mode(IC))) _Complex_ibm128;
@end smallexample

@node Half-Precision
@section Half-Precision Floating Point
@cindex half-precision floating point
@cindex @code{__fp16} data type
@cindex @code{__Float16} data type

On ARM and AArch64 targets, GCC supports half-precision (16-bit) floating
point via the @code{__fp16} type defined in the ARM C Language Extensions.
On ARM systems, you must enable this type explicitly with the
@option{-mfp16-format} command-line option in order to use it.
On x86 targets with SSE2 enabled, GCC supports half-precision (16-bit)
floating point via the @code{_Float16} type. For C++, x86 provides a builtin
type named @code{_Float16} which contains same data format as C.

ARM targets support two incompatible representations for half-precision
floating-point values.  You must choose one of the representations and
use it consistently in your program.

Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
This format can represent normalized values in the range of @math{2^{-14}} to 65504.
There are 11 bits of significand precision, approximately 3
decimal digits.

Specifying @option{-mfp16-format=alternative} selects the ARM
alternative format.  This representation is similar to the IEEE
format, but does not support infinities or NaNs.  Instead, the range
of exponents is extended, so that this format can represent normalized
values in the range of @math{2^{-14}} to 131008.

The GCC port for AArch64 only supports the IEEE 754-2008 format, and does
not require use of the @option{-mfp16-format} command-line option.

The @code{__fp16} type may only be used as an argument to intrinsics defined
in @code{<arm_fp16.h>}, or as a storage format.  For purposes of
arithmetic and other operations, @code{__fp16} values in C or C++
expressions are automatically promoted to @code{float}.

The ARM target provides hardware support for conversions between
@code{__fp16} and @code{float} values
as an extension to VFP and NEON (Advanced SIMD), and from ARMv8-A provides
hardware support for conversions between @code{__fp16} and @code{double}
values.  GCC generates code using these hardware instructions if you
compile with options to select an FPU that provides them;
for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
in addition to the @option{-mfp16-format} option to select
a half-precision format.

Language-level support for the @code{__fp16} data type is
independent of whether GCC generates code using hardware floating-point
instructions.  In cases where hardware support is not specified, GCC
implements conversions between @code{__fp16} and other types as library
calls.

It is recommended that portable code use the @code{_Float16} type defined
by ISO/IEC TS 18661-3:2015.  @xref{Floating Types}.

On x86 targets with SSE2 enabled, without @option{-mavx512fp16},
all operations will be emulated by software emulation and the @code{float}
instructions. The default behavior for @code{FLT_EVAL_METHOD} is to keep the
intermediate result of the operation as 32-bit precision. This may lead to
inconsistent behavior between software emulation and AVX512-FP16 instructions.
Using @option{-fexcess-precision=16} will force round back after each operation.

Using @option{-mavx512fp16} will generate AVX512-FP16 instructions instead of
software emulation. The default behavior of @code{FLT_EVAL_METHOD} is to round
after each operation. The same is true with @option{-fexcess-precision=standard}
and @option{-mfpmath=sse}. If there is no @option{-mfpmath=sse},
@option{-fexcess-precision=standard} alone does the same thing as before,
It is useful for code that does not have @code{_Float16} and runs on the x87
FPU.

@node Decimal Float
@section Decimal Floating Types
@cindex decimal floating types
@cindex @code{_Decimal32} data type
@cindex @code{_Decimal64} data type
@cindex @code{_Decimal128} data type
@cindex @code{df} integer suffix
@cindex @code{dd} integer suffix
@cindex @code{dl} integer suffix
@cindex @code{DF} integer suffix
@cindex @code{DD} integer suffix
@cindex @code{DL} integer suffix

As an extension, GNU C supports decimal floating types as
defined in the N1312 draft of ISO/IEC WDTR24732.  Support for decimal
floating types in GCC will evolve as the draft technical report changes.
Calling conventions for any target might also change.  Not all targets
support decimal floating types.

The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
@code{_Decimal128}.  They use a radix of ten, unlike the floating types
@code{float}, @code{double}, and @code{long double} whose radix is not
specified by the C standard but is usually two.

Support for decimal floating types includes the arithmetic operators
add, subtract, multiply, divide; unary arithmetic operators;
relational operators; equality operators; and conversions to and from
integer and other floating types.  Use a suffix @samp{df} or
@samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
@code{_Decimal128}.

GCC support of decimal float as specified by the draft technical report
is incomplete:

@itemize @bullet
@item
When the value of a decimal floating type cannot be represented in the
integer type to which it is being converted, the result is undefined
rather than the result value specified by the draft technical report.

@item
GCC does not provide the C library functionality associated with
@file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
@file{wchar.h}, which must come from a separate C library implementation.
Because of this the GNU C compiler does not define macro
@code{__STDC_DEC_FP__} to indicate that the implementation conforms to
the technical report.
@end itemize

Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
are supported by the DWARF debug information format.

@node Hex Floats
@section Hex Floats
@cindex hex floats

ISO C99 and ISO C++17 support floating-point numbers written not only in
the usual decimal notation, such as @code{1.55e1}, but also numbers such as
@code{0x1.fp3} written in hexadecimal format.  As a GNU extension, GCC
supports this in C90 mode (except in some cases when strictly
conforming) and in C++98, C++11 and C++14 modes.  In that format the
@samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
mandatory.  The exponent is a decimal number that indicates the power of
2 by which the significant part is multiplied.  Thus @samp{0x1.f} is
@tex
$1 {15\over16}$,
@end tex
@ifnottex
1 15/16,
@end ifnottex
@samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
is the same as @code{1.55e1}.

Unlike for floating-point numbers in the decimal notation the exponent
is always required in the hexadecimal notation.  Otherwise the compiler
would not be able to resolve the ambiguity of, e.g., @code{0x1.f}.  This
could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
extension for floating-point constants of type @code{float}.

@node Fixed-Point
@section Fixed-Point Types
@cindex fixed-point types
@cindex @code{_Fract} data type
@cindex @code{_Accum} data type
@cindex @code{_Sat} data type
@cindex @code{hr} fixed-suffix
@cindex @code{r} fixed-suffix
@cindex @code{lr} fixed-suffix
@cindex @code{llr} fixed-suffix
@cindex @code{uhr} fixed-suffix
@cindex @code{ur} fixed-suffix
@cindex @code{ulr} fixed-suffix
@cindex @code{ullr} fixed-suffix
@cindex @code{hk} fixed-suffix
@cindex @code{k} fixed-suffix
@cindex @code{lk} fixed-suffix
@cindex @code{llk} fixed-suffix
@cindex @code{uhk} fixed-suffix
@cindex @code{uk} fixed-suffix
@cindex @code{ulk} fixed-suffix
@cindex @code{ullk} fixed-suffix
@cindex @code{HR} fixed-suffix
@cindex @code{R} fixed-suffix
@cindex @code{LR} fixed-suffix
@cindex @code{LLR} fixed-suffix
@cindex @code{UHR} fixed-suffix
@cindex @code{UR} fixed-suffix
@cindex @code{ULR} fixed-suffix
@cindex @code{ULLR} fixed-suffix
@cindex @code{HK} fixed-suffix
@cindex @code{K} fixed-suffix
@cindex @code{LK} fixed-suffix
@cindex @code{LLK} fixed-suffix
@cindex @code{UHK} fixed-suffix
@cindex @code{UK} fixed-suffix
@cindex @code{ULK} fixed-suffix
@cindex @code{ULLK} fixed-suffix

As an extension, GNU C supports fixed-point types as
defined in the N1169 draft of ISO/IEC DTR 18037.  Support for fixed-point
types in GCC will evolve as the draft technical report changes.
Calling conventions for any target might also change.  Not all targets
support fixed-point types.

The fixed-point types are
@code{short _Fract},
@code{_Fract},
@code{long _Fract},
@code{long long _Fract},
@code{unsigned short _Fract},
@code{unsigned _Fract},
@code{unsigned long _Fract},
@code{unsigned long long _Fract},
@code{_Sat short _Fract},
@code{_Sat _Fract},
@code{_Sat long _Fract},
@code{_Sat long long _Fract},
@code{_Sat unsigned short _Fract},
@code{_Sat unsigned _Fract},
@code{_Sat unsigned long _Fract},
@code{_Sat unsigned long long _Fract},
@code{short _Accum},
@code{_Accum},
@code{long _Accum},
@code{long long _Accum},
@code{unsigned short _Accum},
@code{unsigned _Accum},
@code{unsigned long _Accum},
@code{unsigned long long _Accum},
@code{_Sat short _Accum},
@code{_Sat _Accum},
@code{_Sat long _Accum},
@code{_Sat long long _Accum},
@code{_Sat unsigned short _Accum},
@code{_Sat unsigned _Accum},
@code{_Sat unsigned long _Accum},
@code{_Sat unsigned long long _Accum}.

Fixed-point data values contain fractional and optional integral parts.
The format of fixed-point data varies and depends on the target machine.

Support for fixed-point types includes:
@itemize @bullet
@item
prefix and postfix increment and decrement operators (@code{++}, @code{--})
@item
unary arithmetic operators (@code{+}, @code{-}, @code{!})
@item
binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
@item
binary shift operators (@code{<<}, @code{>>})
@item
relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
@item
equality operators (@code{==}, @code{!=})
@item
assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
@code{<<=}, @code{>>=})
@item
conversions to and from integer, floating-point, or fixed-point types
@end itemize

Use a suffix in a fixed-point literal constant:
@itemize
@item @samp{hr} or @samp{HR} for @code{short _Fract} and
@code{_Sat short _Fract}
@item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
@item @samp{lr} or @samp{LR} for @code{long _Fract} and
@code{_Sat long _Fract}
@item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
@code{_Sat long long _Fract}
@item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
@code{_Sat unsigned short _Fract}
@item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
@code{_Sat unsigned _Fract}
@item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
@code{_Sat unsigned long _Fract}
@item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
and @code{_Sat unsigned long long _Fract}
@item @samp{hk} or @samp{HK} for @code{short _Accum} and
@code{_Sat short _Accum}
@item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
@item @samp{lk} or @samp{LK} for @code{long _Accum} and
@code{_Sat long _Accum}
@item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
@code{_Sat long long _Accum}
@item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
@code{_Sat unsigned short _Accum}
@item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
@code{_Sat unsigned _Accum}
@item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
@code{_Sat unsigned long _Accum}
@item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
and @code{_Sat unsigned long long _Accum}
@end itemize

GCC support of fixed-point types as specified by the draft technical report
is incomplete:

@itemize @bullet
@item
Pragmas to control overflow and rounding behaviors are not implemented.
@end itemize

Fixed-point types are supported by the DWARF debug information format.

@node Named Address Spaces
@section Named Address Spaces
@cindex Named Address Spaces

As an extension, GNU C supports named address spaces as
defined in the N1275 draft of ISO/IEC DTR 18037.  Support for named
address spaces in GCC will evolve as the draft technical report
changes.  Calling conventions for any target might also change.  At
present, only the AVR, M32C, PRU, RL78, and x86 targets support
address spaces other than the generic address space.

Address space identifiers may be used exactly like any other C type
qualifier (e.g., @code{const} or @code{volatile}).  See the N1275
document for more details.

@anchor{AVR Named Address Spaces}
@subsection AVR Named Address Spaces

On the AVR target, there are several address spaces that can be used
in order to put read-only data into the flash memory and access that
data by means of the special instructions @code{LPM} or @code{ELPM}
needed to read from flash.

Devices belonging to @code{avrtiny} and @code{avrxmega3} can access
flash memory by means of @code{LD*} instructions because the flash
memory is mapped into the RAM address space.  There is @emph{no need}
for language extensions like @code{__flash} or attribute
@ref{AVR Variable Attributes,,@code{progmem}}.
The default linker description files for these devices cater for that
feature and @code{.rodata} stays in flash: The compiler just generates
@code{LD*} instructions, and the linker script adds core specific
offsets to all @code{.rodata} symbols: @code{0x4000} in the case of
@code{avrtiny} and @code{0x8000} in the case of @code{avrxmega3}.
See @ref{AVR Options} for a list of respective devices.

For devices not in @code{avrtiny} or @code{avrxmega3},
any data including read-only data is located in RAM (the generic
address space) because flash memory is not visible in the RAM address
space.  In order to locate read-only data in flash memory @emph{and}
to generate the right instructions to access this data without
using (inline) assembler code, special address spaces are needed.

@table @code
@item __flash
@cindex @code{__flash} AVR Named Address Spaces
The @code{__flash} qualifier locates data in the
@code{.progmem.data} section. Data is read using the @code{LPM}
instruction. Pointers to this address space are 16 bits wide.

@item __flash1
@itemx __flash2
@itemx __flash3
@itemx __flash4
@itemx __flash5
@cindex @code{__flash1} AVR Named Address Spaces
@cindex @code{__flash2} AVR Named Address Spaces
@cindex @code{__flash3} AVR Named Address Spaces
@cindex @code{__flash4} AVR Named Address Spaces
@cindex @code{__flash5} AVR Named Address Spaces
These are 16-bit address spaces locating data in section
@code{.progmem@var{N}.data} where @var{N} refers to
address space @code{__flash@var{N}}.
The compiler sets the @code{RAMPZ} segment register appropriately 
before reading data by means of the @code{ELPM} instruction.

@item __memx
@cindex @code{__memx} AVR Named Address Spaces
This is a 24-bit address space that linearizes flash and RAM:
If the high bit of the address is set, data is read from
RAM using the lower two bytes as RAM address.
If the high bit of the address is clear, data is read from flash
with @code{RAMPZ} set according to the high byte of the address.
@xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}.

Objects in this address space are located in @code{.progmemx.data}.
@end table

@b{Example}

@smallexample
char my_read (const __flash char ** p)
@{
    /* p is a pointer to RAM that points to a pointer to flash.
       The first indirection of p reads that flash pointer
       from RAM and the second indirection reads a char from this
       flash address.  */

    return **p;
@}

/* Locate array[] in flash memory */
const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};

int i = 1;

int main (void)
@{
   /* Return 17 by reading from flash memory */
   return array[array[i]];
@}
@end smallexample

@noindent
For each named address space supported by avr-gcc there is an equally
named but uppercase built-in macro defined. 
The purpose is to facilitate testing if respective address space
support is available or not:

@smallexample
#ifdef __FLASH
const __flash int var = 1;

int read_var (void)
@{
    return var;
@}
#else
#include <avr/pgmspace.h> /* From AVR-LibC */

const int var PROGMEM = 1;

int read_var (void)
@{
    return (int) pgm_read_word (&var);
@}
#endif /* __FLASH */
@end smallexample

@noindent
Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}}
locates data in flash but
accesses to these data read from generic address space, i.e.@:
from RAM,
so that you need special accessors like @code{pgm_read_byte}
from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}}
together with attribute @code{progmem}.

@noindent
@b{Limitations and caveats}

@itemize
@item
Reading across the 64@tie{}KiB section boundary of
the @code{__flash} or @code{__flash@var{N}} address spaces
shows undefined behavior. The only address space that
supports reading across the 64@tie{}KiB flash segment boundaries is
@code{__memx}.

@item
If you use one of the @code{__flash@var{N}} address spaces
you must arrange your linker script to locate the
@code{.progmem@var{N}.data} sections according to your needs.

@item
Any data or pointers to the non-generic address spaces must
be qualified as @code{const}, i.e.@: as read-only data.
This still applies if the data in one of these address
spaces like software version number or calibration lookup table are intended to
be changed after load time by, say, a boot loader. In this case
the right qualification is @code{const} @code{volatile} so that the compiler
must not optimize away known values or insert them
as immediates into operands of instructions.

@item
The following code initializes a variable @code{pfoo}
located in static storage with a 24-bit address:
@smallexample
extern const __memx char foo;
const __memx void *pfoo = &foo;
@end smallexample

@item
On the reduced Tiny devices like ATtiny40, no address spaces are supported.
Just use vanilla C / C++ code without overhead as outlined above.
Attribute @code{progmem} is supported but works differently,
see @ref{AVR Variable Attributes}.

@end itemize

@subsection M32C Named Address Spaces
@cindex @code{__far} M32C Named Address Spaces

On the M32C target, with the R8C and M16C CPU variants, variables
qualified with @code{__far} are accessed using 32-bit addresses in
order to access memory beyond the first 64@tie{}Ki bytes.  If
@code{__far} is used with the M32CM or M32C CPU variants, it has no
effect.

@subsection PRU Named Address Spaces
@cindex @code{__regio_symbol} PRU Named Address Spaces

On the PRU target, variables qualified with @code{__regio_symbol} are
aliases used to access the special I/O CPU registers.  They must be
declared as @code{extern} because such variables will not be allocated in
any data memory.  They must also be marked as @code{volatile}, and can
only be 32-bit integer types.  The only names those variables can have
are @code{__R30} and @code{__R31}, representing respectively the
@code{R30} and @code{R31} special I/O CPU registers.  Hence the following
example is the only valid usage of @code{__regio_symbol}:

@smallexample
extern volatile __regio_symbol uint32_t __R30;
extern volatile __regio_symbol uint32_t __R31;
@end smallexample

@subsection RL78 Named Address Spaces
@cindex @code{__far} RL78 Named Address Spaces

On the RL78 target, variables qualified with @code{__far} are accessed
with 32-bit pointers (20-bit addresses) rather than the default 16-bit
addresses.  Non-far variables are assumed to appear in the topmost
64@tie{}KiB of the address space.

@subsection x86 Named Address Spaces
@cindex x86 named address spaces

On the x86 target, variables may be declared as being relative
to the @code{%fs} or @code{%gs} segments.

@table @code
@item __seg_fs
@itemx __seg_gs
@cindex @code{__seg_fs} x86 named address space
@cindex @code{__seg_gs} x86 named address space
The object is accessed with the respective segment override prefix.

The respective segment base must be set via some method specific to
the operating system.  Rather than require an expensive system call
to retrieve the segment base, these address spaces are not considered
to be subspaces of the generic (flat) address space.  This means that
explicit casts are required to convert pointers between these address
spaces and the generic address space.  In practice the application
should cast to @code{uintptr_t} and apply the segment base offset
that it installed previously.

The preprocessor symbols @code{__SEG_FS} and @code{__SEG_GS} are
defined when these address spaces are supported.
@end table

@node Zero Length
@section Arrays of Length Zero
@cindex arrays of length zero
@cindex zero-length arrays
@cindex length-zero arrays
@cindex flexible array members

Declaring zero-length arrays is allowed in GNU C as an extension.
A zero-length array can be useful as the last element of a structure
that is really a header for a variable-length object:

@smallexample
struct line @{
  int length;
  char contents[0];
@};

struct line *thisline = (struct line *)
  malloc (sizeof (struct line) + this_length);
thisline->length = this_length;
@end smallexample

Although the size of a zero-length array is zero, an array member of
this kind may increase the size of the enclosing type as a result of tail
padding.  The offset of a zero-length array member from the beginning
of the enclosing structure is the same as the offset of an array with
one or more elements of the same type.  The alignment of a zero-length
array is the same as the alignment of its elements.

Declaring zero-length arrays in other contexts, including as interior
members of structure objects or as non-member objects, is discouraged.
Accessing elements of zero-length arrays declared in such contexts is
undefined and may be diagnosed.

In the absence of the zero-length array extension, in ISO C90
the @code{contents} array in the example above would typically be declared
to have a single element.  Unlike a zero-length array which only contributes
to the size of the enclosing structure for the purposes of alignment,
a one-element array always occupies at least as much space as a single
object of the type.  Although using one-element arrays this way is
discouraged, GCC handles accesses to trailing one-element array members
analogously to zero-length arrays.

The preferred mechanism to declare variable-length types like
@code{struct line} above is the ISO C99 @dfn{flexible array member},
with slightly different syntax and semantics:

@itemize @bullet
@item
Flexible array members are written as @code{contents[]} without
the @code{0}.

@item
Flexible array members have incomplete type, and so the @code{sizeof}
operator may not be applied.  As a quirk of the original implementation
of zero-length arrays, @code{sizeof} evaluates to zero.

@item
Flexible array members may only appear as the last member of a
@code{struct} that is otherwise non-empty.

@item
A structure containing a flexible array member, or a union containing
such a structure (possibly recursively), may not be a member of a
structure or an element of an array.  (However, these uses are
permitted by GCC as extensions.)
@end itemize

Non-empty initialization of zero-length
arrays is treated like any case where there are more initializer
elements than the array holds, in that a suitable warning about ``excess
elements in array'' is given, and the excess elements (all of them, in
this case) are ignored.

GCC allows static initialization of flexible array members.
This is equivalent to defining a new structure containing the original
structure followed by an array of sufficient size to contain the data.
E.g.@: in the following, @code{f1} is constructed as if it were declared
like @code{f2}.

@smallexample
struct f1 @{
  int x; int y[];
@} f1 = @{ 1, @{ 2, 3, 4 @} @};

struct f2 @{
  struct f1 f1; int data[3];
@} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
@end smallexample

@noindent
The convenience of this extension is that @code{f1} has the desired
type, eliminating the need to consistently refer to @code{f2.f1}.

This has symmetry with normal static arrays, in that an array of
unknown size is also written with @code{[]}.

Of course, this extension only makes sense if the extra data comes at
the end of a top-level object, as otherwise we would be overwriting
data at subsequent offsets.  To avoid undue complication and confusion
with initialization of deeply nested arrays, we simply disallow any
non-empty initialization except when the structure is the top-level
object.  For example:

@smallexample
struct foo @{ int x; int y[]; @};
struct bar @{ struct foo z; @};

struct foo a = @{ 1, @{ 2, 3, 4 @} @};        // @r{Valid.}
struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @};    // @r{Invalid.}
struct bar c = @{ @{ 1, @{ @} @} @};            // @r{Valid.}
struct foo d[1] = @{ @{ 1, @{ 2, 3, 4 @} @} @};  // @r{Invalid.}
@end smallexample

@node Empty Structures
@section Structures with No Members
@cindex empty structures
@cindex zero-size structures

GCC permits a C structure to have no members:

@smallexample
struct empty @{
@};
@end smallexample

The structure has size zero.  In C++, empty structures are part
of the language.  G++ treats empty structures as if they had a single
member of type @code{char}.

@node Variable Length
@section Arrays of Variable Length
@cindex variable-length arrays
@cindex arrays of variable length
@cindex VLAs

Variable-length automatic arrays are allowed in ISO C99, and as an
extension GCC accepts them in C90 mode and in C++.  These arrays are
declared like any other automatic arrays, but with a length that is not
a constant expression.  The storage is allocated at the point of
declaration and deallocated when the block scope containing the declaration
exits.  For
example:

@smallexample
FILE *
concat_fopen (char *s1, char *s2, char *mode)
@{
  char str[strlen (s1) + strlen (s2) + 1];
  strcpy (str, s1);
  strcat (str, s2);
  return fopen (str, mode);
@}
@end smallexample

@cindex scope of a variable length array
@cindex variable-length array scope
@cindex deallocating variable length arrays
Jumping or breaking out of the scope of the array name deallocates the
storage.  Jumping into the scope is not allowed; you get an error
message for it.

@cindex variable-length array in a structure
As an extension, GCC accepts variable-length arrays as a member of
a structure or a union.  For example:

@smallexample
void
foo (int n)
@{
  struct S @{ int x[n]; @};
@}
@end smallexample

@cindex @code{alloca} vs variable-length arrays
You can use the function @code{alloca} to get an effect much like
variable-length arrays.  The function @code{alloca} is available in
many other C implementations (but not in all).  On the other hand,
variable-length arrays are more elegant.

There are other differences between these two methods.  Space allocated
with @code{alloca} exists until the containing @emph{function} returns.
The space for a variable-length array is deallocated as soon as the array
name's scope ends, unless you also use @code{alloca} in this scope.

You can also use variable-length arrays as arguments to functions:

@smallexample
struct entry
tester (int len, char data[len][len])
@{
  /* @r{@dots{}} */
@}
@end smallexample

The length of an array is computed once when the storage is allocated
and is remembered for the scope of the array in case you access it with
@code{sizeof}.

If you want to pass the array first and the length afterward, you can
use a forward declaration in the parameter list---another GNU extension.

@smallexample
struct entry
tester (int len; char data[len][len], int len)
@{
  /* @r{@dots{}} */
@}
@end smallexample

@cindex parameter forward declaration
The @samp{int len} before the semicolon is a @dfn{parameter forward
declaration}, and it serves the purpose of making the name @code{len}
known when the declaration of @code{data} is parsed.

You can write any number of such parameter forward declarations in the
parameter list.  They can be separated by commas or semicolons, but the
last one must end with a semicolon, which is followed by the ``real''
parameter declarations.  Each forward declaration must match a ``real''
declaration in parameter name and data type.  ISO C99 does not support
parameter forward declarations.

@node Variadic Macros
@section Macros with a Variable Number of Arguments.
@cindex variable number of arguments
@cindex macro with variable arguments
@cindex rest argument (in macro)
@cindex variadic macros

In the ISO C standard of 1999, a macro can be declared to accept a
variable number of arguments much as a function can.  The syntax for
defining the macro is similar to that of a function.  Here is an
example:

@smallexample
#define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
@end smallexample

@noindent
Here @samp{@dots{}} is a @dfn{variable argument}.  In the invocation of
such a macro, it represents the zero or more tokens until the closing
parenthesis that ends the invocation, including any commas.  This set of
tokens replaces the identifier @code{__VA_ARGS__} in the macro body
wherever it appears.  See the CPP manual for more information.

GCC has long supported variadic macros, and used a different syntax that
allowed you to give a name to the variable arguments just like any other
argument.  Here is an example:

@smallexample
#define debug(format, args...) fprintf (stderr, format, args)
@end smallexample

@noindent
This is in all ways equivalent to the ISO C example above, but arguably
more readable and descriptive.

GNU CPP has two further variadic macro extensions, and permits them to
be used with either of the above forms of macro definition.

In standard C, you are not allowed to leave the variable argument out
entirely; but you are allowed to pass an empty argument.  For example,
this invocation is invalid in ISO C, because there is no comma after
the string:

@smallexample
debug ("A message")
@end smallexample

GNU CPP permits you to completely omit the variable arguments in this
way.  In the above examples, the compiler would complain, though since
the expansion of the macro still has the extra comma after the format
string.

To help solve this problem, CPP behaves specially for variable arguments
used with the token paste operator, @samp{##}.  If instead you write

@smallexample
#define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
@end smallexample

@noindent
and if the variable arguments are omitted or empty, the @samp{##}
operator causes the preprocessor to remove the comma before it.  If you
do provide some variable arguments in your macro invocation, GNU CPP
does not complain about the paste operation and instead places the
variable arguments after the comma.  Just like any other pasted macro
argument, these arguments are not macro expanded.

@node Escaped Newlines
@section Slightly Looser Rules for Escaped Newlines
@cindex escaped newlines
@cindex newlines (escaped)

The preprocessor treatment of escaped newlines is more relaxed 
than that specified by the C90 standard, which requires the newline
to immediately follow a backslash.  
GCC's implementation allows whitespace in the form
of spaces, horizontal and vertical tabs, and form feeds between the
backslash and the subsequent newline.  The preprocessor issues a
warning, but treats it as a valid escaped newline and combines the two
lines to form a single logical line.  This works within comments and
tokens, as well as between tokens.  Comments are @emph{not} treated as
whitespace for the purposes of this relaxation, since they have not
yet been replaced with spaces.

@node Subscripting
@section Non-Lvalue Arrays May Have Subscripts
@cindex subscripting
@cindex arrays, non-lvalue

@cindex subscripting and function values
In ISO C99, arrays that are not lvalues still decay to pointers, and
may be subscripted, although they may not be modified or used after
the next sequence point and the unary @samp{&} operator may not be
applied to them.  As an extension, GNU C allows such arrays to be
subscripted in C90 mode, though otherwise they do not decay to
pointers outside C99 mode.  For example,
this is valid in GNU C though not valid in C90:

@smallexample
@group
struct foo @{int a[4];@};

struct foo f();

bar (int index)
@{
  return f().a[index];
@}
@end group
@end smallexample

@node Pointer Arith
@section Arithmetic on @code{void}- and Function-Pointers
@cindex void pointers, arithmetic
@cindex void, size of pointer to
@cindex function pointers, arithmetic
@cindex function, size of pointer to

In GNU C, addition and subtraction operations are supported on pointers to
@code{void} and on pointers to functions.  This is done by treating the
size of a @code{void} or of a function as 1.

A consequence of this is that @code{sizeof} is also allowed on @code{void}
and on function types, and returns 1.

@opindex Wpointer-arith
The option @option{-Wpointer-arith} requests a warning if these extensions
are used.

@node Variadic Pointer Args
@section Pointer Arguments in Variadic Functions
@cindex pointer arguments in variadic functions
@cindex variadic functions, pointer arguments

Standard C requires that pointer types used with @code{va_arg} in
functions with variable argument lists either must be compatible with
that of the actual argument, or that one type must be a pointer to
@code{void} and the other a pointer to a character type.  GNU C
implements the POSIX XSI extension that additionally permits the use
of @code{va_arg} with a pointer type to receive arguments of any other
pointer type.

In particular, in GNU C @samp{va_arg (ap, void *)} can safely be used
to consume an argument of any pointer type.

@node Pointers to Arrays
@section Pointers to Arrays with Qualifiers Work as Expected
@cindex pointers to arrays
@cindex const qualifier

In GNU C, pointers to arrays with qualifiers work similar to pointers
to other qualified types. For example, a value of type @code{int (*)[5]}
can be used to initialize a variable of type @code{const int (*)[5]}.
These types are incompatible in ISO C because the @code{const} qualifier
is formally attached to the element type of the array and not the
array itself.

@smallexample
extern void
transpose (int N, int M, double out[M][N], const double in[N][M]);
double x[3][2];
double y[2][3];
@r{@dots{}}
transpose(3, 2, y, x);
@end smallexample

@node Initializers
@section Non-Constant Initializers
@cindex initializers, non-constant
@cindex non-constant initializers

As in standard C++ and ISO C99, the elements of an aggregate initializer for an
automatic variable are not required to be constant expressions in GNU C@.
Here is an example of an initializer with run-time varying elements:

@smallexample
foo (float f, float g)
@{
  float beat_freqs[2] = @{ f-g, f+g @};
  /* @r{@dots{}} */
@}
@end smallexample

@node Compound Literals
@section Compound Literals
@cindex constructor expressions
@cindex initializations in expressions
@cindex structures, constructor expression
@cindex expressions, constructor
@cindex compound literals
@c The GNU C name for what C99 calls compound literals was "constructor expressions".

A compound literal looks like a cast of a brace-enclosed aggregate
initializer list.  Its value is an object of the type specified in
the cast, containing the elements specified in the initializer.
Unlike the result of a cast, a compound literal is an lvalue.  ISO
C99 and later support compound literals.  As an extension, GCC
supports compound literals also in C90 mode and in C++, although
as explained below, the C++ semantics are somewhat different.

Usually, the specified type of a compound literal is a structure.  Assume
that @code{struct foo} and @code{structure} are declared as shown:

@smallexample
struct foo @{int a; char b[2];@} structure;
@end smallexample

@noindent
Here is an example of constructing a @code{struct foo} with a compound literal:

@smallexample
structure = ((struct foo) @{x + y, 'a', 0@});
@end smallexample

@noindent
This is equivalent to writing the following:

@smallexample
@{
  struct foo temp = @{x + y, 'a', 0@};
  structure = temp;
@}
@end smallexample

You can also construct an array, though this is dangerous in C++, as
explained below.  If all the elements of the compound literal are
(made up of) simple constant expressions suitable for use in
initializers of objects of static storage duration, then the compound
literal can be coerced to a pointer to its first element and used in
such an initializer, as shown here:

@smallexample
char **foo = (char *[]) @{ "x", "y", "z" @};
@end smallexample

Compound literals for scalar types and union types are also allowed.  In
the following example the variable @code{i} is initialized to the value
@code{2}, the result of incrementing the unnamed object created by
the compound literal.

@smallexample
int i = ++(int) @{ 1 @};
@end smallexample

As a GNU extension, GCC allows initialization of objects with static storage
duration by compound literals (which is not possible in ISO C99 because
the initializer is not a constant).
It is handled as if the object were initialized only with the brace-enclosed
list if the types of the compound literal and the object match.
The elements of the compound literal must be constant.
If the object being initialized has array type of unknown size, the size is
determined by the size of the compound literal.

@smallexample
static struct foo x = (struct foo) @{1, 'a', 'b'@};
static int y[] = (int []) @{1, 2, 3@};
static int z[] = (int [3]) @{1@};
@end smallexample

@noindent
The above lines are equivalent to the following:
@smallexample
static struct foo x = @{1, 'a', 'b'@};
static int y[] = @{1, 2, 3@};
static int z[] = @{1, 0, 0@};
@end smallexample

In C, a compound literal designates an unnamed object with static or
automatic storage duration.  In C++, a compound literal designates a
temporary object that only lives until the end of its full-expression.
As a result, well-defined C code that takes the address of a subobject
of a compound literal can be undefined in C++, so G++ rejects
the conversion of a temporary array to a pointer.  For instance, if
the array compound literal example above appeared inside a function,
any subsequent use of @code{foo} in C++ would have undefined behavior
because the lifetime of the array ends after the declaration of @code{foo}.

As an optimization, G++ sometimes gives array compound literals longer
lifetimes: when the array either appears outside a function or has
a @code{const}-qualified type.  If @code{foo} and its initializer had
elements of type @code{char *const} rather than @code{char *}, or if
@code{foo} were a global variable, the array would have static storage
duration.  But it is probably safest just to avoid the use of array
compound literals in C++ code.

@node Designated Inits
@section Designated Initializers
@cindex initializers with labeled elements
@cindex labeled elements in initializers
@cindex case labels in initializers
@cindex designated initializers

Standard C90 requires the elements of an initializer to appear in a fixed
order, the same as the order of the elements in the array or structure
being initialized.

In ISO C99 you can give the elements in any order, specifying the array
indices or structure field names they apply to, and GNU C allows this as
an extension in C90 mode as well.  This extension is not
implemented in GNU C++.

To specify an array index, write
@samp{[@var{index}] =} before the element value.  For example,

@smallexample
int a[6] = @{ [4] = 29, [2] = 15 @};
@end smallexample

@noindent
is equivalent to

@smallexample
int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
@end smallexample

@noindent
The index values must be constant expressions, even if the array being
initialized is automatic.

An alternative syntax for this that has been obsolete since GCC 2.5 but
GCC still accepts is to write @samp{[@var{index}]} before the element
value, with no @samp{=}.

To initialize a range of elements to the same value, write
@samp{[@var{first} ... @var{last}] = @var{value}}.  This is a GNU
extension.  For example,

@smallexample
int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
@end smallexample

@noindent
If the value in it has side effects, the side effects happen only once,
not for each initialized field by the range initializer.

@noindent
Note that the length of the array is the highest value specified
plus one.

In a structure initializer, specify the name of a field to initialize
with @samp{.@var{fieldname} =} before the element value.  For example,
given the following structure,

@smallexample
struct point @{ int x, y; @};
@end smallexample

@noindent
the following initialization

@smallexample
struct point p = @{ .y = yvalue, .x = xvalue @};
@end smallexample

@noindent
is equivalent to

@smallexample
struct point p = @{ xvalue, yvalue @};
@end smallexample

Another syntax that has the same meaning, obsolete since GCC 2.5, is
@samp{@var{fieldname}:}, as shown here:

@smallexample
struct point p = @{ y: yvalue, x: xvalue @};
@end smallexample

Omitted fields are implicitly initialized the same as for objects
that have static storage duration.

@cindex designators
The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
@dfn{designator}.  You can also use a designator (or the obsolete colon
syntax) when initializing a union, to specify which element of the union
should be used.  For example,

@smallexample
union foo @{ int i; double d; @};

union foo f = @{ .d = 4 @};
@end smallexample

@noindent
converts 4 to a @code{double} to store it in the union using
the second element.  By contrast, casting 4 to type @code{union foo}
stores it into the union as the integer @code{i}, since it is
an integer.  @xref{Cast to Union}.

You can combine this technique of naming elements with ordinary C
initialization of successive elements.  Each initializer element that
does not have a designator applies to the next consecutive element of the
array or structure.  For example,

@smallexample
int a[6] = @{ [1] = v1, v2, [4] = v4 @};
@end smallexample

@noindent
is equivalent to

@smallexample
int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
@end smallexample

Labeling the elements of an array initializer is especially useful
when the indices are characters or belong to an @code{enum} type.
For example:

@smallexample
int whitespace[256]
  = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
      ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
@end smallexample

@cindex designator lists
You can also write a series of @samp{.@var{fieldname}} and
@samp{[@var{index}]} designators before an @samp{=} to specify a
nested subobject to initialize; the list is taken relative to the
subobject corresponding to the closest surrounding brace pair.  For
example, with the @samp{struct point} declaration above:

@smallexample
struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
@end smallexample

If the same field is initialized multiple times, or overlapping
fields of a union are initialized, the value from the last
initialization is used.  When a field of a union is itself a structure, 
the entire structure from the last field initialized is used.  If any previous
initializer has side effect, it is unspecified whether the side effect
happens or not.  Currently, GCC discards the side-effecting
initializer expressions and issues a warning.

@node Case Ranges
@section Case Ranges
@cindex case ranges
@cindex ranges in case statements

You can specify a range of consecutive values in a single @code{case} label,
like this:

@smallexample
case @var{low} ... @var{high}:
@end smallexample

@noindent
This has the same effect as the proper number of individual @code{case}
labels, one for each integer value from @var{low} to @var{high}, inclusive.

This feature is especially useful for ranges of ASCII character codes:

@smallexample
case 'A' ... 'Z':
@end smallexample

@strong{Be careful:} Write spaces around the @code{...}, for otherwise
it may be parsed wrong when you use it with integer values.  For example,
write this:

@smallexample
case 1 ... 5:
@end smallexample

@noindent
rather than this:

@smallexample
case 1...5:
@end smallexample

@node Cast to Union
@section Cast to a Union Type
@cindex cast to a union
@cindex union, casting to a

A cast to a union type is a C extension not available in C++.  It looks
just like ordinary casts with the constraint that the type specified is
a union type.  You can specify the type either with the @code{union}
keyword or with a @code{typedef} name that refers to a union.  The result
of a cast to a union is a temporary rvalue of the union type with a member
whose type matches that of the operand initialized to the value of
the operand.  The effect of a cast to a union is similar to a compound
literal except that it yields an rvalue like standard casts do.
@xref{Compound Literals}.

Expressions that may be cast to the union type are those whose type matches
at least one of the members of the union.  Thus, given the following union
and variables:

@smallexample
union foo @{ int i; double d; @};
int x;
double y;
union foo z;
@end smallexample

@noindent
both @code{x} and @code{y} can be cast to type @code{union foo} and
the following assignments
@smallexample
  z = (union foo) x;
  z = (union foo) y;
@end smallexample
are shorthand equivalents of these
@smallexample
  z = (union foo) @{ .i = x @};
  z = (union foo) @{ .d = y @};
@end smallexample

However, @code{(union foo) FLT_MAX;} is not a valid cast because the union
has no member of type @code{float}.

Using the cast as the right-hand side of an assignment to a variable of
union type is equivalent to storing in a member of the union with
the same type

@smallexample
union foo u;
/* @r{@dots{}} */
u = (union foo) x  @equiv{}  u.i = x
u = (union foo) y  @equiv{}  u.d = y
@end smallexample

You can also use the union cast as a function argument:

@smallexample
void hack (union foo);
/* @r{@dots{}} */
hack ((union foo) x);
@end smallexample

@node Mixed Labels and Declarations
@section Mixed Declarations, Labels and Code
@cindex mixed declarations and code
@cindex declarations, mixed with code
@cindex code, mixed with declarations

ISO C99 and ISO C++ allow declarations and code to be freely mixed
within compound statements.  ISO C2X allows labels to be
placed before declarations and at the end of a compound statement.
As an extension, GNU C also allows all this in C90 mode.  For example,
you could do:

@smallexample
int i;
/* @r{@dots{}} */
i++;
int j = i + 2;
@end smallexample

Each identifier is visible from where it is declared until the end of
the enclosing block.

@node Function Attributes
@section Declaring Attributes of Functions
@cindex function attributes
@cindex declaring attributes of functions
@cindex @code{volatile} applied to function
@cindex @code{const} applied to function

In GNU C and C++, you can use function attributes to specify certain
function properties that may help the compiler optimize calls or
check code more carefully for correctness.  For example, you
can use attributes to specify that a function never returns
(@code{noreturn}), returns a value depending only on the values of
its arguments (@code{const}), or has @code{printf}-style arguments
(@code{format}).

You can also use attributes to control memory placement, code
generation options or call/return conventions within the function
being annotated.  Many of these attributes are target-specific.  For
example, many targets support attributes for defining interrupt
handler functions, which typically must follow special register usage
and return conventions.  Such attributes are described in the subsection
for each target.  However, a considerable number of attributes are
supported by most, if not all targets.  Those are described in
the @ref{Common Function Attributes} section.

Function attributes are introduced by the @code{__attribute__} keyword
in the declaration of a function, followed by an attribute specification
enclosed in double parentheses.  You can specify multiple attributes in
a declaration by separating them by commas within the double parentheses
or by immediately following one attribute specification with another.
@xref{Attribute Syntax}, for the exact rules on attribute syntax and
placement.  Compatible attribute specifications on distinct declarations
of the same function are merged.  An attribute specification that is not
compatible with attributes already applied to a declaration of the same
function is ignored with a warning.

Some function attributes take one or more arguments that refer to
the function's parameters by their positions within the function parameter
list.  Such attribute arguments are referred to as @dfn{positional arguments}.
Unless specified otherwise, positional arguments that specify properties
of parameters with pointer types can also specify the same properties of
the implicit C++ @code{this} argument in non-static member functions, and
of parameters of reference to a pointer type.  For ordinary functions,
position one refers to the first parameter on the list.  In C++ non-static
member functions, position one refers to the implicit @code{this} pointer.
The same restrictions and effects apply to function attributes used with
ordinary functions or C++ member functions.

GCC also supports attributes on
variable declarations (@pxref{Variable Attributes}),
labels (@pxref{Label Attributes}),
enumerators (@pxref{Enumerator Attributes}),
statements (@pxref{Statement Attributes}),
types (@pxref{Type Attributes}),
and on field declarations (for @code{tainted_args}).

There is some overlap between the purposes of attributes and pragmas
(@pxref{Pragmas,,Pragmas Accepted by GCC}).  It has been
found convenient to use @code{__attribute__} to achieve a natural
attachment of attributes to their corresponding declarations, whereas
@code{#pragma} is of use for compatibility with other compilers
or constructs that do not naturally form part of the grammar.

In addition to the attributes documented here,
GCC plugins may provide their own attributes.

@menu
* Common Function Attributes::
* AArch64 Function Attributes::
* AMD GCN Function Attributes::
* ARC Function Attributes::
* ARM Function Attributes::
* AVR Function Attributes::
* Blackfin Function Attributes::
* BPF Function Attributes::
* C-SKY Function Attributes::
* Epiphany Function Attributes::
* H8/300 Function Attributes::
* IA-64 Function Attributes::
* M32C Function Attributes::
* M32R/D Function Attributes::
* m68k Function Attributes::
* MCORE Function Attributes::
* MeP Function Attributes::
* MicroBlaze Function Attributes::
* Microsoft Windows Function Attributes::
* MIPS Function Attributes::
* MSP430 Function Attributes::
* NDS32 Function Attributes::
* Nios II Function Attributes::
* Nvidia PTX Function Attributes::
* PowerPC Function Attributes::
* RISC-V Function Attributes::
* RL78 Function Attributes::
* RX Function Attributes::
* S/390 Function Attributes::
* SH Function Attributes::
* Symbian OS Function Attributes::
* V850 Function Attributes::
* Visium Function Attributes::
* x86 Function Attributes::
* Xstormy16 Function Attributes::
@end menu

@node Common Function Attributes
@subsection Common Function Attributes

The following attributes are supported on most targets.

@table @code
@c Keep this table alphabetized by attribute name.  Treat _ as space.

@item access (@var{access-mode}, @var{ref-index})
@itemx access (@var{access-mode}, @var{ref-index}, @var{size-index})

The @code{access} attribute enables the detection of invalid or unsafe
accesses by functions to which they apply or their callers, as well as
write-only accesses to objects that are never read from.  Such accesses
may be diagnosed by warnings such as @option{-Wstringop-overflow},
@option{-Wuninitialized}, @option{-Wunused}, and others.

The @code{access} attribute specifies that a function to whose by-reference
arguments the attribute applies accesses the referenced object according to
@var{access-mode}.  The @var{access-mode} argument is required and must be
one of four names: @code{read_only}, @code{read_write}, @code{write_only},
or @code{none}.  The remaining two are positional arguments.

The required @var{ref-index} positional argument  denotes a function
argument of pointer (or in C++, reference) type that is subject to
the access.  The same pointer argument can be referenced by at most one
distinct @code{access} attribute.

The optional @var{size-index} positional argument denotes a function
argument of integer type that specifies the maximum size of the access.
The size is the number of elements of the type referenced by @var{ref-index},
or the number of bytes when the pointer type is @code{void*}.  When no
@var{size-index} argument is specified, the pointer argument must be either
null or point to a space that is suitably aligned and large for at least one
object of the referenced type (this implies that a past-the-end pointer is
not a valid argument).  The actual size of the access may be less but it
must not be more.

The @code{read_only} access mode specifies that the pointer to which it
applies is used to read the referenced object but not write to it.  Unless
the argument specifying the size of the access denoted by @var{size-index}
is zero, the referenced object must be initialized.  The mode implies
a stronger guarantee than the @code{const} qualifier which, when cast away
from a pointer, does not prevent the pointed-to object from being modified.
Examples of the use of the @code{read_only} access mode is the argument to
the @code{puts} function, or the second and third arguments to
the @code{memcpy} function.

@smallexample
__attribute__ ((access (read_only, 1))) int puts (const char*);
__attribute__ ((access (read_only, 2, 3))) void* memcpy (void*, const void*, size_t);
@end smallexample

The @code{read_write} access mode applies to arguments of pointer types
without the @code{const} qualifier.  It specifies that the pointer to which
it applies is used to both read and write the referenced object.  Unless
the argument specifying the size of the access denoted by @var{size-index}
is zero, the object referenced by the pointer must be initialized.  An example
of the use of the @code{read_write} access mode is the first argument to
the @code{strcat} function.

@smallexample
__attribute__ ((access (read_write, 1), access (read_only, 2))) char* strcat (char*, const char*);
@end smallexample

The @code{write_only} access mode applies to arguments of pointer types
without the @code{const} qualifier.  It specifies that the pointer to which
it applies is used to write to the referenced object but not read from it.
The object referenced by the pointer need not be initialized.  An example
of the use of the @code{write_only} access mode is the first argument to
the @code{strcpy} function, or the first two arguments to the @code{fgets}
function.

@smallexample
__attribute__ ((access (write_only, 1), access (read_only, 2))) char* strcpy (char*, const char*);
__attribute__ ((access (write_only, 1, 2), access (read_write, 3))) int fgets (char*, int, FILE*);
@end smallexample

The access mode @code{none} specifies that the pointer to which it applies
is not used to access the referenced object at all.  Unless the pointer is
null the pointed-to object must exist and have at least the size as denoted
by the @var{size-index} argument.  When the optional @var{size-index}
argument is omitted for an argument of @code{void*} type the actual pointer
agument is ignored.  The referenced object need not be initialized.
The mode is intended to be used as a means to help validate the expected
object size, for example in functions that call @code{__builtin_object_size}.
@xref{Object Size Checking}.

Note that the @code{access} attribute merely specifies how an object
referenced by the pointer argument can be accessed; it does not imply that
an access @strong{will} happen.  Also, the @code{access} attribute does not
imply the attribute @code{nonnull}; it may be appropriate to add both attributes
at the declaration of a function that unconditionally manipulates a buffer via
a pointer argument.  See the @code{nonnull} attribute for more information and
caveats.

@item alias ("@var{target}")
@cindex @code{alias} function attribute
The @code{alias} attribute causes the declaration to be emitted as an alias
for another symbol, which must have been previously declared with the same
type, and for variables, also the same size and alignment.  Declaring an alias
with a different type than the target is undefined and may be diagnosed.  As
an example, the following declarations:

@smallexample
void __f () @{ /* @r{Do something.} */; @}
void f () __attribute__ ((weak, alias ("__f")));
@end smallexample

@noindent
define @samp{f} to be a weak alias for @samp{__f}.  In C++, the mangled name
for the target must be used.  It is an error if @samp{__f} is not defined in
the same translation unit.

This attribute requires assembler and object file support,
and may not be available on all targets.

@item aligned
@itemx aligned (@var{alignment})
@cindex @code{aligned} function attribute
The @code{aligned} attribute specifies a minimum alignment for
the first instruction of the function, measured in bytes.  When specified,
@var{alignment} must be an integer constant power of 2.  Specifying no
@var{alignment} argument implies the ideal alignment for the target.
The @code{__alignof__} operator can be used to determine what that is
(@pxref{Alignment}).  The attribute has no effect when a definition for
the function is not provided in the same translation unit.

The attribute cannot be used to decrease the alignment of a function
previously declared with a more restrictive alignment; only to increase
it.  Attempts to do otherwise are diagnosed.  Some targets specify
a minimum default alignment for functions that is greater than 1.  On
such targets, specifying a less restrictive alignment is silently ignored.
Using the attribute overrides the effect of the @option{-falign-functions}
(@pxref{Optimize Options}) option for this function.

Note that the effectiveness of @code{aligned} attributes may be
limited by inherent limitations in the system linker 
and/or object file format.  On some systems, the
linker is only able to arrange for functions to be aligned up to a
certain maximum alignment.  (For some linkers, the maximum supported
alignment may be very very small.)  See your linker documentation for
further information.

The @code{aligned} attribute can also be used for variables and fields
(@pxref{Variable Attributes}.)

@item alloc_align (@var{position})
@cindex @code{alloc_align} function attribute
The @code{alloc_align} attribute may be applied to a function that
returns a pointer and takes at least one argument of an integer or
enumerated type.
It indicates that the returned pointer is aligned on a boundary given
by the function argument at @var{position}.  Meaningful alignments are
powers of 2 greater than one.  GCC uses this information to improve
pointer alignment analysis.

The function parameter denoting the allocated alignment is specified by
one constant integer argument whose number is the argument of the attribute.
Argument numbering starts at one.

For instance,

@smallexample
void* my_memalign (size_t, size_t) __attribute__ ((alloc_align (1)));
@end smallexample

@noindent
declares that @code{my_memalign} returns memory with minimum alignment
given by parameter 1.

@item alloc_size (@var{position})
@itemx alloc_size (@var{position-1}, @var{position-2})
@cindex @code{alloc_size} function attribute
The @code{alloc_size} attribute may be applied to a function that
returns a pointer and takes at least one argument of an integer or
enumerated type.
It indicates that the returned pointer points to memory whose size is
given by the function argument at @var{position-1}, or by the product
of the arguments at @var{position-1} and @var{position-2}.  Meaningful
sizes are positive values less than @code{PTRDIFF_MAX}.  GCC uses this
information to improve the results of @code{__builtin_object_size}.

The function parameter(s) denoting the allocated size are specified by
one or two integer arguments supplied to the attribute.  The allocated size
is either the value of the single function argument specified or the product
of the two function arguments specified.  Argument numbering starts at
one for ordinary functions, and at two for C++ non-static member functions.

For instance,

@smallexample
void* my_calloc (size_t, size_t) __attribute__ ((alloc_size (1, 2)));
void* my_realloc (void*, size_t) __attribute__ ((alloc_size (2)));
@end smallexample

@noindent
declares that @code{my_calloc} returns memory of the size given by
the product of parameter 1 and 2 and that @code{my_realloc} returns memory
of the size given by parameter 2.

@item always_inline
@cindex @code{always_inline} function attribute
Generally, functions are not inlined unless optimization is specified.
For functions declared inline, this attribute inlines the function
independent of any restrictions that otherwise apply to inlining.
Failure to inline such a function is diagnosed as an error.
Note that if such a function is called indirectly the compiler may
or may not inline it depending on optimization level and a failure
to inline an indirect call may or may not be diagnosed.

@item artificial
@cindex @code{artificial} function attribute
This attribute is useful for small inline wrappers that if possible
should appear during debugging as a unit.  Depending on the debug
info format it either means marking the function as artificial
or using the caller location for all instructions within the inlined
body.

@item assume_aligned (@var{alignment})
@itemx assume_aligned (@var{alignment}, @var{offset})
@cindex @code{assume_aligned} function attribute
The @code{assume_aligned} attribute may be applied to a function that
returns a pointer.  It indicates that the returned pointer is aligned
on a boundary given by @var{alignment}.  If the attribute has two
arguments, the second argument is misalignment @var{offset}.  Meaningful
values of @var{alignment} are powers of 2 greater than one.  Meaningful
values of @var{offset} are greater than zero and less than @var{alignment}.

For instance

@smallexample
void* my_alloc1 (size_t) __attribute__((assume_aligned (16)));
void* my_alloc2 (size_t) __attribute__((assume_aligned (32, 8)));
@end smallexample

@noindent
declares that @code{my_alloc1} returns 16-byte aligned pointers and
that @code{my_alloc2} returns a pointer whose value modulo 32 is equal
to 8.

@item cold
@cindex @code{cold} function attribute
The @code{cold} attribute on functions is used to inform the compiler that
the function is unlikely to be executed.  The function is optimized for
size rather than speed and on many targets it is placed into a special
subsection of the text section so all cold functions appear close together,
improving code locality of non-cold parts of program.  The paths leading
to calls of cold functions within code are marked as unlikely by the branch
prediction mechanism.  It is thus useful to mark functions used to handle
unlikely conditions, such as @code{perror}, as cold to improve optimization
of hot functions that do call marked functions in rare occasions.

When profile feedback is available, via @option{-fprofile-use}, cold functions
are automatically detected and this attribute is ignored.

@item const
@cindex @code{const} function attribute
@cindex functions that have no side effects
Calls to functions whose return value is not affected by changes to
the observable state of the program and that have no observable effects
on such state other than to return a value may lend themselves to
optimizations such as common subexpression elimination.  Declaring such
functions with the @code{const} attribute allows GCC to avoid emitting
some calls in repeated invocations of the function with the same argument
values.

For example,

@smallexample
int square (int) __attribute__ ((const));
@end smallexample

@noindent
tells GCC that subsequent calls to function @code{square} with the same
argument value can be replaced by the result of the first call regardless
of the statements in between.

The @code{const} attribute prohibits a function from reading objects
that affect its return value between successive invocations.  However,
functions declared with the attribute can safely read objects that do
not change their return value, such as non-volatile constants.

The @code{const} attribute imposes greater restrictions on a function's
definition than the similar @code{pure} attribute.  Declaring the same
function with both the @code{const} and the @code{pure} attribute is
diagnosed.  Because a const function cannot have any observable side
effects it does not make sense for it to return @code{void}.  Declaring
such a function is diagnosed.

@cindex pointer arguments
Note that a function that has pointer arguments and examines the data
pointed to must @emph{not} be declared @code{const} if the pointed-to
data might change between successive invocations of the function.  In
general, since a function cannot distinguish data that might change
from data that cannot, const functions should never take pointer or,
in C++, reference arguments. Likewise, a function that calls a non-const
function usually must not be const itself.

@item constructor
@itemx destructor
@itemx constructor (@var{priority})
@itemx destructor (@var{priority})
@cindex @code{constructor} function attribute
@cindex @code{destructor} function attribute
The @code{constructor} attribute causes the function to be called
automatically before execution enters @code{main ()}.  Similarly, the
@code{destructor} attribute causes the function to be called
automatically after @code{main ()} completes or @code{exit ()} is
called.  Functions with these attributes are useful for
initializing data that is used implicitly during the execution of
the program.

On some targets the attributes also accept an integer argument to
specify a priority to control the order in which constructor and
destructor functions are run.  A constructor
with a smaller priority number runs before a constructor with a larger
priority number; the opposite relationship holds for destructors.  Note
that priorities 0-100 are reserved.  So, if you have a constructor that
allocates a resource and a destructor that deallocates the same
resource, both functions typically have the same priority.  The
priorities for constructor and destructor functions are the same as
those specified for namespace-scope C++ objects (@pxref{C++ Attributes}).
However, at present, the order in which constructors for C++ objects
with static storage duration and functions decorated with attribute
@code{constructor} are invoked is unspecified. In mixed declarations,
attribute @code{init_priority} can be used to impose a specific ordering.

Using the argument forms of the @code{constructor} and @code{destructor}
attributes on targets where the feature is not supported is rejected with
an error.

@item copy
@itemx copy (@var{function})
@cindex @code{copy} function attribute
The @code{copy} attribute applies the set of attributes with which
@var{function} has been declared to the declaration of the function
to which the attribute is applied.  The attribute is designed for
libraries that define aliases or function resolvers that are expected
to specify the same set of attributes as their targets.  The @code{copy}
attribute can be used with functions, variables, or types.  However,
the kind of symbol to which the attribute is applied (either function
or variable) must match the kind of symbol to which the argument refers.
The @code{copy} attribute copies only syntactic and semantic attributes
but not attributes that affect a symbol's linkage or visibility such as
@code{alias}, @code{visibility}, or @code{weak}.  The @code{deprecated}
and @code{target_clones} attribute are also not copied.
@xref{Common Type Attributes}.
@xref{Common Variable Attributes}.

For example, the @var{StrongAlias} macro below makes use of the @code{alias}
and @code{copy} attributes to define an alias named @var{alloc} for function
@var{allocate} declared with attributes @var{alloc_size}, @var{malloc}, and
@var{nothrow}.  Thanks to the @code{__typeof__} operator the alias has
the same type as the target function.  As a result of the @code{copy}
attribute the alias also shares the same attributes as the target.

@smallexample
#define StrongAlias(TargetFunc, AliasDecl)  \
  extern __typeof__ (TargetFunc) AliasDecl  \
    __attribute__ ((alias (#TargetFunc), copy (TargetFunc)));

extern __attribute__ ((alloc_size (1), malloc, nothrow))
  void* allocate (size_t);
StrongAlias (allocate, alloc);
@end smallexample

@item deprecated
@itemx deprecated (@var{msg})
@cindex @code{deprecated} function attribute
The @code{deprecated} attribute results in a warning if the function
is used anywhere in the source file.  This is useful when identifying
functions that are expected to be removed in a future version of a
program.  The warning also includes the location of the declaration
of the deprecated function, to enable users to easily find further
information about why the function is deprecated, or what they should
do instead.  Note that the warnings only occurs for uses:

@smallexample
int old_fn () __attribute__ ((deprecated));
int old_fn ();
int (*fn_ptr)() = old_fn;
@end smallexample

@noindent
results in a warning on line 3 but not line 2.  The optional @var{msg}
argument, which must be a string, is printed in the warning if
present.

The @code{deprecated} attribute can also be used for variables and
types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)

The message attached to the attribute is affected by the setting of
the @option{-fmessage-length} option.

@item unavailable
@itemx unavailable (@var{msg})
@cindex @code{unavailable} function attribute
The @code{unavailable} attribute results in an error if the function
is used anywhere in the source file.  This is useful when identifying
functions that have been removed from a particular variation of an
interface.  Other than emitting an error rather than a warning, the
@code{unavailable} attribute behaves in the same manner as
@code{deprecated}.

The @code{unavailable} attribute can also be used for variables and
types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)

@item error ("@var{message}")
@itemx warning ("@var{message}")
@cindex @code{error} function attribute
@cindex @code{warning} function attribute
If the @code{error} or @code{warning} attribute 
is used on a function declaration and a call to such a function
is not eliminated through dead code elimination or other optimizations, 
an error or warning (respectively) that includes @var{message} is diagnosed.  
This is useful
for compile-time checking, especially together with @code{__builtin_constant_p}
and inline functions where checking the inline function arguments is not
possible through @code{extern char [(condition) ? 1 : -1];} tricks.

While it is possible to leave the function undefined and thus invoke
a link failure (to define the function with
a message in @code{.gnu.warning*} section),
when using these attributes the problem is diagnosed
earlier and with exact location of the call even in presence of inline
functions or when not emitting debugging information.

@item externally_visible
@cindex @code{externally_visible} function attribute
This attribute, attached to a global variable or function, nullifies
the effect of the @option{-fwhole-program} command-line option, so the
object remains visible outside the current compilation unit.

If @option{-fwhole-program} is used together with @option{-flto} and 
@command{gold} is used as the linker plugin, 
@code{externally_visible} attributes are automatically added to functions 
(not variable yet due to a current @command{gold} issue) 
that are accessed outside of LTO objects according to resolution file
produced by @command{gold}.
For other linkers that cannot generate resolution file,
explicit @code{externally_visible} attributes are still necessary.

@item fd_arg
@itemx fd_arg (@var{N})
@cindex @code{fd_arg} function attribute
The @code{fd_arg} attribute may be applied to a function that takes an open
file descriptor at referenced argument @var{N}.

It indicates that the passed filedescriptor must not have been closed.
Therefore, when the analyzer is enabled with @option{-fanalyzer}, the
analyzer may emit a @option{-Wanalyzer-fd-use-after-close} diagnostic
if it detects a code path in which a function with this attribute is
called with a closed file descriptor.

The attribute also indicates that the file descriptor must have been checked for
validity before usage. Therefore, analyzer may emit
@option{-Wanalyzer-fd-use-without-check} diagnostic if it detects a code path in
which a function with this attribute is called with a file descriptor that has
not been checked for validity.

@item fd_arg_read
@itemx fd_arg_read (@var{N})
@cindex @code{fd_arg_read} function attribute
The @code{fd_arg_read} is identical to @code{fd_arg}, but with the additional
requirement that it might read from the file descriptor, and thus, the file
descriptor must not have been opened as write-only.

The analyzer may emit a @option{-Wanalyzer-access-mode-mismatch}
diagnostic if it detects a code path in which a function with this
attribute is called on a file descriptor opened with @code{O_WRONLY}.

@item fd_arg_write
@itemx fd_arg_write (@var{N})
@cindex @code{fd_arg_write} function attribute
The @code{fd_arg_write} is identical to @code{fd_arg_read} except that the
analyzer may emit a @option{-Wanalyzer-access-mode-mismatch} diagnostic if
it detects a code path in which a function with this attribute is called on a
file descriptor opened with @code{O_RDONLY}.

@item flatten
@cindex @code{flatten} function attribute
Generally, inlining into a function is limited.  For a function marked with
this attribute, every call inside this function is inlined, if possible.
Functions declared with attribute @code{noinline} and similar are not
inlined.  Whether the function itself is considered for inlining depends
on its size and the current inlining parameters.

@item format (@var{archetype}, @var{string-index}, @var{first-to-check})
@cindex @code{format} function attribute
@cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
@opindex Wformat
The @code{format} attribute specifies that a function takes @code{printf},
@code{scanf}, @code{strftime} or @code{strfmon} style arguments that
should be type-checked against a format string.  For example, the
declaration:

@smallexample
extern int
my_printf (void *my_object, const char *my_format, ...)
      __attribute__ ((format (printf, 2, 3)));
@end smallexample

@noindent
causes the compiler to check the arguments in calls to @code{my_printf}
for consistency with the @code{printf} style format string argument
@code{my_format}.

The parameter @var{archetype} determines how the format string is
interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
@code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
@code{strfmon}.  (You can also use @code{__printf__},
@code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.)  On
MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
@code{ms_strftime} are also present.
@var{archetype} values such as @code{printf} refer to the formats accepted
by the system's C runtime library,
while values prefixed with @samp{gnu_} always refer
to the formats accepted by the GNU C Library.  On Microsoft Windows
targets, values prefixed with @samp{ms_} refer to the formats accepted by the
@file{msvcrt.dll} library.
The parameter @var{string-index}
specifies which argument is the format string argument (starting
from 1), while @var{first-to-check} is the number of the first
argument to check against the format string.  For functions
where the arguments are not available to be checked (such as
@code{vprintf}), specify the third parameter as zero.  In this case the
compiler only checks the format string for consistency.  For
@code{strftime} formats, the third parameter is required to be zero.
Since non-static C++ methods have an implicit @code{this} argument, the
arguments of such methods should be counted from two, not one, when
giving values for @var{string-index} and @var{first-to-check}.

In the example above, the format string (@code{my_format}) is the second
argument of the function @code{my_print}, and the arguments to check
start with the third argument, so the correct parameters for the format
attribute are 2 and 3.

@opindex ffreestanding
@opindex fno-builtin
The @code{format} attribute allows you to identify your own functions
that take format strings as arguments, so that GCC can check the
calls to these functions for errors.  The compiler always (unless
@option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
for the standard library functions @code{printf}, @code{fprintf},
@code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
@code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
warnings are requested (using @option{-Wformat}), so there is no need to
modify the header file @file{stdio.h}.  In C99 mode, the functions
@code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
@code{vsscanf} are also checked.  Except in strictly conforming C
standard modes, the X/Open function @code{strfmon} is also checked as
are @code{printf_unlocked} and @code{fprintf_unlocked}.
@xref{C Dialect Options,,Options Controlling C Dialect}.

For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
recognized in the same context.  Declarations including these format attributes
are parsed for correct syntax, however the result of checking of such format
strings is not yet defined, and is not carried out by this version of the
compiler.

The target may also provide additional types of format checks.
@xref{Target Format Checks,,Format Checks Specific to Particular
Target Machines}.

@item format_arg (@var{string-index})
@cindex @code{format_arg} function attribute
@opindex Wformat-nonliteral
The @code{format_arg} attribute specifies that a function takes one or
more format strings for a @code{printf}, @code{scanf}, @code{strftime} or
@code{strfmon} style function and modifies it (for example, to translate
it into another language), so the result can be passed to a
@code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
function (with the remaining arguments to the format function the same
as they would have been for the unmodified string).  Multiple
@code{format_arg} attributes may be applied to the same function, each
designating a distinct parameter as a format string.  For example, the
declaration:

@smallexample
extern char *
my_dgettext (char *my_domain, const char *my_format)
      __attribute__ ((format_arg (2)));
@end smallexample

@noindent
causes the compiler to check the arguments in calls to a @code{printf},
@code{scanf}, @code{strftime} or @code{strfmon} type function, whose
format string argument is a call to the @code{my_dgettext} function, for
consistency with the format string argument @code{my_format}.  If the
@code{format_arg} attribute had not been specified, all the compiler
could tell in such calls to format functions would be that the format
string argument is not constant; this would generate a warning when
@option{-Wformat-nonliteral} is used, but the calls could not be checked
without the attribute.

In calls to a function declared with more than one @code{format_arg}
attribute, each with a distinct argument value, the corresponding
actual function arguments are checked against all format strings
designated by the attributes.  This capability is designed to support
the GNU @code{ngettext} family of functions.

The parameter @var{string-index} specifies which argument is the format
string argument (starting from one).  Since non-static C++ methods have
an implicit @code{this} argument, the arguments of such methods should
be counted from two.

The @code{format_arg} attribute allows you to identify your own
functions that modify format strings, so that GCC can check the
calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
type function whose operands are a call to one of your own function.
The compiler always treats @code{gettext}, @code{dgettext}, and
@code{dcgettext} in this manner except when strict ISO C support is
requested by @option{-ansi} or an appropriate @option{-std} option, or
@option{-ffreestanding} or @option{-fno-builtin}
is used.  @xref{C Dialect Options,,Options
Controlling C Dialect}.

For Objective-C dialects, the @code{format-arg} attribute may refer to an
@code{NSString} reference for compatibility with the @code{format} attribute
above.

The target may also allow additional types in @code{format-arg} attributes.
@xref{Target Format Checks,,Format Checks Specific to Particular
Target Machines}.

@item gnu_inline
@cindex @code{gnu_inline} function attribute
This attribute should be used with a function that is also declared
with the @code{inline} keyword.  It directs GCC to treat the function
as if it were defined in gnu90 mode even when compiling in C99 or
gnu99 mode.

If the function is declared @code{extern}, then this definition of the
function is used only for inlining.  In no case is the function
compiled as a standalone function, not even if you take its address
explicitly.  Such an address becomes an external reference, as if you
had only declared the function, and had not defined it.  This has
almost the effect of a macro.  The way to use this is to put a
function definition in a header file with this attribute, and put
another copy of the function, without @code{extern}, in a library
file.  The definition in the header file causes most calls to the
function to be inlined.  If any uses of the function remain, they
refer to the single copy in the library.  Note that the two
definitions of the functions need not be precisely the same, although
if they do not have the same effect your program may behave oddly.

In C, if the function is neither @code{extern} nor @code{static}, then
the function is compiled as a standalone function, as well as being
inlined where possible.

This is how GCC traditionally handled functions declared
@code{inline}.  Since ISO C99 specifies a different semantics for
@code{inline}, this function attribute is provided as a transition
measure and as a useful feature in its own right.  This attribute is
available in GCC 4.1.3 and later.  It is available if either of the
preprocessor macros @code{__GNUC_GNU_INLINE__} or
@code{__GNUC_STDC_INLINE__} are defined.  @xref{Inline,,An Inline
Function is As Fast As a Macro}.

In C++, this attribute does not depend on @code{extern} in any way,
but it still requires the @code{inline} keyword to enable its special
behavior.

@item hot
@cindex @code{hot} function attribute
The @code{hot} attribute on a function is used to inform the compiler that
the function is a hot spot of the compiled program.  The function is
optimized more aggressively and on many targets it is placed into a special
subsection of the text section so all hot functions appear close together,
improving locality.

When profile feedback is available, via @option{-fprofile-use}, hot functions
are automatically detected and this attribute is ignored.

@item ifunc ("@var{resolver}")
@cindex @code{ifunc} function attribute
@cindex indirect functions
@cindex functions that are dynamically resolved
The @code{ifunc} attribute is used to mark a function as an indirect
function using the STT_GNU_IFUNC symbol type extension to the ELF
standard.  This allows the resolution of the symbol value to be
determined dynamically at load time, and an optimized version of the
routine to be selected for the particular processor or other system
characteristics determined then.  To use this attribute, first define
the implementation functions available, and a resolver function that
returns a pointer to the selected implementation function.  The
implementation functions' declarations must match the API of the
function being implemented.  The resolver should be declared to
be a function taking no arguments and returning a pointer to
a function of the same type as the implementation.  For example:

@smallexample
void *my_memcpy (void *dst, const void *src, size_t len)
@{
  @dots{}
  return dst;
@}

static void * (*resolve_memcpy (void))(void *, const void *, size_t)
@{
  return my_memcpy; // we will just always select this routine
@}
@end smallexample

@noindent
The exported header file declaring the function the user calls would
contain:

@smallexample
extern void *memcpy (void *, const void *, size_t);
@end smallexample

@noindent
allowing the user to call @code{memcpy} as a regular function, unaware of
the actual implementation.  Finally, the indirect function needs to be
defined in the same translation unit as the resolver function:

@smallexample
void *memcpy (void *, const void *, size_t)
     __attribute__ ((ifunc ("resolve_memcpy")));
@end smallexample

In C++, the @code{ifunc} attribute takes a string that is the mangled name
of the resolver function.  A C++ resolver for a non-static member function
of class @code{C} should be declared to return a pointer to a non-member
function taking pointer to @code{C} as the first argument, followed by
the same arguments as of the implementation function.  G++ checks
the signatures of the two functions and issues
a @option{-Wattribute-alias} warning for mismatches.  To suppress a warning
for the necessary cast from a pointer to the implementation member function
to the type of the corresponding non-member function use
the @option{-Wno-pmf-conversions} option.  For example:

@smallexample
class S
@{
private:
  int debug_impl (int);
  int optimized_impl (int);

  typedef int Func (S*, int);

  static Func* resolver ();
public:

  int interface (int);
@};

int S::debug_impl (int) @{ /* @r{@dots{}} */ @}
int S::optimized_impl (int) @{ /* @r{@dots{}} */ @}

S::Func* S::resolver ()
@{
  int (S::*pimpl) (int)
    = getenv ("DEBUG") ? &S::debug_impl : &S::optimized_impl;

  // Cast triggers -Wno-pmf-conversions.
  return reinterpret_cast<Func*>(pimpl);
@}

int S::interface (int) __attribute__ ((ifunc ("_ZN1S8resolverEv")));
@end smallexample

Indirect functions cannot be weak.  Binutils version 2.20.1 or higher
and GNU C Library version 2.11.1 are required to use this feature.

@item interrupt
@itemx interrupt_handler
Many GCC back ends support attributes to indicate that a function is
an interrupt handler, which tells the compiler to generate function
entry and exit sequences that differ from those from regular
functions.  The exact syntax and behavior are target-specific;
refer to the following subsections for details.

@item leaf
@cindex @code{leaf} function attribute
Calls to external functions with this attribute must return to the
current compilation unit only by return or by exception handling.  In
particular, a leaf function is not allowed to invoke callback functions
passed to it from the current compilation unit, directly call functions
exported by the unit, or @code{longjmp} into the unit.  Leaf functions
might still call functions from other compilation units and thus they
are not necessarily leaf in the sense that they contain no function
calls at all.

The attribute is intended for library functions to improve dataflow
analysis.  The compiler takes the hint that any data not escaping the
current compilation unit cannot be used or modified by the leaf
function.  For example, the @code{sin} function is a leaf function, but
@code{qsort} is not.

Note that leaf functions might indirectly run a signal handler defined
in the current compilation unit that uses static variables.  Similarly,
when lazy symbol resolution is in effect, leaf functions might invoke
indirect functions whose resolver function or implementation function is
defined in the current compilation unit and uses static variables.  There
is no standard-compliant way to write such a signal handler, resolver
function, or implementation function, and the best that you can do is to
remove the @code{leaf} attribute or mark all such static variables
@code{volatile}.  Lastly, for ELF-based systems that support symbol
interposition, care should be taken that functions defined in the
current compilation unit do not unexpectedly interpose other symbols
based on the defined standards mode and defined feature test macros;
otherwise an inadvertent callback would be added.

The attribute has no effect on functions defined within the current
compilation unit.  This is to allow easy merging of multiple compilation
units into one, for example, by using the link-time optimization.  For
this reason the attribute is not allowed on types to annotate indirect
calls.

@item malloc
@item malloc (@var{deallocator})
@item malloc (@var{deallocator}, @var{ptr-index})
@cindex @code{malloc} function attribute
@cindex functions that behave like malloc
Attribute @code{malloc} indicates that a function is @code{malloc}-like,
i.e., that the pointer @var{P} returned by the function cannot alias any
other pointer valid when the function returns, and moreover no
pointers to valid objects occur in any storage addressed by @var{P}. In
addition, the GCC predicts that a function with the attribute returns
non-null in most cases.

Independently, the form of the attribute with one or two arguments
associates @code{deallocator} as a suitable deallocation function for
pointers returned from the @code{malloc}-like function.  @var{ptr-index}
denotes the positional argument to which when the pointer is passed in
calls to @code{deallocator} has the effect of deallocating it.

Using the attribute with no arguments is designed to improve optimization
by relying on the aliasing property it implies.  Functions like @code{malloc}
and @code{calloc} have this property because they return a pointer to
uninitialized or zeroed-out, newly obtained storage.  However, functions
like @code{realloc} do not have this property, as they may return pointers
to storage containing pointers to existing objects.  Additionally, since
all such functions are assumed to return null only infrequently, callers
can be optimized based on that assumption.

Associating a function with a @var{deallocator} helps detect calls to
mismatched allocation and deallocation functions and diagnose them under
the control of options such as @option{-Wmismatched-dealloc}.  It also
makes it possible to diagnose attempts to deallocate objects that were not
allocated dynamically, by @option{-Wfree-nonheap-object}.  To indicate
that an allocation function both satisifies the nonaliasing property and
has a deallocator associated with it, both the plain form of the attribute
and the one with the @var{deallocator} argument must be used.  The same
function can be both an allocator and a deallocator.  Since inlining one
of the associated functions but not the other could result in apparent
mismatches, this form of attribute @code{malloc} is not accepted on inline
functions.  For the same reason, using the attribute prevents both
the allocation and deallocation functions from being expanded inline.

For example, besides stating that the functions return pointers that do
not alias any others, the following declarations make @code{fclose}
a suitable deallocator for pointers returned from all functions except
@code{popen}, and @code{pclose} as the only suitable deallocator for
pointers returned from @code{popen}.  The deallocator functions must
be declared before they can be referenced in the attribute.

@smallexample
int fclose (FILE*);
int pclose (FILE*);

__attribute__ ((malloc, malloc (fclose, 1)))
  FILE* fdopen (int, const char*);
__attribute__ ((malloc, malloc (fclose, 1)))
  FILE* fopen (const char*, const char*);
__attribute__ ((malloc, malloc (fclose, 1)))
  FILE* fmemopen(void *, size_t, const char *);
__attribute__ ((malloc, malloc (pclose, 1)))
  FILE* popen (const char*, const char*);
__attribute__ ((malloc, malloc (fclose, 1)))
  FILE* tmpfile (void);
@end smallexample

The warnings guarded by @option{-fanalyzer} respect allocation and
deallocation pairs marked with the @code{malloc}.  In particular:

@itemize @bullet

@item
The analyzer will emit a @option{-Wanalyzer-mismatching-deallocation}
diagnostic if there is an execution path in which the result of an
allocation call is passed to a different deallocator.

@item
The analyzer will emit a @option{-Wanalyzer-double-free}
diagnostic if there is an execution path in which a value is passed
more than once to a deallocation call.

@item
The analyzer will consider the possibility that an allocation function
could fail and return NULL.  It will emit
@option{-Wanalyzer-possible-null-dereference} and
@option{-Wanalyzer-possible-null-argument} diagnostics if there are
execution paths in which an unchecked result of an allocation call is
dereferenced or passed to a function requiring a non-null argument.
If the allocator always returns non-null, use
@code{__attribute__ ((returns_nonnull))} to suppress these warnings.
For example:
@smallexample
char *xstrdup (const char *)
  __attribute__((malloc (free), returns_nonnull));
@end smallexample

@item
The analyzer will emit a @option{-Wanalyzer-use-after-free}
diagnostic if there is an execution path in which the memory passed
by pointer to a deallocation call is used after the deallocation.

@item
The analyzer will emit a @option{-Wanalyzer-malloc-leak} diagnostic if
there is an execution path in which the result of an allocation call
is leaked (without being passed to the deallocation function).

@item
The analyzer will emit a @option{-Wanalyzer-free-of-non-heap} diagnostic
if a deallocation function is used on a global or on-stack variable.

@end itemize

The analyzer assumes that deallocators can gracefully handle the @code{NULL}
pointer.  If this is not the case, the deallocator can be marked with
@code{__attribute__((nonnull))} so that @option{-fanalyzer} can emit
a @option{-Wanalyzer-possible-null-argument} diagnostic for code paths
in which the deallocator is called with NULL.

@item no_icf
@cindex @code{no_icf} function attribute
This function attribute prevents a functions from being merged with another
semantically equivalent function.

@item no_instrument_function
@cindex @code{no_instrument_function} function attribute
@opindex finstrument-functions
@opindex p
@opindex pg
If any of @option{-finstrument-functions}, @option{-p}, or @option{-pg} are 
given, profiling function calls are
generated at entry and exit of most user-compiled functions.
Functions with this attribute are not so instrumented.

@item no_profile_instrument_function
@cindex @code{no_profile_instrument_function} function attribute
The @code{no_profile_instrument_function} attribute on functions is used
to inform the compiler that it should not process any profile feedback based
optimization code instrumentation.

@item no_reorder
@cindex @code{no_reorder} function attribute
Do not reorder functions or variables marked @code{no_reorder}
against each other or top level assembler statements the executable.
The actual order in the program will depend on the linker command
line. Static variables marked like this are also not removed.
This has a similar effect
as the @option{-fno-toplevel-reorder} option, but only applies to the
marked symbols.

@item no_sanitize ("@var{sanitize_option}")
@cindex @code{no_sanitize} function attribute
The @code{no_sanitize} attribute on functions is used
to inform the compiler that it should not do sanitization of any option
mentioned in @var{sanitize_option}.  A list of values acceptable by
the @option{-fsanitize} option can be provided.

@smallexample
void __attribute__ ((no_sanitize ("alignment", "object-size")))
f () @{ /* @r{Do something.} */; @}
void __attribute__ ((no_sanitize ("alignment,object-size")))
g () @{ /* @r{Do something.} */; @}
@end smallexample

@item no_sanitize_address
@itemx no_address_safety_analysis
@cindex @code{no_sanitize_address} function attribute
The @code{no_sanitize_address} attribute on functions is used
to inform the compiler that it should not instrument memory accesses
in the function when compiling with the @option{-fsanitize=address} option.
The @code{no_address_safety_analysis} is a deprecated alias of the
@code{no_sanitize_address} attribute, new code should use
@code{no_sanitize_address}.

@item no_sanitize_thread
@cindex @code{no_sanitize_thread} function attribute
The @code{no_sanitize_thread} attribute on functions is used
to inform the compiler that it should not instrument memory accesses
in the function when compiling with the @option{-fsanitize=thread} option.

@item no_sanitize_undefined
@cindex @code{no_sanitize_undefined} function attribute
The @code{no_sanitize_undefined} attribute on functions is used
to inform the compiler that it should not check for undefined behavior
in the function when compiling with the @option{-fsanitize=undefined} option.

@item no_sanitize_coverage
@cindex @code{no_sanitize_coverage} function attribute
The @code{no_sanitize_coverage} attribute on functions is used
to inform the compiler that it should not do coverage-guided
fuzzing code instrumentation (@option{-fsanitize-coverage}).

@item no_split_stack
@cindex @code{no_split_stack} function attribute
@opindex fsplit-stack
If @option{-fsplit-stack} is given, functions have a small
prologue which decides whether to split the stack.  Functions with the
@code{no_split_stack} attribute do not have that prologue, and thus
may run with only a small amount of stack space available.

@item no_stack_limit
@cindex @code{no_stack_limit} function attribute
This attribute locally overrides the @option{-fstack-limit-register}
and @option{-fstack-limit-symbol} command-line options; it has the effect
of disabling stack limit checking in the function it applies to.

@item noclone
@cindex @code{noclone} function attribute
This function attribute prevents a function from being considered for
cloning---a mechanism that produces specialized copies of functions
and which is (currently) performed by interprocedural constant
propagation.

@item noinline
@cindex @code{noinline} function attribute
This function attribute prevents a function from being considered for
inlining.
@c Don't enumerate the optimizations by name here; we try to be
@c future-compatible with this mechanism.
If the function does not have side effects, there are optimizations
other than inlining that cause function calls to be optimized away,
although the function call is live.  To keep such calls from being
optimized away, put
@smallexample
asm ("");
@end smallexample

@noindent
(@pxref{Extended Asm}) in the called function, to serve as a special
side effect.

@item noipa
@cindex @code{noipa} function attribute
Disable interprocedural optimizations between the function with this
attribute and its callers, as if the body of the function is not available
when optimizing callers and the callers are unavailable when optimizing
the body.  This attribute implies @code{noinline}, @code{noclone} and
@code{no_icf} attributes.    However, this attribute is not equivalent
to a combination of other attributes, because its purpose is to suppress
existing and future optimizations employing interprocedural analysis,
including those that do not have an attribute suitable for disabling
them individually.  This attribute is supported mainly for the purpose
of testing the compiler.

@item nonnull
@itemx nonnull (@var{arg-index}, @dots{})
@cindex @code{nonnull} function attribute
@cindex functions with non-null pointer arguments
The @code{nonnull} attribute may be applied to a function that takes at
least one argument of a pointer type.  It indicates that the referenced
arguments must be non-null pointers.  For instance, the declaration:

@smallexample
extern void *
my_memcpy (void *dest, const void *src, size_t len)
        __attribute__((nonnull (1, 2)));
@end smallexample

@noindent
informs the compiler that, in calls to @code{my_memcpy}, arguments
@var{dest} and @var{src} must be non-null.

The attribute has an effect both on functions calls and function definitions.

For function calls:
@itemize @bullet
@item If the compiler determines that a null pointer is
passed in an argument slot marked as non-null, and the
@option{-Wnonnull} option is enabled, a warning is issued.
@xref{Warning Options}.
@item The @option{-fisolate-erroneous-paths-attribute} option can be
specified to have GCC transform calls with null arguments to non-null
functions into traps.  @xref{Optimize Options}.
@item The compiler may also perform optimizations based on the
knowledge that certain function arguments cannot be null.  These
optimizations can be disabled by the
@option{-fno-delete-null-pointer-checks} option. @xref{Optimize Options}.
@end itemize

For function definitions:
@itemize @bullet
@item If the compiler determines that a function parameter that is
marked with nonnull is compared with null, and
@option{-Wnonnull-compare} option is enabled, a warning is issued.
@xref{Warning Options}.
@item The compiler may also perform optimizations based on the
knowledge that @code{nonnul} parameters cannot be null.  This can
currently not be disabled other than by removing the nonnull
attribute.
@end itemize

If no @var{arg-index} is given to the @code{nonnull} attribute,
all pointer arguments are marked as non-null.  To illustrate, the
following declaration is equivalent to the previous example:

@smallexample
extern void *
my_memcpy (void *dest, const void *src, size_t len)
        __attribute__((nonnull));
@end smallexample

@item noplt
@cindex @code{noplt} function attribute
The @code{noplt} attribute is the counterpart to option @option{-fno-plt}.
Calls to functions marked with this attribute in position-independent code
do not use the PLT.

@smallexample
@group
/* Externally defined function foo.  */
int foo () __attribute__ ((noplt));

int
main (/* @r{@dots{}} */)
@{
  /* @r{@dots{}} */
  foo ();
  /* @r{@dots{}} */
@}
@end group
@end smallexample

The @code{noplt} attribute on function @code{foo}
tells the compiler to assume that
the function @code{foo} is externally defined and that the call to
@code{foo} must avoid the PLT
in position-independent code.

In position-dependent code, a few targets also convert calls to
functions that are marked to not use the PLT to use the GOT instead.

@item noreturn
@cindex @code{noreturn} function attribute
@cindex functions that never return
A few standard library functions, such as @code{abort} and @code{exit},
cannot return.  GCC knows this automatically.  Some programs define
their own functions that never return.  You can declare them
@code{noreturn} to tell the compiler this fact.  For example,

@smallexample
@group
void fatal () __attribute__ ((noreturn));

void
fatal (/* @r{@dots{}} */)
@{
  /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
  exit (1);
@}
@end group
@end smallexample

The @code{noreturn} keyword tells the compiler to assume that
@code{fatal} cannot return.  It can then optimize without regard to what
would happen if @code{fatal} ever did return.  This makes slightly
better code.  More importantly, it helps avoid spurious warnings of
uninitialized variables.

The @code{noreturn} keyword does not affect the exceptional path when that
applies: a @code{noreturn}-marked function may still return to the caller
by throwing an exception or calling @code{longjmp}.

In order to preserve backtraces, GCC will never turn calls to
@code{noreturn} functions into tail calls.

Do not assume that registers saved by the calling function are
restored before calling the @code{noreturn} function.

It does not make sense for a @code{noreturn} function to have a return
type other than @code{void}.

@item nothrow
@cindex @code{nothrow} function attribute
The @code{nothrow} attribute is used to inform the compiler that a
function cannot throw an exception.  For example, most functions in
the standard C library can be guaranteed not to throw an exception
with the notable exceptions of @code{qsort} and @code{bsearch} that
take function pointer arguments.

@item optimize (@var{level}, @dots{})
@item optimize (@var{string}, @dots{})
@cindex @code{optimize} function attribute
The @code{optimize} attribute is used to specify that a function is to
be compiled with different optimization options than specified on the
command line.  The optimize attribute arguments of a function behave
behave as if appended to the command-line.

Valid arguments are constant non-negative integers and
strings.  Each numeric argument specifies an optimization @var{level}.
Each @var{string} argument consists of one or more comma-separated
substrings.  Each substring that begins with the letter @code{O} refers
to an optimization option such as @option{-O0} or @option{-Os}.  Other
substrings are taken as suffixes to the @code{-f} prefix jointly
forming the name of an optimization option.  @xref{Optimize Options}.

@samp{#pragma GCC optimize} can be used to set optimization options
for more than one function.  @xref{Function Specific Option Pragmas},
for details about the pragma.

Providing multiple strings as arguments separated by commas to specify
multiple options is equivalent to separating the option suffixes with
a comma (@samp{,}) within a single string.  Spaces are not permitted
within the strings.

Not every optimization option that starts with the @var{-f} prefix
specified by the attribute necessarily has an effect on the function.
The @code{optimize} attribute should be used for debugging purposes only.
It is not suitable in production code.

@item patchable_function_entry
@cindex @code{patchable_function_entry} function attribute
@cindex extra NOP instructions at the function entry point
In case the target's text segment can be made writable at run time by
any means, padding the function entry with a number of NOPs can be
used to provide a universal tool for instrumentation.

The @code{patchable_function_entry} function attribute can be used to
change the number of NOPs to any desired value.  The two-value syntax
is the same as for the command-line switch
@option{-fpatchable-function-entry=N,M}, generating @var{N} NOPs, with
the function entry point before the @var{M}th NOP instruction.
@var{M} defaults to 0 if omitted e.g.@: function entry point is before
the first NOP.

If patchable function entries are enabled globally using the command-line
option @option{-fpatchable-function-entry=N,M}, then you must disable
instrumentation on all functions that are part of the instrumentation
framework with the attribute @code{patchable_function_entry (0)}
to prevent recursion.

@item pure
@cindex @code{pure} function attribute
@cindex functions that have no side effects

Calls to functions that have no observable effects on the state of
the program other than to return a value may lend themselves to optimizations
such as common subexpression elimination.  Declaring such functions with
the @code{pure} attribute allows GCC to avoid emitting some calls in repeated
invocations of the function with the same argument values.

The @code{pure} attribute prohibits a function from modifying the state
of the program that is observable by means other than inspecting
the function's return value.  However, functions declared with the @code{pure}
attribute can safely read any non-volatile objects, and modify the value of
objects in a way that does not affect their return value or the observable
state of the program.

For example,

@smallexample
int hash (char *) __attribute__ ((pure));
@end smallexample

@noindent
tells GCC that subsequent calls to the function @code{hash} with the same
string can be replaced by the result of the first call provided the state
of the program observable by @code{hash}, including the contents of the array
itself, does not change in between.  Even though @code{hash} takes a non-const
pointer argument it must not modify the array it points to, or any other object
whose value the rest of the program may depend on.  However, the caller may
safely change the contents of the array between successive calls to
the function (doing so disables the optimization).  The restriction also
applies to member objects referenced by the @code{this} pointer in C++
non-static member functions.

Some common examples of pure functions are @code{strlen} or @code{memcmp}.
Interesting non-pure functions are functions with infinite loops or those
depending on volatile memory or other system resource, that may change between
consecutive calls (such as the standard C @code{feof} function in
a multithreading environment).

The @code{pure} attribute imposes similar but looser restrictions on
a function's definition than the @code{const} attribute: @code{pure}
allows the function to read any non-volatile memory, even if it changes
in between successive invocations of the function.  Declaring the same
function with both the @code{pure} and the @code{const} attribute is
diagnosed.  Because a pure function cannot have any observable side
effects it does not make sense for such a function to return @code{void}.
Declaring such a function is diagnosed.

@item returns_nonnull
@cindex @code{returns_nonnull} function attribute
The @code{returns_nonnull} attribute specifies that the function
return value should be a non-null pointer.  For instance, the declaration:

@smallexample
extern void *
mymalloc (size_t len) __attribute__((returns_nonnull));
@end smallexample

@noindent
lets the compiler optimize callers based on the knowledge
that the return value will never be null.

@item returns_twice
@cindex @code{returns_twice} function attribute
@cindex functions that return more than once
The @code{returns_twice} attribute tells the compiler that a function may
return more than one time.  The compiler ensures that all registers
are dead before calling such a function and emits a warning about
the variables that may be clobbered after the second return from the
function.  Examples of such functions are @code{setjmp} and @code{vfork}.
The @code{longjmp}-like counterpart of such function, if any, might need
to be marked with the @code{noreturn} attribute.

@item section ("@var{section-name}")
@cindex @code{section} function attribute
@cindex functions in arbitrary sections
Normally, the compiler places the code it generates in the @code{text} section.
Sometimes, however, you need additional sections, or you need certain
particular functions to appear in special sections.  The @code{section}
attribute specifies that a function lives in a particular section.
For example, the declaration:

@smallexample
extern void foobar (void) __attribute__ ((section ("bar")));
@end smallexample

@noindent
puts the function @code{foobar} in the @code{bar} section.

Some file formats do not support arbitrary sections so the @code{section}
attribute is not available on all platforms.
If you need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.

@item sentinel
@itemx sentinel (@var{position})
@cindex @code{sentinel} function attribute
This function attribute indicates that an argument in a call to the function
is expected to be an explicit @code{NULL}.  The attribute is only valid on
variadic functions.  By default, the sentinel is expected to be the last
argument of the function call.  If the optional @var{position} argument
is specified to the attribute, the sentinel must be located at
@var{position} counting backwards from the end of the argument list.

@smallexample
__attribute__ ((sentinel))
is equivalent to
__attribute__ ((sentinel(0)))
@end smallexample

The attribute is automatically set with a position of 0 for the built-in
functions @code{execl} and @code{execlp}.  The built-in function
@code{execle} has the attribute set with a position of 1.

A valid @code{NULL} in this context is defined as zero with any object
pointer type.  If your system defines the @code{NULL} macro with
an integer type then you need to add an explicit cast.  During
installation GCC replaces the system @code{<stddef.h>} header with
a copy that redefines NULL appropriately.

The warnings for missing or incorrect sentinels are enabled with
@option{-Wformat}.

@item simd
@itemx simd("@var{mask}")
@cindex @code{simd} function attribute
This attribute enables creation of one or more function versions that
can process multiple arguments using SIMD instructions from a
single invocation.  Specifying this attribute allows compiler to
assume that such versions are available at link time (provided
in the same or another translation unit).  Generated versions are
target-dependent and described in the corresponding Vector ABI document.  For
x86_64 target this document can be found
@w{@uref{https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt,here}}.

The optional argument @var{mask} may have the value
@code{notinbranch} or @code{inbranch},
and instructs the compiler to generate non-masked or masked
clones correspondingly. By default, all clones are generated.

If the attribute is specified and @code{#pragma omp declare simd} is
present on a declaration and the @option{-fopenmp} or @option{-fopenmp-simd}
switch is specified, then the attribute is ignored.

@item stack_protect
@cindex @code{stack_protect} function attribute
This attribute adds stack protection code to the function if 
flags @option{-fstack-protector}, @option{-fstack-protector-strong}
or @option{-fstack-protector-explicit} are set.

@item no_stack_protector
@cindex @code{no_stack_protector} function attribute
This attribute prevents stack protection code for the function.

@item target (@var{string}, @dots{})
@cindex @code{target} function attribute
Multiple target back ends implement the @code{target} attribute
to specify that a function is to
be compiled with different target options than specified on the
command line.  The original target command-line options are ignored.
One or more strings can be provided as arguments.
Each string consists of one or more comma-separated suffixes to
the @code{-m} prefix jointly forming the name of a machine-dependent
option.  @xref{Submodel Options,,Machine-Dependent Options}.

The @code{target} attribute can be used for instance to have a function
compiled with a different ISA (instruction set architecture) than the
default.  @samp{#pragma GCC target} can be used to specify target-specific
options for more than one function.  @xref{Function Specific Option Pragmas},
for details about the pragma.

For instance, on an x86, you could declare one function with the
@code{target("sse4.1,arch=core2")} attribute and another with
@code{target("sse4a,arch=amdfam10")}.  This is equivalent to
compiling the first function with @option{-msse4.1} and
@option{-march=core2} options, and the second function with
@option{-msse4a} and @option{-march=amdfam10} options.  It is up to you
to make sure that a function is only invoked on a machine that
supports the particular ISA it is compiled for (for example by using
@code{cpuid} on x86 to determine what feature bits and architecture
family are used).

@smallexample
int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
int sse3_func (void) __attribute__ ((__target__ ("sse3")));
@end smallexample

Providing multiple strings as arguments separated by commas to specify
multiple options is equivalent to separating the option suffixes with
a comma (@samp{,}) within a single string.  Spaces are not permitted
within the strings.

The options supported are specific to each target; refer to @ref{x86
Function Attributes}, @ref{PowerPC Function Attributes},
@ref{ARM Function Attributes}, @ref{AArch64 Function Attributes},
@ref{Nios II Function Attributes}, and @ref{S/390 Function Attributes}
for details.

@item symver ("@var{name2}@@@var{nodename}")
@cindex @code{symver} function attribute
On ELF targets this attribute creates a symbol version.  The @var{name2} part
of the parameter is the actual name of the symbol by which it will be
externally referenced.  The @code{nodename} portion should be the name of a
node specified in the version script supplied to the linker when building a
shared library.  Versioned symbol must be defined and must be exported with
default visibility.

@smallexample
__attribute__ ((__symver__ ("foo@@VERS_1"))) int
foo_v1 (void)
@{
@}
@end smallexample

Will produce a @code{.symver foo_v1, foo@@VERS_1} directive in the assembler
output. 

One can also define multiple version for a given symbol
(starting from binutils 2.35).

@smallexample
__attribute__ ((__symver__ ("foo@@VERS_2"), __symver__ ("foo@@VERS_3")))
int symver_foo_v1 (void)
@{
@}
@end smallexample

This example creates a symbol name @code{symver_foo_v1}
which will be version @code{VERS_2} and @code{VERS_3} of @code{foo}.

If you have an older release of binutils, then symbol alias needs to
be used:

@smallexample
__attribute__ ((__symver__ ("foo@@VERS_2")))
int foo_v1 (void)
@{
  return 0;
@}

__attribute__ ((__symver__ ("foo@@VERS_3")))
__attribute__ ((alias ("foo_v1")))
int symver_foo_v1 (void);
@end smallexample

Finally if the parameter is @code{"@var{name2}@@@@@var{nodename}"} then in
addition to creating a symbol version (as if
@code{"@var{name2}@@@var{nodename}"} was used) the version will be also used
to resolve @var{name2} by the linker.

@item tainted_args
@cindex @code{tainted_args} function attribute
The @code{tainted_args} attribute is used to specify that a function is called
in a way that requires sanitization of its arguments, such as a system
call in an operating system kernel.  Such a function can be considered part
of the ``attack surface'' of the program.  The attribute can be used both
on function declarations, and on field declarations containing function
pointers.  In the latter case, any function used as an initializer of
such a callback field will be treated as being called with tainted
arguments.

The analyzer will pay particular attention to such functions when both
@option{-fanalyzer} and @option{-fanalyzer-checker=taint} are supplied,
potentially issuing warnings guarded by
@option{-Wanalyzer-tainted-allocation-size},
@option{-Wanalyzer-tainted-array-index},
@option{-Wanalyzer-tainted-divisor},
@option{-Wanalyzer-tainted-offset},
and @option{-Wanalyzer-tainted-size}.

@item target_clones (@var{options})
@cindex @code{target_clones} function attribute
The @code{target_clones} attribute is used to specify that a function
be cloned into multiple versions compiled with different target options
than specified on the command line.  The supported options and restrictions
are the same as for @code{target} attribute.

For instance, on an x86, you could compile a function with
@code{target_clones("sse4.1,avx")}.  GCC creates two function clones,
one compiled with @option{-msse4.1} and another with @option{-mavx}.

On a PowerPC, you can compile a function with
@code{target_clones("cpu=power9,default")}.  GCC will create two
function clones, one compiled with @option{-mcpu=power9} and another
with the default options.  GCC must be configured to use GLIBC 2.23 or
newer in order to use the @code{target_clones} attribute.

It also creates a resolver function (see
the @code{ifunc} attribute above) that dynamically selects a clone
suitable for current architecture.  The resolver is created only if there
is a usage of a function with @code{target_clones} attribute.

Note that any subsequent call of a function without @code{target_clone}
from a @code{target_clone} caller will not lead to copying
(target clone) of the called function.
If you want to enforce such behaviour,
we recommend declaring the calling function with the @code{flatten} attribute?

@item unused
@cindex @code{unused} function attribute
This attribute, attached to a function, means that the function is meant
to be possibly unused.  GCC does not produce a warning for this
function.

@item used
@cindex @code{used} function attribute
This attribute, attached to a function, means that code must be emitted
for the function even if it appears that the function is not referenced.
This is useful, for example, when the function is referenced only in
inline assembly.

When applied to a member function of a C++ class template, the
attribute also means that the function is instantiated if the
class itself is instantiated.

@item retain
@cindex @code{retain} function attribute
For ELF targets that support the GNU or FreeBSD OSABIs, this attribute
will save the function from linker garbage collection.  To support
this behavior, functions that have not been placed in specific sections
(e.g. by the @code{section} attribute, or the @code{-ffunction-sections}
option), will be placed in new, unique sections.

This additional functionality requires Binutils version 2.36 or later.

@item visibility ("@var{visibility_type}")
@cindex @code{visibility} function attribute
This attribute affects the linkage of the declaration to which it is attached.
It can be applied to variables (@pxref{Common Variable Attributes}) and types
(@pxref{Common Type Attributes}) as well as functions.

There are four supported @var{visibility_type} values: default,
hidden, protected or internal visibility.

@smallexample
void __attribute__ ((visibility ("protected")))
f () @{ /* @r{Do something.} */; @}
int i __attribute__ ((visibility ("hidden")));
@end smallexample

The possible values of @var{visibility_type} correspond to the
visibility settings in the ELF gABI.

@table @code
@c keep this list of visibilities in alphabetical order.

@item default
Default visibility is the normal case for the object file format.
This value is available for the visibility attribute to override other
options that may change the assumed visibility of entities.

On ELF, default visibility means that the declaration is visible to other
modules and, in shared libraries, means that the declared entity may be
overridden.

On Darwin, default visibility means that the declaration is visible to
other modules.

Default visibility corresponds to ``external linkage'' in the language.

@item hidden
Hidden visibility indicates that the entity declared has a new
form of linkage, which we call ``hidden linkage''.  Two
declarations of an object with hidden linkage refer to the same object
if they are in the same shared object.

@item internal
Internal visibility is like hidden visibility, but with additional
processor specific semantics.  Unless otherwise specified by the
psABI, GCC defines internal visibility to mean that a function is
@emph{never} called from another module.  Compare this with hidden
functions which, while they cannot be referenced directly by other
modules, can be referenced indirectly via function pointers.  By
indicating that a function cannot be called from outside the module,
GCC may for instance omit the load of a PIC register since it is known
that the calling function loaded the correct value.

@item protected
Protected visibility is like default visibility except that it
indicates that references within the defining module bind to the
definition in that module.  That is, the declared entity cannot be
overridden by another module.

@end table

All visibilities are supported on many, but not all, ELF targets
(supported when the assembler supports the @samp{.visibility}
pseudo-op).  Default visibility is supported everywhere.  Hidden
visibility is supported on Darwin targets.

The visibility attribute should be applied only to declarations that
would otherwise have external linkage.  The attribute should be applied
consistently, so that the same entity should not be declared with
different settings of the attribute.

In C++, the visibility attribute applies to types as well as functions
and objects, because in C++ types have linkage.  A class must not have
greater visibility than its non-static data member types and bases,
and class members default to the visibility of their class.  Also, a
declaration without explicit visibility is limited to the visibility
of its type.

In C++, you can mark member functions and static member variables of a
class with the visibility attribute.  This is useful if you know a
particular method or static member variable should only be used from
one shared object; then you can mark it hidden while the rest of the
class has default visibility.  Care must be taken to avoid breaking
the One Definition Rule; for example, it is usually not useful to mark
an inline method as hidden without marking the whole class as hidden.

A C++ namespace declaration can also have the visibility attribute.

@smallexample
namespace nspace1 __attribute__ ((visibility ("protected")))
@{ /* @r{Do something.} */; @}
@end smallexample

This attribute applies only to the particular namespace body, not to
other definitions of the same namespace; it is equivalent to using
@samp{#pragma GCC visibility} before and after the namespace
definition (@pxref{Visibility Pragmas}).

In C++, if a template argument has limited visibility, this
restriction is implicitly propagated to the template instantiation.
Otherwise, template instantiations and specializations default to the
visibility of their template.

If both the template and enclosing class have explicit visibility, the
visibility from the template is used.

@item warn_unused_result
@cindex @code{warn_unused_result} function attribute
The @code{warn_unused_result} attribute causes a warning to be emitted
if a caller of the function with this attribute does not use its
return value.  This is useful for functions where not checking
the result is either a security problem or always a bug, such as
@code{realloc}.

@smallexample
int fn () __attribute__ ((warn_unused_result));
int foo ()
@{
  if (fn () < 0) return -1;
  fn ();
  return 0;
@}
@end smallexample

@noindent
results in warning on line 5.

@item weak
@cindex @code{weak} function attribute
The @code{weak} attribute causes a declaration of an external symbol
to be emitted as a weak symbol rather than a global.  This is primarily
useful in defining library functions that can be overridden in user code,
though it can also be used with non-function declarations.  The overriding
symbol must have the same type as the weak symbol.  In addition, if it
designates a variable it must also have the same size and alignment as
the weak symbol.  Weak symbols are supported for ELF targets, and also
for a.out targets when using the GNU assembler and linker.

@item weakref
@itemx weakref ("@var{target}")
@cindex @code{weakref} function attribute
The @code{weakref} attribute marks a declaration as a weak reference.
Without arguments, it should be accompanied by an @code{alias} attribute
naming the target symbol.  Alternatively, @var{target} may be given as
an argument to @code{weakref} itself, naming the target definition of
the alias.  The @var{target} must have the same type as the declaration.
In addition, if it designates a variable it must also have the same size
and alignment as the declaration.  In either form of the declaration
@code{weakref} implicitly marks the declared symbol as @code{weak}.  Without
a @var{target} given as an argument to @code{weakref} or to @code{alias},
@code{weakref} is equivalent to @code{weak} (in that case the declaration
may be @code{extern}).

@smallexample
/* Given the declaration: */
extern int y (void);

/* the following... */
static int x (void) __attribute__ ((weakref ("y")));

/* is equivalent to... */
static int x (void) __attribute__ ((weakref, alias ("y")));

/* or, alternatively, to... */
static int x (void) __attribute__ ((weakref));
static int x (void) __attribute__ ((alias ("y")));
@end smallexample

A weak reference is an alias that does not by itself require a
definition to be given for the target symbol.  If the target symbol is
only referenced through weak references, then it becomes a @code{weak}
undefined symbol.  If it is directly referenced, however, then such
strong references prevail, and a definition is required for the
symbol, not necessarily in the same translation unit.

The effect is equivalent to moving all references to the alias to a
separate translation unit, renaming the alias to the aliased symbol,
declaring it as weak, compiling the two separate translation units and
performing a link with relocatable output (i.e.@: @code{ld -r}) on them.

A declaration to which @code{weakref} is attached and that is associated
with a named @code{target} must be @code{static}.

@item zero_call_used_regs ("@var{choice}")
@cindex @code{zero_call_used_regs} function attribute

The @code{zero_call_used_regs} attribute causes the compiler to zero
a subset of all call-used registers@footnote{A ``call-used'' register
is a register whose contents can be changed by a function call;
therefore, a caller cannot assume that the register has the same contents
on return from the function as it had before calling the function.  Such
registers are also called ``call-clobbered'', ``caller-saved'', or
``volatile''.} at function return.
This is used to increase program security by either mitigating
Return-Oriented Programming (ROP) attacks or preventing information leakage
through registers.

In order to satisfy users with different security needs and control the
run-time overhead at the same time, the @var{choice} parameter provides a
flexible way to choose the subset of the call-used registers to be zeroed.
The three basic values of @var{choice} are:

@itemize @bullet
@item
@samp{skip} doesn't zero any call-used registers.

@item
@samp{used} only zeros call-used registers that are used in the function.
A ``used'' register is one whose content has been set or referenced in
the function.

@item
@samp{all} zeros all call-used registers.
@end itemize

In addition to these three basic choices, it is possible to modify
@samp{used} or @samp{all} as follows:

@itemize @bullet
@item
Adding @samp{-gpr} restricts the zeroing to general-purpose registers.

@item
Adding @samp{-arg} restricts the zeroing to registers that can sometimes
be used to pass function arguments.  This includes all argument registers
defined by the platform's calling conversion, regardless of whether the
function uses those registers for function arguments or not.
@end itemize

The modifiers can be used individually or together.  If they are used
together, they must appear in the order above.

The full list of @var{choice}s is therefore:

@table @code
@item skip
doesn't zero any call-used register.

@item used
only zeros call-used registers that are used in the function.

@item used-gpr
only zeros call-used general purpose registers that are used in the function.

@item used-arg
only zeros call-used registers that are used in the function and pass arguments.

@item used-gpr-arg
only zeros call-used general purpose registers that are used in the function
and pass arguments.

@item all
zeros all call-used registers.

@item all-gpr
zeros all call-used general purpose registers.

@item all-arg
zeros all call-used registers that pass arguments.

@item all-gpr-arg
zeros all call-used general purpose registers that pass
arguments.
@end table

Of this list, @samp{used-arg}, @samp{used-gpr-arg}, @samp{all-arg},
and @samp{all-gpr-arg} are mainly used for ROP mitigation.

The default for the attribute is controlled by @option{-fzero-call-used-regs}.
@end table

@c This is the end of the target-independent attribute table

@node AArch64 Function Attributes
@subsection AArch64 Function Attributes

The following target-specific function attributes are available for the
AArch64 target.  For the most part, these options mirror the behavior of
similar command-line options (@pxref{AArch64 Options}), but on a
per-function basis.

@table @code
@item general-regs-only
@cindex @code{general-regs-only} function attribute, AArch64
Indicates that no floating-point or Advanced SIMD registers should be
used when generating code for this function.  If the function explicitly
uses floating-point code, then the compiler gives an error.  This is
the same behavior as that of the command-line option
@option{-mgeneral-regs-only}.

@item fix-cortex-a53-835769
@cindex @code{fix-cortex-a53-835769} function attribute, AArch64
Indicates that the workaround for the Cortex-A53 erratum 835769 should be
applied to this function.  To explicitly disable the workaround for this
function specify the negated form: @code{no-fix-cortex-a53-835769}.
This corresponds to the behavior of the command line options
@option{-mfix-cortex-a53-835769} and @option{-mno-fix-cortex-a53-835769}.

@item cmodel=
@cindex @code{cmodel=} function attribute, AArch64
Indicates that code should be generated for a particular code model for
this function.  The behavior and permissible arguments are the same as
for the command line option @option{-mcmodel=}.

@item strict-align
@itemx no-strict-align
@cindex @code{strict-align} function attribute, AArch64
@code{strict-align} indicates that the compiler should not assume that unaligned
memory references are handled by the system.  To allow the compiler to assume
that aligned memory references are handled by the system, the inverse attribute
@code{no-strict-align} can be specified.  The behavior is same as for the
command-line option @option{-mstrict-align} and @option{-mno-strict-align}.

@item omit-leaf-frame-pointer
@cindex @code{omit-leaf-frame-pointer} function attribute, AArch64
Indicates that the frame pointer should be omitted for a leaf function call.
To keep the frame pointer, the inverse attribute
@code{no-omit-leaf-frame-pointer} can be specified.  These attributes have
the same behavior as the command-line options @option{-momit-leaf-frame-pointer}
and @option{-mno-omit-leaf-frame-pointer}.

@item tls-dialect=
@cindex @code{tls-dialect=} function attribute, AArch64
Specifies the TLS dialect to use for this function.  The behavior and
permissible arguments are the same as for the command-line option
@option{-mtls-dialect=}.

@item arch=
@cindex @code{arch=} function attribute, AArch64
Specifies the architecture version and architectural extensions to use
for this function.  The behavior and permissible arguments are the same as
for the @option{-march=} command-line option.

@item tune=
@cindex @code{tune=} function attribute, AArch64
Specifies the core for which to tune the performance of this function.
The behavior and permissible arguments are the same as for the @option{-mtune=}
command-line option.

@item cpu=
@cindex @code{cpu=} function attribute, AArch64
Specifies the core for which to tune the performance of this function and also
whose architectural features to use.  The behavior and valid arguments are the
same as for the @option{-mcpu=} command-line option.

@item sign-return-address
@cindex @code{sign-return-address} function attribute, AArch64
Select the function scope on which return address signing will be applied.  The
behavior and permissible arguments are the same as for the command-line option
@option{-msign-return-address=}.  The default value is @code{none}.  This
attribute is deprecated.  The @code{branch-protection} attribute should
be used instead.

@item branch-protection
@cindex @code{branch-protection} function attribute, AArch64
Select the function scope on which branch protection will be applied.  The
behavior and permissible arguments are the same as for the command-line option
@option{-mbranch-protection=}.  The default value is @code{none}.

@item outline-atomics
@cindex @code{outline-atomics} function attribute, AArch64
Enable or disable calls to out-of-line helpers to implement atomic operations.
This corresponds to the behavior of the command line options
@option{-moutline-atomics} and @option{-mno-outline-atomics}.

@end table

The above target attributes can be specified as follows:

@smallexample
__attribute__((target("@var{attr-string}")))
int
f (int a)
@{
  return a + 5;
@}
@end smallexample

where @code{@var{attr-string}} is one of the attribute strings specified above.

Additionally, the architectural extension string may be specified on its
own.  This can be used to turn on and off particular architectural extensions
without having to specify a particular architecture version or core.  Example:

@smallexample
__attribute__((target("+crc+nocrypto")))
int
foo (int a)
@{
  return a + 5;
@}
@end smallexample

In this example @code{target("+crc+nocrypto")} enables the @code{crc}
extension and disables the @code{crypto} extension for the function @code{foo}
without modifying an existing @option{-march=} or @option{-mcpu} option.

Multiple target function attributes can be specified by separating them with
a comma.  For example:
@smallexample
__attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53")))
int
foo (int a)
@{
  return a + 5;
@}
@end smallexample

is valid and compiles function @code{foo} for ARMv8-A with @code{crc}
and @code{crypto} extensions and tunes it for @code{cortex-a53}.

@subsubsection Inlining rules
Specifying target attributes on individual functions or performing link-time
optimization across translation units compiled with different target options
can affect function inlining rules:

In particular, a caller function can inline a callee function only if the
architectural features available to the callee are a subset of the features
available to the caller.
For example: A function @code{foo} compiled with @option{-march=armv8-a+crc},
or tagged with the equivalent @code{arch=armv8-a+crc} attribute,
can inline a function @code{bar} compiled with @option{-march=armv8-a+nocrc}
because the all the architectural features that function @code{bar} requires
are available to function @code{foo}.  Conversely, function @code{bar} cannot
inline function @code{foo}.

Additionally inlining a function compiled with @option{-mstrict-align} into a
function compiled without @code{-mstrict-align} is not allowed.
However, inlining a function compiled without @option{-mstrict-align} into a
function compiled with @option{-mstrict-align} is allowed.

Note that CPU tuning options and attributes such as the @option{-mcpu=},
@option{-mtune=} do not inhibit inlining unless the CPU specified by the
@option{-mcpu=} option or the @code{cpu=} attribute conflicts with the
architectural feature rules specified above.

@node AMD GCN Function Attributes
@subsection AMD GCN Function Attributes

These function attributes are supported by the AMD GCN back end:

@table @code
@item amdgpu_hsa_kernel
@cindex @code{amdgpu_hsa_kernel} function attribute, AMD GCN
This attribute indicates that the corresponding function should be compiled as
a kernel function, that is an entry point that can be invoked from the host
via the HSA runtime library.  By default functions are only callable only from
other GCN functions.

This attribute is implicitly applied to any function named @code{main}, using
default parameters.

Kernel functions may return an integer value, which will be written to a
conventional place within the HSA "kernargs" region.

The attribute parameters configure what values are passed into the kernel
function by the GPU drivers, via the initial register state.  Some values are
used by the compiler, and therefore forced on.  Enabling other options may
break assumptions in the compiler and/or run-time libraries.

@table @code
@item private_segment_buffer
Set @code{enable_sgpr_private_segment_buffer} flag.  Always on (required to
locate the stack).

@item dispatch_ptr
Set @code{enable_sgpr_dispatch_ptr} flag.  Always on (required to locate the
launch dimensions).

@item queue_ptr
Set @code{enable_sgpr_queue_ptr} flag.  Always on (required to convert address
spaces).

@item kernarg_segment_ptr
Set @code{enable_sgpr_kernarg_segment_ptr} flag.  Always on (required to
locate the kernel arguments, "kernargs").

@item dispatch_id
Set @code{enable_sgpr_dispatch_id} flag.

@item flat_scratch_init
Set @code{enable_sgpr_flat_scratch_init} flag.

@item private_segment_size
Set @code{enable_sgpr_private_segment_size} flag.

@item grid_workgroup_count_X
Set @code{enable_sgpr_grid_workgroup_count_x} flag.  Always on (required to
use OpenACC/OpenMP).

@item grid_workgroup_count_Y
Set @code{enable_sgpr_grid_workgroup_count_y} flag.

@item grid_workgroup_count_Z
Set @code{enable_sgpr_grid_workgroup_count_z} flag.

@item workgroup_id_X
Set @code{enable_sgpr_workgroup_id_x} flag.

@item workgroup_id_Y
Set @code{enable_sgpr_workgroup_id_y} flag.

@item workgroup_id_Z
Set @code{enable_sgpr_workgroup_id_z} flag.

@item workgroup_info
Set @code{enable_sgpr_workgroup_info} flag.

@item private_segment_wave_offset
Set @code{enable_sgpr_private_segment_wave_byte_offset} flag.  Always on
(required to locate the stack).

@item work_item_id_X
Set @code{enable_vgpr_workitem_id} parameter.  Always on (can't be disabled).

@item work_item_id_Y
Set @code{enable_vgpr_workitem_id} parameter.  Always on (required to enable
vectorization.)

@item work_item_id_Z
Set @code{enable_vgpr_workitem_id} parameter.  Always on (required to use
OpenACC/OpenMP).

@end table
@end table

@node ARC Function Attributes
@subsection ARC Function Attributes

These function attributes are supported by the ARC back end:

@table @code
@item interrupt
@cindex @code{interrupt} function attribute, ARC
Use this attribute to indicate
that the specified function is an interrupt handler.  The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.

On the ARC, you must specify the kind of interrupt to be handled
in a parameter to the interrupt attribute like this:

@smallexample
void f () __attribute__ ((interrupt ("ilink1")));
@end smallexample

Permissible values for this parameter are: @w{@code{ilink1}} and
@w{@code{ilink2}} for ARCv1 architecture, and @w{@code{ilink}} and
@w{@code{firq}} for ARCv2 architecture.

@item long_call
@itemx medium_call
@itemx short_call
@cindex @code{long_call} function attribute, ARC
@cindex @code{medium_call} function attribute, ARC
@cindex @code{short_call} function attribute, ARC
@cindex indirect calls, ARC
These attributes specify how a particular function is called.
These attributes override the
@option{-mlong-calls} and @option{-mmedium-calls} (@pxref{ARC Options})
command-line switches and @code{#pragma long_calls} settings.

For ARC, a function marked with the @code{long_call} attribute is
always called using register-indirect jump-and-link instructions,
thereby enabling the called function to be placed anywhere within the
32-bit address space.  A function marked with the @code{medium_call}
attribute will always be close enough to be called with an unconditional
branch-and-link instruction, which has a 25-bit offset from
the call site.  A function marked with the @code{short_call}
attribute will always be close enough to be called with a conditional
branch-and-link instruction, which has a 21-bit offset from
the call site.

@item jli_always
@cindex @code{jli_always} function attribute, ARC
Forces a particular function to be called using @code{jli}
instruction.  The @code{jli} instruction makes use of a table stored
into @code{.jlitab} section, which holds the location of the functions
which are addressed using this instruction.

@item jli_fixed
@cindex @code{jli_fixed} function attribute, ARC
Identical like the above one, but the location of the function in the
@code{jli} table is known and given as an attribute parameter.

@item secure_call
@cindex @code{secure_call} function attribute, ARC
This attribute allows one to mark secure-code functions that are
callable from normal mode.  The location of the secure call function
into the @code{sjli} table needs to be passed as argument.

@item naked
@cindex @code{naked} function attribute, ARC
This attribute allows the compiler to construct the requisite function
declaration, while allowing the body of the function to be assembly
code.  The specified function will not have prologue/epilogue
sequences generated by the compiler.  Only basic @code{asm} statements
can safely be included in naked functions (@pxref{Basic Asm}).  While
using extended @code{asm} or a mixture of basic @code{asm} and C code
may appear to work, they cannot be depended upon to work reliably and
are not supported.

@end table

@node ARM Function Attributes
@subsection ARM Function Attributes

These function attributes are supported for ARM targets:

@table @code

@item general-regs-only
@cindex @code{general-regs-only} function attribute, ARM
Indicates that no floating-point or Advanced SIMD registers should be
used when generating code for this function.  If the function explicitly
uses floating-point code, then the compiler gives an error.  This is
the same behavior as that of the command-line option
@option{-mgeneral-regs-only}.

@item interrupt
@cindex @code{interrupt} function attribute, ARM
Use this attribute to indicate
that the specified function is an interrupt handler.  The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.

You can specify the kind of interrupt to be handled by
adding an optional parameter to the interrupt attribute like this:

@smallexample
void f () __attribute__ ((interrupt ("IRQ")));
@end smallexample

@noindent
Permissible values for this parameter are: @code{IRQ}, @code{FIQ},
@code{SWI}, @code{ABORT} and @code{UNDEF}.

On ARMv7-M the interrupt type is ignored, and the attribute means the function
may be called with a word-aligned stack pointer.

@item isr
@cindex @code{isr} function attribute, ARM
Use this attribute on ARM to write Interrupt Service Routines. This is an
alias to the @code{interrupt} attribute above.

@item long_call
@itemx short_call
@cindex @code{long_call} function attribute, ARM
@cindex @code{short_call} function attribute, ARM
@cindex indirect calls, ARM
These attributes specify how a particular function is called.
These attributes override the
@option{-mlong-calls} (@pxref{ARM Options})
command-line switch and @code{#pragma long_calls} settings.  For ARM, the
@code{long_call} attribute indicates that the function might be far
away from the call site and require a different (more expensive)
calling sequence.   The @code{short_call} attribute always places
the offset to the function from the call site into the @samp{BL}
instruction directly.

@item naked
@cindex @code{naked} function attribute, ARM
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.

@item pcs
@cindex @code{pcs} function attribute, ARM

The @code{pcs} attribute can be used to control the calling convention
used for a function on ARM.  The attribute takes an argument that specifies
the calling convention to use.

When compiling using the AAPCS ABI (or a variant of it) then valid
values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}.  In
order to use a variant other than @code{"aapcs"} then the compiler must
be permitted to use the appropriate co-processor registers (i.e., the
VFP registers must be available in order to use @code{"aapcs-vfp"}).
For example,

@smallexample
/* Argument passed in r0, and result returned in r0+r1.  */
double f2d (float) __attribute__((pcs("aapcs")));
@end smallexample

Variadic functions always use the @code{"aapcs"} calling convention and
the compiler rejects attempts to specify an alternative.

@item target (@var{options})
@cindex @code{target} function attribute
As discussed in @ref{Common Function Attributes}, this attribute 
allows specification of target-specific compilation options.

On ARM, the following options are allowed:

@table @samp
@item thumb
@cindex @code{target("thumb")} function attribute, ARM
Force code generation in the Thumb (T16/T32) ISA, depending on the
architecture level.

@item arm
@cindex @code{target("arm")} function attribute, ARM
Force code generation in the ARM (A32) ISA.

Functions from different modes can be inlined in the caller's mode.

@item fpu=
@cindex @code{target("fpu=")} function attribute, ARM
Specifies the fpu for which to tune the performance of this function.
The behavior and permissible arguments are the same as for the @option{-mfpu=}
command-line option.

@item arch=
@cindex @code{arch=} function attribute, ARM
Specifies the architecture version and architectural extensions to use
for this function.  The behavior and permissible arguments are the same as
for the @option{-march=} command-line option.

The above target attributes can be specified as follows:

@smallexample
__attribute__((target("arch=armv8-a+crc")))
int
f (int a)
@{
  return a + 5;
@}
@end smallexample

Additionally, the architectural extension string may be specified on its
own.  This can be used to turn on and off particular architectural extensions
without having to specify a particular architecture version or core.  Example:

@smallexample
__attribute__((target("+crc+nocrypto")))
int
foo (int a)
@{
  return a + 5;
@}
@end smallexample

In this example @code{target("+crc+nocrypto")} enables the @code{crc}
extension and disables the @code{crypto} extension for the function @code{foo}
without modifying an existing @option{-march=} or @option{-mcpu} option.

@end table

@end table

@node AVR Function Attributes
@subsection AVR Function Attributes

These function attributes are supported by the AVR back end:

@table @code
@item interrupt
@cindex @code{interrupt} function attribute, AVR
Use this attribute to indicate
that the specified function is an interrupt handler.  The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.

On the AVR, the hardware globally disables interrupts when an
interrupt is executed.  The first instruction of an interrupt handler
declared with this attribute is a @code{SEI} instruction to
re-enable interrupts.  See also the @code{signal} function attribute
that does not insert a @code{SEI} instruction.  If both @code{signal} and
@code{interrupt} are specified for the same function, @code{signal}
is silently ignored.

@item naked
@cindex @code{naked} function attribute, AVR
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.

@item no_gccisr
@cindex @code{no_gccisr} function attribute, AVR
Do not use @code{__gcc_isr} pseudo instructions in a function with
the @code{interrupt} or @code{signal} attribute aka. interrupt
service routine (ISR).
Use this attribute if the preamble of the ISR prologue should always read
@example
push  __zero_reg__
push  __tmp_reg__
in    __tmp_reg__, __SREG__
push  __tmp_reg__
clr   __zero_reg__
@end example
and accordingly for the postamble of the epilogue --- no matter whether
the mentioned registers are actually used in the ISR or not.
Situations where you might want to use this attribute include:
@itemize @bullet
@item
Code that (effectively) clobbers bits of @code{SREG} other than the
@code{I}-flag by writing to the memory location of @code{SREG}.
@item
Code that uses inline assembler to jump to a different function which
expects (parts of) the prologue code as outlined above to be present.
@end itemize
To disable @code{__gcc_isr} generation for the whole compilation unit,
there is option @option{-mno-gas-isr-prologues}, @pxref{AVR Options}.

@item OS_main
@itemx OS_task
@cindex @code{OS_main} function attribute, AVR
@cindex @code{OS_task} function attribute, AVR
On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
do not save/restore any call-saved register in their prologue/epilogue.

The @code{OS_main} attribute can be used when there @emph{is
guarantee} that interrupts are disabled at the time when the function
is entered.  This saves resources when the stack pointer has to be
changed to set up a frame for local variables.

The @code{OS_task} attribute can be used when there is @emph{no
guarantee} that interrupts are disabled at that time when the function
is entered like for, e@.g@. task functions in a multi-threading operating
system. In that case, changing the stack pointer register is
guarded by save/clear/restore of the global interrupt enable flag.

The differences to the @code{naked} function attribute are:
@itemize @bullet
@item @code{naked} functions do not have a return instruction whereas 
@code{OS_main} and @code{OS_task} functions have a @code{RET} or
@code{RETI} return instruction.
@item @code{naked} functions do not set up a frame for local variables
or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
as needed.
@end itemize

@item signal
@cindex @code{signal} function attribute, AVR
Use this attribute on the AVR to indicate that the specified
function is an interrupt handler.  The compiler generates function
entry and exit sequences suitable for use in an interrupt handler when this
attribute is present.

See also the @code{interrupt} function attribute. 

The AVR hardware globally disables interrupts when an interrupt is executed.
Interrupt handler functions defined with the @code{signal} attribute
do not re-enable interrupts.  It is save to enable interrupts in a
@code{signal} handler.  This ``save'' only applies to the code
generated by the compiler and not to the IRQ layout of the
application which is responsibility of the application.

If both @code{signal} and @code{interrupt} are specified for the same
function, @code{signal} is silently ignored.
@end table

@node Blackfin Function Attributes
@subsection Blackfin Function Attributes

These function attributes are supported by the Blackfin back end:

@table @code

@item exception_handler
@cindex @code{exception_handler} function attribute
@cindex exception handler functions, Blackfin
Use this attribute on the Blackfin to indicate that the specified function
is an exception handler.  The compiler generates function entry and
exit sequences suitable for use in an exception handler when this
attribute is present.

@item interrupt_handler
@cindex @code{interrupt_handler} function attribute, Blackfin
Use this attribute to
indicate that the specified function is an interrupt handler.  The compiler
generates function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present.

@item kspisusp
@cindex @code{kspisusp} function attribute, Blackfin
@cindex User stack pointer in interrupts on the Blackfin
When used together with @code{interrupt_handler}, @code{exception_handler}
or @code{nmi_handler}, code is generated to load the stack pointer
from the USP register in the function prologue.

@item l1_text
@cindex @code{l1_text} function attribute, Blackfin
This attribute specifies a function to be placed into L1 Instruction
SRAM@. The function is put into a specific section named @code{.l1.text}.
With @option{-mfdpic}, function calls with a such function as the callee
or caller uses inlined PLT.

@item l2
@cindex @code{l2} function attribute, Blackfin
This attribute specifies a function to be placed into L2
SRAM. The function is put into a specific section named
@code{.l2.text}. With @option{-mfdpic}, callers of such functions use
an inlined PLT.

@item longcall
@itemx shortcall
@cindex indirect calls, Blackfin
@cindex @code{longcall} function attribute, Blackfin
@cindex @code{shortcall} function attribute, Blackfin
The @code{longcall} attribute
indicates that the function might be far away from the call site and
require a different (more expensive) calling sequence.  The
@code{shortcall} attribute indicates that the function is always close
enough for the shorter calling sequence to be used.  These attributes
override the @option{-mlongcall} switch.

@item nesting
@cindex @code{nesting} function attribute, Blackfin
@cindex Allow nesting in an interrupt handler on the Blackfin processor
Use this attribute together with @code{interrupt_handler},
@code{exception_handler} or @code{nmi_handler} to indicate that the function
entry code should enable nested interrupts or exceptions.

@item nmi_handler
@cindex @code{nmi_handler} function attribute, Blackfin
@cindex NMI handler functions on the Blackfin processor
Use this attribute on the Blackfin to indicate that the specified function
is an NMI handler.  The compiler generates function entry and
exit sequences suitable for use in an NMI handler when this
attribute is present.

@item saveall
@cindex @code{saveall} function attribute, Blackfin
@cindex save all registers on the Blackfin
Use this attribute to indicate that
all registers except the stack pointer should be saved in the prologue
regardless of whether they are used or not.
@end table

@node BPF Function Attributes
@subsection BPF Function Attributes

These function attributes are supported by the BPF back end:

@table @code
@item kernel_helper
@cindex @code{kernel helper}, function attribute, BPF
use this attribute to indicate the specified function declaration is a
kernel helper.  The helper function is passed as an argument to the
attribute.  Example:

@smallexample
int bpf_probe_read (void *dst, int size, const void *unsafe_ptr)
  __attribute__ ((kernel_helper (4)));
@end smallexample
@end table

@node C-SKY Function Attributes
@subsection C-SKY Function Attributes

These function attributes are supported by the C-SKY back end:

@table @code
@item interrupt
@itemx isr
@cindex @code{interrupt} function attribute, C-SKY
@cindex @code{isr} function attribute, C-SKY
Use these attributes to indicate that the specified function
is an interrupt handler.
The compiler generates function entry and exit sequences suitable for
use in an interrupt handler when either of these attributes are present.

Use of these options requires the @option{-mistack} command-line option
to enable support for the necessary interrupt stack instructions.  They
are ignored with a warning otherwise.  @xref{C-SKY Options}.

@item naked
@cindex @code{naked} function attribute, C-SKY
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
@end table


@node Epiphany Function Attributes
@subsection Epiphany Function Attributes

These function attributes are supported by the Epiphany back end:

@table @code
@item disinterrupt
@cindex @code{disinterrupt} function attribute, Epiphany
This attribute causes the compiler to emit
instructions to disable interrupts for the duration of the given
function.

@item forwarder_section
@cindex @code{forwarder_section} function attribute, Epiphany
This attribute modifies the behavior of an interrupt handler.
The interrupt handler may be in external memory which cannot be
reached by a branch instruction, so generate a local memory trampoline
to transfer control.  The single parameter identifies the section where
the trampoline is placed.

@item interrupt
@cindex @code{interrupt} function attribute, Epiphany
Use this attribute to indicate
that the specified function is an interrupt handler.  The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.  It may also generate
a special section with code to initialize the interrupt vector table.

On Epiphany targets one or more optional parameters can be added like this:

@smallexample
void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
@end smallexample

Permissible values for these parameters are: @w{@code{reset}},
@w{@code{software_exception}}, @w{@code{page_miss}},
@w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
@w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
Multiple parameters indicate that multiple entries in the interrupt
vector table should be initialized for this function, i.e.@: for each
parameter @w{@var{name}}, a jump to the function is emitted in
the section @w{ivt_entry_@var{name}}.  The parameter(s) may be omitted
entirely, in which case no interrupt vector table entry is provided.

Note that interrupts are enabled inside the function
unless the @code{disinterrupt} attribute is also specified.

The following examples are all valid uses of these attributes on
Epiphany targets:
@smallexample
void __attribute__ ((interrupt)) universal_handler ();
void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
void __attribute__ ((interrupt ("dma0, dma1"))) 
  universal_dma_handler ();
void __attribute__ ((interrupt ("timer0"), disinterrupt))
  fast_timer_handler ();
void __attribute__ ((interrupt ("dma0, dma1"), 
                     forwarder_section ("tramp")))
  external_dma_handler ();
@end smallexample

@item long_call
@itemx short_call
@cindex @code{long_call} function attribute, Epiphany
@cindex @code{short_call} function attribute, Epiphany
@cindex indirect calls, Epiphany
These attributes specify how a particular function is called.
These attributes override the
@option{-mlong-calls} (@pxref{Adapteva Epiphany Options})
command-line switch and @code{#pragma long_calls} settings.
@end table


@node H8/300 Function Attributes
@subsection H8/300 Function Attributes

These function attributes are available for H8/300 targets:

@table @code
@item function_vector
@cindex @code{function_vector} function attribute, H8/300
Use this attribute on the H8/300, H8/300H, and H8S to indicate 
that the specified function should be called through the function vector.
Calling a function through the function vector reduces code size; however,
the function vector has a limited size (maximum 128 entries on the H8/300
and 64 entries on the H8/300H and H8S)
and shares space with the interrupt vector.

@item interrupt_handler
@cindex @code{interrupt_handler} function attribute, H8/300
Use this attribute on the H8/300, H8/300H, and H8S to
indicate that the specified function is an interrupt handler.  The compiler
generates function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present.

@item saveall
@cindex @code{saveall} function attribute, H8/300
@cindex save all registers on the H8/300, H8/300H, and H8S
Use this attribute on the H8/300, H8/300H, and H8S to indicate that
all registers except the stack pointer should be saved in the prologue
regardless of whether they are used or not.
@end table

@node IA-64 Function Attributes
@subsection IA-64 Function Attributes

These function attributes are supported on IA-64 targets:

@table @code
@item syscall_linkage
@cindex @code{syscall_linkage} function attribute, IA-64
This attribute is used to modify the IA-64 calling convention by marking
all input registers as live at all function exits.  This makes it possible
to restart a system call after an interrupt without having to save/restore
the input registers.  This also prevents kernel data from leaking into
application code.

@item version_id
@cindex @code{version_id} function attribute, IA-64
This IA-64 HP-UX attribute, attached to a global variable or function, renames a
symbol to contain a version string, thus allowing for function level
versioning.  HP-UX system header files may use function level versioning
for some system calls.

@smallexample
extern int foo () __attribute__((version_id ("20040821")));
@end smallexample

@noindent
Calls to @code{foo} are mapped to calls to @code{foo@{20040821@}}.
@end table

@node M32C Function Attributes
@subsection M32C Function Attributes

These function attributes are supported by the M32C back end:

@table @code
@item bank_switch
@cindex @code{bank_switch} function attribute, M32C
When added to an interrupt handler with the M32C port, causes the
prologue and epilogue to use bank switching to preserve the registers
rather than saving them on the stack.

@item fast_interrupt
@cindex @code{fast_interrupt} function attribute, M32C
Use this attribute on the M32C port to indicate that the specified
function is a fast interrupt handler.  This is just like the
@code{interrupt} attribute, except that @code{freit} is used to return
instead of @code{reit}.

@item function_vector
@cindex @code{function_vector} function attribute, M16C/M32C
On M16C/M32C targets, the @code{function_vector} attribute declares a
special page subroutine call function. Use of this attribute reduces
the code size by 2 bytes for each call generated to the
subroutine. The argument to the attribute is the vector number entry
from the special page vector table which contains the 16 low-order
bits of the subroutine's entry address. Each vector table has special
page number (18 to 255) that is used in @code{jsrs} instructions.
Jump addresses of the routines are generated by adding 0x0F0000 (in
case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
2-byte addresses set in the vector table. Therefore you need to ensure
that all the special page vector routines should get mapped within the
address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
(for M32C).

In the following example 2 bytes are saved for each call to
function @code{foo}.

@smallexample
void foo (void) __attribute__((function_vector(0x18)));
void foo (void)
@{
@}

void bar (void)
@{
    foo();
@}
@end smallexample

If functions are defined in one file and are called in another file,
then be sure to write this declaration in both files.

This attribute is ignored for R8C target.

@item interrupt
@cindex @code{interrupt} function attribute, M32C
Use this attribute to indicate
that the specified function is an interrupt handler.  The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
@end table

@node M32R/D Function Attributes
@subsection M32R/D Function Attributes

These function attributes are supported by the M32R/D back end:

@table @code
@item interrupt
@cindex @code{interrupt} function attribute, M32R/D
Use this attribute to indicate
that the specified function is an interrupt handler.  The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.

@item model (@var{model-name})
@cindex @code{model} function attribute, M32R/D
@cindex function addressability on the M32R/D

On the M32R/D, use this attribute to set the addressability of an
object, and of the code generated for a function.  The identifier
@var{model-name} is one of @code{small}, @code{medium}, or
@code{large}, representing each of the code models.

Small model objects live in the lower 16MB of memory (so that their
addresses can be loaded with the @code{ld24} instruction), and are
callable with the @code{bl} instruction.

Medium model objects may live anywhere in the 32-bit address space (the
compiler generates @code{seth/add3} instructions to load their addresses),
and are callable with the @code{bl} instruction.

Large model objects may live anywhere in the 32-bit address space (the
compiler generates @code{seth/add3} instructions to load their addresses),
and may not be reachable with the @code{bl} instruction (the compiler
generates the much slower @code{seth/add3/jl} instruction sequence).
@end table

@node m68k Function Attributes
@subsection m68k Function Attributes

These function attributes are supported by the m68k back end:

@table @code
@item interrupt
@itemx interrupt_handler
@cindex @code{interrupt} function attribute, m68k
@cindex @code{interrupt_handler} function attribute, m68k
Use this attribute to
indicate that the specified function is an interrupt handler.  The compiler
generates function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present.  Either name may be used.

@item interrupt_thread
@cindex @code{interrupt_thread} function attribute, fido
Use this attribute on fido, a subarchitecture of the m68k, to indicate
that the specified function is an interrupt handler that is designed
to run as a thread.  The compiler omits generate prologue/epilogue
sequences and replaces the return instruction with a @code{sleep}
instruction.  This attribute is available only on fido.
@end table

@node MCORE Function Attributes
@subsection MCORE Function Attributes

These function attributes are supported by the MCORE back end:

@table @code
@item naked
@cindex @code{naked} function attribute, MCORE
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
@end table

@node MeP Function Attributes
@subsection MeP Function Attributes

These function attributes are supported by the MeP back end:

@table @code
@item disinterrupt
@cindex @code{disinterrupt} function attribute, MeP
On MeP targets, this attribute causes the compiler to emit
instructions to disable interrupts for the duration of the given
function.

@item interrupt
@cindex @code{interrupt} function attribute, MeP
Use this attribute to indicate
that the specified function is an interrupt handler.  The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.

@item near
@cindex @code{near} function attribute, MeP
This attribute causes the compiler to assume the called
function is close enough to use the normal calling convention,
overriding the @option{-mtf} command-line option.

@item far
@cindex @code{far} function attribute, MeP
On MeP targets this causes the compiler to use a calling convention
that assumes the called function is too far away for the built-in
addressing modes.

@item vliw
@cindex @code{vliw} function attribute, MeP
The @code{vliw} attribute tells the compiler to emit
instructions in VLIW mode instead of core mode.  Note that this
attribute is not allowed unless a VLIW coprocessor has been configured
and enabled through command-line options.
@end table

@node MicroBlaze Function Attributes
@subsection MicroBlaze Function Attributes

These function attributes are supported on MicroBlaze targets:

@table @code
@item save_volatiles
@cindex @code{save_volatiles} function attribute, MicroBlaze
Use this attribute to indicate that the function is
an interrupt handler.  All volatile registers (in addition to non-volatile
registers) are saved in the function prologue.  If the function is a leaf
function, only volatiles used by the function are saved.  A normal function
return is generated instead of a return from interrupt.

@item break_handler
@cindex @code{break_handler} function attribute, MicroBlaze
@cindex break handler functions
Use this attribute to indicate that
the specified function is a break handler.  The compiler generates function
entry and exit sequences suitable for use in an break handler when this
attribute is present. The return from @code{break_handler} is done through
the @code{rtbd} instead of @code{rtsd}.

@smallexample
void f () __attribute__ ((break_handler));
@end smallexample

@item interrupt_handler
@itemx fast_interrupt 
@cindex @code{interrupt_handler} function attribute, MicroBlaze
@cindex @code{fast_interrupt} function attribute, MicroBlaze
These attributes indicate that the specified function is an interrupt
handler.  Use the @code{fast_interrupt} attribute to indicate handlers
used in low-latency interrupt mode, and @code{interrupt_handler} for
interrupts that do not use low-latency handlers.  In both cases, GCC
emits appropriate prologue code and generates a return from the handler
using @code{rtid} instead of @code{rtsd}.
@end table

@node Microsoft Windows Function Attributes
@subsection Microsoft Windows Function Attributes

The following attributes are available on Microsoft Windows and Symbian OS
targets.

@table @code
@item dllexport
@cindex @code{dllexport} function attribute
@cindex @code{__declspec(dllexport)}
On Microsoft Windows targets and Symbian OS targets the
@code{dllexport} attribute causes the compiler to provide a global
pointer to a pointer in a DLL, so that it can be referenced with the
@code{dllimport} attribute.  On Microsoft Windows targets, the pointer
name is formed by combining @code{_imp__} and the function or variable
name.

You can use @code{__declspec(dllexport)} as a synonym for
@code{__attribute__ ((dllexport))} for compatibility with other
compilers.

On systems that support the @code{visibility} attribute, this
attribute also implies ``default'' visibility.  It is an error to
explicitly specify any other visibility.

GCC's default behavior is to emit all inline functions with the
@code{dllexport} attribute.  Since this can cause object file-size bloat,
you can use @option{-fno-keep-inline-dllexport}, which tells GCC to
ignore the attribute for inlined functions unless the 
@option{-fkeep-inline-functions} flag is used instead.

The attribute is ignored for undefined symbols.

When applied to C++ classes, the attribute marks defined non-inlined
member functions and static data members as exports.  Static consts
initialized in-class are not marked unless they are also defined
out-of-class.

For Microsoft Windows targets there are alternative methods for
including the symbol in the DLL's export table such as using a
@file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
the @option{--export-all} linker flag.

@item dllimport
@cindex @code{dllimport} function attribute
@cindex @code{__declspec(dllimport)}
On Microsoft Windows and Symbian OS targets, the @code{dllimport}
attribute causes the compiler to reference a function or variable via
a global pointer to a pointer that is set up by the DLL exporting the
symbol.  The attribute implies @code{extern}.  On Microsoft Windows
targets, the pointer name is formed by combining @code{_imp__} and the
function or variable name.

You can use @code{__declspec(dllimport)} as a synonym for
@code{__attribute__ ((dllimport))} for compatibility with other
compilers.

On systems that support the @code{visibility} attribute, this
attribute also implies ``default'' visibility.  It is an error to
explicitly specify any other visibility.

Currently, the attribute is ignored for inlined functions.  If the
attribute is applied to a symbol @emph{definition}, an error is reported.
If a symbol previously declared @code{dllimport} is later defined, the
attribute is ignored in subsequent references, and a warning is emitted.
The attribute is also overridden by a subsequent declaration as
@code{dllexport}.

When applied to C++ classes, the attribute marks non-inlined
member functions and static data members as imports.  However, the
attribute is ignored for virtual methods to allow creation of vtables
using thunks.

On the SH Symbian OS target the @code{dllimport} attribute also has
another affect---it can cause the vtable and run-time type information
for a class to be exported.  This happens when the class has a
dllimported constructor or a non-inline, non-pure virtual function
and, for either of those two conditions, the class also has an inline
constructor or destructor and has a key function that is defined in
the current translation unit.

For Microsoft Windows targets the use of the @code{dllimport}
attribute on functions is not necessary, but provides a small
performance benefit by eliminating a thunk in the DLL@.  The use of the
@code{dllimport} attribute on imported variables can be avoided by passing the
@option{--enable-auto-import} switch to the GNU linker.  As with
functions, using the attribute for a variable eliminates a thunk in
the DLL@.

One drawback to using this attribute is that a pointer to a
@emph{variable} marked as @code{dllimport} cannot be used as a constant
address. However, a pointer to a @emph{function} with the
@code{dllimport} attribute can be used as a constant initializer; in
this case, the address of a stub function in the import lib is
referenced.  On Microsoft Windows targets, the attribute can be disabled
for functions by setting the @option{-mnop-fun-dllimport} flag.
@end table

@node MIPS Function Attributes
@subsection MIPS Function Attributes

These function attributes are supported by the MIPS back end:

@table @code
@item interrupt
@cindex @code{interrupt} function attribute, MIPS
Use this attribute to indicate that the specified function is an interrupt
handler.  The compiler generates function entry and exit sequences suitable
for use in an interrupt handler when this attribute is present.
An optional argument is supported for the interrupt attribute which allows
the interrupt mode to be described.  By default GCC assumes the external
interrupt controller (EIC) mode is in use, this can be explicitly set using
@code{eic}.  When interrupts are non-masked then the requested Interrupt
Priority Level (IPL) is copied to the current IPL which has the effect of only
enabling higher priority interrupts.  To use vectored interrupt mode use
the argument @code{vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]}, this will change
the behavior of the non-masked interrupt support and GCC will arrange to mask
all interrupts from sw0 up to and including the specified interrupt vector.

You can use the following attributes to modify the behavior
of an interrupt handler:
@table @code
@item use_shadow_register_set
@cindex @code{use_shadow_register_set} function attribute, MIPS
Assume that the handler uses a shadow register set, instead of
the main general-purpose registers.  An optional argument @code{intstack} is
supported to indicate that the shadow register set contains a valid stack
pointer.

@item keep_interrupts_masked
@cindex @code{keep_interrupts_masked} function attribute, MIPS
Keep interrupts masked for the whole function.  Without this attribute,
GCC tries to reenable interrupts for as much of the function as it can.

@item use_debug_exception_return
@cindex @code{use_debug_exception_return} function attribute, MIPS
Return using the @code{deret} instruction.  Interrupt handlers that don't
have this attribute return using @code{eret} instead.
@end table

You can use any combination of these attributes, as shown below:
@smallexample
void __attribute__ ((interrupt)) v0 ();
void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
void __attribute__ ((interrupt, use_shadow_register_set,
                     keep_interrupts_masked)) v4 ();
void __attribute__ ((interrupt, use_shadow_register_set,
                     use_debug_exception_return)) v5 ();
void __attribute__ ((interrupt, keep_interrupts_masked,
                     use_debug_exception_return)) v6 ();
void __attribute__ ((interrupt, use_shadow_register_set,
                     keep_interrupts_masked,
                     use_debug_exception_return)) v7 ();
void __attribute__ ((interrupt("eic"))) v8 ();
void __attribute__ ((interrupt("vector=hw3"))) v9 ();
@end smallexample

@item long_call
@itemx short_call
@itemx near
@itemx far
@cindex indirect calls, MIPS
@cindex @code{long_call} function attribute, MIPS
@cindex @code{short_call} function attribute, MIPS
@cindex @code{near} function attribute, MIPS
@cindex @code{far} function attribute, MIPS
These attributes specify how a particular function is called on MIPS@.
The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
command-line switch.  The @code{long_call} and @code{far} attributes are
synonyms, and cause the compiler to always call
the function by first loading its address into a register, and then using
the contents of that register.  The @code{short_call} and @code{near}
attributes are synonyms, and have the opposite
effect; they specify that non-PIC calls should be made using the more
efficient @code{jal} instruction.

@item mips16
@itemx nomips16
@cindex @code{mips16} function attribute, MIPS
@cindex @code{nomips16} function attribute, MIPS

On MIPS targets, you can use the @code{mips16} and @code{nomips16}
function attributes to locally select or turn off MIPS16 code generation.
A function with the @code{mips16} attribute is emitted as MIPS16 code,
while MIPS16 code generation is disabled for functions with the
@code{nomips16} attribute.  These attributes override the
@option{-mips16} and @option{-mno-mips16} options on the command line
(@pxref{MIPS Options}).

When compiling files containing mixed MIPS16 and non-MIPS16 code, the
preprocessor symbol @code{__mips16} reflects the setting on the command line,
not that within individual functions.  Mixed MIPS16 and non-MIPS16 code
may interact badly with some GCC extensions such as @code{__builtin_apply}
(@pxref{Constructing Calls}).

@item micromips, MIPS
@itemx nomicromips, MIPS
@cindex @code{micromips} function attribute
@cindex @code{nomicromips} function attribute

On MIPS targets, you can use the @code{micromips} and @code{nomicromips}
function attributes to locally select or turn off microMIPS code generation.
A function with the @code{micromips} attribute is emitted as microMIPS code,
while microMIPS code generation is disabled for functions with the
@code{nomicromips} attribute.  These attributes override the
@option{-mmicromips} and @option{-mno-micromips} options on the command line
(@pxref{MIPS Options}).

When compiling files containing mixed microMIPS and non-microMIPS code, the
preprocessor symbol @code{__mips_micromips} reflects the setting on the
command line,
not that within individual functions.  Mixed microMIPS and non-microMIPS code
may interact badly with some GCC extensions such as @code{__builtin_apply}
(@pxref{Constructing Calls}).

@item nocompression
@cindex @code{nocompression} function attribute, MIPS
On MIPS targets, you can use the @code{nocompression} function attribute
to locally turn off MIPS16 and microMIPS code generation.  This attribute
overrides the @option{-mips16} and @option{-mmicromips} options on the
command line (@pxref{MIPS Options}).
@end table

@node MSP430 Function Attributes
@subsection MSP430 Function Attributes

These function attributes are supported by the MSP430 back end:

@table @code
@item critical
@cindex @code{critical} function attribute, MSP430
Critical functions disable interrupts upon entry and restore the
previous interrupt state upon exit.  Critical functions cannot also
have the @code{naked}, @code{reentrant} or @code{interrupt} attributes.

The MSP430 hardware ensures that interrupts are disabled on entry to
@code{interrupt} functions, and restores the previous interrupt state
on exit. The @code{critical} attribute is therefore redundant on
@code{interrupt} functions.

@item interrupt
@cindex @code{interrupt} function attribute, MSP430
Use this attribute to indicate
that the specified function is an interrupt handler.  The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.

You can provide an argument to the interrupt
attribute which specifies a name or number.  If the argument is a
number it indicates the slot in the interrupt vector table (0 - 31) to
which this handler should be assigned.  If the argument is a name it
is treated as a symbolic name for the vector slot.  These names should
match up with appropriate entries in the linker script.  By default
the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and
@code{reset} for vector 31 are recognized.

@item naked
@cindex @code{naked} function attribute, MSP430
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.

@item reentrant
@cindex @code{reentrant} function attribute, MSP430
Reentrant functions disable interrupts upon entry and enable them
upon exit.  Reentrant functions cannot also have the @code{naked}
or @code{critical} attributes.  They can have the @code{interrupt}
attribute.

@item wakeup
@cindex @code{wakeup} function attribute, MSP430
This attribute only applies to interrupt functions.  It is silently
ignored if applied to a non-interrupt function.  A wakeup interrupt
function will rouse the processor from any low-power state that it
might be in when the function exits.

@item lower
@itemx upper
@itemx either
@cindex @code{lower} function attribute, MSP430
@cindex @code{upper} function attribute, MSP430
@cindex @code{either} function attribute, MSP430
On the MSP430 target these attributes can be used to specify whether
the function or variable should be placed into low memory, high
memory, or the placement should be left to the linker to decide.  The
attributes are only significant if compiling for the MSP430X
architecture in the large memory model.

The attributes work in conjunction with a linker script that has been
augmented to specify where to place sections with a @code{.lower} and
a @code{.upper} prefix.  So, for example, as well as placing the
@code{.data} section, the script also specifies the placement of a
@code{.lower.data} and a @code{.upper.data} section.  The intention
is that @code{lower} sections are placed into a small but easier to
access memory region and the upper sections are placed into a larger, but
slower to access, region.

The @code{either} attribute is special.  It tells the linker to place
the object into the corresponding @code{lower} section if there is
room for it.  If there is insufficient room then the object is placed
into the corresponding @code{upper} section instead.  Note that the
placement algorithm is not very sophisticated.  It does not attempt to
find an optimal packing of the @code{lower} sections.  It just makes
one pass over the objects and does the best that it can.  Using the
@option{-ffunction-sections} and @option{-fdata-sections} command-line
options can help the packing, however, since they produce smaller,
easier to pack regions.
@end table

@node NDS32 Function Attributes
@subsection NDS32 Function Attributes

These function attributes are supported by the NDS32 back end:

@table @code
@item exception
@cindex @code{exception} function attribute
@cindex exception handler functions, NDS32
Use this attribute on the NDS32 target to indicate that the specified function
is an exception handler.  The compiler will generate corresponding sections
for use in an exception handler.

@item interrupt
@cindex @code{interrupt} function attribute, NDS32
On NDS32 target, this attribute indicates that the specified function
is an interrupt handler.  The compiler generates corresponding sections
for use in an interrupt handler.  You can use the following attributes
to modify the behavior:
@table @code
@item nested
@cindex @code{nested} function attribute, NDS32
This interrupt service routine is interruptible.
@item not_nested
@cindex @code{not_nested} function attribute, NDS32
This interrupt service routine is not interruptible.
@item nested_ready
@cindex @code{nested_ready} function attribute, NDS32
This interrupt service routine is interruptible after @code{PSW.GIE}
(global interrupt enable) is set.  This allows interrupt service routine to
finish some short critical code before enabling interrupts.
@item save_all
@cindex @code{save_all} function attribute, NDS32
The system will help save all registers into stack before entering
interrupt handler.
@item partial_save
@cindex @code{partial_save} function attribute, NDS32
The system will help save caller registers into stack before entering
interrupt handler.
@end table

@item naked
@cindex @code{naked} function attribute, NDS32
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.

@item reset
@cindex @code{reset} function attribute, NDS32
@cindex reset handler functions
Use this attribute on the NDS32 target to indicate that the specified function
is a reset handler.  The compiler will generate corresponding sections
for use in a reset handler.  You can use the following attributes
to provide extra exception handling:
@table @code
@item nmi
@cindex @code{nmi} function attribute, NDS32
Provide a user-defined function to handle NMI exception.
@item warm
@cindex @code{warm} function attribute, NDS32
Provide a user-defined function to handle warm reset exception.
@end table
@end table

@node Nios II Function Attributes
@subsection Nios II Function Attributes

These function attributes are supported by the Nios II back end:

@table @code
@item target (@var{options})
@cindex @code{target} function attribute
As discussed in @ref{Common Function Attributes}, this attribute 
allows specification of target-specific compilation options.

When compiling for Nios II, the following options are allowed:

@table @samp
@item custom-@var{insn}=@var{N}
@itemx no-custom-@var{insn}
@cindex @code{target("custom-@var{insn}=@var{N}")} function attribute, Nios II
@cindex @code{target("no-custom-@var{insn}")} function attribute, Nios II
Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a
custom instruction with encoding @var{N} when generating code that uses 
@var{insn}.  Similarly, @samp{no-custom-@var{insn}} locally inhibits use of
the custom instruction @var{insn}.
These target attributes correspond to the
@option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}}
command-line options, and support the same set of @var{insn} keywords.
@xref{Nios II Options}, for more information.

@item custom-fpu-cfg=@var{name}
@cindex @code{target("custom-fpu-cfg=@var{name}")} function attribute, Nios II
This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}}
command-line option, to select a predefined set of custom instructions
named @var{name}.
@xref{Nios II Options}, for more information.
@end table
@end table

@node Nvidia PTX Function Attributes
@subsection Nvidia PTX Function Attributes

These function attributes are supported by the Nvidia PTX back end:

@table @code
@item kernel
@cindex @code{kernel} attribute, Nvidia PTX
This attribute indicates that the corresponding function should be compiled
as a kernel function, which can be invoked from the host via the CUDA RT 
library.
By default functions are only callable only from other PTX functions.

Kernel functions must have @code{void} return type.
@end table

@node PowerPC Function Attributes
@subsection PowerPC Function Attributes

These function attributes are supported by the PowerPC back end:

@table @code
@item longcall
@itemx shortcall
@cindex indirect calls, PowerPC
@cindex @code{longcall} function attribute, PowerPC
@cindex @code{shortcall} function attribute, PowerPC
The @code{longcall} attribute
indicates that the function might be far away from the call site and
require a different (more expensive) calling sequence.  The
@code{shortcall} attribute indicates that the function is always close
enough for the shorter calling sequence to be used.  These attributes
override both the @option{-mlongcall} switch and
the @code{#pragma longcall} setting.

@xref{RS/6000 and PowerPC Options}, for more information on whether long
calls are necessary.

@item target (@var{options})
@cindex @code{target} function attribute
As discussed in @ref{Common Function Attributes}, this attribute 
allows specification of target-specific compilation options.

On the PowerPC, the following options are allowed:

@table @samp
@item altivec
@itemx no-altivec
@cindex @code{target("altivec")} function attribute, PowerPC
Generate code that uses (does not use) AltiVec instructions.  In
32-bit code, you cannot enable AltiVec instructions unless
@option{-mabi=altivec} is used on the command line.

@item cmpb
@itemx no-cmpb
@cindex @code{target("cmpb")} function attribute, PowerPC
Generate code that uses (does not use) the compare bytes instruction
implemented on the POWER6 processor and other processors that support
the PowerPC V2.05 architecture.

@item dlmzb
@itemx no-dlmzb
@cindex @code{target("dlmzb")} function attribute, PowerPC
Generate code that uses (does not use) the string-search @samp{dlmzb}
instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
generated by default when targeting those processors.

@item fprnd
@itemx no-fprnd
@cindex @code{target("fprnd")} function attribute, PowerPC
Generate code that uses (does not use) the FP round to integer
instructions implemented on the POWER5+ processor and other processors
that support the PowerPC V2.03 architecture.

@item hard-dfp
@itemx no-hard-dfp
@cindex @code{target("hard-dfp")} function attribute, PowerPC
Generate code that uses (does not use) the decimal floating-point
instructions implemented on some POWER processors.

@item isel
@itemx no-isel
@cindex @code{target("isel")} function attribute, PowerPC
Generate code that uses (does not use) ISEL instruction.

@item mfcrf
@itemx no-mfcrf
@cindex @code{target("mfcrf")} function attribute, PowerPC
Generate code that uses (does not use) the move from condition
register field instruction implemented on the POWER4 processor and
other processors that support the PowerPC V2.01 architecture.

@item mulhw
@itemx no-mulhw
@cindex @code{target("mulhw")} function attribute, PowerPC
Generate code that uses (does not use) the half-word multiply and
multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
These instructions are generated by default when targeting those
processors.

@item multiple
@itemx no-multiple
@cindex @code{target("multiple")} function attribute, PowerPC
Generate code that uses (does not use) the load multiple word
instructions and the store multiple word instructions.

@item update
@itemx no-update
@cindex @code{target("update")} function attribute, PowerPC
Generate code that uses (does not use) the load or store instructions
that update the base register to the address of the calculated memory
location.

@item popcntb
@itemx no-popcntb
@cindex @code{target("popcntb")} function attribute, PowerPC
Generate code that uses (does not use) the popcount and double-precision
FP reciprocal estimate instruction implemented on the POWER5
processor and other processors that support the PowerPC V2.02
architecture.

@item popcntd
@itemx no-popcntd
@cindex @code{target("popcntd")} function attribute, PowerPC
Generate code that uses (does not use) the popcount instruction
implemented on the POWER7 processor and other processors that support
the PowerPC V2.06 architecture.

@item powerpc-gfxopt
@itemx no-powerpc-gfxopt
@cindex @code{target("powerpc-gfxopt")} function attribute, PowerPC
Generate code that uses (does not use) the optional PowerPC
architecture instructions in the Graphics group, including
floating-point select.

@item powerpc-gpopt
@itemx no-powerpc-gpopt
@cindex @code{target("powerpc-gpopt")} function attribute, PowerPC
Generate code that uses (does not use) the optional PowerPC
architecture instructions in the General Purpose group, including
floating-point square root.

@item recip-precision
@itemx no-recip-precision
@cindex @code{target("recip-precision")} function attribute, PowerPC
Assume (do not assume) that the reciprocal estimate instructions
provide higher-precision estimates than is mandated by the PowerPC
ABI.

@item string
@itemx no-string
@cindex @code{target("string")} function attribute, PowerPC
Generate code that uses (does not use) the load string instructions
and the store string word instructions to save multiple registers and
do small block moves.

@item vsx
@itemx no-vsx
@cindex @code{target("vsx")} function attribute, PowerPC
Generate code that uses (does not use) vector/scalar (VSX)
instructions, and also enable the use of built-in functions that allow
more direct access to the VSX instruction set.  In 32-bit code, you
cannot enable VSX or AltiVec instructions unless
@option{-mabi=altivec} is used on the command line.

@item friz
@itemx no-friz
@cindex @code{target("friz")} function attribute, PowerPC
Generate (do not generate) the @code{friz} instruction when the
@option{-funsafe-math-optimizations} option is used to optimize
rounding a floating-point value to 64-bit integer and back to floating
point.  The @code{friz} instruction does not return the same value if
the floating-point number is too large to fit in an integer.

@item avoid-indexed-addresses
@itemx no-avoid-indexed-addresses
@cindex @code{target("avoid-indexed-addresses")} function attribute, PowerPC
Generate code that tries to avoid (not avoid) the use of indexed load
or store instructions.

@item paired
@itemx no-paired
@cindex @code{target("paired")} function attribute, PowerPC
Generate code that uses (does not use) the generation of PAIRED simd
instructions.

@item longcall
@itemx no-longcall
@cindex @code{target("longcall")} function attribute, PowerPC
Generate code that assumes (does not assume) that all calls are far
away so that a longer more expensive calling sequence is required.

@item cpu=@var{CPU}
@cindex @code{target("cpu=@var{CPU}")} function attribute, PowerPC
Specify the architecture to generate code for when compiling the
function.  If you select the @code{target("cpu=power7")} attribute when
generating 32-bit code, VSX and AltiVec instructions are not generated
unless you use the @option{-mabi=altivec} option on the command line.

@item tune=@var{TUNE}
@cindex @code{target("tune=@var{TUNE}")} function attribute, PowerPC
Specify the architecture to tune for when compiling the function.  If
you do not specify the @code{target("tune=@var{TUNE}")} attribute and
you do specify the @code{target("cpu=@var{CPU}")} attribute,
compilation tunes for the @var{CPU} architecture, and not the
default tuning specified on the command line.
@end table

On the PowerPC, the inliner does not inline a
function that has different target options than the caller, unless the
callee has a subset of the target options of the caller.
@end table

@node RISC-V Function Attributes
@subsection RISC-V Function Attributes

These function attributes are supported by the RISC-V back end:

@table @code
@item naked
@cindex @code{naked} function attribute, RISC-V
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.

@item interrupt
@cindex @code{interrupt} function attribute, RISC-V
Use this attribute to indicate that the specified function is an interrupt
handler.  The compiler generates function entry and exit sequences suitable
for use in an interrupt handler when this attribute is present.

You can specify the kind of interrupt to be handled by adding an optional
parameter to the interrupt attribute like this:

@smallexample
void f (void) __attribute__ ((interrupt ("user")));
@end smallexample

Permissible values for this parameter are @code{user}, @code{supervisor},
and @code{machine}.  If there is no parameter, then it defaults to
@code{machine}.
@end table

@node RL78 Function Attributes
@subsection RL78 Function Attributes

These function attributes are supported by the RL78 back end:

@table @code
@item interrupt
@itemx brk_interrupt
@cindex @code{interrupt} function attribute, RL78
@cindex @code{brk_interrupt} function attribute, RL78
These attributes indicate
that the specified function is an interrupt handler.  The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.

Use @code{brk_interrupt} instead of @code{interrupt} for
handlers intended to be used with the @code{BRK} opcode (i.e.@: those
that must end with @code{RETB} instead of @code{RETI}).

@item naked
@cindex @code{naked} function attribute, RL78
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
@end table

@node RX Function Attributes
@subsection RX Function Attributes

These function attributes are supported by the RX back end:

@table @code
@item fast_interrupt
@cindex @code{fast_interrupt} function attribute, RX
Use this attribute on the RX port to indicate that the specified
function is a fast interrupt handler.  This is just like the
@code{interrupt} attribute, except that @code{freit} is used to return
instead of @code{reit}.

@item interrupt
@cindex @code{interrupt} function attribute, RX
Use this attribute to indicate
that the specified function is an interrupt handler.  The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.

On RX and RL78 targets, you may specify one or more vector numbers as arguments
to the attribute, as well as naming an alternate table name.
Parameters are handled sequentially, so one handler can be assigned to
multiple entries in multiple tables.  One may also pass the magic
string @code{"$default"} which causes the function to be used for any
unfilled slots in the current table.

This example shows a simple assignment of a function to one vector in
the default table (note that preprocessor macros may be used for
chip-specific symbolic vector names):
@smallexample
void __attribute__ ((interrupt (5))) txd1_handler ();
@end smallexample

This example assigns a function to two slots in the default table
(using preprocessor macros defined elsewhere) and makes it the default
for the @code{dct} table:
@smallexample
void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
	txd1_handler ();
@end smallexample

@item naked
@cindex @code{naked} function attribute, RX
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.

@item vector
@cindex @code{vector} function attribute, RX
This RX attribute is similar to the @code{interrupt} attribute, including its
parameters, but does not make the function an interrupt-handler type
function (i.e.@: it retains the normal C function calling ABI).  See the
@code{interrupt} attribute for a description of its arguments.
@end table

@node S/390 Function Attributes
@subsection S/390 Function Attributes

These function attributes are supported on the S/390:

@table @code
@item hotpatch (@var{halfwords-before-function-label},@var{halfwords-after-function-label})
@cindex @code{hotpatch} function attribute, S/390

On S/390 System z targets, you can use this function attribute to
make GCC generate a ``hot-patching'' function prologue.  If the
@option{-mhotpatch=} command-line option is used at the same time,
the @code{hotpatch} attribute takes precedence.  The first of the
two arguments specifies the number of halfwords to be added before
the function label.  A second argument can be used to specify the
number of halfwords to be added after the function label.  For
both arguments the maximum allowed value is 1000000.

If both arguments are zero, hotpatching is disabled.

@item target (@var{options})
@cindex @code{target} function attribute
As discussed in @ref{Common Function Attributes}, this attribute
allows specification of target-specific compilation options.

On S/390, the following options are supported:

@table @samp
@item arch=
@item tune=
@item stack-guard=
@item stack-size=
@item branch-cost=
@item warn-framesize=
@item backchain
@itemx no-backchain
@item hard-dfp
@itemx no-hard-dfp
@item hard-float
@itemx soft-float
@item htm
@itemx no-htm
@item vx
@itemx no-vx
@item packed-stack
@itemx no-packed-stack
@item small-exec
@itemx no-small-exec
@item mvcle
@itemx no-mvcle
@item warn-dynamicstack
@itemx no-warn-dynamicstack
@end table

The options work exactly like the S/390 specific command line
options (without the prefix @option{-m}) except that they do not
change any feature macros.  For example,

@smallexample
@code{target("no-vx")}
@end smallexample

does not undefine the @code{__VEC__} macro.
@end table

@node SH Function Attributes
@subsection SH Function Attributes

These function attributes are supported on the SH family of processors:

@table @code
@item function_vector
@cindex @code{function_vector} function attribute, SH
@cindex calling functions through the function vector on SH2A
On SH2A targets, this attribute declares a function to be called using the
TBR relative addressing mode.  The argument to this attribute is the entry
number of the same function in a vector table containing all the TBR
relative addressable functions.  For correct operation the TBR must be setup
accordingly to point to the start of the vector table before any functions with
this attribute are invoked.  Usually a good place to do the initialization is
the startup routine.  The TBR relative vector table can have at max 256 function
entries.  The jumps to these functions are generated using a SH2A specific,
non delayed branch instruction JSR/N @@(disp8,TBR).  You must use GAS and GLD
from GNU binutils version 2.7 or later for this attribute to work correctly.

In an application, for a function being called once, this attribute
saves at least 8 bytes of code; and if other successive calls are being
made to the same function, it saves 2 bytes of code per each of these
calls.

@item interrupt_handler
@cindex @code{interrupt_handler} function attribute, SH
Use this attribute to
indicate that the specified function is an interrupt handler.  The compiler
generates function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present.

@item nosave_low_regs
@cindex @code{nosave_low_regs} function attribute, SH
Use this attribute on SH targets to indicate that an @code{interrupt_handler}
function should not save and restore registers R0..R7.  This can be used on SH3*
and SH4* targets that have a second R0..R7 register bank for non-reentrant
interrupt handlers.

@item renesas
@cindex @code{renesas} function attribute, SH
On SH targets this attribute specifies that the function or struct follows the
Renesas ABI.

@item resbank
@cindex @code{resbank} function attribute, SH
On the SH2A target, this attribute enables the high-speed register
saving and restoration using a register bank for @code{interrupt_handler}
routines.  Saving to the bank is performed automatically after the CPU
accepts an interrupt that uses a register bank.

The nineteen 32-bit registers comprising general register R0 to R14,
control register GBR, and system registers MACH, MACL, and PR and the
vector table address offset are saved into a register bank.  Register
banks are stacked in first-in last-out (FILO) sequence.  Restoration
from the bank is executed by issuing a RESBANK instruction.

@item sp_switch
@cindex @code{sp_switch} function attribute, SH
Use this attribute on the SH to indicate an @code{interrupt_handler}
function should switch to an alternate stack.  It expects a string
argument that names a global variable holding the address of the
alternate stack.

@smallexample
void *alt_stack;
void f () __attribute__ ((interrupt_handler,
                          sp_switch ("alt_stack")));
@end smallexample

@item trap_exit
@cindex @code{trap_exit} function attribute, SH
Use this attribute on the SH for an @code{interrupt_handler} to return using
@code{trapa} instead of @code{rte}.  This attribute expects an integer
argument specifying the trap number to be used.

@item trapa_handler
@cindex @code{trapa_handler} function attribute, SH
On SH targets this function attribute is similar to @code{interrupt_handler}
but it does not save and restore all registers.
@end table

@node Symbian OS Function Attributes
@subsection Symbian OS Function Attributes

@xref{Microsoft Windows Function Attributes}, for discussion of the
@code{dllexport} and @code{dllimport} attributes.

@node V850 Function Attributes
@subsection V850 Function Attributes

The V850 back end supports these function attributes:

@table @code
@item interrupt
@itemx interrupt_handler
@cindex @code{interrupt} function attribute, V850
@cindex @code{interrupt_handler} function attribute, V850
Use these attributes to indicate
that the specified function is an interrupt handler.  The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when either attribute is present.
@end table

@node Visium Function Attributes
@subsection Visium Function Attributes

These function attributes are supported by the Visium back end:

@table @code
@item interrupt
@cindex @code{interrupt} function attribute, Visium
Use this attribute to indicate
that the specified function is an interrupt handler.  The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
@end table

@node x86 Function Attributes
@subsection x86 Function Attributes

These function attributes are supported by the x86 back end:

@table @code
@item cdecl
@cindex @code{cdecl} function attribute, x86-32
@cindex functions that pop the argument stack on x86-32
@opindex mrtd
On the x86-32 targets, the @code{cdecl} attribute causes the compiler to
assume that the calling function pops off the stack space used to
pass arguments.  This is
useful to override the effects of the @option{-mrtd} switch.

@item fastcall
@cindex @code{fastcall} function attribute, x86-32
@cindex functions that pop the argument stack on x86-32
On x86-32 targets, the @code{fastcall} attribute causes the compiler to
pass the first argument (if of integral type) in the register ECX and
the second argument (if of integral type) in the register EDX@.  Subsequent
and other typed arguments are passed on the stack.  The called function
pops the arguments off the stack.  If the number of arguments is variable all
arguments are pushed on the stack.

@item thiscall
@cindex @code{thiscall} function attribute, x86-32
@cindex functions that pop the argument stack on x86-32
On x86-32 targets, the @code{thiscall} attribute causes the compiler to
pass the first argument (if of integral type) in the register ECX.
Subsequent and other typed arguments are passed on the stack. The called
function pops the arguments off the stack.
If the number of arguments is variable all arguments are pushed on the
stack.
The @code{thiscall} attribute is intended for C++ non-static member functions.
As a GCC extension, this calling convention can be used for C functions
and for static member methods.

@item ms_abi
@itemx sysv_abi
@cindex @code{ms_abi} function attribute, x86
@cindex @code{sysv_abi} function attribute, x86

On 32-bit and 64-bit x86 targets, you can use an ABI attribute
to indicate which calling convention should be used for a function.  The
@code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
while the @code{sysv_abi} attribute tells the compiler to use the System V
ELF ABI, which is used on GNU/Linux and other systems.  The default is to use
the Microsoft ABI when targeting Windows.  On all other systems, the default
is the System V ELF ABI.

Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently
requires the @option{-maccumulate-outgoing-args} option.

@item callee_pop_aggregate_return (@var{number})
@cindex @code{callee_pop_aggregate_return} function attribute, x86

On x86-32 targets, you can use this attribute to control how
aggregates are returned in memory.  If the caller is responsible for
popping the hidden pointer together with the rest of the arguments, specify
@var{number} equal to zero.  If callee is responsible for popping the
hidden pointer, specify @var{number} equal to one.  

The default x86-32 ABI assumes that the callee pops the
stack for hidden pointer.  However, on x86-32 Microsoft Windows targets,
the compiler assumes that the
caller pops the stack for hidden pointer.

@item ms_hook_prologue
@cindex @code{ms_hook_prologue} function attribute, x86

On 32-bit and 64-bit x86 targets, you can use
this function attribute to make GCC generate the ``hot-patching'' function
prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
and newer.

@item naked
@cindex @code{naked} function attribute, x86
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.

@item regparm (@var{number})
@cindex @code{regparm} function attribute, x86
@cindex functions that are passed arguments in registers on x86-32
On x86-32 targets, the @code{regparm} attribute causes the compiler to
pass arguments number one to @var{number} if they are of integral type
in registers EAX, EDX, and ECX instead of on the stack.  Functions that
take a variable number of arguments continue to be passed all of their
arguments on the stack.

Beware that on some ELF systems this attribute is unsuitable for
global functions in shared libraries with lazy binding (which is the
default).  Lazy binding sends the first call via resolving code in
the loader, which might assume EAX, EDX and ECX can be clobbered, as
per the standard calling conventions.  Solaris 8 is affected by this.
Systems with the GNU C Library version 2.1 or higher
and FreeBSD are believed to be
safe since the loaders there save EAX, EDX and ECX.  (Lazy binding can be
disabled with the linker or the loader if desired, to avoid the
problem.)

@item sseregparm
@cindex @code{sseregparm} function attribute, x86
On x86-32 targets with SSE support, the @code{sseregparm} attribute
causes the compiler to pass up to 3 floating-point arguments in
SSE registers instead of on the stack.  Functions that take a
variable number of arguments continue to pass all of their
floating-point arguments on the stack.

@item force_align_arg_pointer
@cindex @code{force_align_arg_pointer} function attribute, x86
On x86 targets, the @code{force_align_arg_pointer} attribute may be
applied to individual function definitions, generating an alternate
prologue and epilogue that realigns the run-time stack if necessary.
This supports mixing legacy codes that run with a 4-byte aligned stack
with modern codes that keep a 16-byte stack for SSE compatibility.

@item stdcall
@cindex @code{stdcall} function attribute, x86-32
@cindex functions that pop the argument stack on x86-32
On x86-32 targets, the @code{stdcall} attribute causes the compiler to
assume that the called function pops off the stack space used to
pass arguments, unless it takes a variable number of arguments.

@item no_caller_saved_registers
@cindex @code{no_caller_saved_registers} function attribute, x86
Use this attribute to indicate that the specified function has no
caller-saved registers. That is, all registers are callee-saved. For
example, this attribute can be used for a function called from an
interrupt handler. The compiler generates proper function entry and
exit sequences to save and restore any modified registers, except for
the EFLAGS register.  Since GCC doesn't preserve SSE, MMX nor x87
states, the GCC option @option{-mgeneral-regs-only} should be used to
compile functions with @code{no_caller_saved_registers} attribute.

@item interrupt
@cindex @code{interrupt} function attribute, x86
Use this attribute to indicate that the specified function is an
interrupt handler or an exception handler (depending on parameters passed
to the function, explained further).  The compiler generates function
entry and exit sequences suitable for use in an interrupt handler when
this attribute is present.  The @code{IRET} instruction, instead of the
@code{RET} instruction, is used to return from interrupt handlers.  All
registers, except for the EFLAGS register which is restored by the
@code{IRET} instruction, are preserved by the compiler.  Since GCC
doesn't preserve SSE, MMX nor x87 states, the GCC option
@option{-mgeneral-regs-only} should be used to compile interrupt and
exception handlers.

Any interruptible-without-stack-switch code must be compiled with
@option{-mno-red-zone} since interrupt handlers can and will, because
of the hardware design, touch the red zone.

An interrupt handler must be declared with a mandatory pointer
argument:

@smallexample
struct interrupt_frame;

__attribute__ ((interrupt))
void
f (struct interrupt_frame *frame)
@{
@}
@end smallexample

@noindent
and you must define @code{struct interrupt_frame} as described in the
processor's manual.

Exception handlers differ from interrupt handlers because the system
pushes an error code on the stack.  An exception handler declaration is
similar to that for an interrupt handler, but with a different mandatory
function signature.  The compiler arranges to pop the error code off the
stack before the @code{IRET} instruction.

@smallexample
#ifdef __x86_64__
typedef unsigned long long int uword_t;
#else
typedef unsigned int uword_t;
#endif

struct interrupt_frame;

__attribute__ ((interrupt))
void
f (struct interrupt_frame *frame, uword_t error_code)
@{
  ...
@}
@end smallexample

Exception handlers should only be used for exceptions that push an error
code; you should use an interrupt handler in other cases.  The system
will crash if the wrong kind of handler is used.

@item target (@var{options})
@cindex @code{target} function attribute
As discussed in @ref{Common Function Attributes}, this attribute 
allows specification of target-specific compilation options.

On the x86, the following options are allowed:
@table @samp
@item 3dnow
@itemx no-3dnow
@cindex @code{target("3dnow")} function attribute, x86
Enable/disable the generation of the 3DNow!@: instructions.

@item 3dnowa
@itemx no-3dnowa
@cindex @code{target("3dnowa")} function attribute, x86
Enable/disable the generation of the enhanced 3DNow!@: instructions.

@item abm
@itemx no-abm
@cindex @code{target("abm")} function attribute, x86
Enable/disable the generation of the advanced bit instructions.

@item adx
@itemx no-adx
@cindex @code{target("adx")} function attribute, x86
Enable/disable the generation of the ADX instructions.

@item aes
@itemx no-aes
@cindex @code{target("aes")} function attribute, x86
Enable/disable the generation of the AES instructions.

@item avx
@itemx no-avx
@cindex @code{target("avx")} function attribute, x86
Enable/disable the generation of the AVX instructions.

@item avx2
@itemx no-avx2
@cindex @code{target("avx2")} function attribute, x86
Enable/disable the generation of the AVX2 instructions.

@item avx5124fmaps
@itemx no-avx5124fmaps
@cindex @code{target("avx5124fmaps")} function attribute, x86
Enable/disable the generation of the AVX5124FMAPS instructions.

@item avx5124vnniw
@itemx no-avx5124vnniw
@cindex @code{target("avx5124vnniw")} function attribute, x86
Enable/disable the generation of the AVX5124VNNIW instructions.

@item avx512bitalg
@itemx no-avx512bitalg
@cindex @code{target("avx512bitalg")} function attribute, x86
Enable/disable the generation of the AVX512BITALG instructions.

@item avx512bw
@itemx no-avx512bw
@cindex @code{target("avx512bw")} function attribute, x86
Enable/disable the generation of the AVX512BW instructions.

@item avx512cd
@itemx no-avx512cd
@cindex @code{target("avx512cd")} function attribute, x86
Enable/disable the generation of the AVX512CD instructions.

@item avx512dq
@itemx no-avx512dq
@cindex @code{target("avx512dq")} function attribute, x86
Enable/disable the generation of the AVX512DQ instructions.

@item avx512er
@itemx no-avx512er
@cindex @code{target("avx512er")} function attribute, x86
Enable/disable the generation of the AVX512ER instructions.

@item avx512f
@itemx no-avx512f
@cindex @code{target("avx512f")} function attribute, x86
Enable/disable the generation of the AVX512F instructions.

@item avx512ifma
@itemx no-avx512ifma
@cindex @code{target("avx512ifma")} function attribute, x86
Enable/disable the generation of the AVX512IFMA instructions.

@item avx512pf
@itemx no-avx512pf
@cindex @code{target("avx512pf")} function attribute, x86
Enable/disable the generation of the AVX512PF instructions.

@item avx512vbmi
@itemx no-avx512vbmi
@cindex @code{target("avx512vbmi")} function attribute, x86
Enable/disable the generation of the AVX512VBMI instructions.

@item avx512vbmi2
@itemx no-avx512vbmi2
@cindex @code{target("avx512vbmi2")} function attribute, x86
Enable/disable the generation of the AVX512VBMI2 instructions.

@item avx512vl
@itemx no-avx512vl
@cindex @code{target("avx512vl")} function attribute, x86
Enable/disable the generation of the AVX512VL instructions.

@item avx512vnni
@itemx no-avx512vnni
@cindex @code{target("avx512vnni")} function attribute, x86
Enable/disable the generation of the AVX512VNNI instructions.

@item avx512vpopcntdq
@itemx no-avx512vpopcntdq
@cindex @code{target("avx512vpopcntdq")} function attribute, x86
Enable/disable the generation of the AVX512VPOPCNTDQ instructions.

@item bmi
@itemx no-bmi
@cindex @code{target("bmi")} function attribute, x86
Enable/disable the generation of the BMI instructions.

@item bmi2
@itemx no-bmi2
@cindex @code{target("bmi2")} function attribute, x86
Enable/disable the generation of the BMI2 instructions.

@item cldemote
@itemx no-cldemote
@cindex @code{target("cldemote")} function attribute, x86
Enable/disable the generation of the CLDEMOTE instructions.

@item clflushopt
@itemx no-clflushopt
@cindex @code{target("clflushopt")} function attribute, x86
Enable/disable the generation of the CLFLUSHOPT instructions.

@item clwb
@itemx no-clwb
@cindex @code{target("clwb")} function attribute, x86
Enable/disable the generation of the CLWB instructions.

@item clzero
@itemx no-clzero
@cindex @code{target("clzero")} function attribute, x86
Enable/disable the generation of the CLZERO instructions.

@item crc32
@itemx no-crc32
@cindex @code{target("crc32")} function attribute, x86
Enable/disable the generation of the CRC32 instructions.

@item cx16
@itemx no-cx16
@cindex @code{target("cx16")} function attribute, x86
Enable/disable the generation of the CMPXCHG16B instructions.

@item default
@cindex @code{target("default")} function attribute, x86
@xref{Function Multiversioning}, where it is used to specify the
default function version.

@item f16c
@itemx no-f16c
@cindex @code{target("f16c")} function attribute, x86
Enable/disable the generation of the F16C instructions.

@item fma
@itemx no-fma
@cindex @code{target("fma")} function attribute, x86
Enable/disable the generation of the FMA instructions.

@item fma4
@itemx no-fma4
@cindex @code{target("fma4")} function attribute, x86
Enable/disable the generation of the FMA4 instructions.

@item fsgsbase
@itemx no-fsgsbase
@cindex @code{target("fsgsbase")} function attribute, x86
Enable/disable the generation of the FSGSBASE instructions.

@item fxsr
@itemx no-fxsr
@cindex @code{target("fxsr")} function attribute, x86
Enable/disable the generation of the FXSR instructions.

@item gfni
@itemx no-gfni
@cindex @code{target("gfni")} function attribute, x86
Enable/disable the generation of the GFNI instructions.

@item hle
@itemx no-hle
@cindex @code{target("hle")} function attribute, x86
Enable/disable the generation of the HLE instruction prefixes.

@item lwp
@itemx no-lwp
@cindex @code{target("lwp")} function attribute, x86
Enable/disable the generation of the LWP instructions.

@item lzcnt
@itemx no-lzcnt
@cindex @code{target("lzcnt")} function attribute, x86
Enable/disable the generation of the LZCNT instructions.

@item mmx
@itemx no-mmx
@cindex @code{target("mmx")} function attribute, x86
Enable/disable the generation of the MMX instructions.

@item movbe
@itemx no-movbe
@cindex @code{target("movbe")} function attribute, x86
Enable/disable the generation of the MOVBE instructions.

@item movdir64b
@itemx no-movdir64b
@cindex @code{target("movdir64b")} function attribute, x86
Enable/disable the generation of the MOVDIR64B instructions.

@item movdiri
@itemx no-movdiri
@cindex @code{target("movdiri")} function attribute, x86
Enable/disable the generation of the MOVDIRI instructions.

@item mwait
@itemx no-mwait
@cindex @code{target("mwait")} function attribute, x86
Enable/disable the generation of the MWAIT and MONITOR instructions.

@item mwaitx
@itemx no-mwaitx
@cindex @code{target("mwaitx")} function attribute, x86
Enable/disable the generation of the MWAITX instructions.

@item pclmul
@itemx no-pclmul
@cindex @code{target("pclmul")} function attribute, x86
Enable/disable the generation of the PCLMUL instructions.

@item pconfig
@itemx no-pconfig
@cindex @code{target("pconfig")} function attribute, x86
Enable/disable the generation of the PCONFIG instructions.

@item pku
@itemx no-pku
@cindex @code{target("pku")} function attribute, x86
Enable/disable the generation of the PKU instructions.

@item popcnt
@itemx no-popcnt
@cindex @code{target("popcnt")} function attribute, x86
Enable/disable the generation of the POPCNT instruction.

@item prefetchwt1
@itemx no-prefetchwt1
@cindex @code{target("prefetchwt1")} function attribute, x86
Enable/disable the generation of the PREFETCHWT1 instructions.

@item prfchw
@itemx no-prfchw
@cindex @code{target("prfchw")} function attribute, x86
Enable/disable the generation of the PREFETCHW instruction.

@item ptwrite
@itemx no-ptwrite
@cindex @code{target("ptwrite")} function attribute, x86
Enable/disable the generation of the PTWRITE instructions.

@item rdpid
@itemx no-rdpid
@cindex @code{target("rdpid")} function attribute, x86
Enable/disable the generation of the RDPID instructions.

@item rdrnd
@itemx no-rdrnd
@cindex @code{target("rdrnd")} function attribute, x86
Enable/disable the generation of the RDRND instructions.

@item rdseed
@itemx no-rdseed
@cindex @code{target("rdseed")} function attribute, x86
Enable/disable the generation of the RDSEED instructions.

@item rtm
@itemx no-rtm
@cindex @code{target("rtm")} function attribute, x86
Enable/disable the generation of the RTM instructions.

@item sahf
@itemx no-sahf
@cindex @code{target("sahf")} function attribute, x86
Enable/disable the generation of the SAHF instructions.

@item sgx
@itemx no-sgx
@cindex @code{target("sgx")} function attribute, x86
Enable/disable the generation of the SGX instructions.

@item sha
@itemx no-sha
@cindex @code{target("sha")} function attribute, x86
Enable/disable the generation of the SHA instructions.

@item shstk
@itemx no-shstk
@cindex @code{target("shstk")} function attribute, x86
Enable/disable the shadow stack built-in functions from CET.

@item sse
@itemx no-sse
@cindex @code{target("sse")} function attribute, x86
Enable/disable the generation of the SSE instructions.

@item sse2
@itemx no-sse2
@cindex @code{target("sse2")} function attribute, x86
Enable/disable the generation of the SSE2 instructions.

@item sse3
@itemx no-sse3
@cindex @code{target("sse3")} function attribute, x86
Enable/disable the generation of the SSE3 instructions.

@item sse4
@itemx no-sse4
@cindex @code{target("sse4")} function attribute, x86
Enable/disable the generation of the SSE4 instructions (both SSE4.1
and SSE4.2).

@item sse4.1
@itemx no-sse4.1
@cindex @code{target("sse4.1")} function attribute, x86
Enable/disable the generation of the SSE4.1 instructions.

@item sse4.2
@itemx no-sse4.2
@cindex @code{target("sse4.2")} function attribute, x86
Enable/disable the generation of the SSE4.2 instructions.

@item sse4a
@itemx no-sse4a
@cindex @code{target("sse4a")} function attribute, x86
Enable/disable the generation of the SSE4A instructions.

@item ssse3
@itemx no-ssse3
@cindex @code{target("ssse3")} function attribute, x86
Enable/disable the generation of the SSSE3 instructions.

@item tbm
@itemx no-tbm
@cindex @code{target("tbm")} function attribute, x86
Enable/disable the generation of the TBM instructions.

@item vaes
@itemx no-vaes
@cindex @code{target("vaes")} function attribute, x86
Enable/disable the generation of the VAES instructions.

@item vpclmulqdq
@itemx no-vpclmulqdq
@cindex @code{target("vpclmulqdq")} function attribute, x86
Enable/disable the generation of the VPCLMULQDQ instructions.

@item waitpkg
@itemx no-waitpkg
@cindex @code{target("waitpkg")} function attribute, x86
Enable/disable the generation of the WAITPKG instructions.

@item wbnoinvd
@itemx no-wbnoinvd
@cindex @code{target("wbnoinvd")} function attribute, x86
Enable/disable the generation of the WBNOINVD instructions.

@item xop
@itemx no-xop
@cindex @code{target("xop")} function attribute, x86
Enable/disable the generation of the XOP instructions.

@item xsave
@itemx no-xsave
@cindex @code{target("xsave")} function attribute, x86
Enable/disable the generation of the XSAVE instructions.

@item xsavec
@itemx no-xsavec
@cindex @code{target("xsavec")} function attribute, x86
Enable/disable the generation of the XSAVEC instructions.

@item xsaveopt
@itemx no-xsaveopt
@cindex @code{target("xsaveopt")} function attribute, x86
Enable/disable the generation of the XSAVEOPT instructions.

@item xsaves
@itemx no-xsaves
@cindex @code{target("xsaves")} function attribute, x86
Enable/disable the generation of the XSAVES instructions.

@item amx-tile
@itemx no-amx-tile
@cindex @code{target("amx-tile")} function attribute, x86
Enable/disable the generation of the AMX-TILE instructions.

@item amx-int8
@itemx no-amx-int8
@cindex @code{target("amx-int8")} function attribute, x86
Enable/disable the generation of the AMX-INT8 instructions.

@item amx-bf16
@itemx no-amx-bf16
@cindex @code{target("amx-bf16")} function attribute, x86
Enable/disable the generation of the AMX-BF16 instructions.

@item uintr
@itemx no-uintr
@cindex @code{target("uintr")} function attribute, x86
Enable/disable the generation of the UINTR instructions.

@item hreset
@itemx no-hreset
@cindex @code{target("hreset")} function attribute, x86
Enable/disable the generation of the HRESET instruction.

@item kl
@itemx no-kl
@cindex @code{target("kl")} function attribute, x86
Enable/disable the generation of the KEYLOCKER instructions.

@item widekl
@itemx no-widekl
@cindex @code{target("widekl")} function attribute, x86
Enable/disable the generation of the WIDEKL instructions.

@item avxvnni
@itemx no-avxvnni
@cindex @code{target("avxvnni")} function attribute, x86
Enable/disable the generation of the AVXVNNI instructions.

@item avxifma
@itemx no-avxifma
@cindex @code{target("avxifma")} function attribute, x86
Enable/disable the generation of the AVXIFMA instructions.

@item avxvnniint8
@itemx no-avxvnniint8
@cindex @code{target("avxvnniint8")} function attribute, x86
Enable/disable the generation of the AVXVNNIINT8 instructions.

@item avxneconvert
@itemx no-avxneconvert
@cindex @code{target("avxneconvert")} function attribute, x86
Enable/disable the generation of the AVXNECONVERT instructions.

@item cmpccxadd
@itemx no-cmpccxadd
@cindex @code{target("cmpccxadd")} function attribute, x86
Enable/disable the generation of the CMPccXADD instructions.

@item cld
@itemx no-cld
@cindex @code{target("cld")} function attribute, x86
Enable/disable the generation of the CLD before string moves.

@item fancy-math-387
@itemx no-fancy-math-387
@cindex @code{target("fancy-math-387")} function attribute, x86
Enable/disable the generation of the @code{sin}, @code{cos}, and
@code{sqrt} instructions on the 387 floating-point unit.

@item ieee-fp
@itemx no-ieee-fp
@cindex @code{target("ieee-fp")} function attribute, x86
Enable/disable the generation of floating point that depends on IEEE arithmetic.

@item inline-all-stringops
@itemx no-inline-all-stringops
@cindex @code{target("inline-all-stringops")} function attribute, x86
Enable/disable inlining of string operations.

@item inline-stringops-dynamically
@itemx no-inline-stringops-dynamically
@cindex @code{target("inline-stringops-dynamically")} function attribute, x86
Enable/disable the generation of the inline code to do small string
operations and calling the library routines for large operations.

@item align-stringops
@itemx no-align-stringops
@cindex @code{target("align-stringops")} function attribute, x86
Do/do not align destination of inlined string operations.

@item recip
@itemx no-recip
@cindex @code{target("recip")} function attribute, x86
Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
instructions followed an additional Newton-Raphson step instead of
doing a floating-point division.

@item general-regs-only
@cindex @code{target("general-regs-only")} function attribute, x86
Generate code which uses only the general registers.

@item arch=@var{ARCH}
@cindex @code{target("arch=@var{ARCH}")} function attribute, x86
Specify the architecture to generate code for in compiling the function.

@item tune=@var{TUNE}
@cindex @code{target("tune=@var{TUNE}")} function attribute, x86
Specify the architecture to tune for in compiling the function.

@item fpmath=@var{FPMATH}
@cindex @code{target("fpmath=@var{FPMATH}")} function attribute, x86
Specify which floating-point unit to use.  You must specify the
@code{target("fpmath=sse,387")} option as
@code{target("fpmath=sse+387")} because the comma would separate
different options.

@item prefer-vector-width=@var{OPT}
@cindex @code{prefer-vector-width} function attribute, x86
On x86 targets, the @code{prefer-vector-width} attribute informs the
compiler to use @var{OPT}-bit vector width in instructions
instead of the default on the selected platform.

Valid @var{OPT} values are:

@table @samp
@item none
No extra limitations applied to GCC other than defined by the selected platform.

@item 128
Prefer 128-bit vector width for instructions.

@item 256
Prefer 256-bit vector width for instructions.

@item 512
Prefer 512-bit vector width for instructions.
@end table

On the x86, the inliner does not inline a
function that has different target options than the caller, unless the
callee has a subset of the target options of the caller.  For example
a function declared with @code{target("sse3")} can inline a function
with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
@end table

@item indirect_branch("@var{choice}")
@cindex @code{indirect_branch} function attribute, x86
On x86 targets, the @code{indirect_branch} attribute causes the compiler
to convert indirect call and jump with @var{choice}.  @samp{keep}
keeps indirect call and jump unmodified.  @samp{thunk} converts indirect
call and jump to call and return thunk.  @samp{thunk-inline} converts
indirect call and jump to inlined call and return thunk.
@samp{thunk-extern} converts indirect call and jump to external call
and return thunk provided in a separate object file.

@item function_return("@var{choice}")
@cindex @code{function_return} function attribute, x86
On x86 targets, the @code{function_return} attribute causes the compiler
to convert function return with @var{choice}.  @samp{keep} keeps function
return unmodified.  @samp{thunk} converts function return to call and
return thunk.  @samp{thunk-inline} converts function return to inlined
call and return thunk.  @samp{thunk-extern} converts function return to
external call and return thunk provided in a separate object file.

@item nocf_check
@cindex @code{nocf_check} function attribute
The @code{nocf_check} attribute on a function is used to inform the
compiler that the function's prologue should not be instrumented when
compiled with the @option{-fcf-protection=branch} option.  The
compiler assumes that the function's address is a valid target for a
control-flow transfer.

The @code{nocf_check} attribute on a type of pointer to function is
used to inform the compiler that a call through the pointer should
not be instrumented when compiled with the
@option{-fcf-protection=branch} option.  The compiler assumes
that the function's address from the pointer is a valid target for
a control-flow transfer.  A direct function call through a function
name is assumed to be a safe call thus direct calls are not
instrumented by the compiler.

The @code{nocf_check} attribute is applied to an object's type.
In case of assignment of a function address or a function pointer to
another pointer, the attribute is not carried over from the right-hand
object's type; the type of left-hand object stays unchanged.  The
compiler checks for @code{nocf_check} attribute mismatch and reports
a warning in case of mismatch.

@smallexample
@{
int foo (void) __attribute__(nocf_check);
void (*foo1)(void) __attribute__(nocf_check);
void (*foo2)(void);

/* foo's address is assumed to be valid.  */
int
foo (void) 

  /* This call site is not checked for control-flow 
     validity.  */
  (*foo1)();

  /* A warning is issued about attribute mismatch.  */
  foo1 = foo2; 

  /* This call site is still not checked.  */
  (*foo1)();

  /* This call site is checked.  */
  (*foo2)();

  /* A warning is issued about attribute mismatch.  */
  foo2 = foo1; 

  /* This call site is still checked.  */
  (*foo2)();

  return 0;
@}
@end smallexample

@item cf_check
@cindex @code{cf_check} function attribute, x86

The @code{cf_check} attribute on a function is used to inform the
compiler that ENDBR instruction should be placed at the function
entry when @option{-fcf-protection=branch} is enabled.

@item indirect_return
@cindex @code{indirect_return} function attribute, x86

The @code{indirect_return} attribute can be applied to a function,
as well as variable or type of function pointer to inform the
compiler that the function may return via indirect branch.

@item fentry_name("@var{name}")
@cindex @code{fentry_name} function attribute, x86
On x86 targets, the @code{fentry_name} attribute sets the function to
call on function entry when function instrumentation is enabled
with @option{-pg -mfentry}. When @var{name} is nop then a 5 byte
nop sequence is generated.

@item fentry_section("@var{name}")
@cindex @code{fentry_section} function attribute, x86
On x86 targets, the @code{fentry_section} attribute sets the name
of the section to record function entry instrumentation calls in when
enabled with @option{-pg -mrecord-mcount}

@item nodirect_extern_access
@cindex @code{nodirect_extern_access} function attribute
@opindex mno-direct-extern-access
This attribute, attached to a global variable or function, is the
counterpart to option @option{-mno-direct-extern-access}.

@end table

@node Xstormy16 Function Attributes
@subsection Xstormy16 Function Attributes

These function attributes are supported by the Xstormy16 back end:

@table @code
@item interrupt
@cindex @code{interrupt} function attribute, Xstormy16
Use this attribute to indicate
that the specified function is an interrupt handler.  The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
@end table

@node Variable Attributes
@section Specifying Attributes of Variables
@cindex attribute of variables
@cindex variable attributes

The keyword @code{__attribute__} allows you to specify special properties
of variables, function parameters, or structure, union, and, in C++, class
members.  This @code{__attribute__} keyword is followed by an attribute
specification enclosed in double parentheses.  Some attributes are currently
defined generically for variables.  Other attributes are defined for
variables on particular target systems.  Other attributes are available
for functions (@pxref{Function Attributes}), labels (@pxref{Label Attributes}),
enumerators (@pxref{Enumerator Attributes}), statements
(@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
Other front ends might define more attributes
(@pxref{C++ Extensions,,Extensions to the C++ Language}).

@xref{Attribute Syntax}, for details of the exact syntax for using
attributes.

@menu
* Common Variable Attributes::
* ARC Variable Attributes::
* AVR Variable Attributes::
* Blackfin Variable Attributes::
* H8/300 Variable Attributes::
* IA-64 Variable Attributes::
* LoongArch Variable Attributes::
* M32R/D Variable Attributes::
* MeP Variable Attributes::
* Microsoft Windows Variable Attributes::
* MSP430 Variable Attributes::
* Nvidia PTX Variable Attributes::
* PowerPC Variable Attributes::
* RL78 Variable Attributes::
* V850 Variable Attributes::
* x86 Variable Attributes::
* Xstormy16 Variable Attributes::
@end menu

@node Common Variable Attributes
@subsection Common Variable Attributes

The following attributes are supported on most targets.

@table @code

@item alias ("@var{target}")
@cindex @code{alias} variable attribute
The @code{alias} variable attribute causes the declaration to be emitted
as an alias for another symbol known as an @dfn{alias target}.  Except
for top-level qualifiers the alias target must have the same type as
the alias.  For instance, the following

@smallexample
int var_target;
extern int __attribute__ ((alias ("var_target"))) var_alias;
@end smallexample

@noindent
defines @code{var_alias} to be an alias for the @code{var_target} variable.

It is an error if the alias target is not defined in the same translation
unit as the alias.

Note that in the absence of the attribute GCC assumes that distinct
declarations with external linkage denote distinct objects.  Using both
the alias and the alias target to access the same object is undefined
in a translation unit without a declaration of the alias with the attribute.

This attribute requires assembler and object file support, and may not be
available on all targets.

@cindex @code{aligned} variable attribute
@item aligned
@itemx aligned (@var{alignment})
The @code{aligned} attribute specifies a minimum alignment for the variable
or structure field, measured in bytes.  When specified, @var{alignment} must
be an integer constant power of 2.  Specifying no @var{alignment} argument
implies the maximum alignment for the target, which is often, but by no
means always, 8 or 16 bytes.

For example, the declaration:

@smallexample
int x __attribute__ ((aligned (16))) = 0;
@end smallexample

@noindent
causes the compiler to allocate the global variable @code{x} on a
16-byte boundary.  On a 68040, this could be used in conjunction with
an @code{asm} expression to access the @code{move16} instruction which
requires 16-byte aligned operands.

You can also specify the alignment of structure fields.  For example, to
create a double-word aligned @code{int} pair, you could write:

@smallexample
struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
@end smallexample

@noindent
This is an alternative to creating a union with a @code{double} member,
which forces the union to be double-word aligned.

As in the preceding examples, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given variable or
structure field.  Alternatively, you can leave out the alignment factor
and just ask the compiler to align a variable or field to the
default alignment for the target architecture you are compiling for.
The default alignment is sufficient for all scalar types, but may not be
enough for all vector types on a target that supports vector operations.
The default alignment is fixed for a particular target ABI.

GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
which is the largest alignment ever used for any data type on the
target machine you are compiling for.  For example, you could write:

@smallexample
short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
@end smallexample

The compiler automatically sets the alignment for the declared
variable or field to @code{__BIGGEST_ALIGNMENT__}.  Doing this can
often make copy operations more efficient, because the compiler can
use whatever instructions copy the biggest chunks of memory when
performing copies to or from the variables or fields that you have
aligned this way.  Note that the value of @code{__BIGGEST_ALIGNMENT__}
may change depending on command-line options.

When used on a struct, or struct member, the @code{aligned} attribute can
only increase the alignment; in order to decrease it, the @code{packed}
attribute must be specified as well.  When used as part of a typedef, the
@code{aligned} attribute can both increase and decrease alignment, and
specifying the @code{packed} attribute generates a warning.

Note that the effectiveness of @code{aligned} attributes for static
variables may be limited by inherent limitations in the system linker
and/or object file format.  On some systems, the linker is
only able to arrange for variables to be aligned up to a certain maximum
alignment.  (For some linkers, the maximum supported alignment may
be very very small.)  If your linker is only able to align variables
up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
in an @code{__attribute__} still only provides you with 8-byte
alignment.  See your linker documentation for further information.

Stack variables are not affected by linker restrictions; GCC can properly
align them on any target.

The @code{aligned} attribute can also be used for functions
(@pxref{Common Function Attributes}.)

@cindex @code{warn_if_not_aligned} variable attribute
@item warn_if_not_aligned (@var{alignment})
This attribute specifies a threshold for the structure field, measured
in bytes.  If the structure field is aligned below the threshold, a
warning will be issued.  For example, the declaration:

@smallexample
struct foo
@{
  int i1;
  int i2;
  unsigned long long x __attribute__ ((warn_if_not_aligned (16)));
@};
@end smallexample

@noindent
causes the compiler to issue an warning on @code{struct foo}, like
@samp{warning: alignment 8 of 'struct foo' is less than 16}.
The compiler also issues a warning, like @samp{warning: 'x' offset
8 in 'struct foo' isn't aligned to 16}, when the structure field has
the misaligned offset:

@smallexample
struct __attribute__ ((aligned (16))) foo
@{
  int i1;
  int i2;
  unsigned long long x __attribute__ ((warn_if_not_aligned (16)));
@};
@end smallexample

This warning can be disabled by @option{-Wno-if-not-aligned}.
The @code{warn_if_not_aligned} attribute can also be used for types
(@pxref{Common Type Attributes}.)

@cindex @code{strict_flex_array} variable attribute
@item strict_flex_array (@var{level})
The @code{strict_flex_array} attribute should be attached to the trailing
array field of a structure.  It controls when to treat the trailing array
field of a structure as a flexible array member for the purposes of accessing
the elements of such an array.
@var{level} must be an integer betwen 0 to 3.

@var{level}=0 is the least strict level, all trailing arrays of structures
are treated as flexible array members. @var{level}=3 is the strictest level,
only when the trailing array is declared as a flexible array member per C99
standard onwards (@samp{[]}), it is treated as a flexible array member.

There are two more levels in between 0 and 3, which are provided to support
older codes that use GCC zero-length array extension (@samp{[0]}) or one-element
array as flexible array members (@samp{[1]}):
When @var{level} is 1, the trailing array is treated as a flexible array member
when it is declared as either @samp{[]}, @samp{[0]}, or @samp{[1]};
When @var{level} is 2, the trailing array is treated as a flexible array member
when it is declared as either @samp{[]}, or @samp{[0]}.

This attribute can be used with or without the @option{-fstrict-flex-arrays}.
When both the attribute and the option present at the same time, the level of
the strictness for the specific trailing array field is determined by the
attribute.

@item alloc_size (@var{position})
@itemx alloc_size (@var{position-1}, @var{position-2})
@cindex @code{alloc_size} variable attribute
The @code{alloc_size} variable attribute may be applied to the declaration
of a pointer to a function that returns a pointer and takes at least one
argument of an integer type.  It indicates that the returned pointer points
to an object whose size is given by the function argument at @var{position},
or by the product of the arguments at @var{position-1} and @var{position-2}.
Meaningful sizes are positive values less than @code{PTRDIFF_MAX}.  Other
sizes are diagnosed when detected.  GCC uses this information to improve
the results of @code{__builtin_object_size}.

For instance, the following declarations

@smallexample
typedef __attribute__ ((alloc_size (1, 2))) void*
  (*calloc_ptr) (size_t, size_t);
typedef __attribute__ ((alloc_size (1))) void*
  (*malloc_ptr) (size_t);
@end smallexample

@noindent
specify that @code{calloc_ptr} is a pointer of a function that, like
the standard C function @code{calloc}, returns an object whose size
is given by the product of arguments 1 and 2, and similarly, that
@code{malloc_ptr}, like the standard C function @code{malloc},
returns an object whose size is given by argument 1 to the function.

@item cleanup (@var{cleanup_function})
@cindex @code{cleanup} variable attribute
The @code{cleanup} attribute runs a function when the variable goes
out of scope.  This attribute can only be applied to auto function
scope variables; it may not be applied to parameters or variables
with static storage duration.  The function must take one parameter,
a pointer to a type compatible with the variable.  The return value
of the function (if any) is ignored.

If @option{-fexceptions} is enabled, then @var{cleanup_function}
is run during the stack unwinding that happens during the
processing of the exception.  Note that the @code{cleanup} attribute
does not allow the exception to be caught, only to perform an action.
It is undefined what happens if @var{cleanup_function} does not
return normally.

@item common
@itemx nocommon
@cindex @code{common} variable attribute
@cindex @code{nocommon} variable attribute
@opindex fcommon
@opindex fno-common
The @code{common} attribute requests GCC to place a variable in
``common'' storage.  The @code{nocommon} attribute requests the
opposite---to allocate space for it directly.

These attributes override the default chosen by the
@option{-fno-common} and @option{-fcommon} flags respectively.

@item copy
@itemx copy (@var{variable})
@cindex @code{copy} variable attribute
The @code{copy} attribute applies the set of attributes with which
@var{variable} has been declared to the declaration of the variable
to which the attribute is applied.  The attribute is designed for
libraries that define aliases that are expected to specify the same
set of attributes as the aliased symbols.  The @code{copy} attribute
can be used with variables, functions or types.  However, the kind
of symbol to which the attribute is applied (either varible or
function) must match the kind of symbol to which the argument refers.
The @code{copy} attribute copies only syntactic and semantic attributes
but not attributes that affect a symbol's linkage or visibility such as
@code{alias}, @code{visibility}, or @code{weak}.  The @code{deprecated}
attribute is also not copied.  @xref{Common Function Attributes}.
@xref{Common Type Attributes}.

@item deprecated
@itemx deprecated (@var{msg})
@cindex @code{deprecated} variable attribute
The @code{deprecated} attribute results in a warning if the variable
is used anywhere in the source file.  This is useful when identifying
variables that are expected to be removed in a future version of a
program.  The warning also includes the location of the declaration
of the deprecated variable, to enable users to easily find further
information about why the variable is deprecated, or what they should
do instead.  Note that the warning only occurs for uses:

@smallexample
extern int old_var __attribute__ ((deprecated));
extern int old_var;
int new_fn () @{ return old_var; @}
@end smallexample

@noindent
results in a warning on line 3 but not line 2.  The optional @var{msg}
argument, which must be a string, is printed in the warning if
present.

The @code{deprecated} attribute can also be used for functions and
types (@pxref{Common Function Attributes},
@pxref{Common Type Attributes}).

The message attached to the attribute is affected by the setting of
the @option{-fmessage-length} option.

@item unavailable
@itemx unavailable (@var{msg})
@cindex @code{unavailable} variable attribute
The @code{unavailable} attribute indicates that the variable so marked
is not available, if it is used anywhere in the source file.  It behaves
in the same manner as the @code{deprecated} attribute except that the
compiler will emit an error rather than a warning.

It is expected that items marked as @code{deprecated} will eventually be
withdrawn from interfaces, and then become unavailable.  This attribute
allows for marking them appropriately.

The @code{unavailable} attribute can also be used for functions and
types (@pxref{Common Function Attributes},
@pxref{Common Type Attributes}).

@item mode (@var{mode})
@cindex @code{mode} variable attribute
This attribute specifies the data type for the declaration---whichever
type corresponds to the mode @var{mode}.  This in effect lets you
request an integer or floating-point type according to its width.

@xref{Machine Modes,,, gccint, GNU Compiler Collection (GCC) Internals},
for a list of the possible keywords for @var{mode}.
You may also specify a mode of @code{byte} or @code{__byte__} to
indicate the mode corresponding to a one-byte integer, @code{word} or
@code{__word__} for the mode of a one-word integer, and @code{pointer}
or @code{__pointer__} for the mode used to represent pointers.

@item nonstring
@cindex @code{nonstring} variable attribute
The @code{nonstring} variable attribute specifies that an object or member
declaration with type array of @code{char}, @code{signed char}, or
@code{unsigned char}, or pointer to such a type is intended to store
character arrays that do not necessarily contain a terminating @code{NUL}.
This is useful in detecting uses of such arrays or pointers with functions
that expect @code{NUL}-terminated strings, and to avoid warnings when such
an array or pointer is used as an argument to a bounded string manipulation
function such as @code{strncpy}.  For example, without the attribute, GCC
will issue a warning for the @code{strncpy} call below because it may
truncate the copy without appending the terminating @code{NUL} character.
Using the attribute makes it possible to suppress the warning.  However,
when the array is declared with the attribute the call to @code{strlen} is
diagnosed because when the array doesn't contain a @code{NUL}-terminated
string the call is undefined.  To copy, compare, of search non-string
character arrays use the @code{memcpy}, @code{memcmp}, @code{memchr},
and other functions that operate on arrays of bytes.  In addition,
calling @code{strnlen} and @code{strndup} with such arrays is safe
provided a suitable bound is specified, and not diagnosed.

@smallexample
struct Data
@{
  char name [32] __attribute__ ((nonstring));
@};

int f (struct Data *pd, const char *s)
@{
  strncpy (pd->name, s, sizeof pd->name);
  @dots{}
  return strlen (pd->name);   // unsafe, gets a warning
@}
@end smallexample

@item packed
@cindex @code{packed} variable attribute
The @code{packed} attribute specifies that a structure member should have
the smallest possible alignment---one bit for a bit-field and one byte
otherwise, unless a larger value is specified with the @code{aligned}
attribute.  The attribute does not apply to non-member objects.

For example in the structure below, the member array @code{x} is packed
so that it immediately follows @code{a} with no intervening padding:

@smallexample
struct foo
@{
  char a;
  int x[2] __attribute__ ((packed));
@};
@end smallexample

@emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
@code{packed} attribute on bit-fields of type @code{char}.  This has
been fixed in GCC 4.4 but the change can lead to differences in the
structure layout.  See the documentation of
@option{-Wpacked-bitfield-compat} for more information.

@item section ("@var{section-name}")
@cindex @code{section} variable attribute
Normally, the compiler places the objects it generates in sections like
@code{data} and @code{bss}.  Sometimes, however, you need additional sections,
or you need certain particular variables to appear in special sections,
for example to map to special hardware.  The @code{section}
attribute specifies that a variable (or function) lives in a particular
section.  For example, this small program uses several specific section names:

@smallexample
struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
int init_data __attribute__ ((section ("INITDATA")));

main()
@{
  /* @r{Initialize stack pointer} */
  init_sp (stack + sizeof (stack));

  /* @r{Initialize initialized data} */
  memcpy (&init_data, &data, &edata - &data);

  /* @r{Turn on the serial ports} */
  init_duart (&a);
  init_duart (&b);
@}
@end smallexample

@noindent
Use the @code{section} attribute with
@emph{global} variables and not @emph{local} variables,
as shown in the example.

You may use the @code{section} attribute with initialized or
uninitialized global variables but the linker requires
each object be defined once, with the exception that uninitialized
variables tentatively go in the @code{common} (or @code{bss}) section
and can be multiply ``defined''.  Using the @code{section} attribute
changes what section the variable goes into and may cause the
linker to issue an error if an uninitialized variable has multiple
definitions.  You can force a variable to be initialized with the
@option{-fno-common} flag or the @code{nocommon} attribute.

Some file formats do not support arbitrary sections so the @code{section}
attribute is not available on all platforms.
If you need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.

@item tls_model ("@var{tls_model}")
@cindex @code{tls_model} variable attribute
The @code{tls_model} attribute sets thread-local storage model
(@pxref{Thread-Local}) of a particular @code{__thread} variable,
overriding @option{-ftls-model=} command-line switch on a per-variable
basis.
The @var{tls_model} argument should be one of @code{global-dynamic},
@code{local-dynamic}, @code{initial-exec} or @code{local-exec}.

Not all targets support this attribute.

@item unused
@cindex @code{unused} variable attribute
This attribute, attached to a variable or structure field, means that
the variable or field is meant to be possibly unused.  GCC does not
produce a warning for this variable or field.

@item used
@cindex @code{used} variable attribute
This attribute, attached to a variable with static storage, means that
the variable must be emitted even if it appears that the variable is not
referenced.

When applied to a static data member of a C++ class template, the
attribute also means that the member is instantiated if the
class itself is instantiated.

@item retain
@cindex @code{retain} variable attribute
For ELF targets that support the GNU or FreeBSD OSABIs, this attribute
will save the variable from linker garbage collection.  To support
this behavior, variables that have not been placed in specific sections
(e.g. by the @code{section} attribute, or the @code{-fdata-sections} option),
will be placed in new, unique sections.

This additional functionality requires Binutils version 2.36 or later.

@item uninitialized
@cindex @code{uninitialized} variable attribute
This attribute, attached to a variable with automatic storage, means that
the variable should not be automatically initialized by the compiler when
the option @code{-ftrivial-auto-var-init} presents.

With the option @code{-ftrivial-auto-var-init}, all the automatic variables
that do not have explicit initializers will be initialized by the compiler.
These additional compiler initializations might incur run-time overhead,
sometimes dramatically.  This attribute can be used to mark some variables
to be excluded from such automatical initialization in order to reduce runtime
overhead.

This attribute has no effect when the option @code{-ftrivial-auto-var-init}
does not present.

@item vector_size (@var{bytes})
@cindex @code{vector_size} variable attribute
This attribute specifies the vector size for the type of the declared
variable, measured in bytes.  The type to which it applies is known as
the @dfn{base type}.  The @var{bytes} argument must be a positive
power-of-two multiple of the base type size.  For example, the declaration:

@smallexample
int foo __attribute__ ((vector_size (16)));
@end smallexample

@noindent
causes the compiler to set the mode for @code{foo}, to be 16 bytes,
divided into @code{int} sized units.  Assuming a 32-bit @code{int},
@code{foo}'s type is a vector of four units of four bytes each, and
the corresponding mode of @code{foo} is @code{V4SI}.
@xref{Vector Extensions}, for details of manipulating vector variables.

This attribute is only applicable to integral and floating scalars,
although arrays, pointers, and function return values are allowed in
conjunction with this construct.

Aggregates with this attribute are invalid, even if they are of the same
size as a corresponding scalar.  For example, the declaration:

@smallexample
struct S @{ int a; @};
struct S  __attribute__ ((vector_size (16))) foo;
@end smallexample

@noindent
is invalid even if the size of the structure is the same as the size of
the @code{int}.

@item visibility ("@var{visibility_type}")
@cindex @code{visibility} variable attribute
This attribute affects the linkage of the declaration to which it is attached.
The @code{visibility} attribute is described in
@ref{Common Function Attributes}.

@item weak
@cindex @code{weak} variable attribute
The @code{weak} attribute is described in
@ref{Common Function Attributes}.

@item noinit
@cindex @code{noinit} variable attribute
Any data with the @code{noinit} attribute will not be initialized by
the C runtime startup code, or the program loader.  Not initializing
data in this way can reduce program startup times.

This attribute is specific to ELF targets and relies on the linker
script to place sections with the @code{.noinit} prefix in the right
location.

@item persistent
@cindex @code{persistent} variable attribute
Any data with the @code{persistent} attribute will not be initialized by
the C runtime startup code, but will be initialized by the program
loader.  This enables the value of the variable to @samp{persist}
between processor resets.

This attribute is specific to ELF targets and relies on the linker
script to place the sections with the @code{.persistent} prefix in the
right location.  Specifically, some type of non-volatile, writeable
memory is required.

@item objc_nullability (@var{nullability kind}) @r{(Objective-C and Objective-C++ only)}
@cindex @code{objc_nullability} variable attribute
This attribute applies to pointer variables only.  It allows marking the
pointer with one of four possible values describing the conditions under
which the pointer might have a @code{nil} value. In most cases, the
attribute is intended to be an internal representation for property and
method nullability (specified by language keywords); it is not recommended
to use it directly.

When @var{nullability kind} is @code{"unspecified"} or @code{0}, nothing is
known about the conditions in which the pointer might be @code{nil}. Making
this state specific serves to avoid false positives in diagnostics.

When @var{nullability kind} is @code{"nonnull"} or @code{1}, the pointer has
no meaning if it is @code{nil} and thus the compiler is free to emit
diagnostics if it can be determined that the value will be @code{nil}.

When @var{nullability kind} is @code{"nullable"} or @code{2}, the pointer might
be @code{nil} and carry meaning as such.

When @var{nullability kind} is @code{"resettable"} or @code{3} (used only in
the context of property attribute lists) this describes the case in which a
property setter may take the value @code{nil} (which perhaps causes the
property to be reset in some manner to a default) but for which the property
getter will never validly return @code{nil}.

@end table

@node ARC Variable Attributes
@subsection ARC Variable Attributes

@table @code
@item aux
@cindex @code{aux} variable attribute, ARC
The @code{aux} attribute is used to directly access the ARC's
auxiliary register space from C.  The auxilirary register number is
given via attribute argument.

@end table

@node AVR Variable Attributes
@subsection AVR Variable Attributes

@table @code
@item progmem
@cindex @code{progmem} variable attribute, AVR
The @code{progmem} attribute is used on the AVR to place read-only
data in the non-volatile program memory (flash). The @code{progmem}
attribute accomplishes this by putting respective variables into a
section whose name starts with @code{.progmem}.

This attribute works similar to the @code{section} attribute
but adds additional checking.

@table @asis
@item @bullet{} Ordinary AVR cores with 32 general purpose registers:
@code{progmem} affects the location
of the data but not how this data is accessed.
In order to read data located with the @code{progmem} attribute
(inline) assembler must be used.
@smallexample
/* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */
#include <avr/pgmspace.h> 

/* Locate var in flash memory */
const int var[2] PROGMEM = @{ 1, 2 @};

int read_var (int i)
@{
    /* Access var[] by accessor macro from avr/pgmspace.h */
    return (int) pgm_read_word (& var[i]);
@}
@end smallexample

AVR is a Harvard architecture processor and data and read-only data
normally resides in the data memory (RAM).

See also the @ref{AVR Named Address Spaces} section for
an alternate way to locate and access data in flash memory.

@item @bullet{} AVR cores with flash memory visible in the RAM address range:
On such devices, there is no need for attribute @code{progmem} or
@ref{AVR Named Address Spaces,,@code{__flash}} qualifier at all.
Just use standard C / C++.  The compiler will generate @code{LD*}
instructions.  As flash memory is visible in the RAM address range,
and the default linker script does @emph{not} locate @code{.rodata} in
RAM, no special features are needed in order not to waste RAM for
read-only data or to read from flash.  You might even get slightly better
performance by
avoiding @code{progmem} and @code{__flash}.  This applies to devices from
families @code{avrtiny} and @code{avrxmega3}, see @ref{AVR Options} for
an overview.

@item @bullet{} Reduced AVR Tiny cores like ATtiny40:
The compiler adds @code{0x4000}
to the addresses of objects and declarations in @code{progmem} and locates
the objects in flash memory, namely in section @code{.progmem.data}.
The offset is needed because the flash memory is visible in the RAM
address space starting at address @code{0x4000}.

Data in @code{progmem} can be accessed by means of ordinary C@tie{}code,
no special functions or macros are needed.

@smallexample
/* var is located in flash memory */
extern const int var[2] __attribute__((progmem));

int read_var (int i)
@{
    return var[i];
@}
@end smallexample

Please notice that on these devices, there is no need for @code{progmem}
at all.

@end table

@item io
@itemx io (@var{addr})
@cindex @code{io} variable attribute, AVR
Variables with the @code{io} attribute are used to address
memory-mapped peripherals in the io address range.
If an address is specified, the variable
is assigned that address, and the value is interpreted as an
address in the data address space.
Example:

@smallexample
volatile int porta __attribute__((io (0x22)));
@end smallexample

The address specified in the address in the data address range.

Otherwise, the variable it is not assigned an address, but the
compiler will still use in/out instructions where applicable,
assuming some other module assigns an address in the io address range.
Example:

@smallexample
extern volatile int porta __attribute__((io));
@end smallexample

@item io_low
@itemx io_low (@var{addr})
@cindex @code{io_low} variable attribute, AVR
This is like the @code{io} attribute, but additionally it informs the
compiler that the object lies in the lower half of the I/O area,
allowing the use of @code{cbi}, @code{sbi}, @code{sbic} and @code{sbis}
instructions.

@item address
@itemx address (@var{addr})
@cindex @code{address} variable attribute, AVR
Variables with the @code{address} attribute are used to address
memory-mapped peripherals that may lie outside the io address range.

@smallexample
volatile int porta __attribute__((address (0x600)));
@end smallexample

@item absdata
@cindex @code{absdata} variable attribute, AVR
Variables in static storage and with the @code{absdata} attribute can
be accessed by the @code{LDS} and @code{STS} instructions which take
absolute addresses.

@itemize @bullet
@item
This attribute is only supported for the reduced AVR Tiny core
like ATtiny40.

@item
You must make sure that respective data is located in the
address range @code{0x40}@dots{}@code{0xbf} accessible by
@code{LDS} and @code{STS}.  One way to achieve this as an
appropriate linker description file.

@item
If the location does not fit the address range of @code{LDS}
and @code{STS}, there is currently (Binutils 2.26) just an unspecific
warning like
@quotation
@code{module.cc:(.text+0x1c): warning: internal error: out of range error}
@end quotation

@end itemize

See also the @option{-mabsdata} @ref{AVR Options,command-line option}.

@end table

@node Blackfin Variable Attributes
@subsection Blackfin Variable Attributes

Three attributes are currently defined for the Blackfin.

@table @code
@item l1_data
@itemx l1_data_A
@itemx l1_data_B
@cindex @code{l1_data} variable attribute, Blackfin
@cindex @code{l1_data_A} variable attribute, Blackfin
@cindex @code{l1_data_B} variable attribute, Blackfin
Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
Variables with @code{l1_data} attribute are put into the specific section
named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into
the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
attribute are put into the specific section named @code{.l1.data.B}.

@item l2
@cindex @code{l2} variable attribute, Blackfin
Use this attribute on the Blackfin to place the variable into L2 SRAM.
Variables with @code{l2} attribute are put into the specific section
named @code{.l2.data}.
@end table

@node H8/300 Variable Attributes
@subsection H8/300 Variable Attributes

These variable attributes are available for H8/300 targets:

@table @code
@item eightbit_data
@cindex @code{eightbit_data} variable attribute, H8/300
@cindex eight-bit data on the H8/300, H8/300H, and H8S
Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
variable should be placed into the eight-bit data section.
The compiler generates more efficient code for certain operations
on data in the eight-bit data area.  Note the eight-bit data area is limited to
256 bytes of data.

You must use GAS and GLD from GNU binutils version 2.7 or later for
this attribute to work correctly.

@item tiny_data
@cindex @code{tiny_data} variable attribute, H8/300
@cindex tiny data section on the H8/300H and H8S
Use this attribute on the H8/300H and H8S to indicate that the specified
variable should be placed into the tiny data section.
The compiler generates more efficient code for loads and stores
on data in the tiny data section.  Note the tiny data area is limited to
slightly under 32KB of data.

@end table

@node IA-64 Variable Attributes
@subsection IA-64 Variable Attributes

The IA-64 back end supports the following variable attribute:

@table @code
@item model (@var{model-name})
@cindex @code{model} variable attribute, IA-64

On IA-64, use this attribute to set the addressability of an object.
At present, the only supported identifier for @var{model-name} is
@code{small}, indicating addressability via ``small'' (22-bit)
addresses (so that their addresses can be loaded with the @code{addl}
instruction).  Caveat: such addressing is by definition not position
independent and hence this attribute must not be used for objects
defined by shared libraries.

@end table

@node LoongArch Variable Attributes
@subsection LoongArch Variable Attributes

One attribute is currently defined for the LoongArch.

@table @code
@item model("@var{name}")
@cindex @code{model} variable attribute, LoongArch
Use this attribute on the LoongArch to use a different code model for
addressing this variable, than the code model specified by the global
@option{-mcmodel} option.  This attribute is mostly useful if a
@code{section} attribute and/or a linker script will locate this object
specially.  Currently the only supported values of @var{name} are
@code{normal} and @code{extreme}.
@end table

@node M32R/D Variable Attributes
@subsection M32R/D Variable Attributes

One attribute is currently defined for the M32R/D@.

@table @code
@item model (@var{model-name})
@cindex @code{model-name} variable attribute, M32R/D
@cindex variable addressability on the M32R/D
Use this attribute on the M32R/D to set the addressability of an object.
The identifier @var{model-name} is one of @code{small}, @code{medium},
or @code{large}, representing each of the code models.

Small model objects live in the lower 16MB of memory (so that their
addresses can be loaded with the @code{ld24} instruction).

Medium and large model objects may live anywhere in the 32-bit address space
(the compiler generates @code{seth/add3} instructions to load their
addresses).
@end table

@node MeP Variable Attributes
@subsection MeP Variable Attributes

The MeP target has a number of addressing modes and busses.  The
@code{near} space spans the standard memory space's first 16 megabytes
(24 bits).  The @code{far} space spans the entire 32-bit memory space.
The @code{based} space is a 128-byte region in the memory space that
is addressed relative to the @code{$tp} register.  The @code{tiny}
space is a 65536-byte region relative to the @code{$gp} register.  In
addition to these memory regions, the MeP target has a separate 16-bit
control bus which is specified with @code{cb} attributes.

@table @code

@item based
@cindex @code{based} variable attribute, MeP
Any variable with the @code{based} attribute is assigned to the
@code{.based} section, and is accessed with relative to the
@code{$tp} register.

@item tiny
@cindex @code{tiny} variable attribute, MeP
Likewise, the @code{tiny} attribute assigned variables to the
@code{.tiny} section, relative to the @code{$gp} register.

@item near
@cindex @code{near} variable attribute, MeP
Variables with the @code{near} attribute are assumed to have addresses
that fit in a 24-bit addressing mode.  This is the default for large
variables (@code{-mtiny=4} is the default) but this attribute can
override @code{-mtiny=} for small variables, or override @code{-ml}.

@item far
@cindex @code{far} variable attribute, MeP
Variables with the @code{far} attribute are addressed using a full
32-bit address.  Since this covers the entire memory space, this
allows modules to make no assumptions about where variables might be
stored.

@item io
@cindex @code{io} variable attribute, MeP
@itemx io (@var{addr})
Variables with the @code{io} attribute are used to address
memory-mapped peripherals.  If an address is specified, the variable
is assigned that address, else it is not assigned an address (it is
assumed some other module assigns an address).  Example:

@smallexample
int timer_count __attribute__((io(0x123)));
@end smallexample

@item cb
@itemx cb (@var{addr})
@cindex @code{cb} variable attribute, MeP
Variables with the @code{cb} attribute are used to access the control
bus, using special instructions.  @code{addr} indicates the control bus
address.  Example:

@smallexample
int cpu_clock __attribute__((cb(0x123)));
@end smallexample

@end table

@node Microsoft Windows Variable Attributes
@subsection Microsoft Windows Variable Attributes

You can use these attributes on Microsoft Windows targets.
@ref{x86 Variable Attributes} for additional Windows compatibility
attributes available on all x86 targets.

@table @code
@item dllimport
@itemx dllexport
@cindex @code{dllimport} variable attribute
@cindex @code{dllexport} variable attribute
The @code{dllimport} and @code{dllexport} attributes are described in
@ref{Microsoft Windows Function Attributes}.

@item selectany
@cindex @code{selectany} variable attribute
The @code{selectany} attribute causes an initialized global variable to
have link-once semantics.  When multiple definitions of the variable are
encountered by the linker, the first is selected and the remainder are
discarded.  Following usage by the Microsoft compiler, the linker is told
@emph{not} to warn about size or content differences of the multiple
definitions.

Although the primary usage of this attribute is for POD types, the
attribute can also be applied to global C++ objects that are initialized
by a constructor.  In this case, the static initialization and destruction
code for the object is emitted in each translation defining the object,
but the calls to the constructor and destructor are protected by a
link-once guard variable.

The @code{selectany} attribute is only available on Microsoft Windows
targets.  You can use @code{__declspec (selectany)} as a synonym for
@code{__attribute__ ((selectany))} for compatibility with other
compilers.

@item shared
@cindex @code{shared} variable attribute
On Microsoft Windows, in addition to putting variable definitions in a named
section, the section can also be shared among all running copies of an
executable or DLL@.  For example, this small program defines shared data
by putting it in a named section @code{shared} and marking the section
shareable:

@smallexample
int foo __attribute__((section ("shared"), shared)) = 0;

int
main()
@{
  /* @r{Read and write foo.  All running
     copies see the same value.}  */
  return 0;
@}
@end smallexample

@noindent
You may only use the @code{shared} attribute along with @code{section}
attribute with a fully-initialized global definition because of the way
linkers work.  See @code{section} attribute for more information.

The @code{shared} attribute is only available on Microsoft Windows@.

@end table

@node MSP430 Variable Attributes
@subsection MSP430 Variable Attributes

@table @code
@item upper
@itemx either
@cindex @code{upper} variable attribute, MSP430 
@cindex @code{either} variable attribute, MSP430 
These attributes are the same as the MSP430 function attributes of the
same name (@pxref{MSP430 Function Attributes}).  

@item lower
@cindex @code{lower} variable attribute, MSP430
This option behaves mostly the same as the MSP430 function attribute of the
same name (@pxref{MSP430 Function Attributes}), but it has some additional
functionality.

If @option{-mdata-region=}@{@code{upper,either,none}@} has been passed, or
the @code{section} attribute is applied to a variable, the compiler will
generate 430X instructions to handle it.  This is because the compiler has
to assume that the variable could get placed in the upper memory region
(above address 0xFFFF).  Marking the variable with the @code{lower} attribute
informs the compiler that the variable will be placed in lower memory so it
is safe to use 430 instructions to handle it.

In the case of the @code{section} attribute, the section name given
will be used, and the @code{.lower} prefix will not be added.

@end table

@node Nvidia PTX Variable Attributes
@subsection Nvidia PTX Variable Attributes

These variable attributes are supported by the Nvidia PTX back end:

@table @code
@item shared
@cindex @code{shared} attribute, Nvidia PTX
Use this attribute to place a variable in the @code{.shared} memory space.
This memory space is private to each cooperative thread array; only threads
within one thread block refer to the same instance of the variable.
The runtime does not initialize variables in this memory space.
@end table

@node PowerPC Variable Attributes
@subsection PowerPC Variable Attributes

Three attributes currently are defined for PowerPC configurations:
@code{altivec}, @code{ms_struct} and @code{gcc_struct}.

@cindex @code{ms_struct} variable attribute, PowerPC
@cindex @code{gcc_struct} variable attribute, PowerPC
For full documentation of the struct attributes please see the
documentation in @ref{x86 Variable Attributes}.

@cindex @code{altivec} variable attribute, PowerPC
For documentation of @code{altivec} attribute please see the
documentation in @ref{PowerPC Type Attributes}.

@node RL78 Variable Attributes
@subsection RL78 Variable Attributes

@cindex @code{saddr} variable attribute, RL78
The RL78 back end supports the @code{saddr} variable attribute.  This
specifies placement of the corresponding variable in the SADDR area,
which can be accessed more efficiently than the default memory region.

@node V850 Variable Attributes
@subsection V850 Variable Attributes

These variable attributes are supported by the V850 back end:

@table @code

@item sda
@cindex @code{sda} variable attribute, V850
Use this attribute to explicitly place a variable in the small data area,
which can hold up to 64 kilobytes.

@item tda
@cindex @code{tda} variable attribute, V850
Use this attribute to explicitly place a variable in the tiny data area,
which can hold up to 256 bytes in total.

@item zda
@cindex @code{zda} variable attribute, V850
Use this attribute to explicitly place a variable in the first 32 kilobytes
of memory.
@end table

@node x86 Variable Attributes
@subsection x86 Variable Attributes

Two attributes are currently defined for x86 configurations:
@code{ms_struct} and @code{gcc_struct}.

@table @code
@item ms_struct
@itemx gcc_struct
@cindex @code{ms_struct} variable attribute, x86
@cindex @code{gcc_struct} variable attribute, x86

If @code{packed} is used on a structure, or if bit-fields are used,
it may be that the Microsoft ABI lays out the structure differently
than the way GCC normally does.  Particularly when moving packed
data between functions compiled with GCC and the native Microsoft compiler
(either via function call or as data in a file), it may be necessary to access
either format.

The @code{ms_struct} and @code{gcc_struct} attributes correspond
to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
command-line options, respectively;
see @ref{x86 Options}, for details of how structure layout is affected.
@xref{x86 Type Attributes}, for information about the corresponding
attributes on types.

@end table

@node Xstormy16 Variable Attributes
@subsection Xstormy16 Variable Attributes

One attribute is currently defined for xstormy16 configurations:
@code{below100}.

@table @code
@item below100
@cindex @code{below100} variable attribute, Xstormy16

If a variable has the @code{below100} attribute (@code{BELOW100} is
allowed also), GCC places the variable in the first 0x100 bytes of
memory and use special opcodes to access it.  Such variables are
placed in either the @code{.bss_below100} section or the
@code{.data_below100} section.

@end table

@node Type Attributes
@section Specifying Attributes of Types
@cindex attribute of types
@cindex type attributes

The keyword @code{__attribute__} allows you to specify various special
properties of types.  Some type attributes apply only to structure and
union types, and in C++, also class types, while others can apply to
any type defined via a @code{typedef} declaration.  Unless otherwise
specified, the same restrictions and effects apply to attributes regardless
of whether a type is a trivial structure or a C++ class with user-defined
constructors, destructors, or a copy assignment.

Other attributes are defined for functions (@pxref{Function Attributes}),
labels (@pxref{Label  Attributes}), enumerators (@pxref{Enumerator
Attributes}), statements (@pxref{Statement Attributes}), and for variables
(@pxref{Variable Attributes}).

The @code{__attribute__} keyword is followed by an attribute specification
enclosed in double parentheses.

You may specify type attributes in an enum, struct or union type
declaration or definition by placing them immediately after the
@code{struct}, @code{union} or @code{enum} keyword.  You can also place
them just past the closing curly brace of the definition, but this is less
preferred because logically the type should be fully defined at 
the closing brace.

You can also include type attributes in a @code{typedef} declaration.
@xref{Attribute Syntax}, for details of the exact syntax for using
attributes.

@menu
* Common Type Attributes::
* ARC Type Attributes::
* ARM Type Attributes::
* BPF Type Attributes::
* MeP Type Attributes::
* PowerPC Type Attributes::
* x86 Type Attributes::
@end menu

@node Common Type Attributes
@subsection Common Type Attributes

The following type attributes are supported on most targets.

@table @code
@cindex @code{aligned} type attribute
@item aligned
@itemx aligned (@var{alignment})
The @code{aligned} attribute specifies a minimum alignment (in bytes) for
variables of the specified type.  When specified, @var{alignment} must be
a power of 2.  Specifying no @var{alignment} argument implies the maximum
alignment for the target, which is often, but by no means always, 8 or 16
bytes.  For example, the declarations:

@smallexample
struct __attribute__ ((aligned (8))) S @{ short f[3]; @};
typedef int more_aligned_int __attribute__ ((aligned (8)));
@end smallexample

@noindent
force the compiler to ensure (as far as it can) that each variable whose
type is @code{struct S} or @code{more_aligned_int} is allocated and
aligned @emph{at least} on a 8-byte boundary.  On a SPARC, having all
variables of type @code{struct S} aligned to 8-byte boundaries allows
the compiler to use the @code{ldd} and @code{std} (doubleword load and
store) instructions when copying one variable of type @code{struct S} to
another, thus improving run-time efficiency.

Note that the alignment of any given @code{struct} or @code{union} type
is required by the ISO C standard to be at least a perfect multiple of
the lowest common multiple of the alignments of all of the members of
the @code{struct} or @code{union} in question.  This means that you @emph{can}
effectively adjust the alignment of a @code{struct} or @code{union}
type by attaching an @code{aligned} attribute to any one of the members
of such a type, but the notation illustrated in the example above is a
more obvious, intuitive, and readable way to request the compiler to
adjust the alignment of an entire @code{struct} or @code{union} type.

As in the preceding example, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given @code{struct}
or @code{union} type.  Alternatively, you can leave out the alignment factor
and just ask the compiler to align a type to the maximum
useful alignment for the target machine you are compiling for.  For
example, you could write:

@smallexample
struct __attribute__ ((aligned)) S @{ short f[3]; @};
@end smallexample

Whenever you leave out the alignment factor in an @code{aligned}
attribute specification, the compiler automatically sets the alignment
for the type to the largest alignment that is ever used for any data
type on the target machine you are compiling for.  Doing this can often
make copy operations more efficient, because the compiler can use
whatever instructions copy the biggest chunks of memory when performing
copies to or from the variables that have types that you have aligned
this way.

In the example above, if the size of each @code{short} is 2 bytes, then
the size of the entire @code{struct S} type is 6 bytes.  The smallest
power of two that is greater than or equal to that is 8, so the
compiler sets the alignment for the entire @code{struct S} type to 8
bytes.

Note that although you can ask the compiler to select a time-efficient
alignment for a given type and then declare only individual stand-alone
objects of that type, the compiler's ability to select a time-efficient
alignment is primarily useful only when you plan to create arrays of
variables having the relevant (efficiently aligned) type.  If you
declare or use arrays of variables of an efficiently-aligned type, then
it is likely that your program also does pointer arithmetic (or
subscripting, which amounts to the same thing) on pointers to the
relevant type, and the code that the compiler generates for these
pointer arithmetic operations is often more efficient for
efficiently-aligned types than for other types.

Note that the effectiveness of @code{aligned} attributes may be limited
by inherent limitations in your linker.  On many systems, the linker is
only able to arrange for variables to be aligned up to a certain maximum
alignment.  (For some linkers, the maximum supported alignment may
be very very small.)  If your linker is only able to align variables
up to a maximum of 8-byte alignment, then specifying @code{aligned (16)}
in an @code{__attribute__} still only provides you with 8-byte
alignment.  See your linker documentation for further information.

When used on a struct, or struct member, the @code{aligned} attribute can
only increase the alignment; in order to decrease it, the @code{packed}
attribute must be specified as well.  When used as part of a typedef, the
@code{aligned} attribute can both increase and decrease alignment, and
specifying the @code{packed} attribute generates a warning.

@cindex @code{warn_if_not_aligned} type attribute
@item warn_if_not_aligned (@var{alignment})
This attribute specifies a threshold for the structure field, measured
in bytes.  If the structure field is aligned below the threshold, a
warning will be issued.  For example, the declaration:

@smallexample
typedef unsigned long long __u64
   __attribute__((aligned (4), warn_if_not_aligned (8)));

struct foo
@{
  int i1;
  int i2;
  __u64 x;
@};
@end smallexample

@noindent
causes the compiler to issue an warning on @code{struct foo}, like
@samp{warning: alignment 4 of 'struct foo' is less than 8}.
It is used to define @code{struct foo} in such a way that
@code{struct foo} has the same layout and the structure field @code{x}
has the same alignment when @code{__u64} is aligned at either 4 or
8 bytes.  Align @code{struct foo} to 8 bytes:

@smallexample
struct __attribute__ ((aligned (8))) foo
@{
  int i1;
  int i2;
  __u64 x;
@};
@end smallexample

@noindent
silences the warning.  The compiler also issues a warning, like
@samp{warning: 'x' offset 12 in 'struct foo' isn't aligned to 8},
when the structure field has the misaligned offset:

@smallexample
struct __attribute__ ((aligned (8))) foo
@{
  int i1;
  int i2;
  int i3;
  __u64 x;
@};
@end smallexample

This warning can be disabled by @option{-Wno-if-not-aligned}.

@item alloc_size (@var{position})
@itemx alloc_size (@var{position-1}, @var{position-2})
@cindex @code{alloc_size} type attribute
The @code{alloc_size} type attribute may be applied to the definition
of a type of a function that returns a pointer and takes at least one
argument of an integer type.  It indicates that the returned pointer
points to an object whose size is given by the function argument at
@var{position-1}, or by the product of the arguments at @var{position-1}
and @var{position-2}.  Meaningful sizes are positive values less than
@code{PTRDIFF_MAX}.  Other sizes are disagnosed when detected.  GCC uses
this information to improve the results of @code{__builtin_object_size}.

For instance, the following declarations

@smallexample
typedef __attribute__ ((alloc_size (1, 2))) void*
  calloc_type (size_t, size_t);
typedef __attribute__ ((alloc_size (1))) void*
  malloc_type (size_t);
@end smallexample

@noindent
specify that @code{calloc_type} is a type of a function that, like
the standard C function @code{calloc}, returns an object whose size
is given by the product of arguments 1 and 2, and that
@code{malloc_type}, like the standard C function @code{malloc},
returns an object whose size is given by argument 1 to the function.

@item copy
@itemx copy (@var{expression})
@cindex @code{copy} type attribute
The @code{copy} attribute applies the set of attributes with which
the type of the @var{expression} has been declared to the declaration
of the type to which the attribute is applied.  The attribute is
designed for libraries that define aliases that are expected to
specify the same set of attributes as the aliased symbols.
The @code{copy} attribute can be used with types, variables, or
functions.  However, the kind of symbol to which the attribute is
applied (either varible or function) must match the kind of symbol
to which the argument refers.
The @code{copy} attribute copies only syntactic and semantic attributes
but not attributes that affect a symbol's linkage or visibility such as
@code{alias}, @code{visibility}, or @code{weak}.  The @code{deprecated}
attribute is also not copied.  @xref{Common Function Attributes}.
@xref{Common Variable Attributes}.

For example, suppose @code{struct A} below is defined in some third
party library header to have the alignment requirement @code{N} and
to force a warning whenever a variable of the type is not so aligned
due to attribute @code{packed}.  Specifying the @code{copy} attribute
on the definition on the unrelated @code{struct B} has the effect of
copying all relevant attributes from the type referenced by the pointer
expression to @code{struct B}.

@smallexample
struct __attribute__ ((aligned (N), warn_if_not_aligned (N)))
A @{ /* @r{@dots{}} */ @};
struct __attribute__ ((copy ( (struct A *)0)) B @{ /* @r{@dots{}} */ @};
@end smallexample

@item deprecated
@itemx deprecated (@var{msg})
@cindex @code{deprecated} type attribute
The @code{deprecated} attribute results in a warning if the type
is used anywhere in the source file.  This is useful when identifying
types that are expected to be removed in a future version of a program.
If possible, the warning also includes the location of the declaration
of the deprecated type, to enable users to easily find further
information about why the type is deprecated, or what they should do
instead.  Note that the warnings only occur for uses and then only
if the type is being applied to an identifier that itself is not being
declared as deprecated.

@smallexample
typedef int T1 __attribute__ ((deprecated));
T1 x;
typedef T1 T2;
T2 y;
typedef T1 T3 __attribute__ ((deprecated));
T3 z __attribute__ ((deprecated));
@end smallexample

@noindent
results in a warning on line 2 and 3 but not lines 4, 5, or 6.  No
warning is issued for line 4 because T2 is not explicitly
deprecated.  Line 5 has no warning because T3 is explicitly
deprecated.  Similarly for line 6.  The optional @var{msg}
argument, which must be a string, is printed in the warning if
present.  Control characters in the string will be replaced with
escape sequences, and if the @option{-fmessage-length} option is set
to 0 (its default value) then any newline characters will be ignored.

The @code{deprecated} attribute can also be used for functions and
variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)

The message attached to the attribute is affected by the setting of
the @option{-fmessage-length} option.

@item unavailable
@itemx unavailable (@var{msg})
@cindex @code{unavailable} type attribute
The @code{unavailable} attribute behaves in the same manner as the
@code{deprecated} one, but emits an error rather than a warning.  It is
used to indicate that a (perhaps previously @code{deprecated}) type is
no longer usable.

The @code{unavailable} attribute can also be used for functions and
variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)

@item designated_init
@cindex @code{designated_init} type attribute
This attribute may only be applied to structure types.  It indicates
that any initialization of an object of this type must use designated
initializers rather than positional initializers.  The intent of this
attribute is to allow the programmer to indicate that a structure's
layout may change, and that therefore relying on positional
initialization will result in future breakage.

GCC emits warnings based on this attribute by default; use
@option{-Wno-designated-init} to suppress them.

@item may_alias
@cindex @code{may_alias} type attribute
Accesses through pointers to types with this attribute are not subject
to type-based alias analysis, but are instead assumed to be able to alias
any other type of objects.
In the context of section 6.5 paragraph 7 of the C99 standard,
an lvalue expression
dereferencing such a pointer is treated like having a character type.
See @option{-fstrict-aliasing} for more information on aliasing issues.
This extension exists to support some vector APIs, in which pointers to
one vector type are permitted to alias pointers to a different vector type.

Note that an object of a type with this attribute does not have any
special semantics.

Example of use:

@smallexample
typedef short __attribute__ ((__may_alias__)) short_a;

int
main (void)
@{
  int a = 0x12345678;
  short_a *b = (short_a *) &a;

  b[1] = 0;

  if (a == 0x12345678)
    abort();

  exit(0);
@}
@end smallexample

@noindent
If you replaced @code{short_a} with @code{short} in the variable
declaration, the above program would abort when compiled with
@option{-fstrict-aliasing}, which is on by default at @option{-O2} or
above.

@item mode (@var{mode})
@cindex @code{mode} type attribute
This attribute specifies the data type for the declaration---whichever
type corresponds to the mode @var{mode}.  This in effect lets you
request an integer or floating-point type according to its width.

@xref{Machine Modes,,, gccint, GNU Compiler Collection (GCC) Internals},
for a list of the possible keywords for @var{mode}.
You may also specify a mode of @code{byte} or @code{__byte__} to
indicate the mode corresponding to a one-byte integer, @code{word} or
@code{__word__} for the mode of a one-word integer, and @code{pointer}
or @code{__pointer__} for the mode used to represent pointers.

@item packed
@cindex @code{packed} type attribute
This attribute, attached to a @code{struct}, @code{union}, or C++ @code{class}
type definition, specifies that each of its members (other than zero-width
bit-fields) is placed to minimize the memory required.  This is equivalent
to specifying the @code{packed} attribute on each of the members.

@opindex fshort-enums
When attached to an @code{enum} definition, the @code{packed} attribute
indicates that the smallest integral type should be used.
Specifying the @option{-fshort-enums} flag on the command line
is equivalent to specifying the @code{packed}
attribute on all @code{enum} definitions.

In the following example @code{struct my_packed_struct}'s members are
packed closely together, but the internal layout of its @code{s} member
is not packed---to do that, @code{struct my_unpacked_struct} needs to
be packed too.

@smallexample
struct my_unpacked_struct
 @{
    char c;
    int i;
 @};

struct __attribute__ ((__packed__)) my_packed_struct
  @{
     char c;
     int  i;
     struct my_unpacked_struct s;
  @};
@end smallexample

You may only specify the @code{packed} attribute on the definition
of an @code{enum}, @code{struct}, @code{union}, or @code{class}, 
not on a @code{typedef} that does not also define the enumerated type,
structure, union, or class.

@item scalar_storage_order ("@var{endianness}")
@cindex @code{scalar_storage_order} type attribute
When attached to a @code{union} or a @code{struct}, this attribute sets
the storage order, aka endianness, of the scalar fields of the type, as
well as the array fields whose component is scalar.  The supported
endiannesses are @code{big-endian} and @code{little-endian}.  The attribute
has no effects on fields which are themselves a @code{union}, a @code{struct}
or an array whose component is a @code{union} or a @code{struct}, and it is
possible for these fields to have a different scalar storage order than the
enclosing type.

Note that neither pointer nor vector fields are considered scalar fields in
this context, so the attribute has no effects on these fields.

This attribute is supported only for targets that use a uniform default
scalar storage order (fortunately, most of them), i.e.@: targets that store
the scalars either all in big-endian or all in little-endian.

Additional restrictions are enforced for types with the reverse scalar
storage order with regard to the scalar storage order of the target:

@itemize
@item Taking the address of a scalar field of a @code{union} or a
@code{struct} with reverse scalar storage order is not permitted and yields
an error.
@item Taking the address of an array field, whose component is scalar, of
a @code{union} or a @code{struct} with reverse scalar storage order is
permitted but yields a warning, unless @option{-Wno-scalar-storage-order}
is specified.
@item Taking the address of a @code{union} or a @code{struct} with reverse
scalar storage order is permitted.
@end itemize

These restrictions exist because the storage order attribute is lost when
the address of a scalar or the address of an array with scalar component is
taken, so storing indirectly through this address generally does not work.
The second case is nevertheless allowed to be able to perform a block copy
from or to the array.

Moreover, the use of type punning or aliasing to toggle the storage order
is not supported; that is to say, if a given scalar object can be accessed
through distinct types that assign a different storage order to it, then the
behavior is undefined.

@item transparent_union
@cindex @code{transparent_union} type attribute

This attribute, attached to a @code{union} type definition, indicates
that any function parameter having that union type causes calls to that
function to be treated in a special way.

First, the argument corresponding to a transparent union type can be of
any type in the union; no cast is required.  Also, if the union contains
a pointer type, the corresponding argument can be a null pointer
constant or a void pointer expression; and if the union contains a void
pointer type, the corresponding argument can be any pointer expression.
If the union member type is a pointer, qualifiers like @code{const} on
the referenced type must be respected, just as with normal pointer
conversions.

Second, the argument is passed to the function using the calling
conventions of the first member of the transparent union, not the calling
conventions of the union itself.  All members of the union must have the
same machine representation; this is necessary for this argument passing
to work properly.

Transparent unions are designed for library functions that have multiple
interfaces for compatibility reasons.  For example, suppose the
@code{wait} function must accept either a value of type @code{int *} to
comply with POSIX, or a value of type @code{union wait *} to comply with
the 4.1BSD interface.  If @code{wait}'s parameter were @code{void *},
@code{wait} would accept both kinds of arguments, but it would also
accept any other pointer type and this would make argument type checking
less useful.  Instead, @code{<sys/wait.h>} might define the interface
as follows:

@smallexample
typedef union __attribute__ ((__transparent_union__))
  @{
    int *__ip;
    union wait *__up;
  @} wait_status_ptr_t;

pid_t wait (wait_status_ptr_t);
@end smallexample

@noindent
This interface allows either @code{int *} or @code{union wait *}
arguments to be passed, using the @code{int *} calling convention.
The program can call @code{wait} with arguments of either type:

@smallexample
int w1 () @{ int w; return wait (&w); @}
int w2 () @{ union wait w; return wait (&w); @}
@end smallexample

@noindent
With this interface, @code{wait}'s implementation might look like this:

@smallexample
pid_t wait (wait_status_ptr_t p)
@{
  return waitpid (-1, p.__ip, 0);
@}
@end smallexample

@item unused
@cindex @code{unused} type attribute
When attached to a type (including a @code{union} or a @code{struct}),
this attribute means that variables of that type are meant to appear
possibly unused.  GCC does not produce a warning for any variables of
that type, even if the variable appears to do nothing.  This is often
the case with lock or thread classes, which are usually defined and then
not referenced, but contain constructors and destructors that have
nontrivial bookkeeping functions.

@item vector_size (@var{bytes})
@cindex @code{vector_size} type attribute
This attribute specifies the vector size for the type, measured in bytes.
The type to which it applies is known as the @dfn{base type}.  The @var{bytes}
argument must be a positive power-of-two multiple of the base type size.  For
example, the following declarations:

@smallexample
typedef __attribute__ ((vector_size (32))) int int_vec32_t ;
typedef __attribute__ ((vector_size (32))) int* int_vec32_ptr_t;
typedef __attribute__ ((vector_size (32))) int int_vec32_arr3_t[3];
@end smallexample

@noindent
define @code{int_vec32_t} to be a 32-byte vector type composed of @code{int}
sized units.  With @code{int} having a size of 4 bytes, the type defines
a vector of eight units, four bytes each.  The mode of variables of type
@code{int_vec32_t} is @code{V8SI}.  @code{int_vec32_ptr_t} is then defined
to be a pointer to such a vector type, and @code{int_vec32_arr3_t} to be
an array of three such vectors.  @xref{Vector Extensions}, for details of
manipulating objects of vector types.

This attribute is only applicable to integral and floating scalar types.
In function declarations the attribute applies to the function return
type.

For example, the following:
@smallexample
__attribute__ ((vector_size (16))) float get_flt_vec16 (void);
@end smallexample
declares @code{get_flt_vec16} to be a function returning a 16-byte vector
with the base type @code{float}.

@item visibility
@cindex @code{visibility} type attribute
In C++, attribute visibility (@pxref{Function Attributes}) can also be
applied to class, struct, union and enum types.  Unlike other type
attributes, the attribute must appear between the initial keyword and
the name of the type; it cannot appear after the body of the type.

Note that the type visibility is applied to vague linkage entities
associated with the class (vtable, typeinfo node, etc.).  In
particular, if a class is thrown as an exception in one shared object
and caught in another, the class must have default visibility.
Otherwise the two shared objects are unable to use the same
typeinfo node and exception handling will break.

@item objc_root_class @r{(Objective-C and Objective-C++ only)}
@cindex @code{objc_root_class} type attribute
This attribute marks a class as being a root class, and thus allows
the compiler to elide any warnings about a missing superclass and to
make additional checks for mandatory methods as needed.

@end table

To specify multiple attributes, separate them by commas within the
double parentheses: for example, @samp{__attribute__ ((aligned (16),
packed))}.

@node ARC Type Attributes
@subsection ARC Type Attributes

@cindex @code{uncached} type attribute, ARC
Declaring objects with @code{uncached} allows you to exclude
data-cache participation in load and store operations on those objects
without involving the additional semantic implications of
@code{volatile}.  The @code{.di} instruction suffix is used for all
loads and stores of data declared @code{uncached}.

@node ARM Type Attributes
@subsection ARM Type Attributes

@cindex @code{notshared} type attribute, ARM
On those ARM targets that support @code{dllimport} (such as Symbian
OS), you can use the @code{notshared} attribute to indicate that the
virtual table and other similar data for a class should not be
exported from a DLL@.  For example:

@smallexample
class __declspec(notshared) C @{
public:
  __declspec(dllimport) C();
  virtual void f();
@}

__declspec(dllexport)
C::C() @{@}
@end smallexample

@noindent
In this code, @code{C::C} is exported from the current DLL, but the
virtual table for @code{C} is not exported.  (You can use
@code{__attribute__} instead of @code{__declspec} if you prefer, but
most Symbian OS code uses @code{__declspec}.)

@node BPF Type Attributes
@subsection BPF Type Attributes

@cindex @code{preserve_access_index} type attribute, BPF
BPF Compile Once - Run Everywhere (CO-RE) support. When attached to a
@code{struct} or @code{union} type definition, indicates that CO-RE
relocation information should be generated for any access to a variable
of that type. The behavior is equivalent to the programmer manually
wrapping every such access with @code{__builtin_preserve_access_index}.


@node MeP Type Attributes
@subsection MeP Type Attributes

@cindex @code{based} type attribute, MeP
@cindex @code{tiny} type attribute, MeP
@cindex @code{near} type attribute, MeP
@cindex @code{far} type attribute, MeP
Many of the MeP variable attributes may be applied to types as well.
Specifically, the @code{based}, @code{tiny}, @code{near}, and
@code{far} attributes may be applied to either.  The @code{io} and
@code{cb} attributes may not be applied to types.

@node PowerPC Type Attributes
@subsection PowerPC Type Attributes

Three attributes currently are defined for PowerPC configurations:
@code{altivec}, @code{ms_struct} and @code{gcc_struct}.

@cindex @code{ms_struct} type attribute, PowerPC
@cindex @code{gcc_struct} type attribute, PowerPC
For full documentation of the @code{ms_struct} and @code{gcc_struct}
attributes please see the documentation in @ref{x86 Type Attributes}.

@cindex @code{altivec} type attribute, PowerPC
The @code{altivec} attribute allows one to declare AltiVec vector data
types supported by the AltiVec Programming Interface Manual.  The
attribute requires an argument to specify one of three vector types:
@code{vector__}, @code{pixel__} (always followed by unsigned short),
and @code{bool__} (always followed by unsigned).

@smallexample
__attribute__((altivec(vector__)))
__attribute__((altivec(pixel__))) unsigned short
__attribute__((altivec(bool__))) unsigned
@end smallexample

These attributes mainly are intended to support the @code{__vector},
@code{__pixel}, and @code{__bool} AltiVec keywords.

@node x86 Type Attributes
@subsection x86 Type Attributes

Two attributes are currently defined for x86 configurations:
@code{ms_struct} and @code{gcc_struct}.

@table @code

@item ms_struct
@itemx gcc_struct
@cindex @code{ms_struct} type attribute, x86
@cindex @code{gcc_struct} type attribute, x86

If @code{packed} is used on a structure, or if bit-fields are used
it may be that the Microsoft ABI packs them differently
than GCC normally packs them.  Particularly when moving packed
data between functions compiled with GCC and the native Microsoft compiler
(either via function call or as data in a file), it may be necessary to access
either format.

The @code{ms_struct} and @code{gcc_struct} attributes correspond
to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
command-line options, respectively;
see @ref{x86 Options}, for details of how structure layout is affected.
@xref{x86 Variable Attributes}, for information about the corresponding
attributes on variables.

@end table

@node Label Attributes
@section Label Attributes
@cindex Label Attributes

GCC allows attributes to be set on C labels.  @xref{Attribute Syntax}, for 
details of the exact syntax for using attributes.  Other attributes are 
available for functions (@pxref{Function Attributes}), variables 
(@pxref{Variable Attributes}), enumerators (@pxref{Enumerator Attributes}),
statements (@pxref{Statement Attributes}), and for types
(@pxref{Type Attributes}). A label attribute followed
by a declaration appertains to the label and not the declaration.

This example uses the @code{cold} label attribute to indicate the 
@code{ErrorHandling} branch is unlikely to be taken and that the
@code{ErrorHandling} label is unused:

@smallexample

   asm goto ("some asm" : : : : NoError);

/* This branch (the fall-through from the asm) is less commonly used */
ErrorHandling: 
   __attribute__((cold, unused)); /* Semi-colon is required here */
   printf("error\n");
   return 0;

NoError:
   printf("no error\n");
   return 1;
@end smallexample

@table @code
@item unused
@cindex @code{unused} label attribute
This feature is intended for program-generated code that may contain 
unused labels, but which is compiled with @option{-Wall}.  It is
not normally appropriate to use in it human-written code, though it
could be useful in cases where the code that jumps to the label is
contained within an @code{#ifdef} conditional.

@item hot
@cindex @code{hot} label attribute
The @code{hot} attribute on a label is used to inform the compiler that
the path following the label is more likely than paths that are not so
annotated.  This attribute is used in cases where @code{__builtin_expect}
cannot be used, for instance with computed goto or @code{asm goto}.

@item cold
@cindex @code{cold} label attribute
The @code{cold} attribute on labels is used to inform the compiler that
the path following the label is unlikely to be executed.  This attribute
is used in cases where @code{__builtin_expect} cannot be used, for instance
with computed goto or @code{asm goto}.

@end table

@node Enumerator Attributes
@section Enumerator Attributes
@cindex Enumerator Attributes

GCC allows attributes to be set on enumerators.  @xref{Attribute Syntax}, for
details of the exact syntax for using attributes.  Other attributes are
available for functions (@pxref{Function Attributes}), variables
(@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), statements
(@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).

This example uses the @code{deprecated} enumerator attribute to indicate the
@code{oldval} enumerator is deprecated:

@smallexample
enum E @{
  oldval __attribute__((deprecated)),
  newval
@};

int
fn (void)
@{
  return oldval;
@}
@end smallexample

@table @code
@item deprecated
@cindex @code{deprecated} enumerator attribute
The @code{deprecated} attribute results in a warning if the enumerator
is used anywhere in the source file.  This is useful when identifying
enumerators that are expected to be removed in a future version of a
program.  The warning also includes the location of the declaration
of the deprecated enumerator, to enable users to easily find further
information about why the enumerator is deprecated, or what they should
do instead.  Note that the warnings only occurs for uses.

@item unavailable
@cindex @code{unavailable} enumerator attribute
The @code{unavailable} attribute results in an error if the enumerator
is used anywhere in the source file.  In other respects it behaves in the
same manner as the @code{deprecated} attribute.

@end table

@node Statement Attributes
@section Statement Attributes
@cindex Statement Attributes

GCC allows attributes to be set on null statements.  @xref{Attribute Syntax},
for details of the exact syntax for using attributes.  Other attributes are
available for functions (@pxref{Function Attributes}), variables
(@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), enumerators
(@pxref{Enumerator Attributes}), and for types (@pxref{Type Attributes}).

@table @code
@item fallthrough
@cindex @code{fallthrough} statement attribute
The @code{fallthrough} attribute with a null statement serves as a
fallthrough statement.  It hints to the compiler that a statement
that falls through to another case label, or user-defined label
in a switch statement is intentional and thus the
@option{-Wimplicit-fallthrough} warning must not trigger.  The
fallthrough attribute may appear at most once in each attribute
list, and may not be mixed with other attributes.  It can only
be used in a switch statement (the compiler will issue an error
otherwise), after a preceding statement and before a logically
succeeding case label, or user-defined label.

This example uses the @code{fallthrough} statement attribute to indicate that
the @option{-Wimplicit-fallthrough} warning should not be emitted:

@smallexample
switch (cond)
  @{
  case 1:
    bar (1);
    __attribute__((fallthrough));
  case 2:
    @dots{}
  @}
@end smallexample

@item assume
@cindex @code{assume} statement attribute
The @code{assume} attribute with a null statement serves as portable
assumption.  It should have a single argument, a conditional expression,
which is not evaluated.  If the argument would evaluate to true
at the point where it appears, it has no effect, otherwise there
is undefined behavior.  This is a GNU variant of the ISO C++23
standard @code{assume} attribute, but it can be used in any version of
both C and C++.

@smallexample
int
foo (int x, int y)
@{
  __attribute__((assume(x == 42)));
  __attribute__((assume(++y == 43)));
  return x + y;
@}
@end smallexample

@code{y} is not actually incremented and the compiler can but does not
have to optimize it to just @code{return 42 + 42;}.

@end table

@node Attribute Syntax
@section Attribute Syntax
@cindex attribute syntax

This section describes the syntax with which @code{__attribute__} may be
used, and the constructs to which attribute specifiers bind, for the C
language.  Some details may vary for C++ and Objective-C@.  Because of
infelicities in the grammar for attributes, some forms described here
may not be successfully parsed in all cases.

There are some problems with the semantics of attributes in C++.  For
example, there are no manglings for attributes, although they may affect
code generation, so problems may arise when attributed types are used in
conjunction with templates or overloading.  Similarly, @code{typeid}
does not distinguish between types with different attributes.  Support
for attributes in C++ may be restricted in future to attributes on
declarations only, but not on nested declarators.

@xref{Function Attributes}, for details of the semantics of attributes
applying to functions.  @xref{Variable Attributes}, for details of the
semantics of attributes applying to variables.  @xref{Type Attributes},
for details of the semantics of attributes applying to structure, union
and enumerated types.
@xref{Label Attributes}, for details of the semantics of attributes 
applying to labels.
@xref{Enumerator Attributes}, for details of the semantics of attributes
applying to enumerators.
@xref{Statement Attributes}, for details of the semantics of attributes
applying to statements.

An @dfn{attribute specifier} is of the form
@code{__attribute__ ((@var{attribute-list}))}.  An @dfn{attribute list}
is a possibly empty comma-separated sequence of @dfn{attributes}, where
each attribute is one of the following:

@itemize @bullet
@item
Empty.  Empty attributes are ignored.

@item
An attribute name
(which may be an identifier such as @code{unused}, or a reserved
word such as @code{const}).

@item
An attribute name followed by a parenthesized list of
parameters for the attribute.
These parameters take one of the following forms:

@itemize @bullet
@item
An identifier.  For example, @code{mode} attributes use this form.

@item
An identifier followed by a comma and a non-empty comma-separated list
of expressions.  For example, @code{format} attributes use this form.

@item
A possibly empty comma-separated list of expressions.  For example,
@code{format_arg} attributes use this form with the list being a single
integer constant expression, and @code{alias} attributes use this form
with the list being a single string constant.
@end itemize
@end itemize

An @dfn{attribute specifier list} is a sequence of one or more attribute
specifiers, not separated by any other tokens.

You may optionally specify attribute names with @samp{__}
preceding and following the name.
This allows you to use them in header files without
being concerned about a possible macro of the same name.  For example,
you may use the attribute name @code{__noreturn__} instead of @code{noreturn}.


@subsubheading Label Attributes

In GNU C, an attribute specifier list may appear after the colon following a
label, other than a @code{case} or @code{default} label.  GNU C++ only permits
attributes on labels if the attribute specifier is immediately
followed by a semicolon (i.e., the label applies to an empty
statement).  If the semicolon is missing, C++ label attributes are
ambiguous, as it is permissible for a declaration, which could begin
with an attribute list, to be labelled in C++.  Declarations cannot be
labelled in C90 or C99, so the ambiguity does not arise there.

@subsubheading Enumerator Attributes

In GNU C, an attribute specifier list may appear as part of an enumerator.
The attribute goes after the enumeration constant, before @code{=}, if
present.  The optional attribute in the enumerator appertains to the
enumeration constant.  It is not possible to place the attribute after
the constant expression, if present.

@subsubheading Statement Attributes
In GNU C, an attribute specifier list may appear as part of a null
statement.  The attribute goes before the semicolon.

@subsubheading Type Attributes

An attribute specifier list may appear as part of a @code{struct},
@code{union} or @code{enum} specifier.  It may go either immediately
after the @code{struct}, @code{union} or @code{enum} keyword, or after
the closing brace.  The former syntax is preferred.
Where attribute specifiers follow the closing brace, they are considered
to relate to the structure, union or enumerated type defined, not to any
enclosing declaration the type specifier appears in, and the type
defined is not complete until after the attribute specifiers.
@c Otherwise, there would be the following problems: a shift/reduce
@c conflict between attributes binding the struct/union/enum and
@c binding to the list of specifiers/qualifiers; and "aligned"
@c attributes could use sizeof for the structure, but the size could be
@c changed later by "packed" attributes.


@subsubheading All other attributes

Otherwise, an attribute specifier appears as part of a declaration,
counting declarations of unnamed parameters and type names, and relates
to that declaration (which may be nested in another declaration, for
example in the case of a parameter declaration), or to a particular declarator
within a declaration.  Where an
attribute specifier is applied to a parameter declared as a function or
an array, it should apply to the function or array rather than the
pointer to which the parameter is implicitly converted, but this is not
yet correctly implemented.

Any list of specifiers and qualifiers at the start of a declaration may
contain attribute specifiers, whether or not such a list may in that
context contain storage class specifiers.  (Some attributes, however,
are essentially in the nature of storage class specifiers, and only make
sense where storage class specifiers may be used; for example,
@code{section}.)  There is one necessary limitation to this syntax: the
first old-style parameter declaration in a function definition cannot
begin with an attribute specifier, because such an attribute applies to
the function instead by syntax described below (which, however, is not
yet implemented in this case).  In some other cases, attribute
specifiers are permitted by this grammar but not yet supported by the
compiler.  All attribute specifiers in this place relate to the
declaration as a whole.  In the obsolescent usage where a type of
@code{int} is implied by the absence of type specifiers, such a list of
specifiers and qualifiers may be an attribute specifier list with no
other specifiers or qualifiers.

At present, the first parameter in a function prototype must have some
type specifier that is not an attribute specifier; this resolves an
ambiguity in the interpretation of @code{void f(int
(__attribute__((foo)) x))}, but is subject to change.  At present, if
the parentheses of a function declarator contain only attributes then
those attributes are ignored, rather than yielding an error or warning
or implying a single parameter of type int, but this is subject to
change.

An attribute specifier list may appear immediately before a declarator
(other than the first) in a comma-separated list of declarators in a
declaration of more than one identifier using a single list of
specifiers and qualifiers.  Such attribute specifiers apply
only to the identifier before whose declarator they appear.  For
example, in

@smallexample
__attribute__((noreturn)) void d0 (void),
    __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
     d2 (void);
@end smallexample

@noindent
the @code{noreturn} attribute applies to all the functions
declared; the @code{format} attribute only applies to @code{d1}.

An attribute specifier list may appear immediately before the comma,
@code{=} or semicolon terminating the declaration of an identifier other
than a function definition.  Such attribute specifiers apply
to the declared object or function.  Where an
assembler name for an object or function is specified (@pxref{Asm
Labels}), the attribute must follow the @code{asm}
specification.

An attribute specifier list may, in future, be permitted to appear after
the declarator in a function definition (before any old-style parameter
declarations or the function body).

Attribute specifiers may be mixed with type qualifiers appearing inside
the @code{[]} of a parameter array declarator, in the C99 construct by
which such qualifiers are applied to the pointer to which the array is
implicitly converted.  Such attribute specifiers apply to the pointer,
not to the array, but at present this is not implemented and they are
ignored.

An attribute specifier list may appear at the start of a nested
declarator.  At present, there are some limitations in this usage: the
attributes correctly apply to the declarator, but for most individual
attributes the semantics this implies are not implemented.
When attribute specifiers follow the @code{*} of a pointer
declarator, they may be mixed with any type qualifiers present.
The following describes the formal semantics of this syntax.  It makes the
most sense if you are familiar with the formal specification of
declarators in the ISO C standard.

Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
D1}, where @code{T} contains declaration specifiers that specify a type
@var{Type} (such as @code{int}) and @code{D1} is a declarator that
contains an identifier @var{ident}.  The type specified for @var{ident}
for derived declarators whose type does not include an attribute
specifier is as in the ISO C standard.

If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
and the declaration @code{T D} specifies the type
``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
@code{T D1} specifies the type ``@var{derived-declarator-type-list}
@var{attribute-specifier-list} @var{Type}'' for @var{ident}.

If @code{D1} has the form @code{*
@var{type-qualifier-and-attribute-specifier-list} D}, and the
declaration @code{T D} specifies the type
``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
@code{T D1} specifies the type ``@var{derived-declarator-type-list}
@var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
@var{ident}.

For example,

@smallexample
void (__attribute__((noreturn)) ****f) (void);
@end smallexample

@noindent
specifies the type ``pointer to pointer to pointer to pointer to
non-returning function returning @code{void}''.  As another example,

@smallexample
char *__attribute__((aligned(8))) *f;
@end smallexample

@noindent
specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
Note again that this does not work with most attributes; for example,
the usage of @samp{aligned} and @samp{noreturn} attributes given above
is not yet supported.

For compatibility with existing code written for compiler versions that
did not implement attributes on nested declarators, some laxity is
allowed in the placing of attributes.  If an attribute that only applies
to types is applied to a declaration, it is treated as applying to
the type of that declaration.  If an attribute that only applies to
declarations is applied to the type of a declaration, it is treated
as applying to that declaration; and, for compatibility with code
placing the attributes immediately before the identifier declared, such
an attribute applied to a function return type is treated as
applying to the function type, and such an attribute applied to an array
element type is treated as applying to the array type.  If an
attribute that only applies to function types is applied to a
pointer-to-function type, it is treated as applying to the pointer
target type; if such an attribute is applied to a function return type
that is not a pointer-to-function type, it is treated as applying
to the function type.

@node Function Prototypes
@section Prototypes and Old-Style Function Definitions
@cindex function prototype declarations
@cindex old-style function definitions
@cindex promotion of formal parameters

GNU C extends ISO C to allow a function prototype to override a later
old-style non-prototype definition.  Consider the following example:

@smallexample
/* @r{Use prototypes unless the compiler is old-fashioned.}  */
#ifdef __STDC__
#define P(x) x
#else
#define P(x) ()
#endif

/* @r{Prototype function declaration.}  */
int isroot P((uid_t));

/* @r{Old-style function definition.}  */
int
isroot (x)   /* @r{??? lossage here ???} */
     uid_t x;
@{
  return x == 0;
@}
@end smallexample

Suppose the type @code{uid_t} happens to be @code{short}.  ISO C does
not allow this example, because subword arguments in old-style
non-prototype definitions are promoted.  Therefore in this example the
function definition's argument is really an @code{int}, which does not
match the prototype argument type of @code{short}.

This restriction of ISO C makes it hard to write code that is portable
to traditional C compilers, because the programmer does not know
whether the @code{uid_t} type is @code{short}, @code{int}, or
@code{long}.  Therefore, in cases like these GNU C allows a prototype
to override a later old-style definition.  More precisely, in GNU C, a
function prototype argument type overrides the argument type specified
by a later old-style definition if the former type is the same as the
latter type before promotion.  Thus in GNU C the above example is
equivalent to the following:

@smallexample
int isroot (uid_t);

int
isroot (uid_t x)
@{
  return x == 0;
@}
@end smallexample

@noindent
GNU C++ does not support old-style function definitions, so this
extension is irrelevant.

@node C++ Comments
@section C++ Style Comments
@cindex @code{//}
@cindex C++ comments
@cindex comments, C++ style

In GNU C, you may use C++ style comments, which start with @samp{//} and
continue until the end of the line.  Many other C implementations allow
such comments, and they are included in the 1999 C standard.  However,
C++ style comments are not recognized if you specify an @option{-std}
option specifying a version of ISO C before C99, or @option{-ansi}
(equivalent to @option{-std=c90}).

@node Dollar Signs
@section Dollar Signs in Identifier Names
@cindex $
@cindex dollar signs in identifier names
@cindex identifier names, dollar signs in

In GNU C, you may normally use dollar signs in identifier names.
This is because many traditional C implementations allow such identifiers.
However, dollar signs in identifiers are not supported on a few target
machines, typically because the target assembler does not allow them.

@node Character Escapes
@section The Character @key{ESC} in Constants

You can use the sequence @samp{\e} in a string or character constant to
stand for the ASCII character @key{ESC}.

@node Alignment
@section Determining the Alignment of Functions, Types or Variables
@cindex alignment
@cindex type alignment
@cindex variable alignment

The keyword @code{__alignof__} determines the alignment requirement of
a function, object, or a type, or the minimum alignment usually required
by a type.  Its syntax is just like @code{sizeof} and C11 @code{_Alignof}.

For example, if the target machine requires a @code{double} value to be
aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
This is true on many RISC machines.  On more traditional machine
designs, @code{__alignof__ (double)} is 4 or even 2.

Some machines never actually require alignment; they allow references to any
data type even at an odd address.  For these machines, @code{__alignof__}
reports the smallest alignment that GCC gives the data type, usually as
mandated by the target ABI.

If the operand of @code{__alignof__} is an lvalue rather than a type,
its value is the required alignment for its type, taking into account
any minimum alignment specified by attribute @code{aligned}
(@pxref{Common Variable Attributes}).  For example, after this
declaration:

@smallexample
struct foo @{ int x; char y; @} foo1;
@end smallexample

@noindent
the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
It is an error to ask for the alignment of an incomplete type other
than @code{void}.

If the operand of the @code{__alignof__} expression is a function,
the expression evaluates to the alignment of the function which may
be specified by attribute @code{aligned} (@pxref{Common Function Attributes}).

@node Inline
@section An Inline Function is As Fast As a Macro
@cindex inline functions
@cindex integrating function code
@cindex open coding
@cindex macros, inline alternative

By declaring a function inline, you can direct GCC to make
calls to that function faster.  One way GCC can achieve this is to
integrate that function's code into the code for its callers.  This
makes execution faster by eliminating the function-call overhead; in
addition, if any of the actual argument values are constant, their
known values may permit simplifications at compile time so that not
all of the inline function's code needs to be included.  The effect on
code size is less predictable; object code may be larger or smaller
with function inlining, depending on the particular case.  You can
also direct GCC to try to integrate all ``simple enough'' functions
into their callers with the option @option{-finline-functions}.

GCC implements three different semantics of declaring a function
inline.  One is available with @option{-std=gnu89} or
@option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
on all inline declarations, another when
@option{-std=c99},
@option{-std=gnu99} or an option for a later C version is used
(without @option{-fgnu89-inline}), and the third
is used when compiling C++.

To declare a function inline, use the @code{inline} keyword in its
declaration, like this:

@smallexample
static inline int
inc (int *a)
@{
  return (*a)++;
@}
@end smallexample

If you are writing a header file to be included in ISO C90 programs, write
@code{__inline__} instead of @code{inline}.  @xref{Alternate Keywords}.

The three types of inlining behave similarly in two important cases:
when the @code{inline} keyword is used on a @code{static} function,
like the example above, and when a function is first declared without
using the @code{inline} keyword and then is defined with
@code{inline}, like this:

@smallexample
extern int inc (int *a);
inline int
inc (int *a)
@{
  return (*a)++;
@}
@end smallexample

In both of these common cases, the program behaves the same as if you
had not used the @code{inline} keyword, except for its speed.

@cindex inline functions, omission of
@opindex fkeep-inline-functions
When a function is both inline and @code{static}, if all calls to the
function are integrated into the caller, and the function's address is
never used, then the function's own assembler code is never referenced.
In this case, GCC does not actually output assembler code for the
function, unless you specify the option @option{-fkeep-inline-functions}.
If there is a nonintegrated call, then the function is compiled to
assembler code as usual.  The function must also be compiled as usual if
the program refers to its address, because that cannot be inlined.

@opindex Winline
Note that certain usages in a function definition can make it unsuitable
for inline substitution.  Among these usages are: variadic functions,
use of @code{alloca}, use of computed goto (@pxref{Labels as Values}),
use of nonlocal goto, use of nested functions, use of @code{setjmp}, use
of @code{__builtin_longjmp} and use of @code{__builtin_return} or
@code{__builtin_apply_args}.  Using @option{-Winline} warns when a
function marked @code{inline} could not be substituted, and gives the
reason for the failure.

@cindex automatic @code{inline} for C++ member fns
@cindex @code{inline} automatic for C++ member fns
@cindex member fns, automatically @code{inline}
@cindex C++ member fns, automatically @code{inline}
@opindex fno-default-inline
As required by ISO C++, GCC considers member functions defined within
the body of a class to be marked inline even if they are
not explicitly declared with the @code{inline} keyword.  You can
override this with @option{-fno-default-inline}; @pxref{C++ Dialect
Options,,Options Controlling C++ Dialect}.

GCC does not inline any functions when not optimizing unless you specify
the @samp{always_inline} attribute for the function, like this:

@smallexample
/* @r{Prototype.}  */
inline void foo (const char) __attribute__((always_inline));
@end smallexample

The remainder of this section is specific to GNU C90 inlining.

@cindex non-static inline function
When an inline function is not @code{static}, then the compiler must assume
that there may be calls from other source files; since a global symbol can
be defined only once in any program, the function must not be defined in
the other source files, so the calls therein cannot be integrated.
Therefore, a non-@code{static} inline function is always compiled on its
own in the usual fashion.

If you specify both @code{inline} and @code{extern} in the function
definition, then the definition is used only for inlining.  In no case
is the function compiled on its own, not even if you refer to its
address explicitly.  Such an address becomes an external reference, as
if you had only declared the function, and had not defined it.

This combination of @code{inline} and @code{extern} has almost the
effect of a macro.  The way to use it is to put a function definition in
a header file with these keywords, and put another copy of the
definition (lacking @code{inline} and @code{extern}) in a library file.
The definition in the header file causes most calls to the function
to be inlined.  If any uses of the function remain, they refer to
the single copy in the library.

@node Volatiles
@section When is a Volatile Object Accessed?
@cindex accessing volatiles
@cindex volatile read
@cindex volatile write
@cindex volatile access

C has the concept of volatile objects.  These are normally accessed by
pointers and used for accessing hardware or inter-thread
communication.  The standard encourages compilers to refrain from
optimizations concerning accesses to volatile objects, but leaves it
implementation defined as to what constitutes a volatile access.  The
minimum requirement is that at a sequence point all previous accesses
to volatile objects have stabilized and no subsequent accesses have
occurred.  Thus an implementation is free to reorder and combine
volatile accesses that occur between sequence points, but cannot do
so for accesses across a sequence point.  The use of volatile does
not allow you to violate the restriction on updating objects multiple
times between two sequence points.

Accesses to non-volatile objects are not ordered with respect to
volatile accesses.  You cannot use a volatile object as a memory
barrier to order a sequence of writes to non-volatile memory.  For
instance:

@smallexample
int *ptr = @var{something};
volatile int vobj;
*ptr = @var{something};
vobj = 1;
@end smallexample

@noindent
Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
that the write to @var{*ptr} occurs by the time the update
of @var{vobj} happens.  If you need this guarantee, you must use
a stronger memory barrier such as:

@smallexample
int *ptr = @var{something};
volatile int vobj;
*ptr = @var{something};
asm volatile ("" : : : "memory");
vobj = 1;
@end smallexample

A scalar volatile object is read when it is accessed in a void context:

@smallexample
volatile int *src = @var{somevalue};
*src;
@end smallexample

Such expressions are rvalues, and GCC implements this as a
read of the volatile object being pointed to.

Assignments are also expressions and have an rvalue.  However when
assigning to a scalar volatile, the volatile object is not reread,
regardless of whether the assignment expression's rvalue is used or
not.  If the assignment's rvalue is used, the value is that assigned
to the volatile object.  For instance, there is no read of @var{vobj}
in all the following cases:

@smallexample
int obj;
volatile int vobj;
vobj = @var{something};
obj = vobj = @var{something};
obj ? vobj = @var{onething} : vobj = @var{anotherthing};
obj = (@var{something}, vobj = @var{anotherthing});
@end smallexample

If you need to read the volatile object after an assignment has
occurred, you must use a separate expression with an intervening
sequence point.

As bit-fields are not individually addressable, volatile bit-fields may
be implicitly read when written to, or when adjacent bit-fields are
accessed.  Bit-field operations may be optimized such that adjacent
bit-fields are only partially accessed, if they straddle a storage unit
boundary.  For these reasons it is unwise to use volatile bit-fields to
access hardware.

@node Using Assembly Language with C
@section How to Use Inline Assembly Language in C Code
@cindex @code{asm} keyword
@cindex assembly language in C
@cindex inline assembly language
@cindex mixing assembly language and C

The @code{asm} keyword allows you to embed assembler instructions
within C code.  GCC provides two forms of inline @code{asm}
statements.  A @dfn{basic @code{asm}} statement is one with no
operands (@pxref{Basic Asm}), while an @dfn{extended @code{asm}}
statement (@pxref{Extended Asm}) includes one or more operands.  
The extended form is preferred for mixing C and assembly language
within a function, but to include assembly language at
top level you must use basic @code{asm}.

You can also use the @code{asm} keyword to override the assembler name
for a C symbol, or to place a C variable in a specific register.

@menu
* Basic Asm::          Inline assembler without operands.
* Extended Asm::       Inline assembler with operands.
* Constraints::        Constraints for @code{asm} operands
* Asm Labels::         Specifying the assembler name to use for a C symbol.
* Explicit Register Variables::  Defining variables residing in specified 
                       registers.
* Size of an asm::     How GCC calculates the size of an @code{asm} block.
@end menu

@node Basic Asm
@subsection Basic Asm --- Assembler Instructions Without Operands
@cindex basic @code{asm}
@cindex assembly language in C, basic

A basic @code{asm} statement has the following syntax:

@example
asm @var{asm-qualifiers} ( @var{AssemblerInstructions} )
@end example

For the C language, the @code{asm} keyword is a GNU extension.
When writing C code that can be compiled with @option{-ansi} and the
@option{-std} options that select C dialects without GNU extensions, use
@code{__asm__} instead of @code{asm} (@pxref{Alternate Keywords}).  For
the C++ language, @code{asm} is a standard keyword, but @code{__asm__}
can be used for code compiled with @option{-fno-asm}.

@subsubheading Qualifiers
@table @code
@item volatile
The optional @code{volatile} qualifier has no effect. 
All basic @code{asm} blocks are implicitly volatile.

@item inline
If you use the @code{inline} qualifier, then for inlining purposes the size
of the @code{asm} statement is taken as the smallest size possible (@pxref{Size
of an asm}).
@end table

@subsubheading Parameters
@table @var

@item AssemblerInstructions
This is a literal string that specifies the assembler code. The string can 
contain any instructions recognized by the assembler, including directives. 
GCC does not parse the assembler instructions themselves and 
does not know what they mean or even whether they are valid assembler input. 

You may place multiple assembler instructions together in a single @code{asm} 
string, separated by the characters normally used in assembly code for the 
system. A combination that works in most places is a newline to break the 
line, plus a tab character (written as @samp{\n\t}).
Some assemblers allow semicolons as a line separator. However, 
note that some assembler dialects use semicolons to start a comment. 
@end table

@subsubheading Remarks
Using extended @code{asm} (@pxref{Extended Asm}) typically produces
smaller, safer, and more efficient code, and in most cases it is a
better solution than basic @code{asm}.  However, there are two
situations where only basic @code{asm} can be used:

@itemize @bullet
@item
Extended @code{asm} statements have to be inside a C
function, so to write inline assembly language at file scope (``top-level''),
outside of C functions, you must use basic @code{asm}.
You can use this technique to emit assembler directives,
define assembly language macros that can be invoked elsewhere in the file,
or write entire functions in assembly language.
Basic @code{asm} statements outside of functions may not use any
qualifiers.

@item
Functions declared
with the @code{naked} attribute also require basic @code{asm}
(@pxref{Function Attributes}).
@end itemize

Safely accessing C data and calling functions from basic @code{asm} is more 
complex than it may appear. To access C data, it is better to use extended 
@code{asm}.

Do not expect a sequence of @code{asm} statements to remain perfectly 
consecutive after compilation. If certain instructions need to remain 
consecutive in the output, put them in a single multi-instruction @code{asm}
statement. Note that GCC's optimizers can move @code{asm} statements 
relative to other code, including across jumps.

@code{asm} statements may not perform jumps into other @code{asm} statements. 
GCC does not know about these jumps, and therefore cannot take 
account of them when deciding how to optimize. Jumps from @code{asm} to C 
labels are only supported in extended @code{asm}.

Under certain circumstances, GCC may duplicate (or remove duplicates of) your 
assembly code when optimizing. This can lead to unexpected duplicate 
symbol errors during compilation if your assembly code defines symbols or 
labels.

@strong{Warning:} The C standards do not specify semantics for @code{asm},
making it a potential source of incompatibilities between compilers.  These
incompatibilities may not produce compiler warnings/errors.

GCC does not parse basic @code{asm}'s @var{AssemblerInstructions}, which
means there is no way to communicate to the compiler what is happening
inside them.  GCC has no visibility of symbols in the @code{asm} and may
discard them as unreferenced.  It also does not know about side effects of
the assembler code, such as modifications to memory or registers.  Unlike
some compilers, GCC assumes that no changes to general purpose registers
occur.  This assumption may change in a future release.

To avoid complications from future changes to the semantics and the
compatibility issues between compilers, consider replacing basic @code{asm}
with extended @code{asm}.  See
@uref{https://gcc.gnu.org/wiki/ConvertBasicAsmToExtended, How to convert
from basic asm to extended asm} for information about how to perform this
conversion.

The compiler copies the assembler instructions in a basic @code{asm} 
verbatim to the assembly language output file, without 
processing dialects or any of the @samp{%} operators that are available with
extended @code{asm}. This results in minor differences between basic 
@code{asm} strings and extended @code{asm} templates. For example, to refer to 
registers you might use @samp{%eax} in basic @code{asm} and
@samp{%%eax} in extended @code{asm}.

On targets such as x86 that support multiple assembler dialects,
all basic @code{asm} blocks use the assembler dialect specified by the 
@option{-masm} command-line option (@pxref{x86 Options}).  
Basic @code{asm} provides no
mechanism to provide different assembler strings for different dialects.

For basic @code{asm} with non-empty assembler string GCC assumes
the assembler block does not change any general purpose registers,
but it may read or write any globally accessible variable.

Here is an example of basic @code{asm} for i386:

@example
/* Note that this code will not compile with -masm=intel */
#define DebugBreak() asm("int $3")
@end example

@node Extended Asm
@subsection Extended Asm - Assembler Instructions with C Expression Operands
@cindex extended @code{asm}
@cindex assembly language in C, extended

With extended @code{asm} you can read and write C variables from 
assembler and perform jumps from assembler code to C labels.  
Extended @code{asm} syntax uses colons (@samp{:}) to delimit
the operand parameters after the assembler template:

@example
asm @var{asm-qualifiers} ( @var{AssemblerTemplate} 
                 : @var{OutputOperands} 
                 @r{[} : @var{InputOperands}
                 @r{[} : @var{Clobbers} @r{]} @r{]})

asm @var{asm-qualifiers} ( @var{AssemblerTemplate} 
                      : @var{OutputOperands}
                      : @var{InputOperands}
                      : @var{Clobbers}
                      : @var{GotoLabels})
@end example
where in the last form, @var{asm-qualifiers} contains @code{goto} (and in the
first form, not).

The @code{asm} keyword is a GNU extension.
When writing code that can be compiled with @option{-ansi} and the
various @option{-std} options, use @code{__asm__} instead of 
@code{asm} (@pxref{Alternate Keywords}).

@subsubheading Qualifiers
@table @code

@item volatile
The typical use of extended @code{asm} statements is to manipulate input 
values to produce output values. However, your @code{asm} statements may 
also produce side effects. If so, you may need to use the @code{volatile} 
qualifier to disable certain optimizations. @xref{Volatile}.

@item inline
If you use the @code{inline} qualifier, then for inlining purposes the size
of the @code{asm} statement is taken as the smallest size possible
(@pxref{Size of an asm}).

@item goto
This qualifier informs the compiler that the @code{asm} statement may 
perform a jump to one of the labels listed in the @var{GotoLabels}.
@xref{GotoLabels}.
@end table

@subsubheading Parameters
@table @var
@item AssemblerTemplate
This is a literal string that is the template for the assembler code. It is a 
combination of fixed text and tokens that refer to the input, output, 
and goto parameters. @xref{AssemblerTemplate}.

@item OutputOperands
A comma-separated list of the C variables modified by the instructions in the 
@var{AssemblerTemplate}.  An empty list is permitted.  @xref{OutputOperands}.

@item InputOperands
A comma-separated list of C expressions read by the instructions in the 
@var{AssemblerTemplate}.  An empty list is permitted.  @xref{InputOperands}.

@item Clobbers
A comma-separated list of registers or other values changed by the 
@var{AssemblerTemplate}, beyond those listed as outputs.
An empty list is permitted.  @xref{Clobbers and Scratch Registers}.

@item GotoLabels
When you are using the @code{goto} form of @code{asm}, this section contains 
the list of all C labels to which the code in the 
@var{AssemblerTemplate} may jump. 
@xref{GotoLabels}.

@code{asm} statements may not perform jumps into other @code{asm} statements,
only to the listed @var{GotoLabels}.
GCC's optimizers do not know about other jumps; therefore they cannot take 
account of them when deciding how to optimize.
@end table

The total number of input + output + goto operands is limited to 30.

@subsubheading Remarks
The @code{asm} statement allows you to include assembly instructions directly 
within C code. This may help you to maximize performance in time-sensitive 
code or to access assembly instructions that are not readily available to C 
programs.

Note that extended @code{asm} statements must be inside a function. Only 
basic @code{asm} may be outside functions (@pxref{Basic Asm}).
Functions declared with the @code{naked} attribute also require basic 
@code{asm} (@pxref{Function Attributes}).

While the uses of @code{asm} are many and varied, it may help to think of an 
@code{asm} statement as a series of low-level instructions that convert input 
parameters to output parameters. So a simple (if not particularly useful) 
example for i386 using @code{asm} might look like this:

@example
int src = 1;
int dst;   

asm ("mov %1, %0\n\t"
    "add $1, %0"
    : "=r" (dst) 
    : "r" (src));

printf("%d\n", dst);
@end example

This code copies @code{src} to @code{dst} and add 1 to @code{dst}.

@anchor{Volatile}
@subsubsection Volatile
@cindex volatile @code{asm}
@cindex @code{asm} volatile

GCC's optimizers sometimes discard @code{asm} statements if they determine 
there is no need for the output variables. Also, the optimizers may move 
code out of loops if they believe that the code will always return the same 
result (i.e.@: none of its input values change between calls). Using the 
@code{volatile} qualifier disables these optimizations. @code{asm} statements 
that have no output operands and @code{asm goto} statements, 
are implicitly volatile.

This i386 code demonstrates a case that does not use (or require) the 
@code{volatile} qualifier. If it is performing assertion checking, this code 
uses @code{asm} to perform the validation. Otherwise, @code{dwRes} is 
unreferenced by any code. As a result, the optimizers can discard the 
@code{asm} statement, which in turn removes the need for the entire 
@code{DoCheck} routine. By omitting the @code{volatile} qualifier when it 
isn't needed you allow the optimizers to produce the most efficient code 
possible.

@example
void DoCheck(uint32_t dwSomeValue)
@{
   uint32_t dwRes;

   // Assumes dwSomeValue is not zero.
   asm ("bsfl %1,%0"
     : "=r" (dwRes)
     : "r" (dwSomeValue)
     : "cc");

   assert(dwRes > 3);
@}
@end example

The next example shows a case where the optimizers can recognize that the input 
(@code{dwSomeValue}) never changes during the execution of the function and can 
therefore move the @code{asm} outside the loop to produce more efficient code. 
Again, using the @code{volatile} qualifier disables this type of optimization.

@example
void do_print(uint32_t dwSomeValue)
@{
   uint32_t dwRes;

   for (uint32_t x=0; x < 5; x++)
   @{
      // Assumes dwSomeValue is not zero.
      asm ("bsfl %1,%0"
        : "=r" (dwRes)
        : "r" (dwSomeValue)
        : "cc");

      printf("%u: %u %u\n", x, dwSomeValue, dwRes);
   @}
@}
@end example

The following example demonstrates a case where you need to use the 
@code{volatile} qualifier. 
It uses the x86 @code{rdtsc} instruction, which reads 
the computer's time-stamp counter. Without the @code{volatile} qualifier, 
the optimizers might assume that the @code{asm} block will always return the 
same value and therefore optimize away the second call.

@example
uint64_t msr;

asm volatile ( "rdtsc\n\t"    // Returns the time in EDX:EAX.
        "shl $32, %%rdx\n\t"  // Shift the upper bits left.
        "or %%rdx, %0"        // 'Or' in the lower bits.
        : "=a" (msr)
        : 
        : "rdx");

printf("msr: %llx\n", msr);

// Do other work...

// Reprint the timestamp
asm volatile ( "rdtsc\n\t"    // Returns the time in EDX:EAX.
        "shl $32, %%rdx\n\t"  // Shift the upper bits left.
        "or %%rdx, %0"        // 'Or' in the lower bits.
        : "=a" (msr)
        : 
        : "rdx");

printf("msr: %llx\n", msr);
@end example

GCC's optimizers do not treat this code like the non-volatile code in the 
earlier examples. They do not move it out of loops or omit it on the 
assumption that the result from a previous call is still valid.

Note that the compiler can move even @code{volatile asm} instructions relative
to other code, including across jump instructions. For example, on many 
targets there is a system register that controls the rounding mode of 
floating-point operations. Setting it with a @code{volatile asm} statement,
as in the following PowerPC example, does not work reliably.

@example
asm volatile("mtfsf 255, %0" : : "f" (fpenv));
sum = x + y;
@end example

The compiler may move the addition back before the @code{volatile asm}
statement. To make it work as expected, add an artificial dependency to
the @code{asm} by referencing a variable in the subsequent code, for
example:

@example
asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
sum = x + y;
@end example

Under certain circumstances, GCC may duplicate (or remove duplicates of) your 
assembly code when optimizing. This can lead to unexpected duplicate symbol 
errors during compilation if your @code{asm} code defines symbols or labels. 
Using @samp{%=} 
(@pxref{AssemblerTemplate}) may help resolve this problem.

@anchor{AssemblerTemplate}
@subsubsection Assembler Template
@cindex @code{asm} assembler template

An assembler template is a literal string containing assembler instructions.
The compiler replaces tokens in the template that refer 
to inputs, outputs, and goto labels,
and then outputs the resulting string to the assembler. The 
string can contain any instructions recognized by the assembler, including 
directives. GCC does not parse the assembler instructions 
themselves and does not know what they mean or even whether they are valid 
assembler input. However, it does count the statements 
(@pxref{Size of an asm}).

You may place multiple assembler instructions together in a single @code{asm} 
string, separated by the characters normally used in assembly code for the 
system. A combination that works in most places is a newline to break the 
line, plus a tab character to move to the instruction field (written as 
@samp{\n\t}). 
Some assemblers allow semicolons as a line separator. However, note 
that some assembler dialects use semicolons to start a comment. 

Do not expect a sequence of @code{asm} statements to remain perfectly 
consecutive after compilation, even when you are using the @code{volatile} 
qualifier. If certain instructions need to remain consecutive in the output, 
put them in a single multi-instruction @code{asm} statement.

Accessing data from C programs without using input/output operands (such as 
by using global symbols directly from the assembler template) may not work as 
expected. Similarly, calling functions directly from an assembler template 
requires a detailed understanding of the target assembler and ABI.

Since GCC does not parse the assembler template,
it has no visibility of any 
symbols it references. This may result in GCC discarding those symbols as 
unreferenced unless they are also listed as input, output, or goto operands.

@subsubheading Special format strings

In addition to the tokens described by the input, output, and goto operands, 
these tokens have special meanings in the assembler template:

@table @samp
@item %% 
Outputs a single @samp{%} into the assembler code.

@item %= 
Outputs a number that is unique to each instance of the @code{asm} 
statement in the entire compilation. This option is useful when creating local 
labels and referring to them multiple times in a single template that 
generates multiple assembler instructions. 

@item %@{
@itemx %|
@itemx %@}
Outputs @samp{@{}, @samp{|}, and @samp{@}} characters (respectively)
into the assembler code.  When unescaped, these characters have special
meaning to indicate multiple assembler dialects, as described below.
@end table

@subsubheading Multiple assembler dialects in @code{asm} templates

On targets such as x86, GCC supports multiple assembler dialects.
The @option{-masm} option controls which dialect GCC uses as its 
default for inline assembler. The target-specific documentation for the 
@option{-masm} option contains the list of supported dialects, as well as the 
default dialect if the option is not specified. This information may be 
important to understand, since assembler code that works correctly when 
compiled using one dialect will likely fail if compiled using another.
@xref{x86 Options}.

If your code needs to support multiple assembler dialects (for example, if 
you are writing public headers that need to support a variety of compilation 
options), use constructs of this form:

@example
@{ dialect0 | dialect1 | dialect2... @}
@end example

This construct outputs @code{dialect0} 
when using dialect #0 to compile the code, 
@code{dialect1} for dialect #1, etc. If there are fewer alternatives within the 
braces than the number of dialects the compiler supports, the construct 
outputs nothing.

For example, if an x86 compiler supports two dialects
(@samp{att}, @samp{intel}), an 
assembler template such as this:

@example
"bt@{l %[Offset],%[Base] | %[Base],%[Offset]@}; jc %l2"
@end example

@noindent
is equivalent to one of

@example
"btl %[Offset],%[Base] ; jc %l2"   @r{/* att dialect */}
"bt %[Base],%[Offset]; jc %l2"     @r{/* intel dialect */}
@end example

Using that same compiler, this code:

@example
"xchg@{l@}\t@{%%@}ebx, %1"
@end example

@noindent
corresponds to either

@example
"xchgl\t%%ebx, %1"                 @r{/* att dialect */}
"xchg\tebx, %1"                    @r{/* intel dialect */}
@end example

There is no support for nesting dialect alternatives.

@anchor{OutputOperands}
@subsubsection Output Operands
@cindex @code{asm} output operands

An @code{asm} statement has zero or more output operands indicating the names
of C variables modified by the assembler code.

In this i386 example, @code{old} (referred to in the template string as 
@code{%0}) and @code{*Base} (as @code{%1}) are outputs and @code{Offset} 
(@code{%2}) is an input:

@example
bool old;

__asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
         "sbb %0,%0"      // Use the CF to calculate old.
   : "=r" (old), "+rm" (*Base)
   : "Ir" (Offset)
   : "cc");

return old;
@end example

Operands are separated by commas.  Each operand has this format:

@example
@r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cvariablename})
@end example

@table @var
@item asmSymbolicName
Specifies a symbolic name for the operand.
Reference the name in the assembler template 
by enclosing it in square brackets 
(i.e.@: @samp{%[Value]}). The scope of the name is the @code{asm} statement 
that contains the definition. Any valid C variable name is acceptable, 
including names already defined in the surrounding code. No two operands 
within the same @code{asm} statement can use the same symbolic name.

When not using an @var{asmSymbolicName}, use the (zero-based) position
of the operand 
in the list of operands in the assembler template. For example if there are 
three output operands, use @samp{%0} in the template to refer to the first, 
@samp{%1} for the second, and @samp{%2} for the third. 

@item constraint
A string constant specifying constraints on the placement of the operand; 
@xref{Constraints}, for details.

Output constraints must begin with either @samp{=} (a variable overwriting an 
existing value) or @samp{+} (when reading and writing). When using 
@samp{=}, do not assume the location contains the existing value
on entry to the @code{asm}, except 
when the operand is tied to an input; @pxref{InputOperands,,Input Operands}.

After the prefix, there must be one or more additional constraints 
(@pxref{Constraints}) that describe where the value resides. Common 
constraints include @samp{r} for register and @samp{m} for memory. 
When you list more than one possible location (for example, @code{"=rm"}),
the compiler chooses the most efficient one based on the current context. 
If you list as many alternates as the @code{asm} statement allows, you permit 
the optimizers to produce the best possible code. 
If you must use a specific register, but your Machine Constraints do not
provide sufficient control to select the specific register you want, 
local register variables may provide a solution (@pxref{Local Register 
Variables}).

@item cvariablename
Specifies a C lvalue expression to hold the output, typically a variable name.
The enclosing parentheses are a required part of the syntax.

@end table

When the compiler selects the registers to use to 
represent the output operands, it does not use any of the clobbered registers 
(@pxref{Clobbers and Scratch Registers}).

Output operand expressions must be lvalues. The compiler cannot check whether 
the operands have data types that are reasonable for the instruction being 
executed. For output expressions that are not directly addressable (for 
example a bit-field), the constraint must allow a register. In that case, GCC 
uses the register as the output of the @code{asm}, and then stores that 
register into the output. 

Operands using the @samp{+} constraint modifier count as two operands 
(that is, both as input and output) towards the total maximum of 30 operands
per @code{asm} statement.

Use the @samp{&} constraint modifier (@pxref{Modifiers}) on all output
operands that must not overlap an input.  Otherwise, 
GCC may allocate the output operand in the same register as an unrelated 
input operand, on the assumption that the assembler code consumes its 
inputs before producing outputs. This assumption may be false if the assembler 
code actually consists of more than one instruction.

The same problem can occur if one output parameter (@var{a}) allows a register 
constraint and another output parameter (@var{b}) allows a memory constraint.
The code generated by GCC to access the memory address in @var{b} can contain
registers which @emph{might} be shared by @var{a}, and GCC considers those 
registers to be inputs to the asm. As above, GCC assumes that such input
registers are consumed before any outputs are written. This assumption may 
result in incorrect behavior if the @code{asm} statement writes to @var{a}
before using
@var{b}. Combining the @samp{&} modifier with the register constraint on @var{a}
ensures that modifying @var{a} does not affect the address referenced by 
@var{b}. Otherwise, the location of @var{b} 
is undefined if @var{a} is modified before using @var{b}.

@code{asm} supports operand modifiers on operands (for example @samp{%k2} 
instead of simply @samp{%2}). Typically these qualifiers are hardware 
dependent. The list of supported modifiers for x86 is found at 
@ref{x86Operandmodifiers,x86 Operand modifiers}.

If the C code that follows the @code{asm} makes no use of any of the output 
operands, use @code{volatile} for the @code{asm} statement to prevent the 
optimizers from discarding the @code{asm} statement as unneeded 
(see @ref{Volatile}).

This code makes no use of the optional @var{asmSymbolicName}. Therefore it 
references the first output operand as @code{%0} (were there a second, it 
would be @code{%1}, etc). The number of the first input operand is one greater 
than that of the last output operand. In this i386 example, that makes 
@code{Mask} referenced as @code{%1}:

@example
uint32_t Mask = 1234;
uint32_t Index;

  asm ("bsfl %1, %0"
     : "=r" (Index)
     : "r" (Mask)
     : "cc");
@end example

That code overwrites the variable @code{Index} (@samp{=}),
placing the value in a register (@samp{r}).
Using the generic @samp{r} constraint instead of a constraint for a specific 
register allows the compiler to pick the register to use, which can result 
in more efficient code. This may not be possible if an assembler instruction 
requires a specific register.

The following i386 example uses the @var{asmSymbolicName} syntax.
It produces the 
same result as the code above, but some may consider it more readable or more 
maintainable since reordering index numbers is not necessary when adding or 
removing operands. The names @code{aIndex} and @code{aMask}
are only used in this example to emphasize which 
names get used where.
It is acceptable to reuse the names @code{Index} and @code{Mask}.

@example
uint32_t Mask = 1234;
uint32_t Index;

  asm ("bsfl %[aMask], %[aIndex]"
     : [aIndex] "=r" (Index)
     : [aMask] "r" (Mask)
     : "cc");
@end example

Here are some more examples of output operands.

@example
uint32_t c = 1;
uint32_t d;
uint32_t *e = &c;

asm ("mov %[e], %[d]"
   : [d] "=rm" (d)
   : [e] "rm" (*e));
@end example

Here, @code{d} may either be in a register or in memory. Since the compiler 
might already have the current value of the @code{uint32_t} location
pointed to by @code{e}
in a register, you can enable it to choose the best location
for @code{d} by specifying both constraints.

@anchor{FlagOutputOperands}
@subsubsection Flag Output Operands
@cindex @code{asm} flag output operands

Some targets have a special register that holds the ``flags'' for the
result of an operation or comparison.  Normally, the contents of that
register are either unmodifed by the asm, or the @code{asm} statement is
considered to clobber the contents.

On some targets, a special form of output operand exists by which
conditions in the flags register may be outputs of the asm.  The set of
conditions supported are target specific, but the general rule is that
the output variable must be a scalar integer, and the value is boolean.
When supported, the target defines the preprocessor symbol
@code{__GCC_ASM_FLAG_OUTPUTS__}.

Because of the special nature of the flag output operands, the constraint
may not include alternatives.

Most often, the target has only one flags register, and thus is an implied
operand of many instructions.  In this case, the operand should not be
referenced within the assembler template via @code{%0} etc, as there's
no corresponding text in the assembly language.

@table @asis
@item ARM
@itemx AArch64
The flag output constraints for the ARM family are of the form
@samp{=@@cc@var{cond}} where @var{cond} is one of the standard
conditions defined in the ARM ARM for @code{ConditionHolds}.

@table @code
@item eq
Z flag set, or equal
@item ne
Z flag clear or not equal
@item cs
@itemx hs
C flag set or unsigned greater than equal
@item cc
@itemx lo
C flag clear or unsigned less than
@item mi
N flag set or ``minus''
@item pl
N flag clear or ``plus''
@item vs
V flag set or signed overflow
@item vc
V flag clear
@item hi
unsigned greater than
@item ls
unsigned less than equal
@item ge
signed greater than equal
@item lt
signed less than
@item gt
signed greater than
@item le
signed less than equal
@end table

The flag output constraints are not supported in thumb1 mode.

@item x86 family
The flag output constraints for the x86 family are of the form
@samp{=@@cc@var{cond}} where @var{cond} is one of the standard
conditions defined in the ISA manual for @code{j@var{cc}} or
@code{set@var{cc}}.

@table @code
@item a
``above'' or unsigned greater than
@item ae
``above or equal'' or unsigned greater than or equal
@item b
``below'' or unsigned less than
@item be
``below or equal'' or unsigned less than or equal
@item c
carry flag set
@item e
@itemx z
``equal'' or zero flag set
@item g
signed greater than
@item ge
signed greater than or equal
@item l
signed less than
@item le
signed less than or equal
@item o
overflow flag set
@item p
parity flag set
@item s
sign flag set
@item na
@itemx nae
@itemx nb
@itemx nbe
@itemx nc
@itemx ne
@itemx ng
@itemx nge
@itemx nl
@itemx nle
@itemx no
@itemx np
@itemx ns
@itemx nz
``not'' @var{flag}, or inverted versions of those above
@end table

@end table

@anchor{InputOperands}
@subsubsection Input Operands
@cindex @code{asm} input operands
@cindex @code{asm} expressions

Input operands make values from C variables and expressions available to the 
assembly code.

Operands are separated by commas.  Each operand has this format:

@example
@r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cexpression})
@end example

@table @var
@item asmSymbolicName
Specifies a symbolic name for the operand.
Reference the name in the assembler template 
by enclosing it in square brackets 
(i.e.@: @samp{%[Value]}). The scope of the name is the @code{asm} statement 
that contains the definition. Any valid C variable name is acceptable, 
including names already defined in the surrounding code. No two operands 
within the same @code{asm} statement can use the same symbolic name.

When not using an @var{asmSymbolicName}, use the (zero-based) position
of the operand 
in the list of operands in the assembler template. For example if there are
two output operands and three inputs,
use @samp{%2} in the template to refer to the first input operand,
@samp{%3} for the second, and @samp{%4} for the third. 

@item constraint
A string constant specifying constraints on the placement of the operand; 
@xref{Constraints}, for details.

Input constraint strings may not begin with either @samp{=} or @samp{+}.
When you list more than one possible location (for example, @samp{"irm"}), 
the compiler chooses the most efficient one based on the current context.
If you must use a specific register, but your Machine Constraints do not
provide sufficient control to select the specific register you want, 
local register variables may provide a solution (@pxref{Local Register 
Variables}).

Input constraints can also be digits (for example, @code{"0"}). This indicates 
that the specified input must be in the same place as the output constraint 
at the (zero-based) index in the output constraint list. 
When using @var{asmSymbolicName} syntax for the output operands,
you may use these names (enclosed in brackets @samp{[]}) instead of digits.

@item cexpression
This is the C variable or expression being passed to the @code{asm} statement 
as input.  The enclosing parentheses are a required part of the syntax.

@end table

When the compiler selects the registers to use to represent the input 
operands, it does not use any of the clobbered registers
(@pxref{Clobbers and Scratch Registers}).

If there are no output operands but there are input operands, place two 
consecutive colons where the output operands would go:

@example
__asm__ ("some instructions"
   : /* No outputs. */
   : "r" (Offset / 8));
@end example

@strong{Warning:} Do @emph{not} modify the contents of input-only operands 
(except for inputs tied to outputs). The compiler assumes that on exit from 
the @code{asm} statement these operands contain the same values as they 
had before executing the statement. 
It is @emph{not} possible to use clobbers
to inform the compiler that the values in these inputs are changing. One 
common work-around is to tie the changing input variable to an output variable 
that never gets used. Note, however, that if the code that follows the 
@code{asm} statement makes no use of any of the output operands, the GCC 
optimizers may discard the @code{asm} statement as unneeded 
(see @ref{Volatile}).

@code{asm} supports operand modifiers on operands (for example @samp{%k2} 
instead of simply @samp{%2}). Typically these qualifiers are hardware 
dependent. The list of supported modifiers for x86 is found at 
@ref{x86Operandmodifiers,x86 Operand modifiers}.

In this example using the fictitious @code{combine} instruction, the 
constraint @code{"0"} for input operand 1 says that it must occupy the same 
location as output operand 0. Only input operands may use numbers in 
constraints, and they must each refer to an output operand. Only a number (or 
the symbolic assembler name) in the constraint can guarantee that one operand 
is in the same place as another. The mere fact that @code{foo} is the value of 
both operands is not enough to guarantee that they are in the same place in 
the generated assembler code.

@example
asm ("combine %2, %0" 
   : "=r" (foo) 
   : "0" (foo), "g" (bar));
@end example

Here is an example using symbolic names.

@example
asm ("cmoveq %1, %2, %[result]" 
   : [result] "=r"(result) 
   : "r" (test), "r" (new), "[result]" (old));
@end example

@anchor{Clobbers and Scratch Registers}
@subsubsection Clobbers and Scratch Registers
@cindex @code{asm} clobbers
@cindex @code{asm} scratch registers

While the compiler is aware of changes to entries listed in the output 
operands, the inline @code{asm} code may modify more than just the outputs. For 
example, calculations may require additional registers, or the processor may 
overwrite a register as a side effect of a particular assembler instruction. 
In order to inform the compiler of these changes, list them in the clobber 
list. Clobber list items are either register names or the special clobbers 
(listed below). Each clobber list item is a string constant 
enclosed in double quotes and separated by commas.

Clobber descriptions may not in any way overlap with an input or output 
operand. For example, you may not have an operand describing a register class 
with one member when listing that register in the clobber list. Variables 
declared to live in specific registers (@pxref{Explicit Register 
Variables}) and used 
as @code{asm} input or output operands must have no part mentioned in the 
clobber description. In particular, there is no way to specify that input 
operands get modified without also specifying them as output operands.

When the compiler selects which registers to use to represent input and output 
operands, it does not use any of the clobbered registers. As a result, 
clobbered registers are available for any use in the assembler code.

Another restriction is that the clobber list should not contain the
stack pointer register.  This is because the compiler requires the
value of the stack pointer to be the same after an @code{asm}
statement as it was on entry to the statement.  However, previous
versions of GCC did not enforce this rule and allowed the stack
pointer to appear in the list, with unclear semantics.  This behavior
is deprecated and listing the stack pointer may become an error in
future versions of GCC@.

Here is a realistic example for the VAX showing the use of clobbered 
registers: 

@example
asm volatile ("movc3 %0, %1, %2"
                   : /* No outputs. */
                   : "g" (from), "g" (to), "g" (count)
                   : "r0", "r1", "r2", "r3", "r4", "r5", "memory");
@end example

Also, there are two special clobber arguments:

@table @code
@item "cc"
The @code{"cc"} clobber indicates that the assembler code modifies the flags 
register. On some machines, GCC represents the condition codes as a specific 
hardware register; @code{"cc"} serves to name this register.
On other machines, condition code handling is different, 
and specifying @code{"cc"} has no effect. But 
it is valid no matter what the target.

@item "memory"
The @code{"memory"} clobber tells the compiler that the assembly code
performs memory 
reads or writes to items other than those listed in the input and output 
operands (for example, accessing the memory pointed to by one of the input 
parameters). To ensure memory contains correct values, GCC may need to flush 
specific register values to memory before executing the @code{asm}. Further, 
the compiler does not assume that any values read from memory before an 
@code{asm} remain unchanged after that @code{asm}; it reloads them as 
needed.  
Using the @code{"memory"} clobber effectively forms a read/write
memory barrier for the compiler.

Note that this clobber does not prevent the @emph{processor} from doing 
speculative reads past the @code{asm} statement. To prevent that, you need 
processor-specific fence instructions.

@end table

Flushing registers to memory has performance implications and may be
an issue for time-sensitive code.  You can provide better information
to GCC to avoid this, as shown in the following examples.  At a
minimum, aliasing rules allow GCC to know what memory @emph{doesn't}
need to be flushed.

Here is a fictitious sum of squares instruction, that takes two
pointers to floating point values in memory and produces a floating
point register output.
Notice that @code{x}, and @code{y} both appear twice in the @code{asm}
parameters, once to specify memory accessed, and once to specify a
base register used by the @code{asm}.  You won't normally be wasting a
register by doing this as GCC can use the same register for both
purposes.  However, it would be foolish to use both @code{%1} and
@code{%3} for @code{x} in this @code{asm} and expect them to be the
same.  In fact, @code{%3} may well not be a register.  It might be a
symbolic memory reference to the object pointed to by @code{x}.

@smallexample
asm ("sumsq %0, %1, %2"
     : "+f" (result)
     : "r" (x), "r" (y), "m" (*x), "m" (*y));
@end smallexample

Here is a fictitious @code{*z++ = *x++ * *y++} instruction.
Notice that the @code{x}, @code{y} and @code{z} pointer registers
must be specified as input/output because the @code{asm} modifies
them.

@smallexample
asm ("vecmul %0, %1, %2"
     : "+r" (z), "+r" (x), "+r" (y), "=m" (*z)
     : "m" (*x), "m" (*y));
@end smallexample

An x86 example where the string memory argument is of unknown length.

@smallexample
asm("repne scasb"
    : "=c" (count), "+D" (p)
    : "m" (*(const char (*)[]) p), "0" (-1), "a" (0));
@end smallexample

If you know the above will only be reading a ten byte array then you
could instead use a memory input like:
@code{"m" (*(const char (*)[10]) p)}.

Here is an example of a PowerPC vector scale implemented in assembly,
complete with vector and condition code clobbers, and some initialized
offset registers that are unchanged by the @code{asm}.

@smallexample
void
dscal (size_t n, double *x, double alpha)
@{
  asm ("/* lots of asm here */"
       : "+m" (*(double (*)[n]) x), "+&r" (n), "+b" (x)
       : "d" (alpha), "b" (32), "b" (48), "b" (64),
         "b" (80), "b" (96), "b" (112)
       : "cr0",
         "vs32","vs33","vs34","vs35","vs36","vs37","vs38","vs39",
         "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47");
@}
@end smallexample

Rather than allocating fixed registers via clobbers to provide scratch
registers for an @code{asm} statement, an alternative is to define a
variable and make it an early-clobber output as with @code{a2} and
@code{a3} in the example below.  This gives the compiler register
allocator more freedom.  You can also define a variable and make it an
output tied to an input as with @code{a0} and @code{a1}, tied
respectively to @code{ap} and @code{lda}.  Of course, with tied
outputs your @code{asm} can't use the input value after modifying the
output register since they are one and the same register.  What's
more, if you omit the early-clobber on the output, it is possible that
GCC might allocate the same register to another of the inputs if GCC
could prove they had the same value on entry to the @code{asm}.  This
is why @code{a1} has an early-clobber.  Its tied input, @code{lda}
might conceivably be known to have the value 16 and without an
early-clobber share the same register as @code{%11}.  On the other
hand, @code{ap} can't be the same as any of the other inputs, so an
early-clobber on @code{a0} is not needed.  It is also not desirable in
this case.  An early-clobber on @code{a0} would cause GCC to allocate
a separate register for the @code{"m" (*(const double (*)[]) ap)}
input.  Note that tying an input to an output is the way to set up an
initialized temporary register modified by an @code{asm} statement.
An input not tied to an output is assumed by GCC to be unchanged, for
example @code{"b" (16)} below sets up @code{%11} to 16, and GCC might
use that register in following code if the value 16 happened to be
needed.  You can even use a normal @code{asm} output for a scratch if
all inputs that might share the same register are consumed before the
scratch is used.  The VSX registers clobbered by the @code{asm}
statement could have used this technique except for GCC's limit on the
number of @code{asm} parameters.

@smallexample
static void
dgemv_kernel_4x4 (long n, const double *ap, long lda,
                  const double *x, double *y, double alpha)
@{
  double *a0;
  double *a1;
  double *a2;
  double *a3;

  __asm__
    (
     /* lots of asm here */
     "#n=%1 ap=%8=%12 lda=%13 x=%7=%10 y=%0=%2 alpha=%9 o16=%11\n"
     "#a0=%3 a1=%4 a2=%5 a3=%6"
     :
       "+m" (*(double (*)[n]) y),
       "+&r" (n),	// 1
       "+b" (y),	// 2
       "=b" (a0),	// 3
       "=&b" (a1),	// 4
       "=&b" (a2),	// 5
       "=&b" (a3)	// 6
     :
       "m" (*(const double (*)[n]) x),
       "m" (*(const double (*)[]) ap),
       "d" (alpha),	// 9
       "r" (x),		// 10
       "b" (16),	// 11
       "3" (ap),	// 12
       "4" (lda)	// 13
     :
       "cr0",
       "vs32","vs33","vs34","vs35","vs36","vs37",
       "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47"
     );
@}
@end smallexample

@anchor{GotoLabels}
@subsubsection Goto Labels
@cindex @code{asm} goto labels

@code{asm goto} allows assembly code to jump to one or more C labels.  The
@var{GotoLabels} section in an @code{asm goto} statement contains 
a comma-separated 
list of all C labels to which the assembler code may jump. GCC assumes that 
@code{asm} execution falls through to the next statement (if this is not the 
case, consider using the @code{__builtin_unreachable} intrinsic after the 
@code{asm} statement). Optimization of @code{asm goto} may be improved by 
using the @code{hot} and @code{cold} label attributes (@pxref{Label 
Attributes}).

If the assembler code does modify anything, use the @code{"memory"} clobber 
to force the 
optimizers to flush all register values to memory and reload them if 
necessary after the @code{asm} statement.

Also note that an @code{asm goto} statement is always implicitly
considered volatile.

Be careful when you set output operands inside @code{asm goto} only on
some possible control flow paths.  If you don't set up the output on
given path and never use it on this path, it is okay.  Otherwise, you
should use @samp{+} constraint modifier meaning that the operand is
input and output one.  With this modifier you will have the correct
values on all possible paths from the @code{asm goto}.

To reference a label in the assembler template, prefix it with
@samp{%l} (lowercase @samp{L}) followed by its (zero-based) position
in @var{GotoLabels} plus the number of input and output operands.
Output operand with constraint modifier @samp{+} is counted as two
operands because it is considered as one output and one input operand.
For example, if the @code{asm} has three inputs, one output operand
with constraint modifier @samp{+} and one output operand with
constraint modifier @samp{=} and references two labels, refer to the
first label as @samp{%l6} and the second as @samp{%l7}).

Alternately, you can reference labels using the actual C label name
enclosed in brackets.  For example, to reference a label named
@code{carry}, you can use @samp{%l[carry]}.  The label must still be
listed in the @var{GotoLabels} section when using this approach.  It
is better to use the named references for labels as in this case you
can avoid counting input and output operands and special treatment of
output operands with constraint modifier @samp{+}.

Here is an example of @code{asm goto} for i386:

@example
asm goto (
    "btl %1, %0\n\t"
    "jc %l2"
    : /* No outputs. */
    : "r" (p1), "r" (p2) 
    : "cc" 
    : carry);

return 0;

carry:
return 1;
@end example

The following example shows an @code{asm goto} that uses a memory clobber.

@example
int frob(int x)
@{
  int y;
  asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
            : /* No outputs. */
            : "r"(x), "r"(&y)
            : "r5", "memory" 
            : error);
  return y;
error:
  return -1;
@}
@end example

The following example shows an @code{asm goto} that uses an output.

@example
int foo(int count)
@{
  asm goto ("dec %0; jb %l[stop]"
            : "+r" (count)
            :
            :
            : stop);
  return count;
stop:
  return 0;
@}
@end example

The following artificial example shows an @code{asm goto} that sets
up an output only on one path inside the @code{asm goto}.  Usage of
constraint modifier @code{=} instead of @code{+} would be wrong as
@code{factor} is used on all paths from the @code{asm goto}.

@example
int foo(int inp)
@{
  int factor = 0;
  asm goto ("cmp %1, 10; jb %l[lab]; mov 2, %0"
            : "+r" (factor)
            : "r" (inp)
            :
            : lab);
lab:
  return inp * factor; /* return 2 * inp or 0 if inp < 10 */
@}
@end example

@anchor{x86Operandmodifiers}
@subsubsection x86 Operand Modifiers

References to input, output, and goto operands in the assembler template
of extended @code{asm} statements can use 
modifiers to affect the way the operands are formatted in 
the code output to the assembler. For example, the 
following code uses the @samp{h} and @samp{b} modifiers for x86:

@example
uint16_t  num;
asm volatile ("xchg %h0, %b0" : "+a" (num) );
@end example

@noindent
These modifiers generate this assembler code:

@example
xchg %ah, %al
@end example

The rest of this discussion uses the following code for illustrative purposes.

@example
int main()
@{
   int iInt = 1;

top:

   asm volatile goto ("some assembler instructions here"
   : /* No outputs. */
   : "q" (iInt), "X" (sizeof(unsigned char) + 1), "i" (42)
   : /* No clobbers. */
   : top);
@}
@end example

With no modifiers, this is what the output from the operands would be
for the @samp{att} and @samp{intel} dialects of assembler:

@multitable {Operand} {$.L2} {OFFSET FLAT:.L2}
@headitem Operand @tab @samp{att} @tab @samp{intel}
@item @code{%0}
@tab @code{%eax}
@tab @code{eax}
@item @code{%1}
@tab @code{$2}
@tab @code{2}
@item @code{%3}
@tab @code{$.L3}
@tab @code{OFFSET FLAT:.L3}
@item @code{%4}
@tab @code{$8}
@tab @code{8}
@item @code{%5}
@tab @code{%xmm0}
@tab @code{xmm0}
@item @code{%7}
@tab @code{$0}
@tab @code{0}
@end multitable

The table below shows the list of supported modifiers and their effects.

@multitable {Modifier} {Print the opcode suffix for the size of th} {Operand} {@samp{att}} {@samp{intel}}
@headitem Modifier @tab Description @tab Operand @tab @samp{att} @tab @samp{intel}
@item @code{A}
@tab Print an absolute memory reference.
@tab @code{%A0}
@tab @code{*%rax}
@tab @code{rax}
@item @code{b}
@tab Print the QImode name of the register.
@tab @code{%b0}
@tab @code{%al}
@tab @code{al}
@item @code{B}
@tab print the opcode suffix of b.
@tab @code{%B0}
@tab @code{b}
@tab
@item @code{c}
@tab Require a constant operand and print the constant expression with no punctuation.
@tab @code{%c1}
@tab @code{2}
@tab @code{2}
@item @code{d}
@tab print duplicated register operand for AVX instruction.
@tab @code{%d5}
@tab @code{%xmm0, %xmm0}
@tab @code{xmm0, xmm0}
@item @code{E}
@tab Print the address in Double Integer (DImode) mode (8 bytes) when the target is 64-bit.
Otherwise mode is unspecified (VOIDmode).
@tab @code{%E1}
@tab @code{%(rax)}
@tab @code{[rax]}
@item @code{g}
@tab Print the V16SFmode name of the register.
@tab @code{%g0}
@tab @code{%zmm0}
@tab @code{zmm0}
@item @code{h}
@tab Print the QImode name for a ``high'' register.
@tab @code{%h0}
@tab @code{%ah}
@tab @code{ah}
@item @code{H}
@tab Add 8 bytes to an offsettable memory reference. Useful when accessing the
high 8 bytes of SSE values. For a memref in (%rax), it generates
@tab @code{%H0}
@tab @code{8(%rax)}
@tab @code{8[rax]}
@item @code{k}
@tab Print the SImode name of the register.
@tab @code{%k0}
@tab @code{%eax}
@tab @code{eax}
@item @code{l}
@tab Print the label name with no punctuation.
@tab @code{%l3}
@tab @code{.L3}
@tab @code{.L3}
@item @code{L}
@tab print the opcode suffix of l.
@tab @code{%L0}
@tab @code{l}
@tab
@item @code{N}
@tab print maskz.
@tab @code{%N7}
@tab @code{@{z@}}
@tab @code{@{z@}}
@item @code{p}
@tab Print raw symbol name (without syntax-specific prefixes).
@tab @code{%p2}
@tab @code{42}
@tab @code{42}
@item @code{P}
@tab If used for a function, print the PLT suffix and generate PIC code.
For example, emit @code{foo@@PLT} instead of 'foo' for the function
foo(). If used for a constant, drop all syntax-specific prefixes and
issue the bare constant. See @code{p} above.
@item @code{q}
@tab Print the DImode name of the register.
@tab @code{%q0}
@tab @code{%rax}
@tab @code{rax}
@item @code{Q}
@tab print the opcode suffix of q.
@tab @code{%Q0}
@tab @code{q}
@tab
@item @code{R}
@tab print embedded rounding and sae.
@tab @code{%R4}
@tab @code{@{rn-sae@}, }
@tab @code{, @{rn-sae@}}
@item @code{r}
@tab print only sae.
@tab @code{%r4}
@tab @code{@{sae@}, }
@tab @code{, @{sae@}}
@item @code{s}
@tab print a shift double count, followed by the assemblers argument
delimiterprint the opcode suffix of s.
@tab @code{%s1}
@tab @code{$2, }
@tab @code{2, }
@item @code{S}
@tab print the opcode suffix of s.
@tab @code{%S0}
@tab @code{s}
@tab
@item @code{t}
@tab print the V8SFmode name of the register.
@tab @code{%t5}
@tab @code{%ymm0}
@tab @code{ymm0}
@item @code{T}
@tab print the opcode suffix of t.
@tab @code{%T0}
@tab @code{t}
@tab
@item @code{V}
@tab print naked full integer register name without %.
@tab @code{%V0}
@tab @code{eax}
@tab @code{eax}
@item @code{w}
@tab Print the HImode name of the register.
@tab @code{%w0}
@tab @code{%ax}
@tab @code{ax}
@item @code{W}
@tab print the opcode suffix of w.
@tab @code{%W0}
@tab @code{w}
@tab
@item @code{x}
@tab print the V4SFmode name of the register.
@tab @code{%x5}
@tab @code{%xmm0}
@tab @code{xmm0}
@item @code{y}
@tab print "st(0)" instead of "st" as a register.
@tab @code{%y6}
@tab @code{%st(0)}
@tab @code{st(0)}
@item @code{z}
@tab Print the opcode suffix for the size of the current integer operand (one of @code{b}/@code{w}/@code{l}/@code{q}).
@tab @code{%z0}
@tab @code{l}
@tab 
@item @code{Z}
@tab Like @code{z}, with special suffixes for x87 instructions.
@end multitable


@anchor{x86floatingpointasmoperands}
@subsubsection x86 Floating-Point @code{asm} Operands

On x86 targets, there are several rules on the usage of stack-like registers
in the operands of an @code{asm}.  These rules apply only to the operands
that are stack-like registers:

@enumerate
@item
Given a set of input registers that die in an @code{asm}, it is
necessary to know which are implicitly popped by the @code{asm}, and
which must be explicitly popped by GCC@.

An input register that is implicitly popped by the @code{asm} must be
explicitly clobbered, unless it is constrained to match an
output operand.

@item
For any input register that is implicitly popped by an @code{asm}, it is
necessary to know how to adjust the stack to compensate for the pop.
If any non-popped input is closer to the top of the reg-stack than
the implicitly popped register, it would not be possible to know what the
stack looked like---it's not clear how the rest of the stack ``slides
up''.

All implicitly popped input registers must be closer to the top of
the reg-stack than any input that is not implicitly popped.

It is possible that if an input dies in an @code{asm}, the compiler might
use the input register for an output reload.  Consider this example:

@smallexample
asm ("foo" : "=t" (a) : "f" (b));
@end smallexample

@noindent
This code says that input @code{b} is not popped by the @code{asm}, and that
the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one
deeper after the @code{asm} than it was before.  But, it is possible that
reload may think that it can use the same register for both the input and
the output.

To prevent this from happening,
if any input operand uses the @samp{f} constraint, all output register
constraints must use the @samp{&} early-clobber modifier.

The example above is correctly written as:

@smallexample
asm ("foo" : "=&t" (a) : "f" (b));
@end smallexample

@item
Some operands need to be in particular places on the stack.  All
output operands fall in this category---GCC has no other way to
know which registers the outputs appear in unless you indicate
this in the constraints.

Output operands must specifically indicate which register an output
appears in after an @code{asm}.  @samp{=f} is not allowed: the operand
constraints must select a class with a single register.

@item
Output operands may not be ``inserted'' between existing stack registers.
Since no 387 opcode uses a read/write operand, all output operands
are dead before the @code{asm}, and are pushed by the @code{asm}.
It makes no sense to push anywhere but the top of the reg-stack.

Output operands must start at the top of the reg-stack: output
operands may not ``skip'' a register.

@item
Some @code{asm} statements may need extra stack space for internal
calculations.  This can be guaranteed by clobbering stack registers
unrelated to the inputs and outputs.

@end enumerate

This @code{asm}
takes one input, which is internally popped, and produces two outputs.

@smallexample
asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
@end smallexample

@noindent
This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode,
and replaces them with one output.  The @code{st(1)} clobber is necessary 
for the compiler to know that @code{fyl2xp1} pops both inputs.

@smallexample
asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
@end smallexample

@anchor{msp430Operandmodifiers}
@subsubsection MSP430 Operand Modifiers

The list below describes the supported modifiers and their effects for MSP430.

@multitable @columnfractions .10 .90
@headitem Modifier @tab Description
@item @code{A} @tab Select low 16-bits of the constant/register/memory operand.
@item @code{B} @tab Select high 16-bits of the constant/register/memory
operand.
@item @code{C} @tab Select bits 32-47 of the constant/register/memory operand.
@item @code{D} @tab Select bits 48-63 of the constant/register/memory operand.
@item @code{H} @tab Equivalent to @code{B} (for backwards compatibility).
@item @code{I} @tab Print the inverse (logical @code{NOT}) of the constant
value.
@item @code{J} @tab Print an integer without a @code{#} prefix.
@item @code{L} @tab Equivalent to @code{A} (for backwards compatibility).
@item @code{O} @tab Offset of the current frame from the top of the stack.
@item @code{Q} @tab Use the @code{A} instruction postfix.
@item @code{R} @tab Inverse of condition code, for unsigned comparisons.
@item @code{W} @tab Subtract 16 from the constant value.
@item @code{X} @tab Use the @code{X} instruction postfix.
@item @code{Y} @tab Subtract 4 from the constant value.
@item @code{Z} @tab Subtract 1 from the constant value.
@item @code{b} @tab Append @code{.B}, @code{.W} or @code{.A} to the
instruction, depending on the mode.
@item @code{d} @tab Offset 1 byte of a memory reference or constant value.
@item @code{e} @tab Offset 3 bytes of a memory reference or constant value.
@item @code{f} @tab Offset 5 bytes of a memory reference or constant value.
@item @code{g} @tab Offset 7 bytes of a memory reference or constant value.
@item @code{p} @tab Print the value of 2, raised to the power of the given
constant.  Used to select the specified bit position.
@item @code{r} @tab Inverse of condition code, for signed comparisons.
@item @code{x} @tab Equivialent to @code{X}, but only for pointers.
@end multitable

@lowersections
@include md.texi
@raisesections

@node Asm Labels
@subsection Controlling Names Used in Assembler Code
@cindex assembler names for identifiers
@cindex names used in assembler code
@cindex identifiers, names in assembler code

You can specify the name to be used in the assembler code for a C
function or variable by writing the @code{asm} (or @code{__asm__})
keyword after the declarator.
It is up to you to make sure that the assembler names you choose do not
conflict with any other assembler symbols, or reference registers.

@subsubheading Assembler names for data

This sample shows how to specify the assembler name for data:

@smallexample
int foo asm ("myfoo") = 2;
@end smallexample

@noindent
This specifies that the name to be used for the variable @code{foo} in
the assembler code should be @samp{myfoo} rather than the usual
@samp{_foo}.

On systems where an underscore is normally prepended to the name of a C
variable, this feature allows you to define names for the
linker that do not start with an underscore.

GCC does not support using this feature with a non-static local variable 
since such variables do not have assembler names.  If you are
trying to put the variable in a particular register, see 
@ref{Explicit Register Variables}.

@subsubheading Assembler names for functions

To specify the assembler name for functions, write a declaration for the 
function before its definition and put @code{asm} there, like this:

@smallexample
int func (int x, int y) asm ("MYFUNC");
     
int func (int x, int y)
@{
   /* @r{@dots{}} */
@end smallexample

@noindent
This specifies that the name to be used for the function @code{func} in
the assembler code should be @code{MYFUNC}.

@node Explicit Register Variables
@subsection Variables in Specified Registers
@anchor{Explicit Reg Vars}
@cindex explicit register variables
@cindex variables in specified registers
@cindex specified registers

GNU C allows you to associate specific hardware registers with C 
variables.  In almost all cases, allowing the compiler to assign
registers produces the best code.  However under certain unusual
circumstances, more precise control over the variable storage is 
required.

Both global and local variables can be associated with a register.  The
consequences of performing this association are very different between
the two, as explained in the sections below.

@menu
* Global Register Variables::   Variables declared at global scope.
* Local Register Variables::    Variables declared within a function.
@end menu

@node Global Register Variables
@subsubsection Defining Global Register Variables
@anchor{Global Reg Vars}
@cindex global register variables
@cindex registers, global variables in
@cindex registers, global allocation

You can define a global register variable and associate it with a specified 
register like this:

@smallexample
register int *foo asm ("r12");
@end smallexample

@noindent
Here @code{r12} is the name of the register that should be used. Note that 
this is the same syntax used for defining local register variables, but for 
a global variable the declaration appears outside a function. The 
@code{register} keyword is required, and cannot be combined with 
@code{static}. The register name must be a valid register name for the
target platform.

Do not use type qualifiers such as @code{const} and @code{volatile}, as
the outcome may be contrary to expectations.  In  particular, using the
@code{volatile} qualifier does not fully prevent the compiler from
optimizing accesses to the register.

Registers are a scarce resource on most systems and allowing the 
compiler to manage their usage usually results in the best code. However, 
under special circumstances it can make sense to reserve some globally.
For example this may be useful in programs such as programming language 
interpreters that have a couple of global variables that are accessed 
very often.

After defining a global register variable, for the current compilation
unit:

@itemize @bullet
@item If the register is a call-saved register, call ABI is affected:
the register will not be restored in function epilogue sequences after
the variable has been assigned.  Therefore, functions cannot safely
return to callers that assume standard ABI.
@item Conversely, if the register is a call-clobbered register, making
calls to functions that use standard ABI may lose contents of the variable.
Such calls may be created by the compiler even if none are evident in
the original program, for example when libgcc functions are used to
make up for unavailable instructions.
@item Accesses to the variable may be optimized as usual and the register
remains available for allocation and use in any computations, provided that
observable values of the variable are not affected.
@item If the variable is referenced in inline assembly, the type of access
must be provided to the compiler via constraints (@pxref{Constraints}).
Accesses from basic asms are not supported.
@end itemize

Note that these points @emph{only} apply to code that is compiled with the
definition. The behavior of code that is merely linked in (for example 
code from libraries) is not affected.

If you want to recompile source files that do not actually use your global 
register variable so they do not use the specified register for any other 
purpose, you need not actually add the global register declaration to 
their source code. It suffices to specify the compiler option 
@option{-ffixed-@var{reg}} (@pxref{Code Gen Options}) to reserve the 
register.

@subsubheading Declaring the variable

Global register variables cannot have initial values, because an
executable file has no means to supply initial contents for a register.

When selecting a register, choose one that is normally saved and 
restored by function calls on your machine. This ensures that code
which is unaware of this reservation (such as library routines) will 
restore it before returning.

On machines with register windows, be sure to choose a global
register that is not affected magically by the function call mechanism.

@subsubheading Using the variable

@cindex @code{qsort}, and global register variables
When calling routines that are not aware of the reservation, be 
cautious if those routines call back into code which uses them. As an 
example, if you call the system library version of @code{qsort}, it may 
clobber your registers during execution, but (if you have selected 
appropriate registers) it will restore them before returning. However 
it will @emph{not} restore them before calling @code{qsort}'s comparison 
function. As a result, global values will not reliably be available to 
the comparison function unless the @code{qsort} function itself is rebuilt.

Similarly, it is not safe to access the global register variables from signal
handlers or from more than one thread of control. Unless you recompile 
them specially for the task at hand, the system library routines may 
temporarily use the register for other things.  Furthermore, since the register
is not reserved exclusively for the variable, accessing it from handlers of
asynchronous signals may observe unrelated temporary values residing in the
register.

@cindex register variable after @code{longjmp}
@cindex global register after @code{longjmp}
@cindex value after @code{longjmp}
@findex longjmp
@findex setjmp
On most machines, @code{longjmp} restores to each global register
variable the value it had at the time of the @code{setjmp}. On some
machines, however, @code{longjmp} does not change the value of global
register variables. To be portable, the function that called @code{setjmp}
should make other arrangements to save the values of the global register
variables, and to restore them in a @code{longjmp}. This way, the same
thing happens regardless of what @code{longjmp} does.

@node Local Register Variables
@subsubsection Specifying Registers for Local Variables
@anchor{Local Reg Vars}
@cindex local variables, specifying registers
@cindex specifying registers for local variables
@cindex registers for local variables

You can define a local register variable and associate it with a specified 
register like this:

@smallexample
register int *foo asm ("r12");
@end smallexample

@noindent
Here @code{r12} is the name of the register that should be used.  Note
that this is the same syntax used for defining global register variables, 
but for a local variable the declaration appears within a function.  The 
@code{register} keyword is required, and cannot be combined with 
@code{static}.  The register name must be a valid register name for the
target platform.

Do not use type qualifiers such as @code{const} and @code{volatile}, as
the outcome may be contrary to expectations. In particular, when the
@code{const} qualifier is used, the compiler may substitute the
variable with its initializer in @code{asm} statements, which may cause
the corresponding operand to appear in a different register.

As with global register variables, it is recommended that you choose 
a register that is normally saved and restored by function calls on your 
machine, so that calls to library routines will not clobber it.

The only supported use for this feature is to specify registers
for input and output operands when calling Extended @code{asm} 
(@pxref{Extended Asm}).  This may be necessary if the constraints for a 
particular machine don't provide sufficient control to select the desired 
register.  To force an operand into a register, create a local variable 
and specify the register name after the variable's declaration.  Then use 
the local variable for the @code{asm} operand and specify any constraint 
letter that matches the register:

@smallexample
register int *p1 asm ("r0") = @dots{};
register int *p2 asm ("r1") = @dots{};
register int *result asm ("r0");
asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
@end smallexample

@emph{Warning:} In the above example, be aware that a register (for example 
@code{r0}) can be call-clobbered by subsequent code, including function 
calls and library calls for arithmetic operators on other variables (for 
example the initialization of @code{p2}).  In this case, use temporary 
variables for expressions between the register assignments:

@smallexample
int t1 = @dots{};
register int *p1 asm ("r0") = @dots{};
register int *p2 asm ("r1") = t1;
register int *result asm ("r0");
asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
@end smallexample

Defining a register variable does not reserve the register.  Other than
when invoking the Extended @code{asm}, the contents of the specified 
register are not guaranteed.  For this reason, the following uses 
are explicitly @emph{not} supported.  If they appear to work, it is only 
happenstance, and may stop working as intended due to (seemingly) 
unrelated changes in surrounding code, or even minor changes in the 
optimization of a future version of gcc:

@itemize @bullet
@item Passing parameters to or from Basic @code{asm}
@item Passing parameters to or from Extended @code{asm} without using input 
or output operands.
@item Passing parameters to or from routines written in assembler (or
other languages) using non-standard calling conventions.
@end itemize

Some developers use Local Register Variables in an attempt to improve 
gcc's allocation of registers, especially in large functions.  In this 
case the register name is essentially a hint to the register allocator.
While in some instances this can generate better code, improvements are
subject to the whims of the allocator/optimizers.  Since there are no
guarantees that your improvements won't be lost, this usage of Local
Register Variables is discouraged.

On the MIPS platform, there is related use for local register variables 
with slightly different characteristics (@pxref{MIPS Coprocessors,, 
Defining coprocessor specifics for MIPS targets, gccint, 
GNU Compiler Collection (GCC) Internals}).

@node Size of an asm
@subsection Size of an @code{asm}

Some targets require that GCC track the size of each instruction used
in order to generate correct code.  Because the final length of the
code produced by an @code{asm} statement is only known by the
assembler, GCC must make an estimate as to how big it will be.  It
does this by counting the number of instructions in the pattern of the
@code{asm} and multiplying that by the length of the longest
instruction supported by that processor.  (When working out the number
of instructions, it assumes that any occurrence of a newline or of
whatever statement separator character is supported by the assembler ---
typically @samp{;} --- indicates the end of an instruction.)

Normally, GCC's estimate is adequate to ensure that correct
code is generated, but it is possible to confuse the compiler if you use
pseudo instructions or assembler macros that expand into multiple real
instructions, or if you use assembler directives that expand to more
space in the object file than is needed for a single instruction.
If this happens then the assembler may produce a diagnostic saying that
a label is unreachable.

@cindex @code{asm inline}
This size is also used for inlining decisions.  If you use @code{asm inline}
instead of just @code{asm}, then for inlining purposes the size of the asm
is taken as the minimum size, ignoring how many instructions GCC thinks it is.

@node Alternate Keywords
@section Alternate Keywords
@cindex alternate keywords
@cindex keywords, alternate

@option{-ansi} and the various @option{-std} options disable certain
keywords.  This causes trouble when you want to use GNU C extensions, or
a general-purpose header file that should be usable by all programs,
including ISO C programs.  The keywords @code{asm}, @code{typeof} and
@code{inline} are not available in programs compiled with
@option{-ansi} or @option{-std} (although @code{inline} can be used in a
program compiled with @option{-std=c99} or a later standard).  The
ISO C99 keyword
@code{restrict} is only available when @option{-std=gnu99} (which will
eventually be the default) or @option{-std=c99} (or the equivalent
@option{-std=iso9899:1999}), or an option for a later standard
version, is used.

The way to solve these problems is to put @samp{__} at the beginning and
end of each problematical keyword.  For example, use @code{__asm__}
instead of @code{asm}, and @code{__inline__} instead of @code{inline}.

Other C compilers won't accept these alternative keywords; if you want to
compile with another compiler, you can define the alternate keywords as
macros to replace them with the customary keywords.  It looks like this:

@smallexample
#ifndef __GNUC__
#define __asm__ asm
#endif
@end smallexample

@findex __extension__
@opindex pedantic
@option{-pedantic} and other options cause warnings for many GNU C extensions.
You can
prevent such warnings within one expression by writing
@code{__extension__} before the expression.  @code{__extension__} has no
effect aside from this.

@node Incomplete Enums
@section Incomplete @code{enum} Types

You can define an @code{enum} tag without specifying its possible values.
This results in an incomplete type, much like what you get if you write
@code{struct foo} without describing the elements.  A later declaration
that does specify the possible values completes the type.

You cannot allocate variables or storage using the type while it is
incomplete.  However, you can work with pointers to that type.

This extension may not be very useful, but it makes the handling of
@code{enum} more consistent with the way @code{struct} and @code{union}
are handled.

This extension is not supported by GNU C++.

@node Function Names
@section Function Names as Strings
@cindex @code{__func__} identifier
@cindex @code{__FUNCTION__} identifier
@cindex @code{__PRETTY_FUNCTION__} identifier

GCC provides three magic constants that hold the name of the current
function as a string.  In C++11 and later modes, all three are treated
as constant expressions and can be used in @code{constexpr} constexts.
The first of these constants is @code{__func__}, which is part of
the C99 standard:

The identifier @code{__func__} is implicitly declared by the translator
as if, immediately following the opening brace of each function
definition, the declaration

@smallexample
static const char __func__[] = "function-name";
@end smallexample

@noindent
appeared, where function-name is the name of the lexically-enclosing
function.  This name is the unadorned name of the function.  As an
extension, at file (or, in C++, namespace scope), @code{__func__}
evaluates to the empty string.

@code{__FUNCTION__} is another name for @code{__func__}, provided for
backward compatibility with old versions of GCC.

In C, @code{__PRETTY_FUNCTION__} is yet another name for
@code{__func__}, except that at file scope (or, in C++, namespace scope),
it evaluates to the string @code{"top level"}.  In addition, in C++,
@code{__PRETTY_FUNCTION__} contains the signature of the function as
well as its bare name.  For example, this program:

@smallexample
extern "C" int printf (const char *, ...);

class a @{
 public:
  void sub (int i)
    @{
      printf ("__FUNCTION__ = %s\n", __FUNCTION__);
      printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
    @}
@};

int
main (void)
@{
  a ax;
  ax.sub (0);
  return 0;
@}
@end smallexample

@noindent
gives this output:

@smallexample
__FUNCTION__ = sub
__PRETTY_FUNCTION__ = void a::sub(int)
@end smallexample

These identifiers are variables, not preprocessor macros, and may not
be used to initialize @code{char} arrays or be concatenated with string
literals.

@node Return Address
@section Getting the Return or Frame Address of a Function

These functions may be used to get information about the callers of a
function.

@deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
This function returns the return address of the current function, or of
one of its callers.  The @var{level} argument is number of frames to
scan up the call stack.  A value of @code{0} yields the return address
of the current function, a value of @code{1} yields the return address
of the caller of the current function, and so forth.  When inlining
the expected behavior is that the function returns the address of
the function that is returned to.  To work around this behavior use
the @code{noinline} function attribute.

The @var{level} argument must be a constant integer.

On some machines it may be impossible to determine the return address of
any function other than the current one; in such cases, or when the top
of the stack has been reached, this function returns an unspecified
value.  In addition, @code{__builtin_frame_address} may be used
to determine if the top of the stack has been reached.

Additional post-processing of the returned value may be needed, see
@code{__builtin_extract_return_addr}.

The stored representation of the return address in memory may be different
from the address returned by @code{__builtin_return_address}.  For example,
on AArch64 the stored address may be mangled with return address signing
whereas the address returned by @code{__builtin_return_address} is not.

Calling this function with a nonzero argument can have unpredictable
effects, including crashing the calling program.  As a result, calls
that are considered unsafe are diagnosed when the @option{-Wframe-address}
option is in effect.  Such calls should only be made in debugging
situations.

On targets where code addresses are representable as @code{void *},
@smallexample
void *addr = __builtin_extract_return_addr (__builtin_return_address (0));
@end smallexample
gives the code address where the current function would return.  For example,
such an address may be used with @code{dladdr} or other interfaces that work
with code addresses.
@end deftypefn

@deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr})
The address as returned by @code{__builtin_return_address} may have to be fed
through this function to get the actual encoded address.  For example, on the
31-bit S/390 platform the highest bit has to be masked out, or on SPARC
platforms an offset has to be added for the true next instruction to be
executed.

If no fixup is needed, this function simply passes through @var{addr}.
@end deftypefn

@deftypefn {Built-in Function} {void *} __builtin_frob_return_addr (void *@var{addr})
This function does the reverse of @code{__builtin_extract_return_addr}.
@end deftypefn

@deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
This function is similar to @code{__builtin_return_address}, but it
returns the address of the function frame rather than the return address
of the function.  Calling @code{__builtin_frame_address} with a value of
@code{0} yields the frame address of the current function, a value of
@code{1} yields the frame address of the caller of the current function,
and so forth.

The frame is the area on the stack that holds local variables and saved
registers.  The frame address is normally the address of the first word
pushed on to the stack by the function.  However, the exact definition
depends upon the processor and the calling convention.  If the processor
has a dedicated frame pointer register, and the function has a frame,
then @code{__builtin_frame_address} returns the value of the frame
pointer register.

On some machines it may be impossible to determine the frame address of
any function other than the current one; in such cases, or when the top
of the stack has been reached, this function returns @code{0} if
the first frame pointer is properly initialized by the startup code.

Calling this function with a nonzero argument can have unpredictable
effects, including crashing the calling program.  As a result, calls
that are considered unsafe are diagnosed when the @option{-Wframe-address}
option is in effect.  Such calls should only be made in debugging
situations.
@end deftypefn

@node Vector Extensions
@section Using Vector Instructions through Built-in Functions

On some targets, the instruction set contains SIMD vector instructions which
operate on multiple values contained in one large register at the same time.
For example, on the x86 the MMX, 3DNow!@: and SSE extensions can be used
this way.

The first step in using these extensions is to provide the necessary data
types.  This should be done using an appropriate @code{typedef}:

@smallexample
typedef int v4si __attribute__ ((vector_size (16)));
@end smallexample

@noindent
The @code{int} type specifies the @dfn{base type}, while the attribute specifies
the vector size for the variable, measured in bytes.  For example, the
declaration above causes the compiler to set the mode for the @code{v4si}
type to be 16 bytes wide and divided into @code{int} sized units.  For
a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
corresponding mode of @code{foo} is @acronym{V4SI}.

The @code{vector_size} attribute is only applicable to integral and
floating scalars, although arrays, pointers, and function return values
are allowed in conjunction with this construct. Only sizes that are
positive power-of-two multiples of the base type size are currently allowed.

All the basic integer types can be used as base types, both as signed
and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
@code{long long}.  In addition, @code{float} and @code{double} can be
used to build floating-point vector types.

Specifying a combination that is not valid for the current architecture
causes GCC to synthesize the instructions using a narrower mode.
For example, if you specify a variable of type @code{V4SI} and your
architecture does not allow for this specific SIMD type, GCC
produces code that uses 4 @code{SIs}.

The types defined in this manner can be used with a subset of normal C
operations.  Currently, GCC allows using the following operators
on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.

The operations behave like C++ @code{valarrays}.  Addition is defined as
the addition of the corresponding elements of the operands.  For
example, in the code below, each of the 4 elements in @var{a} is
added to the corresponding 4 elements in @var{b} and the resulting
vector is stored in @var{c}.

@smallexample
typedef int v4si __attribute__ ((vector_size (16)));

v4si a, b, c;

c = a + b;
@end smallexample

Subtraction, multiplication, division, and the logical operations
operate in a similar manner.  Likewise, the result of using the unary
minus or complement operators on a vector type is a vector whose
elements are the negative or complemented values of the corresponding
elements in the operand.

It is possible to use shifting operators @code{<<}, @code{>>} on
integer-type vectors. The operation is defined as following: @code{@{a0,
a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
@dots{}, an >> bn@}}@. Vector operands must have the same number of
elements. 

For convenience, it is allowed to use a binary vector operation
where one operand is a scalar. In that case the compiler transforms
the scalar operand into a vector where each element is the scalar from
the operation. The transformation happens only if the scalar could be
safely converted to the vector-element type.
Consider the following code.

@smallexample
typedef int v4si __attribute__ ((vector_size (16)));

v4si a, b, c;
long l;

a = b + 1;    /* a = b + @{1,1,1,1@}; */
a = 2 * b;    /* a = @{2,2,2,2@} * b; */

a = l + a;    /* Error, cannot convert long to int. */
@end smallexample

Vectors can be subscripted as if the vector were an array with
the same number of elements and base type.  Out of bound accesses
invoke undefined behavior at run time.  Warnings for out of bound
accesses for vector subscription can be enabled with
@option{-Warray-bounds}.

Vector comparison is supported with standard comparison
operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
vector expressions of integer-type or real-type. Comparison between
integer-type vectors and real-type vectors are not supported.  The
result of the comparison is a vector of the same width and number of
elements as the comparison operands with a signed integral element
type.

Vectors are compared element-wise producing 0 when comparison is false
and -1 (constant of the appropriate type where all bits are set)
otherwise. Consider the following example.

@smallexample
typedef int v4si __attribute__ ((vector_size (16)));

v4si a = @{1,2,3,4@};
v4si b = @{3,2,1,4@};
v4si c;

c = a >  b;     /* The result would be @{0, 0,-1, 0@}  */
c = a == b;     /* The result would be @{0,-1, 0,-1@}  */
@end smallexample

In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where
@code{b} and @code{c} are vectors of the same type and @code{a} is an
integer vector with the same number of elements of the same size as @code{b}
and @code{c}, computes all three arguments and creates a vector
@code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}.  Note that unlike in
OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}.
As in the case of binary operations, this syntax is also accepted when
one of @code{b} or @code{c} is a scalar that is then transformed into a
vector. If both @code{b} and @code{c} are scalars and the type of
@code{true?b:c} has the same size as the element type of @code{a}, then
@code{b} and @code{c} are converted to a vector type whose elements have
this type and with the same number of elements as @code{a}.

In C++, the logic operators @code{!, &&, ||} are available for vectors.
@code{!v} is equivalent to @code{v == 0}, @code{a && b} is equivalent to
@code{a!=0 & b!=0} and @code{a || b} is equivalent to @code{a!=0 | b!=0}.
For mixed operations between a scalar @code{s} and a vector @code{v},
@code{s && v} is equivalent to @code{s?v!=0:0} (the evaluation is
short-circuit) and @code{v && s} is equivalent to @code{v!=0 & (s?-1:0)}.

@findex __builtin_shuffle
Vector shuffling is available using functions
@code{__builtin_shuffle (vec, mask)} and
@code{__builtin_shuffle (vec0, vec1, mask)}.
Both functions construct a permutation of elements from one or two
vectors and return a vector of the same type as the input vector(s).
The @var{mask} is an integral vector with the same width (@var{W})
and element count (@var{N}) as the output vector.

The elements of the input vectors are numbered in memory ordering of
@var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}.  The
elements of @var{mask} are considered modulo @var{N} in the single-operand
case and modulo @math{2*@var{N}} in the two-operand case.

Consider the following example,

@smallexample
typedef int v4si __attribute__ ((vector_size (16)));

v4si a = @{1,2,3,4@};
v4si b = @{5,6,7,8@};
v4si mask1 = @{0,1,1,3@};
v4si mask2 = @{0,4,2,5@};
v4si res;

res = __builtin_shuffle (a, mask1);       /* res is @{1,2,2,4@}  */
res = __builtin_shuffle (a, b, mask2);    /* res is @{1,5,3,6@}  */
@end smallexample

Note that @code{__builtin_shuffle} is intentionally semantically
compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.

You can declare variables and use them in function calls and returns, as
well as in assignments and some casts.  You can specify a vector type as
a return type for a function.  Vector types can also be used as function
arguments.  It is possible to cast from one vector type to another,
provided they are of the same size (in fact, you can also cast vectors
to and from other datatypes of the same size).

You cannot operate between vectors of different lengths or different
signedness without a cast.

@findex __builtin_shufflevector
Vector shuffling is available using the
@code{__builtin_shufflevector (vec1, vec2, index...)}
function.  @var{vec1} and @var{vec2} must be expressions with
vector type with a compatible element type.  The result of
@code{__builtin_shufflevector} is a vector with the same element type
as @var{vec1} and @var{vec2} but that has an element count equal to
the number of indices specified.

The @var{index} arguments are a list of integers that specify the
elements indices of the first two vectors that should be extracted and
returned in a new vector. These element indices are numbered sequentially
starting with the first vector, continuing into the second vector.
An index of -1 can be used to indicate that the corresponding element in
the returned vector is a don't care and can be freely chosen to optimized
the generated code sequence performing the shuffle operation.

Consider the following example,
@smallexample
typedef int v4si __attribute__ ((vector_size (16)));
typedef int v8si __attribute__ ((vector_size (32)));

v8si a = @{1,-2,3,-4,5,-6,7,-8@};
v4si b = __builtin_shufflevector (a, a, 0, 2, 4, 6); /* b is @{1,3,5,7@} */
v4si c = @{-2,-4,-6,-8@};
v8si d = __builtin_shufflevector (c, b, 4, 0, 5, 1, 6, 2, 7, 3); /* d is a */
@end smallexample

@findex __builtin_convertvector
Vector conversion is available using the
@code{__builtin_convertvector (vec, vectype)}
function.  @var{vec} must be an expression with integral or floating
vector type and @var{vectype} an integral or floating vector type with the
same number of elements.  The result has @var{vectype} type and value of
a C cast of every element of @var{vec} to the element type of @var{vectype}.

Consider the following example,
@smallexample
typedef int v4si __attribute__ ((vector_size (16)));
typedef float v4sf __attribute__ ((vector_size (16)));
typedef double v4df __attribute__ ((vector_size (32)));
typedef unsigned long long v4di __attribute__ ((vector_size (32)));

v4si a = @{1,-2,3,-4@};
v4sf b = @{1.5f,-2.5f,3.f,7.f@};
v4di c = @{1ULL,5ULL,0ULL,10ULL@};
v4sf d = __builtin_convertvector (a, v4sf); /* d is @{1.f,-2.f,3.f,-4.f@} */
/* Equivalent of:
   v4sf d = @{ (float)a[0], (float)a[1], (float)a[2], (float)a[3] @}; */
v4df e = __builtin_convertvector (a, v4df); /* e is @{1.,-2.,3.,-4.@} */
v4df f = __builtin_convertvector (b, v4df); /* f is @{1.5,-2.5,3.,7.@} */
v4si g = __builtin_convertvector (f, v4si); /* g is @{1,-2,3,7@} */
v4si h = __builtin_convertvector (c, v4si); /* h is @{1,5,0,10@} */
@end smallexample

@cindex vector types, using with x86 intrinsics
Sometimes it is desirable to write code using a mix of generic vector
operations (for clarity) and machine-specific vector intrinsics (to
access vector instructions that are not exposed via generic built-ins).
On x86, intrinsic functions for integer vectors typically use the same
vector type @code{__m128i} irrespective of how they interpret the vector,
making it necessary to cast their arguments and return values from/to
other vector types.  In C, you can make use of a @code{union} type:
@c In C++ such type punning via a union is not allowed by the language
@smallexample
#include <immintrin.h>

typedef unsigned char u8x16 __attribute__ ((vector_size (16)));
typedef unsigned int  u32x4 __attribute__ ((vector_size (16)));

typedef union @{
        __m128i mm;
        u8x16   u8;
        u32x4   u32;
@} v128;
@end smallexample

@noindent
for variables that can be used with both built-in operators and x86
intrinsics:

@smallexample
v128 x, y = @{ 0 @};
memcpy (&x, ptr, sizeof x);
y.u8  += 0x80;
x.mm  = _mm_adds_epu8 (x.mm, y.mm);
x.u32 &= 0xffffff;

/* Instead of a variable, a compound literal may be used to pass the
   return value of an intrinsic call to a function expecting the union: */
v128 foo (v128);
x = foo ((v128) @{_mm_adds_epu8 (x.mm, y.mm)@});
@c This could be done implicitly with __attribute__((transparent_union)),
@c but GCC does not accept it for unions of vector types (PR 88955).
@end smallexample

@node Offsetof
@section Support for @code{offsetof}
@findex __builtin_offsetof

GCC implements for both C and C++ a syntactic extension to implement
the @code{offsetof} macro.

@smallexample
primary:
        "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"

offsetof_member_designator:
          @code{identifier}
        | offsetof_member_designator "." @code{identifier}
        | offsetof_member_designator "[" @code{expr} "]"
@end smallexample

This extension is sufficient such that

@smallexample
#define offsetof(@var{type}, @var{member})  __builtin_offsetof (@var{type}, @var{member})
@end smallexample

@noindent
is a suitable definition of the @code{offsetof} macro.  In C++, @var{type}
may be dependent.  In either case, @var{member} may consist of a single
identifier, or a sequence of member accesses and array references.

@node __sync Builtins
@section Legacy @code{__sync} Built-in Functions for Atomic Memory Access

The following built-in functions
are intended to be compatible with those described
in the @cite{Intel Itanium Processor-specific Application Binary Interface},
section 7.4.  As such, they depart from normal GCC practice by not using
the @samp{__builtin_} prefix and also by being overloaded so that they
work on multiple types.

The definition given in the Intel documentation allows only for the use of
the types @code{int}, @code{long}, @code{long long} or their unsigned
counterparts.  GCC allows any scalar type that is 1, 2, 4 or 8 bytes in
size other than the C type @code{_Bool} or the C++ type @code{bool}.
Operations on pointer arguments are performed as if the operands were
of the @code{uintptr_t} type.  That is, they are not scaled by the size
of the type to which the pointer points.

These functions are implemented in terms of the @samp{__atomic}
builtins (@pxref{__atomic Builtins}).  They should not be used for new
code which should use the @samp{__atomic} builtins instead.

Not all operations are supported by all target processors.  If a particular
operation cannot be implemented on the target processor, a warning is
generated and a call to an external function is generated.  The external
function carries the same name as the built-in version,
with an additional suffix
@samp{_@var{n}} where @var{n} is the size of the data type.

@c ??? Should we have a mechanism to suppress this warning?  This is almost
@c useful for implementing the operation under the control of an external
@c mutex.

In most cases, these built-in functions are considered a @dfn{full barrier}.
That is,
no memory operand is moved across the operation, either forward or
backward.  Further, instructions are issued as necessary to prevent the
processor from speculating loads across the operation and from queuing stores
after the operation.

All of the routines are described in the Intel documentation to take
``an optional list of variables protected by the memory barrier''.  It's
not clear what is meant by that; it could mean that @emph{only} the
listed variables are protected, or it could mean a list of additional
variables to be protected.  The list is ignored by GCC which treats it as
empty.  GCC interprets an empty list as meaning that all globally
accessible variables should be protected.

@table @code
@item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
@findex __sync_fetch_and_add
@findex __sync_fetch_and_sub
@findex __sync_fetch_and_or
@findex __sync_fetch_and_and
@findex __sync_fetch_and_xor
@findex __sync_fetch_and_nand
These built-in functions perform the operation suggested by the name, and
returns the value that had previously been in memory.  That is, operations
on integer operands have the following semantics.  Operations on pointer
arguments are performed as if the operands were of the @code{uintptr_t}
type.  That is, they are not scaled by the size of the type to which
the pointer points.

@smallexample
@{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
@{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @}   // nand
@end smallexample

The object pointed to by the first argument must be of integer or pointer
type.  It must not be a boolean type.

@emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.

@item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
@findex __sync_add_and_fetch
@findex __sync_sub_and_fetch
@findex __sync_or_and_fetch
@findex __sync_and_and_fetch
@findex __sync_xor_and_fetch
@findex __sync_nand_and_fetch
These built-in functions perform the operation suggested by the name, and
return the new value.  That is, operations on integer operands have
the following semantics.  Operations on pointer operands are performed as
if the operand's type were @code{uintptr_t}.

@smallexample
@{ *ptr @var{op}= value; return *ptr; @}
@{ *ptr = ~(*ptr & value); return *ptr; @}   // nand
@end smallexample

The same constraints on arguments apply as for the corresponding
@code{__sync_op_and_fetch} built-in functions.

@emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
as @code{*ptr = ~(*ptr & value)} instead of
@code{*ptr = ~*ptr & value}.

@item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
@itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
@findex __sync_bool_compare_and_swap
@findex __sync_val_compare_and_swap
These built-in functions perform an atomic compare and swap.
That is, if the current
value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
@code{*@var{ptr}}.

The ``bool'' version returns @code{true} if the comparison is successful and
@var{newval} is written.  The ``val'' version returns the contents
of @code{*@var{ptr}} before the operation.

@item __sync_synchronize (...)
@findex __sync_synchronize
This built-in function issues a full memory barrier.

@item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
@findex __sync_lock_test_and_set
This built-in function, as described by Intel, is not a traditional test-and-set
operation, but rather an atomic exchange operation.  It writes @var{value}
into @code{*@var{ptr}}, and returns the previous contents of
@code{*@var{ptr}}.

Many targets have only minimal support for such locks, and do not support
a full exchange operation.  In this case, a target may support reduced
functionality here by which the @emph{only} valid value to store is the
immediate constant 1.  The exact value actually stored in @code{*@var{ptr}}
is implementation defined.

This built-in function is not a full barrier,
but rather an @dfn{acquire barrier}.
This means that references after the operation cannot move to (or be
speculated to) before the operation, but previous memory stores may not
be globally visible yet, and previous memory loads may not yet be
satisfied.

@item void __sync_lock_release (@var{type} *ptr, ...)
@findex __sync_lock_release
This built-in function releases the lock acquired by
@code{__sync_lock_test_and_set}.
Normally this means writing the constant 0 to @code{*@var{ptr}}.

This built-in function is not a full barrier,
but rather a @dfn{release barrier}.
This means that all previous memory stores are globally visible, and all
previous memory loads have been satisfied, but following memory reads
are not prevented from being speculated to before the barrier.
@end table

@node __atomic Builtins
@section Built-in Functions for Memory Model Aware Atomic Operations

The following built-in functions approximately match the requirements
for the C++11 memory model.  They are all
identified by being prefixed with @samp{__atomic} and most are
overloaded so that they work with multiple types.

These functions are intended to replace the legacy @samp{__sync}
builtins.  The main difference is that the memory order that is requested
is a parameter to the functions.  New code should always use the
@samp{__atomic} builtins rather than the @samp{__sync} builtins.

Note that the @samp{__atomic} builtins assume that programs will
conform to the C++11 memory model.  In particular, they assume
that programs are free of data races.  See the C++11 standard for
detailed requirements.

The @samp{__atomic} builtins can be used with any integral scalar or
pointer type that is 1, 2, 4, or 8 bytes in length.  16-byte integral
types are also allowed if @samp{__int128} (@pxref{__int128}) is
supported by the architecture.

The four non-arithmetic functions (load, store, exchange, and 
compare_exchange) all have a generic version as well.  This generic
version works on any data type.  It uses the lock-free built-in function
if the specific data type size makes that possible; otherwise, an
external call is left to be resolved at run time.  This external call is
the same format with the addition of a @samp{size_t} parameter inserted
as the first parameter indicating the size of the object being pointed to.
All objects must be the same size.

There are 6 different memory orders that can be specified.  These map
to the C++11 memory orders with the same names, see the C++11 standard
or the @uref{https://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki
on atomic synchronization} for detailed definitions.  Individual
targets may also support additional memory orders for use on specific
architectures.  Refer to the target documentation for details of
these.

An atomic operation can both constrain code motion and
be mapped to hardware instructions for synchronization between threads
(e.g., a fence).  To which extent this happens is controlled by the
memory orders, which are listed here in approximately ascending order of
strength.  The description of each memory order is only meant to roughly
illustrate the effects and is not a specification; see the C++11
memory model for precise semantics.

@table  @code
@item __ATOMIC_RELAXED
Implies no inter-thread ordering constraints.
@item __ATOMIC_CONSUME
This is currently implemented using the stronger @code{__ATOMIC_ACQUIRE}
memory order because of a deficiency in C++11's semantics for
@code{memory_order_consume}.
@item __ATOMIC_ACQUIRE
Creates an inter-thread happens-before constraint from the release (or
stronger) semantic store to this acquire load.  Can prevent hoisting
of code to before the operation.
@item __ATOMIC_RELEASE
Creates an inter-thread happens-before constraint to acquire (or stronger)
semantic loads that read from this release store.  Can prevent sinking
of code to after the operation.
@item __ATOMIC_ACQ_REL
Combines the effects of both @code{__ATOMIC_ACQUIRE} and
@code{__ATOMIC_RELEASE}.
@item __ATOMIC_SEQ_CST
Enforces total ordering with all other @code{__ATOMIC_SEQ_CST} operations.
@end table

Note that in the C++11 memory model, @emph{fences} (e.g.,
@samp{__atomic_thread_fence}) take effect in combination with other
atomic operations on specific memory locations (e.g., atomic loads);
operations on specific memory locations do not necessarily affect other
operations in the same way.

Target architectures are encouraged to provide their own patterns for
each of the atomic built-in functions.  If no target is provided, the original
non-memory model set of @samp{__sync} atomic built-in functions are
used, along with any required synchronization fences surrounding it in
order to achieve the proper behavior.  Execution in this case is subject
to the same restrictions as those built-in functions.

If there is no pattern or mechanism to provide a lock-free instruction
sequence, a call is made to an external routine with the same parameters
to be resolved at run time.

When implementing patterns for these built-in functions, the memory order
parameter can be ignored as long as the pattern implements the most
restrictive @code{__ATOMIC_SEQ_CST} memory order.  Any of the other memory
orders execute correctly with this memory order but they may not execute as
efficiently as they could with a more appropriate implementation of the
relaxed requirements.

Note that the C++11 standard allows for the memory order parameter to be
determined at run time rather than at compile time.  These built-in
functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather
than invoke a runtime library call or inline a switch statement.  This is
standard compliant, safe, and the simplest approach for now.

The memory order parameter is a signed int, but only the lower 16 bits are
reserved for the memory order.  The remainder of the signed int is reserved
for target use and should be 0.  Use of the predefined atomic values
ensures proper usage.

@deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memorder)
This built-in function implements an atomic load operation.  It returns the
contents of @code{*@var{ptr}}.

The valid memory order variants are
@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
and @code{__ATOMIC_CONSUME}.

@end deftypefn

@deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memorder)
This is the generic version of an atomic load.  It returns the
contents of @code{*@var{ptr}} in @code{*@var{ret}}.

@end deftypefn

@deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memorder)
This built-in function implements an atomic store operation.  It writes 
@code{@var{val}} into @code{*@var{ptr}}.  

The valid memory order variants are
@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.

@end deftypefn

@deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memorder)
This is the generic version of an atomic store.  It stores the value
of @code{*@var{val}} into @code{*@var{ptr}}.

@end deftypefn

@deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memorder)
This built-in function implements an atomic exchange operation.  It writes
@var{val} into @code{*@var{ptr}}, and returns the previous contents of
@code{*@var{ptr}}.

All memory order variants are valid.

@end deftypefn

@deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memorder)
This is the generic version of an atomic exchange.  It stores the
contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
of @code{*@var{ptr}} is copied into @code{*@var{ret}}.

@end deftypefn

@deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memorder, int failure_memorder)
This built-in function implements an atomic compare and exchange operation.
This compares the contents of @code{*@var{ptr}} with the contents of
@code{*@var{expected}}. If equal, the operation is a @emph{read-modify-write}
operation that writes @var{desired} into @code{*@var{ptr}}.  If they are not
equal, the operation is a @emph{read} and the current contents of
@code{*@var{ptr}} are written into @code{*@var{expected}}.  @var{weak} is @code{true}
for weak compare_exchange, which may fail spuriously, and @code{false} for
the strong variation, which never fails spuriously.  Many targets
only offer the strong variation and ignore the parameter.  When in doubt, use
the strong variation.

If @var{desired} is written into @code{*@var{ptr}} then @code{true} is returned
and memory is affected according to the
memory order specified by @var{success_memorder}.  There are no
restrictions on what memory order can be used here.

Otherwise, @code{false} is returned and memory is affected according
to @var{failure_memorder}. This memory order cannot be
@code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}.  It also cannot be a
stronger order than that specified by @var{success_memorder}.

@end deftypefn

@deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memorder, int failure_memorder)
This built-in function implements the generic version of
@code{__atomic_compare_exchange}.  The function is virtually identical to
@code{__atomic_compare_exchange_n}, except the desired value is also a
pointer.

@end deftypefn

@deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memorder)
These built-in functions perform the operation suggested by the name, and
return the result of the operation.  Operations on pointer arguments are
performed as if the operands were of the @code{uintptr_t} type.  That is,
they are not scaled by the size of the type to which the pointer points.

@smallexample
@{ *ptr @var{op}= val; return *ptr; @}
@{ *ptr = ~(*ptr & val); return *ptr; @} // nand
@end smallexample

The object pointed to by the first argument must be of integer or pointer
type.  It must not be a boolean type.  All memory orders are valid.

@end deftypefn

@deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memorder)
These built-in functions perform the operation suggested by the name, and
return the value that had previously been in @code{*@var{ptr}}.  Operations
on pointer arguments are performed as if the operands were of
the @code{uintptr_t} type.  That is, they are not scaled by the size of
the type to which the pointer points.

@smallexample
@{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
@{ tmp = *ptr; *ptr = ~(*ptr & val); return tmp; @} // nand
@end smallexample

The same constraints on arguments apply as for the corresponding
@code{__atomic_op_fetch} built-in functions.  All memory orders are valid.

@end deftypefn

@deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memorder)

This built-in function performs an atomic test-and-set operation on
the byte at @code{*@var{ptr}}.  The byte is set to some implementation
defined nonzero ``set'' value and the return value is @code{true} if and only
if the previous contents were ``set''.
It should be only used for operands of type @code{bool} or @code{char}. For 
other types only part of the value may be set.

All memory orders are valid.

@end deftypefn

@deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memorder)

This built-in function performs an atomic clear operation on
@code{*@var{ptr}}.  After the operation, @code{*@var{ptr}} contains 0.
It should be only used for operands of type @code{bool} or @code{char} and 
in conjunction with @code{__atomic_test_and_set}.
For other types it may only clear partially. If the type is not @code{bool}
prefer using @code{__atomic_store}.

The valid memory order variants are
@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
@code{__ATOMIC_RELEASE}.

@end deftypefn

@deftypefn {Built-in Function} void __atomic_thread_fence (int memorder)

This built-in function acts as a synchronization fence between threads
based on the specified memory order.

All memory orders are valid.

@end deftypefn

@deftypefn {Built-in Function} void __atomic_signal_fence (int memorder)

This built-in function acts as a synchronization fence between a thread
and signal handlers based in the same thread.

All memory orders are valid.

@end deftypefn

@deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size,  void *ptr)

This built-in function returns @code{true} if objects of @var{size} bytes always
generate lock-free atomic instructions for the target architecture.
@var{size} must resolve to a compile-time constant and the result also
resolves to a compile-time constant.

@var{ptr} is an optional pointer to the object that may be used to determine
alignment.  A value of 0 indicates typical alignment should be used.  The 
compiler may also ignore this parameter.

@smallexample
if (__atomic_always_lock_free (sizeof (long long), 0))
@end smallexample

@end deftypefn

@deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)

This built-in function returns @code{true} if objects of @var{size} bytes always
generate lock-free atomic instructions for the target architecture.  If
the built-in function is not known to be lock-free, a call is made to a
runtime routine named @code{__atomic_is_lock_free}.

@var{ptr} is an optional pointer to the object that may be used to determine
alignment.  A value of 0 indicates typical alignment should be used.  The 
compiler may also ignore this parameter.
@end deftypefn

@node Integer Overflow Builtins
@section Built-in Functions to Perform Arithmetic with Overflow Checking

The following built-in functions allow performing simple arithmetic operations
together with checking whether the operations overflowed.

@deftypefn {Built-in Function} bool __builtin_add_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
@deftypefnx {Built-in Function} bool __builtin_sadd_overflow (int a, int b, int *res)
@deftypefnx {Built-in Function} bool __builtin_saddl_overflow (long int a, long int b, long int *res)
@deftypefnx {Built-in Function} bool __builtin_saddll_overflow (long long int a, long long int b, long long int *res)
@deftypefnx {Built-in Function} bool __builtin_uadd_overflow (unsigned int a, unsigned int b, unsigned int *res)
@deftypefnx {Built-in Function} bool __builtin_uaddl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
@deftypefnx {Built-in Function} bool __builtin_uaddll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)

These built-in functions promote the first two operands into infinite precision signed
type and perform addition on those promoted operands.  The result is then
cast to the type the third pointer argument points to and stored there.
If the stored result is equal to the infinite precision result, the built-in
functions return @code{false}, otherwise they return @code{true}.  As the addition is
performed in infinite signed precision, these built-in functions have fully defined
behavior for all argument values.

The first built-in function allows arbitrary integral types for operands and
the result type must be pointer to some integral type other than enumerated or
boolean type, the rest of the built-in functions have explicit integer types.

The compiler will attempt to use hardware instructions to implement
these built-in functions where possible, like conditional jump on overflow
after addition, conditional jump on carry etc.

@end deftypefn

@deftypefn {Built-in Function} bool __builtin_sub_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
@deftypefnx {Built-in Function} bool __builtin_ssub_overflow (int a, int b, int *res)
@deftypefnx {Built-in Function} bool __builtin_ssubl_overflow (long int a, long int b, long int *res)
@deftypefnx {Built-in Function} bool __builtin_ssubll_overflow (long long int a, long long int b, long long int *res)
@deftypefnx {Built-in Function} bool __builtin_usub_overflow (unsigned int a, unsigned int b, unsigned int *res)
@deftypefnx {Built-in Function} bool __builtin_usubl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
@deftypefnx {Built-in Function} bool __builtin_usubll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)

These built-in functions are similar to the add overflow checking built-in
functions above, except they perform subtraction, subtract the second argument
from the first one, instead of addition.

@end deftypefn

@deftypefn {Built-in Function} bool __builtin_mul_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
@deftypefnx {Built-in Function} bool __builtin_smul_overflow (int a, int b, int *res)
@deftypefnx {Built-in Function} bool __builtin_smull_overflow (long int a, long int b, long int *res)
@deftypefnx {Built-in Function} bool __builtin_smulll_overflow (long long int a, long long int b, long long int *res)
@deftypefnx {Built-in Function} bool __builtin_umul_overflow (unsigned int a, unsigned int b, unsigned int *res)
@deftypefnx {Built-in Function} bool __builtin_umull_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
@deftypefnx {Built-in Function} bool __builtin_umulll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)

These built-in functions are similar to the add overflow checking built-in
functions above, except they perform multiplication, instead of addition.

@end deftypefn

The following built-in functions allow checking if simple arithmetic operation
would overflow.

@deftypefn {Built-in Function} bool __builtin_add_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
@deftypefnx {Built-in Function} bool __builtin_sub_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
@deftypefnx {Built-in Function} bool __builtin_mul_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)

These built-in functions are similar to @code{__builtin_add_overflow},
@code{__builtin_sub_overflow}, or @code{__builtin_mul_overflow}, except that
they don't store the result of the arithmetic operation anywhere and the
last argument is not a pointer, but some expression with integral type other
than enumerated or boolean type.

The built-in functions promote the first two operands into infinite precision signed type
and perform addition on those promoted operands. The result is then
cast to the type of the third argument.  If the cast result is equal to the infinite
precision result, the built-in functions return @code{false}, otherwise they return @code{true}.
The value of the third argument is ignored, just the side effects in the third argument
are evaluated, and no integral argument promotions are performed on the last argument.
If the third argument is a bit-field, the type used for the result cast has the
precision and signedness of the given bit-field, rather than precision and signedness
of the underlying type.

For example, the following macro can be used to portably check, at
compile-time, whether or not adding two constant integers will overflow,
and perform the addition only when it is known to be safe and not to trigger
a @option{-Woverflow} warning.

@smallexample
#define INT_ADD_OVERFLOW_P(a, b) \
   __builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0)

enum @{
    A = INT_MAX, B = 3,
    C = INT_ADD_OVERFLOW_P (A, B) ? 0 : A + B,
    D = __builtin_add_overflow_p (1, SCHAR_MAX, (signed char) 0)
@};
@end smallexample

The compiler will attempt to use hardware instructions to implement
these built-in functions where possible, like conditional jump on overflow
after addition, conditional jump on carry etc.
 
@end deftypefn

@node x86 specific memory model extensions for transactional memory
@section x86-Specific Memory Model Extensions for Transactional Memory

The x86 architecture supports additional memory ordering flags
to mark critical sections for hardware lock elision. 
These must be specified in addition to an existing memory order to
atomic intrinsics.

@table @code
@item __ATOMIC_HLE_ACQUIRE
Start lock elision on a lock variable.
Memory order must be @code{__ATOMIC_ACQUIRE} or stronger.
@item __ATOMIC_HLE_RELEASE
End lock elision on a lock variable.
Memory order must be @code{__ATOMIC_RELEASE} or stronger.
@end table

When a lock acquire fails, it is required for good performance to abort
the transaction quickly. This can be done with a @code{_mm_pause}.

@smallexample
#include <immintrin.h> // For _mm_pause

int lockvar;

/* Acquire lock with lock elision */
while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
    _mm_pause(); /* Abort failed transaction */
...
/* Free lock with lock elision */
__atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
@end smallexample

@node Object Size Checking
@section Object Size Checking Built-in Functions
@findex __builtin_object_size
@findex __builtin_dynamic_object_size
@findex __builtin___memcpy_chk
@findex __builtin___mempcpy_chk
@findex __builtin___memmove_chk
@findex __builtin___memset_chk
@findex __builtin___strcpy_chk
@findex __builtin___stpcpy_chk
@findex __builtin___strncpy_chk
@findex __builtin___strcat_chk
@findex __builtin___strncat_chk
@findex __builtin___sprintf_chk
@findex __builtin___snprintf_chk
@findex __builtin___vsprintf_chk
@findex __builtin___vsnprintf_chk
@findex __builtin___printf_chk
@findex __builtin___vprintf_chk
@findex __builtin___fprintf_chk
@findex __builtin___vfprintf_chk

GCC implements a limited buffer overflow protection mechanism that can
prevent some buffer overflow attacks by determining the sizes of objects
into which data is about to be written and preventing the writes when
the size isn't sufficient.  The built-in functions described below yield
the best results when used together and when optimization is enabled.
For example, to detect object sizes across function boundaries or to
follow pointer assignments through non-trivial control flow they rely
on various optimization passes enabled with @option{-O2}.  However, to
a limited extent, they can be used without optimization as well.

@deftypefn {Built-in Function} {size_t} __builtin_object_size (const void * @var{ptr}, int @var{type})
is a built-in construct that returns a constant number of bytes from
@var{ptr} to the end of the object @var{ptr} pointer points to
(if known at compile time).  To determine the sizes of dynamically allocated
objects the function relies on the allocation functions called to obtain
the storage to be declared with the @code{alloc_size} attribute (@pxref{Common
Function Attributes}).  @code{__builtin_object_size} never evaluates
its arguments for side effects.  If there are any side effects in them, it
returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
for @var{type} 2 or 3.  If there are multiple objects @var{ptr} can
point to and all of them are known at compile time, the returned number
is the maximum of remaining byte counts in those objects if @var{type} & 2 is
0 and minimum if nonzero.  If it is not possible to determine which objects
@var{ptr} points to at compile time, @code{__builtin_object_size} should
return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
for @var{type} 2 or 3.

@var{type} is an integer constant from 0 to 3.  If the least significant
bit is clear, objects are whole variables, if it is set, a closest
surrounding subobject is considered the object a pointer points to.
The second bit determines if maximum or minimum of remaining bytes
is computed.

@smallexample
struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
char *p = &var.buf1[1], *q = &var.b;

/* Here the object p points to is var.  */
assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
/* The subobject p points to is var.buf1.  */
assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
/* The object q points to is var.  */
assert (__builtin_object_size (q, 0)
        == (char *) (&var + 1) - (char *) &var.b);
/* The subobject q points to is var.b.  */
assert (__builtin_object_size (q, 1) == sizeof (var.b));
@end smallexample
@end deftypefn

@deftypefn {Built-in Function} {size_t} __builtin_dynamic_object_size (const void * @var{ptr}, int @var{type})
is similar to @code{__builtin_object_size} in that it returns a number of bytes
from @var{ptr} to the end of the object @var{ptr} pointer points to, except
that the size returned may not be a constant.  This results in successful
evaluation of object size estimates in a wider range of use cases and can be
more precise than @code{__builtin_object_size}, but it incurs a performance
penalty since it may add a runtime overhead on size computation.  Semantics of
@var{type} as well as return values in case it is not possible to determine
which objects @var{ptr} points to at compile time are the same as in the case
of @code{__builtin_object_size}.
@end deftypefn

There are built-in functions added for many common string operation
functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
built-in is provided.  This built-in has an additional last argument,
which is the number of bytes remaining in the object the @var{dest}
argument points to or @code{(size_t) -1} if the size is not known.

The built-in functions are optimized into the normal string functions
like @code{memcpy} if the last argument is @code{(size_t) -1} or if
it is known at compile time that the destination object will not
be overflowed.  If the compiler can determine at compile time that the
object will always be overflowed, it issues a warning.

The intended use can be e.g.@:

@smallexample
#undef memcpy
#define bos0(dest) __builtin_object_size (dest, 0)
#define memcpy(dest, src, n) \
  __builtin___memcpy_chk (dest, src, n, bos0 (dest))

char *volatile p;
char buf[10];
/* It is unknown what object p points to, so this is optimized
   into plain memcpy - no checking is possible.  */
memcpy (p, "abcde", n);
/* Destination is known and length too.  It is known at compile
   time there will be no overflow.  */
memcpy (&buf[5], "abcde", 5);
/* Destination is known, but the length is not known at compile time.
   This will result in __memcpy_chk call that can check for overflow
   at run time.  */
memcpy (&buf[5], "abcde", n);
/* Destination is known and it is known at compile time there will
   be overflow.  There will be a warning and __memcpy_chk call that
   will abort the program at run time.  */
memcpy (&buf[6], "abcde", 5);
@end smallexample

Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
@code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
@code{strcat} and @code{strncat}.

There are also checking built-in functions for formatted output functions.
@smallexample
int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
                              const char *fmt, ...);
int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
                              va_list ap);
int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
                               const char *fmt, va_list ap);
@end smallexample

The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
etc.@: functions and can contain implementation specific flags on what
additional security measures the checking function might take, such as
handling @code{%n} differently.

The @var{os} argument is the object size @var{s} points to, like in the
other built-in functions.  There is a small difference in the behavior
though, if @var{os} is @code{(size_t) -1}, the built-in functions are
optimized into the non-checking functions only if @var{flag} is 0, otherwise
the checking function is called with @var{os} argument set to
@code{(size_t) -1}.

In addition to this, there are checking built-in functions
@code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
@code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
These have just one additional argument, @var{flag}, right before
format string @var{fmt}.  If the compiler is able to optimize them to
@code{fputc} etc.@: functions, it does, otherwise the checking function
is called and the @var{flag} argument passed to it.

@node Other Builtins
@section Other Built-in Functions Provided by GCC
@cindex built-in functions
@findex __builtin_alloca
@findex __builtin_alloca_with_align
@findex __builtin_alloca_with_align_and_max
@findex __builtin_call_with_static_chain
@findex __builtin_extend_pointer
@findex __builtin_fpclassify
@findex __builtin_has_attribute
@findex __builtin_isfinite
@findex __builtin_isnormal
@findex __builtin_isgreater
@findex __builtin_isgreaterequal
@findex __builtin_isinf_sign
@findex __builtin_isless
@findex __builtin_islessequal
@findex __builtin_islessgreater
@findex __builtin_issignaling
@findex __builtin_isunordered
@findex __builtin_object_size
@findex __builtin_powi
@findex __builtin_powif
@findex __builtin_powil
@findex __builtin_speculation_safe_value
@findex _Exit
@findex _exit
@findex abort
@findex abs
@findex acos
@findex acosf
@findex acosh
@findex acoshf
@findex acoshl
@findex acosl
@findex alloca
@findex asin
@findex asinf
@findex asinh
@findex asinhf
@findex asinhl
@findex asinl
@findex atan
@findex atan2
@findex atan2f
@findex atan2l
@findex atanf
@findex atanh
@findex atanhf
@findex atanhl
@findex atanl
@findex bcmp
@findex bzero
@findex cabs
@findex cabsf
@findex cabsl
@findex cacos
@findex cacosf
@findex cacosh
@findex cacoshf
@findex cacoshl
@findex cacosl
@findex calloc
@findex carg
@findex cargf
@findex cargl
@findex casin
@findex casinf
@findex casinh
@findex casinhf
@findex casinhl
@findex casinl
@findex catan
@findex catanf
@findex catanh
@findex catanhf
@findex catanhl
@findex catanl
@findex cbrt
@findex cbrtf
@findex cbrtl
@findex ccos
@findex ccosf
@findex ccosh
@findex ccoshf
@findex ccoshl
@findex ccosl
@findex ceil
@findex ceilf
@findex ceill
@findex cexp
@findex cexpf
@findex cexpl
@findex cimag
@findex cimagf
@findex cimagl
@findex clog
@findex clogf
@findex clogl
@findex clog10
@findex clog10f
@findex clog10l
@findex conj
@findex conjf
@findex conjl
@findex copysign
@findex copysignf
@findex copysignl
@findex cos
@findex cosf
@findex cosh
@findex coshf
@findex coshl
@findex cosl
@findex cpow
@findex cpowf
@findex cpowl
@findex cproj
@findex cprojf
@findex cprojl
@findex creal
@findex crealf
@findex creall
@findex csin
@findex csinf
@findex csinh
@findex csinhf
@findex csinhl
@findex csinl
@findex csqrt
@findex csqrtf
@findex csqrtl
@findex ctan
@findex ctanf
@findex ctanh
@findex ctanhf
@findex ctanhl
@findex ctanl
@findex dcgettext
@findex dgettext
@findex drem
@findex dremf
@findex dreml
@findex erf
@findex erfc
@findex erfcf
@findex erfcl
@findex erff
@findex erfl
@findex exit
@findex exp
@findex exp10
@findex exp10f
@findex exp10l
@findex exp2
@findex exp2f
@findex exp2l
@findex expf
@findex expl
@findex expm1
@findex expm1f
@findex expm1l
@findex fabs
@findex fabsf
@findex fabsl
@findex fdim
@findex fdimf
@findex fdiml
@findex ffs
@findex floor
@findex floorf
@findex floorl
@findex fma
@findex fmaf
@findex fmal
@findex fmax
@findex fmaxf
@findex fmaxl
@findex fmin
@findex fminf
@findex fminl
@findex fmod
@findex fmodf
@findex fmodl
@findex fprintf
@findex fprintf_unlocked
@findex fputs
@findex fputs_unlocked
@findex free
@findex frexp
@findex frexpf
@findex frexpl
@findex fscanf
@findex gamma
@findex gammaf
@findex gammal
@findex gamma_r
@findex gammaf_r
@findex gammal_r
@findex gettext
@findex hypot
@findex hypotf
@findex hypotl
@findex ilogb
@findex ilogbf
@findex ilogbl
@findex imaxabs
@findex index
@findex isalnum
@findex isalpha
@findex isascii
@findex isblank
@findex iscntrl
@findex isdigit
@findex isgraph
@findex islower
@findex isprint
@findex ispunct
@findex isspace
@findex isupper
@findex iswalnum
@findex iswalpha
@findex iswblank
@findex iswcntrl
@findex iswdigit
@findex iswgraph
@findex iswlower
@findex iswprint
@findex iswpunct
@findex iswspace
@findex iswupper
@findex iswxdigit
@findex isxdigit
@findex j0
@findex j0f
@findex j0l
@findex j1
@findex j1f
@findex j1l
@findex jn
@findex jnf
@findex jnl
@findex labs
@findex ldexp
@findex ldexpf
@findex ldexpl
@findex lgamma
@findex lgammaf
@findex lgammal
@findex lgamma_r
@findex lgammaf_r
@findex lgammal_r
@findex llabs
@findex llrint
@findex llrintf
@findex llrintl
@findex llround
@findex llroundf
@findex llroundl
@findex log
@findex log10
@findex log10f
@findex log10l
@findex log1p
@findex log1pf
@findex log1pl
@findex log2
@findex log2f
@findex log2l
@findex logb
@findex logbf
@findex logbl
@findex logf
@findex logl
@findex lrint
@findex lrintf
@findex lrintl
@findex lround
@findex lroundf
@findex lroundl
@findex malloc
@findex memchr
@findex memcmp
@findex memcpy
@findex mempcpy
@findex memset
@findex modf
@findex modff
@findex modfl
@findex nearbyint
@findex nearbyintf
@findex nearbyintl
@findex nextafter
@findex nextafterf
@findex nextafterl
@findex nexttoward
@findex nexttowardf
@findex nexttowardl
@findex pow
@findex pow10
@findex pow10f
@findex pow10l
@findex powf
@findex powl
@findex printf
@findex printf_unlocked
@findex putchar
@findex puts
@findex realloc
@findex remainder
@findex remainderf
@findex remainderl
@findex remquo
@findex remquof
@findex remquol
@findex rindex
@findex rint
@findex rintf
@findex rintl
@findex round
@findex roundf
@findex roundl
@findex scalb
@findex scalbf
@findex scalbl
@findex scalbln
@findex scalblnf
@findex scalblnf
@findex scalbn
@findex scalbnf
@findex scanfnl
@findex signbit
@findex signbitf
@findex signbitl
@findex signbitd32
@findex signbitd64
@findex signbitd128
@findex significand
@findex significandf
@findex significandl
@findex sin
@findex sincos
@findex sincosf
@findex sincosl
@findex sinf
@findex sinh
@findex sinhf
@findex sinhl
@findex sinl
@findex snprintf
@findex sprintf
@findex sqrt
@findex sqrtf
@findex sqrtl
@findex sscanf
@findex stpcpy
@findex stpncpy
@findex strcasecmp
@findex strcat
@findex strchr
@findex strcmp
@findex strcpy
@findex strcspn
@findex strdup
@findex strfmon
@findex strftime
@findex strlen
@findex strncasecmp
@findex strncat
@findex strncmp
@findex strncpy
@findex strndup
@findex strnlen
@findex strpbrk
@findex strrchr
@findex strspn
@findex strstr
@findex tan
@findex tanf
@findex tanh
@findex tanhf
@findex tanhl
@findex tanl
@findex tgamma
@findex tgammaf
@findex tgammal
@findex toascii
@findex tolower
@findex toupper
@findex towlower
@findex towupper
@findex trunc
@findex truncf
@findex truncl
@findex vfprintf
@findex vfscanf
@findex vprintf
@findex vscanf
@findex vsnprintf
@findex vsprintf
@findex vsscanf
@findex y0
@findex y0f
@findex y0l
@findex y1
@findex y1f
@findex y1l
@findex yn
@findex ynf
@findex ynl

GCC provides a large number of built-in functions other than the ones
mentioned above.  Some of these are for internal use in the processing
of exceptions or variable-length argument lists and are not
documented here because they may change from time to time; we do not
recommend general use of these functions.

The remaining functions are provided for optimization purposes.

With the exception of built-ins that have library equivalents such as
the standard C library functions discussed below, or that expand to
library calls, GCC built-in functions are always expanded inline and
thus do not have corresponding entry points and their address cannot
be obtained.  Attempting to use them in an expression other than
a function call results in a compile-time error.

@opindex fno-builtin
GCC includes built-in versions of many of the functions in the standard
C library.  These functions come in two forms: one whose names start with
the @code{__builtin_} prefix, and the other without.  Both forms have the
same type (including prototype), the same address (when their address is
taken), and the same meaning as the C library functions even if you specify
the @option{-fno-builtin} option @pxref{C Dialect Options}).  Many of these
functions are only optimized in certain cases; if they are not optimized in
a particular case, a call to the library function is emitted.

@opindex ansi
@opindex std
Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
@option{-std=c99} or @option{-std=c11}), the functions
@code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
@code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
@code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
@code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
@code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
@code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
@code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
@code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
@code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
@code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
@code{rindex}, @code{roundeven}, @code{roundevenf}, @code{roundevenl},
@code{scalbf}, @code{scalbl}, @code{scalb},
@code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
@code{signbitd64}, @code{signbitd128}, @code{significandf},
@code{significandl}, @code{significand}, @code{sincosf},
@code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
@code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
@code{strndup}, @code{strnlen}, @code{toascii}, @code{y0f}, @code{y0l},
@code{y0}, @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
@code{yn}
may be handled as built-in functions.
All these functions have corresponding versions
prefixed with @code{__builtin_}, which may be used even in strict C90
mode.

The ISO C99 functions
@code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
@code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
@code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
@code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
@code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
@code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
@code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
@code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
@code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
@code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
@code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
@code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
@code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
@code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
@code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
@code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
@code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
@code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
@code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
@code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
@code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
@code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
@code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
@code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
@code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
@code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
@code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
@code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
@code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
@code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
@code{nextafterf}, @code{nextafterl}, @code{nextafter},
@code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
@code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
@code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
@code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
@code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
@code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
@code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
@code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
are handled as built-in functions
except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).

There are also built-in versions of the ISO C99 functions
@code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
@code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
@code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
@code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
@code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
@code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
@code{modfl}, @code{modff}, @code{powf}, @code{powl}, @code{sinf},
@code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
@code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
that are recognized in any mode since ISO C90 reserves these names for
the purpose to which ISO C99 puts them.  All these functions have
corresponding versions prefixed with @code{__builtin_}.

There are also built-in functions @code{__builtin_fabsf@var{n}},
@code{__builtin_fabsf@var{n}x}, @code{__builtin_copysignf@var{n}} and
@code{__builtin_copysignf@var{n}x}, corresponding to the TS 18661-3
functions @code{fabsf@var{n}}, @code{fabsf@var{n}x},
@code{copysignf@var{n}} and @code{copysignf@var{n}x}, for supported
types @code{_Float@var{n}} and @code{_Float@var{n}x}.

There are also GNU extension functions @code{clog10}, @code{clog10f} and
@code{clog10l} which names are reserved by ISO C99 for future use.
All these functions have versions prefixed with @code{__builtin_}.

The ISO C94 functions
@code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
@code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
@code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
@code{towupper}
are handled as built-in functions
except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).

The ISO C90 functions
@code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
@code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
@code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
@code{fprintf}, @code{fputs}, @code{free}, @code{frexp}, @code{fscanf},
@code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
@code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
@code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
@code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
@code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
@code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
@code{puts}, @code{realloc}, @code{scanf}, @code{sinh}, @code{sin},
@code{snprintf}, @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
@code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
@code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
@code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
@code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
are all recognized as built-in functions unless
@option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
is specified for an individual function).  All of these functions have
corresponding versions prefixed with @code{__builtin_}.

GCC provides built-in versions of the ISO C99 floating-point comparison
macros that avoid raising exceptions for unordered operands.  They have
the same names as the standard macros ( @code{isgreater},
@code{isgreaterequal}, @code{isless}, @code{islessequal},
@code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
prefixed.  We intend for a library implementor to be able to simply
@code{#define} each standard macro to its built-in equivalent.
In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
@code{isinf_sign}, @code{isnormal} and @code{signbit} built-ins used with
@code{__builtin_} prefixed.  The @code{isinf} and @code{isnan}
built-in functions appear both with and without the @code{__builtin_} prefix.
With @code{-ffinite-math-only} option the @code{isinf} and @code{isnan}
built-in functions will always return 0.

GCC provides built-in versions of the ISO C99 floating-point rounding and
exceptions handling functions @code{fegetround}, @code{feclearexcept} and
@code{feraiseexcept}.  They may not be available for all targets, and because
they need close interaction with libc internal values, they may not be available
for all target libcs, but in all cases they will gracefully fallback to libc
calls.  These built-in functions appear both with and without the
@code{__builtin_} prefix.

@deftypefn {Built-in Function} void *__builtin_alloca (size_t size)
The @code{__builtin_alloca} function must be called at block scope.
The function allocates an object @var{size} bytes large on the stack
of the calling function.  The object is aligned on the default stack
alignment boundary for the target determined by the
@code{__BIGGEST_ALIGNMENT__} macro.  The @code{__builtin_alloca}
function returns a pointer to the first byte of the allocated object.
The lifetime of the allocated object ends just before the calling
function returns to its caller.   This is so even when
@code{__builtin_alloca} is called within a nested block.

For example, the following function allocates eight objects of @code{n}
bytes each on the stack, storing a pointer to each in consecutive elements
of the array @code{a}.  It then passes the array to function @code{g}
which can safely use the storage pointed to by each of the array elements.

@smallexample
void f (unsigned n)
@{
  void *a [8];
  for (int i = 0; i != 8; ++i)
    a [i] = __builtin_alloca (n);

  g (a, n);   // @r{safe}
@}
@end smallexample

Since the @code{__builtin_alloca} function doesn't validate its argument
it is the responsibility of its caller to make sure the argument doesn't
cause it to exceed the stack size limit.
The @code{__builtin_alloca} function is provided to make it possible to
allocate on the stack arrays of bytes with an upper bound that may be
computed at run time.  Since C99 Variable Length Arrays offer
similar functionality under a portable, more convenient, and safer
interface they are recommended instead, in both C99 and C++ programs
where GCC provides them as an extension.
@xref{Variable Length}, for details.

@end deftypefn

@deftypefn {Built-in Function} void *__builtin_alloca_with_align (size_t size, size_t alignment)
The @code{__builtin_alloca_with_align} function must be called at block
scope.  The function allocates an object @var{size} bytes large on
the stack of the calling function.  The allocated object is aligned on
the boundary specified by the argument @var{alignment} whose unit is given
in bits (not bytes).  The @var{size} argument must be positive and not
exceed the stack size limit.  The @var{alignment} argument must be a constant
integer expression that evaluates to a power of 2 greater than or equal to
@code{CHAR_BIT} and less than some unspecified maximum.  Invocations
with other values are rejected with an error indicating the valid bounds.
The function returns a pointer to the first byte of the allocated object.
The lifetime of the allocated object ends at the end of the block in which
the function was called.  The allocated storage is released no later than
just before the calling function returns to its caller, but may be released
at the end of the block in which the function was called.

For example, in the following function the call to @code{g} is unsafe
because when @code{overalign} is non-zero, the space allocated by
@code{__builtin_alloca_with_align} may have been released at the end
of the @code{if} statement in which it was called.

@smallexample
void f (unsigned n, bool overalign)
@{
  void *p;
  if (overalign)
    p = __builtin_alloca_with_align (n, 64 /* bits */);
  else
    p = __builtin_alloc (n);

  g (p, n);   // @r{unsafe}
@}
@end smallexample

Since the @code{__builtin_alloca_with_align} function doesn't validate its
@var{size} argument it is the responsibility of its caller to make sure
the argument doesn't cause it to exceed the stack size limit.
The @code{__builtin_alloca_with_align} function is provided to make
it possible to allocate on the stack overaligned arrays of bytes with
an upper bound that may be computed at run time.  Since C99
Variable Length Arrays offer the same functionality under
a portable, more convenient, and safer interface they are recommended
instead, in both C99 and C++ programs where GCC provides them as
an extension.  @xref{Variable Length}, for details.

@end deftypefn

@deftypefn {Built-in Function} void *__builtin_alloca_with_align_and_max (size_t size, size_t alignment, size_t max_size)
Similar to @code{__builtin_alloca_with_align} but takes an extra argument
specifying an upper bound for @var{size} in case its value cannot be computed
at compile time, for use by @option{-fstack-usage}, @option{-Wstack-usage}
and @option{-Walloca-larger-than}.  @var{max_size} must be a constant integer
expression, it has no effect on code generation and no attempt is made to
check its compatibility with @var{size}.

@end deftypefn

@deftypefn {Built-in Function} bool __builtin_has_attribute (@var{type-or-expression}, @var{attribute})
The @code{__builtin_has_attribute} function evaluates to an integer constant
expression equal to @code{true} if the symbol or type referenced by
the @var{type-or-expression} argument has been declared with
the @var{attribute} referenced by the second argument.  For
an @var{type-or-expression} argument that does not reference a symbol,
since attributes do not apply to expressions the built-in consider
the type of the argument.  Neither argument is evaluated.
The @var{type-or-expression} argument is subject to the same
restrictions as the argument to @code{typeof} (@pxref{Typeof}).  The
@var{attribute} argument is an attribute name optionally followed by
a comma-separated list of arguments enclosed in parentheses.  Both forms
of attribute names---with and without double leading and trailing
underscores---are recognized.  @xref{Attribute Syntax}, for details.
When no attribute arguments are specified for an attribute that expects
one or more arguments the function returns @code{true} if
@var{type-or-expression} has been declared with the attribute regardless
of the attribute argument values.  Arguments provided for an attribute
that expects some are validated and matched up to the provided number.
The function returns @code{true} if all provided arguments match.  For
example, the first call to the function below evaluates to @code{true}
because @code{x} is declared with the @code{aligned} attribute but
the second call evaluates to @code{false} because @code{x} is declared
@code{aligned (8)} and not @code{aligned (4)}.

@smallexample
__attribute__ ((aligned (8))) int x;
_Static_assert (__builtin_has_attribute (x, aligned), "aligned");
_Static_assert (!__builtin_has_attribute (x, aligned (4)), "aligned (4)");
@end smallexample

Due to a limitation the @code{__builtin_has_attribute} function returns
@code{false} for the @code{mode} attribute even if the type or variable
referenced by the @var{type-or-expression} argument was declared with one.
The function is also not supported with labels, and in C with enumerators.

Note that unlike the @code{__has_attribute} preprocessor operator which
is suitable for use in @code{#if} preprocessing directives
@code{__builtin_has_attribute} is an intrinsic function that is not
recognized in such contexts.

@end deftypefn

@deftypefn {Built-in Function} @var{type} __builtin_speculation_safe_value (@var{type} val, @var{type} failval)

This built-in function can be used to help mitigate against unsafe
speculative execution.  @var{type} may be any integral type or any
pointer type.

@enumerate
@item
If the CPU is not speculatively executing the code, then @var{val}
is returned.
@item
If the CPU is executing speculatively then either:
@itemize
@item
The function may cause execution to pause until it is known that the
code is no-longer being executed speculatively (in which case
@var{val} can be returned, as above); or
@item
The function may use target-dependent speculation tracking state to cause
@var{failval} to be returned when it is known that speculative
execution has incorrectly predicted a conditional branch operation.
@end itemize
@end enumerate

The second argument, @var{failval}, is optional and defaults to zero
if omitted.

GCC defines the preprocessor macro
@code{__HAVE_BUILTIN_SPECULATION_SAFE_VALUE} for targets that have been
updated to support this builtin.

The built-in function can be used where a variable appears to be used in a
safe way, but the CPU, due to speculative execution may temporarily ignore
the bounds checks.  Consider, for example, the following function:

@smallexample
int array[500];
int f (unsigned untrusted_index)
@{
  if (untrusted_index < 500)
    return array[untrusted_index];
  return 0;
@}
@end smallexample

If the function is called repeatedly with @code{untrusted_index} less
than the limit of 500, then a branch predictor will learn that the
block of code that returns a value stored in @code{array} will be
executed.  If the function is subsequently called with an
out-of-range value it will still try to execute that block of code
first until the CPU determines that the prediction was incorrect
(the CPU will unwind any incorrect operations at that point).
However, depending on how the result of the function is used, it might be
possible to leave traces in the cache that can reveal what was stored
at the out-of-bounds location.  The built-in function can be used to
provide some protection against leaking data in this way by changing
the code to:

@smallexample
int array[500];
int f (unsigned untrusted_index)
@{
  if (untrusted_index < 500)
    return array[__builtin_speculation_safe_value (untrusted_index)];
  return 0;
@}
@end smallexample

The built-in function will either cause execution to stall until the
conditional branch has been fully resolved, or it may permit
speculative execution to continue, but using 0 instead of
@code{untrusted_value} if that exceeds the limit.

If accessing any memory location is potentially unsafe when speculative
execution is incorrect, then the code can be rewritten as

@smallexample
int array[500];
int f (unsigned untrusted_index)
@{
  if (untrusted_index < 500)
    return *__builtin_speculation_safe_value (&array[untrusted_index], NULL);
  return 0;
@}
@end smallexample

which will cause a @code{NULL} pointer to be used for the unsafe case.

@end deftypefn

@deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})

You can use the built-in function @code{__builtin_types_compatible_p} to
determine whether two types are the same.

This built-in function returns 1 if the unqualified versions of the
types @var{type1} and @var{type2} (which are types, not expressions) are
compatible, 0 otherwise.  The result of this built-in function can be
used in integer constant expressions.

This built-in function ignores top level qualifiers (e.g., @code{const},
@code{volatile}).  For example, @code{int} is equivalent to @code{const
int}.

The type @code{int[]} and @code{int[5]} are compatible.  On the other
hand, @code{int} and @code{char *} are not compatible, even if the size
of their types, on the particular architecture are the same.  Also, the
amount of pointer indirection is taken into account when determining
similarity.  Consequently, @code{short *} is not similar to
@code{short **}.  Furthermore, two types that are typedefed are
considered compatible if their underlying types are compatible.

An @code{enum} type is not considered to be compatible with another
@code{enum} type even if both are compatible with the same integer
type; this is what the C standard specifies.
For example, @code{enum @{foo, bar@}} is not similar to
@code{enum @{hot, dog@}}.

You typically use this function in code whose execution varies
depending on the arguments' types.  For example:

@smallexample
#define foo(x)                                                  \
  (@{                                                           \
    typeof (x) tmp = (x);                                       \
    if (__builtin_types_compatible_p (typeof (x), long double)) \
      tmp = foo_long_double (tmp);                              \
    else if (__builtin_types_compatible_p (typeof (x), double)) \
      tmp = foo_double (tmp);                                   \
    else if (__builtin_types_compatible_p (typeof (x), float))  \
      tmp = foo_float (tmp);                                    \
    else                                                        \
      abort ();                                                 \
    tmp;                                                        \
  @})
@end smallexample

@emph{Note:} This construct is only available for C@.

@end deftypefn

@deftypefn {Built-in Function} @var{type} __builtin_call_with_static_chain (@var{call_exp}, @var{pointer_exp})

The @var{call_exp} expression must be a function call, and the
@var{pointer_exp} expression must be a pointer.  The @var{pointer_exp}
is passed to the function call in the target's static chain location.
The result of builtin is the result of the function call.

@emph{Note:} This builtin is only available for C@.
This builtin can be used to call Go closures from C.

@end deftypefn

@deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})

You can use the built-in function @code{__builtin_choose_expr} to
evaluate code depending on the value of a constant expression.  This
built-in function returns @var{exp1} if @var{const_exp}, which is an
integer constant expression, is nonzero.  Otherwise it returns @var{exp2}.

This built-in function is analogous to the @samp{? :} operator in C,
except that the expression returned has its type unaltered by promotion
rules.  Also, the built-in function does not evaluate the expression
that is not chosen.  For example, if @var{const_exp} evaluates to @code{true},
@var{exp2} is not evaluated even if it has side effects.

This built-in function can return an lvalue if the chosen argument is an
lvalue.

If @var{exp1} is returned, the return type is the same as @var{exp1}'s
type.  Similarly, if @var{exp2} is returned, its return type is the same
as @var{exp2}.

Example:

@smallexample
#define foo(x)                                                    \
  __builtin_choose_expr (                                         \
    __builtin_types_compatible_p (typeof (x), double),            \
    foo_double (x),                                               \
    __builtin_choose_expr (                                       \
      __builtin_types_compatible_p (typeof (x), float),           \
      foo_float (x),                                              \
      /* @r{The void expression results in a compile-time error}  \
         @r{when assigning the result to something.}  */          \
      (void)0))
@end smallexample

@emph{Note:} This construct is only available for C@.  Furthermore, the
unused expression (@var{exp1} or @var{exp2} depending on the value of
@var{const_exp}) may still generate syntax errors.  This may change in
future revisions.

@end deftypefn

@deftypefn {Built-in Function} @var{type} __builtin_tgmath (@var{functions}, @var{arguments})

The built-in function @code{__builtin_tgmath}, available only for C
and Objective-C, calls a function determined according to the rules of
@code{<tgmath.h>} macros.  It is intended to be used in
implementations of that header, so that expansions of macros from that
header only expand each of their arguments once, to avoid problems
when calls to such macros are nested inside the arguments of other
calls to such macros; in addition, it results in better diagnostics
for invalid calls to @code{<tgmath.h>} macros than implementations
using other GNU C language features.  For example, the @code{pow}
type-generic macro might be defined as:

@smallexample
#define pow(a, b) __builtin_tgmath (powf, pow, powl, \
                                    cpowf, cpow, cpowl, a, b)
@end smallexample

The arguments to @code{__builtin_tgmath} are at least two pointers to
functions, followed by the arguments to the type-generic macro (which
will be passed as arguments to the selected function).  All the
pointers to functions must be pointers to prototyped functions, none
of which may have variable arguments, and all of which must have the
same number of parameters; the number of parameters of the first
function determines how many arguments to @code{__builtin_tgmath} are
interpreted as function pointers, and how many as the arguments to the
called function.

The types of the specified functions must all be different, but
related to each other in the same way as a set of functions that may
be selected between by a macro in @code{<tgmath.h>}.  This means that
the functions are parameterized by a floating-point type @var{t},
different for each such function.  The function return types may all
be the same type, or they may be @var{t} for each function, or they
may be the real type corresponding to @var{t} for each function (if
some of the types @var{t} are complex).  Likewise, for each parameter
position, the type of the parameter in that position may always be the
same type, or may be @var{t} for each function (this case must apply
for at least one parameter position), or may be the real type
corresponding to @var{t} for each function.

The standard rules for @code{<tgmath.h>} macros are used to find a
common type @var{u} from the types of the arguments for parameters
whose types vary between the functions; complex integer types (a GNU
extension) are treated like @code{_Complex double} for this purpose
(or @code{_Complex _Float64} if all the function return types are the
same @code{_Float@var{n}} or @code{_Float@var{n}x} type).
If the function return types vary, or are all the same integer type,
the function called is the one for which @var{t} is @var{u}, and it is
an error if there is no such function.  If the function return types
are all the same floating-point type, the type-generic macro is taken
to be one of those from TS 18661 that rounds the result to a narrower
type; if there is a function for which @var{t} is @var{u}, it is
called, and otherwise the first function, if any, for which @var{t}
has at least the range and precision of @var{u} is called, and it is
an error if there is no such function.

@end deftypefn

@deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
You can use the built-in function @code{__builtin_constant_p} to
determine if a value is known to be constant at compile time and hence
that GCC can perform constant-folding on expressions involving that
value.  The argument of the function is the value to test.  The function
returns the integer 1 if the argument is known to be a compile-time
constant and 0 if it is not known to be a compile-time constant.  A
return of 0 does not indicate that the value is @emph{not} a constant,
but merely that GCC cannot prove it is a constant with the specified
value of the @option{-O} option.

You typically use this function in an embedded application where
memory is a critical resource.  If you have some complex calculation,
you may want it to be folded if it involves constants, but need to call
a function if it does not.  For example:

@smallexample
#define Scale_Value(X)      \
  (__builtin_constant_p (X) \
  ? ((X) * SCALE + OFFSET) : Scale (X))
@end smallexample

You may use this built-in function in either a macro or an inline
function.  However, if you use it in an inlined function and pass an
argument of the function as the argument to the built-in, GCC 
never returns 1 when you call the inline function with a string constant
or compound literal (@pxref{Compound Literals}) and does not return 1
when you pass a constant numeric value to the inline function unless you
specify the @option{-O} option.

You may also use @code{__builtin_constant_p} in initializers for static
data.  For instance, you can write

@smallexample
static const int table[] = @{
   __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
   /* @r{@dots{}} */
@};
@end smallexample

@noindent
This is an acceptable initializer even if @var{EXPRESSION} is not a
constant expression, including the case where
@code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
folded to a constant but @var{EXPRESSION} contains operands that are
not otherwise permitted in a static initializer (for example,
@code{0 && foo ()}).  GCC must be more conservative about evaluating the
built-in in this case, because it has no opportunity to perform
optimization.
@end deftypefn

@deftypefn {Built-in Function} bool __builtin_is_constant_evaluated (void)
The @code{__builtin_is_constant_evaluated} function is available only
in C++.  The built-in is intended to be used by implementations of
the @code{std::is_constant_evaluated} C++ function.  Programs should make
use of the latter function rather than invoking the built-in directly.

The main use case of the built-in is to determine whether a @code{constexpr}
function is being called in a @code{constexpr} context.  A call to
the function evaluates to a core constant expression with the value
@code{true} if and only if it occurs within the evaluation of an expression
or conversion that is manifestly constant-evaluated as defined in the C++
standard.  Manifestly constant-evaluated contexts include constant-expressions,
the conditions of @code{constexpr if} statements, constraint-expressions, and
initializers of variables usable in constant expressions.   For more details
refer to the latest revision of the C++ standard.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_clear_padding (@var{ptr})
The built-in function @code{__builtin_clear_padding} function clears
padding bits inside of the object representation of object pointed by
@var{ptr}, which has to be a pointer.  The value representation of the
object is not affected.  The type of the object is assumed to be the type
the pointer points to.  Inside of a union, the only cleared bits are
bits that are padding bits for all the union members.

This built-in-function is useful if the padding bits of an object might
have intederminate values and the object representation needs to be
bitwise compared to some other object, for example for atomic operations.

For C++, @var{ptr} argument type should be pointer to trivially-copyable
type, unless the argument is address of a variable or parameter, because
otherwise it isn't known if the type isn't just a base class whose padding
bits are reused or laid out differently in a derived class.
@end deftypefn

@deftypefn {Built-in Function} @var{type} __builtin_bit_cast (@var{type}, @var{arg})
The @code{__builtin_bit_cast} function is available only
in C++.  The built-in is intended to be used by implementations of
the @code{std::bit_cast} C++ template function.  Programs should make
use of the latter function rather than invoking the built-in directly.

This built-in function allows reinterpreting the bits of the @var{arg}
argument as if it had type @var{type}.  @var{type} and the type of the
@var{arg} argument need to be trivially copyable types with the same size.
When manifestly constant-evaluated, it performs extra diagnostics required
for @code{std::bit_cast} and returns a constant expression if @var{arg}
is a constant expression.  For more details
refer to the latest revision of the C++ standard.
@end deftypefn

@deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
@opindex fprofile-arcs
You may use @code{__builtin_expect} to provide the compiler with
branch prediction information.  In general, you should prefer to
use actual profile feedback for this (@option{-fprofile-arcs}), as
programmers are notoriously bad at predicting how their programs
actually perform.  However, there are applications in which this
data is hard to collect.

The return value is the value of @var{exp}, which should be an integral
expression.  The semantics of the built-in are that it is expected that
@var{exp} == @var{c}.  For example:

@smallexample
if (__builtin_expect (x, 0))
  foo ();
@end smallexample

@noindent
indicates that we do not expect to call @code{foo}, since
we expect @code{x} to be zero.  Since you are limited to integral
expressions for @var{exp}, you should use constructions such as

@smallexample
if (__builtin_expect (ptr != NULL, 1))
  foo (*ptr);
@end smallexample

@noindent
when testing pointer or floating-point values.

For the purposes of branch prediction optimizations, the probability that
a @code{__builtin_expect} expression is @code{true} is controlled by GCC's
@code{builtin-expect-probability} parameter, which defaults to 90%.  

You can also use @code{__builtin_expect_with_probability} to explicitly 
assign a probability value to individual expressions.  If the built-in
is used in a loop construct, the provided probability will influence
the expected number of iterations made by loop optimizations.
@end deftypefn

@deftypefn {Built-in Function} long __builtin_expect_with_probability
(long @var{exp}, long @var{c}, double @var{probability})

This function has the same semantics as @code{__builtin_expect},
but the caller provides the expected probability that @var{exp} == @var{c}.
The last argument, @var{probability}, is a floating-point value in the
range 0.0 to 1.0, inclusive.  The @var{probability} argument must be
constant floating-point expression.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_trap (void)
This function causes the program to exit abnormally.  GCC implements
this function by using a target-dependent mechanism (such as
intentionally executing an illegal instruction) or by calling
@code{abort}.  The mechanism used may vary from release to release so
you should not rely on any particular implementation.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_unreachable (void)
If control flow reaches the point of the @code{__builtin_unreachable},
the program is undefined.  It is useful in situations where the
compiler cannot deduce the unreachability of the code.

One such case is immediately following an @code{asm} statement that
either never terminates, or one that transfers control elsewhere
and never returns.  In this example, without the
@code{__builtin_unreachable}, GCC issues a warning that control
reaches the end of a non-void function.  It also generates code
to return after the @code{asm}.

@smallexample
int f (int c, int v)
@{
  if (c)
    @{
      return v;
    @}
  else
    @{
      asm("jmp error_handler");
      __builtin_unreachable ();
    @}
@}
@end smallexample

@noindent
Because the @code{asm} statement unconditionally transfers control out
of the function, control never reaches the end of the function
body.  The @code{__builtin_unreachable} is in fact unreachable and
communicates this fact to the compiler.

Another use for @code{__builtin_unreachable} is following a call a
function that never returns but that is not declared
@code{__attribute__((noreturn))}, as in this example:

@smallexample
void function_that_never_returns (void);

int g (int c)
@{
  if (c)
    @{
      return 1;
    @}
  else
    @{
      function_that_never_returns ();
      __builtin_unreachable ();
    @}
@}
@end smallexample

@end deftypefn

@deftypefn {Built-in Function} @var{type} __builtin_assoc_barrier (@var{type} @var{expr})
This built-in inhibits re-association of the floating-point expression
@var{expr} with expressions consuming the return value of the built-in. The
expression @var{expr} itself can be reordered, and the whole expression
@var{expr} can be reordered with operands after the barrier. The barrier is
only relevant when @code{-fassociative-math} is active, since otherwise
floating-point is not treated as associative.

@smallexample
float x0 = a + b - b;
float x1 = __builtin_assoc_barrier(a + b) - b;
@end smallexample

@noindent
means that, with @code{-fassociative-math}, @code{x0} can be optimized to
@code{x0 = a} but @code{x1} cannot.
@end deftypefn

@deftypefn {Built-in Function} {void *} __builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
This function returns its first argument, and allows the compiler
to assume that the returned pointer is at least @var{align} bytes
aligned.  This built-in can have either two or three arguments,
if it has three, the third argument should have integer type, and
if it is nonzero means misalignment offset.  For example:

@smallexample
void *x = __builtin_assume_aligned (arg, 16);
@end smallexample

@noindent
means that the compiler can assume @code{x}, set to @code{arg}, is at least
16-byte aligned, while:

@smallexample
void *x = __builtin_assume_aligned (arg, 32, 8);
@end smallexample

@noindent
means that the compiler can assume for @code{x}, set to @code{arg}, that
@code{(char *) x - 8} is 32-byte aligned.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_LINE ()
This function is the equivalent of the preprocessor @code{__LINE__}
macro and returns a constant integer expression that evaluates to
the line number of the invocation of the built-in.  When used as a C++
default argument for a function @var{F}, it returns the line number
of the call to @var{F}.
@end deftypefn

@deftypefn {Built-in Function} {const char *} __builtin_FUNCTION ()
This function is the equivalent of the @code{__FUNCTION__} symbol
and returns an address constant pointing to the name of the function
from which the built-in was invoked, or the empty string if
the invocation is not at function scope.  When used as a C++ default
argument for a function @var{F}, it returns the name of @var{F}'s
caller or the empty string if the call was not made at function
scope.
@end deftypefn

@deftypefn {Built-in Function} {const char *} __builtin_FILE ()
This function is the equivalent of the preprocessor @code{__FILE__}
macro and returns an address constant pointing to the file name
containing the invocation of the built-in, or the empty string if
the invocation is not at function scope.  When used as a C++ default
argument for a function @var{F}, it returns the file name of the call
to @var{F} or the empty string if the call was not made at function
scope.

For example, in the following, each call to function @code{foo} will
print a line similar to @code{"file.c:123: foo: message"} with the name
of the file and the line number of the @code{printf} call, the name of
the function @code{foo}, followed by the word @code{message}.

@smallexample
const char*
function (const char *func = __builtin_FUNCTION ())
@{
  return func;
@}

void foo (void)
@{
  printf ("%s:%i: %s: message\n", file (), line (), function ());
@}
@end smallexample

@end deftypefn

@deftypefn {Built-in Function} void __builtin___clear_cache (void *@var{begin}, void *@var{end})
This function is used to flush the processor's instruction cache for
the region of memory between @var{begin} inclusive and @var{end}
exclusive.  Some targets require that the instruction cache be
flushed, after modifying memory containing code, in order to obtain
deterministic behavior.

If the target does not require instruction cache flushes,
@code{__builtin___clear_cache} has no effect.  Otherwise either
instructions are emitted in-line to clear the instruction cache or a
call to the @code{__clear_cache} function in libgcc is made.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
This function is used to minimize cache-miss latency by moving data into
a cache before it is accessed.
You can insert calls to @code{__builtin_prefetch} into code for which
you know addresses of data in memory that is likely to be accessed soon.
If the target supports them, data prefetch instructions are generated.
If the prefetch is done early enough before the access then the data will
be in the cache by the time it is accessed.

The value of @var{addr} is the address of the memory to prefetch.
There are two optional arguments, @var{rw} and @var{locality}.
The value of @var{rw} is a compile-time constant one or zero; one
means that the prefetch is preparing for a write to the memory address
and zero, the default, means that the prefetch is preparing for a read.
The value @var{locality} must be a compile-time constant integer between
zero and three.  A value of zero means that the data has no temporal
locality, so it need not be left in the cache after the access.  A value
of three means that the data has a high degree of temporal locality and
should be left in all levels of cache possible.  Values of one and two
mean, respectively, a low or moderate degree of temporal locality.  The
default is three.

@smallexample
for (i = 0; i < n; i++)
  @{
    a[i] = a[i] + b[i];
    __builtin_prefetch (&a[i+j], 1, 1);
    __builtin_prefetch (&b[i+j], 0, 1);
    /* @r{@dots{}} */
  @}
@end smallexample

Data prefetch does not generate faults if @var{addr} is invalid, but
the address expression itself must be valid.  For example, a prefetch
of @code{p->next} does not fault if @code{p->next} is not a valid
address, but evaluation faults if @code{p} is not a valid address.

If the target does not support data prefetch, the address expression
is evaluated if it includes side effects but no other code is generated
and GCC does not issue a warning.
@end deftypefn

@deftypefn {Built-in Function}{size_t} __builtin_object_size (const void * @var{ptr}, int @var{type})
Returns the size of an object pointed to by @var{ptr}.  @xref{Object Size
Checking}, for a detailed description of the function.
@end deftypefn

@deftypefn {Built-in Function} double __builtin_huge_val (void)
Returns a positive infinity, if supported by the floating-point format,
else @code{DBL_MAX}.  This function is suitable for implementing the
ISO C macro @code{HUGE_VAL}.
@end deftypefn

@deftypefn {Built-in Function} float __builtin_huge_valf (void)
Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
@end deftypefn

@deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
Similar to @code{__builtin_huge_val}, except the return
type is @code{long double}.
@end deftypefn

@deftypefn {Built-in Function} _Float@var{n} __builtin_huge_valf@var{n} (void)
Similar to @code{__builtin_huge_val}, except the return type is
@code{_Float@var{n}}.
@end deftypefn

@deftypefn {Built-in Function} _Float@var{n}x __builtin_huge_valf@var{n}x (void)
Similar to @code{__builtin_huge_val}, except the return type is
@code{_Float@var{n}x}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
This built-in implements the C99 fpclassify functionality.  The first
five int arguments should be the target library's notion of the
possible FP classes and are used for return values.  They must be
constant values and they must appear in this order: @code{FP_NAN},
@code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
@code{FP_ZERO}.  The ellipsis is for exactly one floating-point value
to classify.  GCC treats the last argument as type-generic, which
means it does not do default promotion from float to double.
@end deftypefn

@deftypefn {Built-in Function} double __builtin_inf (void)
Similar to @code{__builtin_huge_val}, except a warning is generated
if the target floating-point format does not support infinities.
@end deftypefn

@deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
@end deftypefn

@deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
@end deftypefn

@deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
@end deftypefn

@deftypefn {Built-in Function} float __builtin_inff (void)
Similar to @code{__builtin_inf}, except the return type is @code{float}.
This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
@end deftypefn

@deftypefn {Built-in Function} {long double} __builtin_infl (void)
Similar to @code{__builtin_inf}, except the return
type is @code{long double}.
@end deftypefn

@deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n} (void)
Similar to @code{__builtin_inf}, except the return
type is @code{_Float@var{n}}.
@end deftypefn

@deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n}x (void)
Similar to @code{__builtin_inf}, except the return
type is @code{_Float@var{n}x}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_isinf_sign (...)
Similar to @code{isinf}, except the return value is -1 for
an argument of @code{-Inf} and 1 for an argument of @code{+Inf}.
Note while the parameter list is an
ellipsis, this function only accepts exactly one floating-point
argument.  GCC treats this parameter as type-generic, which means it
does not do default promotion from float to double.
@end deftypefn

@deftypefn {Built-in Function} double __builtin_nan (const char *str)
This is an implementation of the ISO C99 function @code{nan}.

Since ISO C99 defines this function in terms of @code{strtod}, which we
do not implement, a description of the parsing is in order.  The string
is parsed as by @code{strtol}; that is, the base is recognized by
leading @samp{0} or @samp{0x} prefixes.  The number parsed is placed
in the significand such that the least significant bit of the number
is at the least significant bit of the significand.  The number is
truncated to fit the significand field provided.  The significand is
forced to be a quiet NaN@.

This function, if given a string literal all of which would have been
consumed by @code{strtol}, is evaluated early enough that it is considered a
compile-time constant.
@end deftypefn

@deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
@end deftypefn

@deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
@end deftypefn

@deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
@end deftypefn

@deftypefn {Built-in Function} float __builtin_nanf (const char *str)
Similar to @code{__builtin_nan}, except the return type is @code{float}.
@end deftypefn

@deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
Similar to @code{__builtin_nan}, except the return type is @code{long double}.
@end deftypefn

@deftypefn {Built-in Function} _Float@var{n} __builtin_nanf@var{n} (const char *str)
Similar to @code{__builtin_nan}, except the return type is
@code{_Float@var{n}}.
@end deftypefn

@deftypefn {Built-in Function} _Float@var{n}x __builtin_nanf@var{n}x (const char *str)
Similar to @code{__builtin_nan}, except the return type is
@code{_Float@var{n}x}.
@end deftypefn

@deftypefn {Built-in Function} double __builtin_nans (const char *str)
Similar to @code{__builtin_nan}, except the significand is forced
to be a signaling NaN@.  The @code{nans} function is proposed by
@uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
@end deftypefn

@deftypefn {Built-in Function} _Decimal32 __builtin_nansd32 (const char *str)
Similar to @code{__builtin_nans}, except the return type is @code{_Decimal32}.
@end deftypefn

@deftypefn {Built-in Function} _Decimal64 __builtin_nansd64 (const char *str)
Similar to @code{__builtin_nans}, except the return type is @code{_Decimal64}.
@end deftypefn

@deftypefn {Built-in Function} _Decimal128 __builtin_nansd128 (const char *str)
Similar to @code{__builtin_nans}, except the return type is @code{_Decimal128}.
@end deftypefn

@deftypefn {Built-in Function} float __builtin_nansf (const char *str)
Similar to @code{__builtin_nans}, except the return type is @code{float}.
@end deftypefn

@deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
Similar to @code{__builtin_nans}, except the return type is @code{long double}.
@end deftypefn

@deftypefn {Built-in Function} _Float@var{n} __builtin_nansf@var{n} (const char *str)
Similar to @code{__builtin_nans}, except the return type is
@code{_Float@var{n}}.
@end deftypefn

@deftypefn {Built-in Function} _Float@var{n}x __builtin_nansf@var{n}x (const char *str)
Similar to @code{__builtin_nans}, except the return type is
@code{_Float@var{n}x}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_issignaling (...)
Return non-zero if the argument is a signaling NaN and zero otherwise.
Note while the parameter list is an
ellipsis, this function only accepts exactly one floating-point
argument.  GCC treats this parameter as type-generic, which means it
does not do default promotion from float to double.
This built-in function can work even without the non-default
@code{-fsignaling-nans} option, although if a signaling NaN is computed,
stored or passed as argument to some function other than this built-in
in the current translation unit, it is safer to use @code{-fsignaling-nans}.
With @code{-ffinite-math-only} option this built-in function will always
return 0.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_ffs (int x)
Returns one plus the index of the least significant 1-bit of @var{x}, or
if @var{x} is zero, returns zero.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
Returns the number of leading 0-bits in @var{x}, starting at the most
significant bit position.  If @var{x} is 0, the result is undefined.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
Returns the number of trailing 0-bits in @var{x}, starting at the least
significant bit position.  If @var{x} is 0, the result is undefined.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_clrsb (int x)
Returns the number of leading redundant sign bits in @var{x}, i.e.@: the
number of bits following the most significant bit that are identical
to it.  There are no special cases for 0 or other values. 
@end deftypefn

@deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
Returns the number of 1-bits in @var{x}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
modulo 2.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_ffsl (long)
Similar to @code{__builtin_ffs}, except the argument type is
@code{long}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
Similar to @code{__builtin_clz}, except the argument type is
@code{unsigned long}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
Similar to @code{__builtin_ctz}, except the argument type is
@code{unsigned long}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_clrsbl (long)
Similar to @code{__builtin_clrsb}, except the argument type is
@code{long}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
Similar to @code{__builtin_popcount}, except the argument type is
@code{unsigned long}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
Similar to @code{__builtin_parity}, except the argument type is
@code{unsigned long}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_ffsll (long long)
Similar to @code{__builtin_ffs}, except the argument type is
@code{long long}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
Similar to @code{__builtin_clz}, except the argument type is
@code{unsigned long long}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
Similar to @code{__builtin_ctz}, except the argument type is
@code{unsigned long long}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_clrsbll (long long)
Similar to @code{__builtin_clrsb}, except the argument type is
@code{long long}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
Similar to @code{__builtin_popcount}, except the argument type is
@code{unsigned long long}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
Similar to @code{__builtin_parity}, except the argument type is
@code{unsigned long long}.
@end deftypefn

@deftypefn {Built-in Function} double __builtin_powi (double, int)
Returns the first argument raised to the power of the second.  Unlike the
@code{pow} function no guarantees about precision and rounding are made.
@end deftypefn

@deftypefn {Built-in Function} float __builtin_powif (float, int)
Similar to @code{__builtin_powi}, except the argument and return types
are @code{float}.
@end deftypefn

@deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
Similar to @code{__builtin_powi}, except the argument and return types
are @code{long double}.
@end deftypefn

@deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x)
Returns @var{x} with the order of the bytes reversed; for example,
@code{0xaabb} becomes @code{0xbbaa}.  Byte here always means
exactly 8 bits.
@end deftypefn

@deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x)
Similar to @code{__builtin_bswap16}, except the argument and return types
are 32-bit.
@end deftypefn

@deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x)
Similar to @code{__builtin_bswap32}, except the argument and return types
are 64-bit.
@end deftypefn

@deftypefn {Built-in Function} uint128_t __builtin_bswap128 (uint128_t x)
Similar to @code{__builtin_bswap64}, except the argument and return types
are 128-bit.  Only supported on targets when 128-bit types are supported.
@end deftypefn


@deftypefn {Built-in Function} Pmode __builtin_extend_pointer (void * x)
On targets where the user visible pointer size is smaller than the size
of an actual hardware address this function returns the extended user
pointer.  Targets where this is true included ILP32 mode on x86_64 or
Aarch64.  This function is mainly useful when writing inline assembly
code.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_goacc_parlevel_id (int x)
Returns the openacc gang, worker or vector id depending on whether @var{x} is
0, 1 or 2.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_goacc_parlevel_size (int x)
Returns the openacc gang, worker or vector size depending on whether @var{x} is
0, 1 or 2.
@end deftypefn

@node Target Builtins
@section Built-in Functions Specific to Particular Target Machines

On some target machines, GCC supports many built-in functions specific
to those machines.  Generally these generate calls to specific machine
instructions, but allow the compiler to schedule those calls.

@menu
* AArch64 Built-in Functions::
* Alpha Built-in Functions::
* Altera Nios II Built-in Functions::
* ARC Built-in Functions::
* ARC SIMD Built-in Functions::
* ARM iWMMXt Built-in Functions::
* ARM C Language Extensions (ACLE)::
* ARM Floating Point Status and Control Intrinsics::
* ARM ARMv8-M Security Extensions::
* AVR Built-in Functions::
* Blackfin Built-in Functions::
* BPF Built-in Functions::
* FR-V Built-in Functions::
* MIPS DSP Built-in Functions::
* MIPS Paired-Single Support::
* MIPS Loongson Built-in Functions::
* MIPS SIMD Architecture (MSA) Support::
* Other MIPS Built-in Functions::
* MSP430 Built-in Functions::
* NDS32 Built-in Functions::
* picoChip Built-in Functions::
* Basic PowerPC Built-in Functions::
* PowerPC AltiVec/VSX Built-in Functions::
* PowerPC Hardware Transactional Memory Built-in Functions::
* PowerPC Atomic Memory Operation Functions::
* PowerPC Matrix-Multiply Assist Built-in Functions::
* PRU Built-in Functions::
* RISC-V Built-in Functions::
* RX Built-in Functions::
* S/390 System z Built-in Functions::
* SH Built-in Functions::
* SPARC VIS Built-in Functions::
* TI C6X Built-in Functions::
* x86 Built-in Functions::
* x86 transactional memory intrinsics::
* x86 control-flow protection intrinsics::
@end menu

@node AArch64 Built-in Functions
@subsection AArch64 Built-in Functions

These built-in functions are available for the AArch64 family of
processors.
@smallexample
unsigned int __builtin_aarch64_get_fpcr ();
void __builtin_aarch64_set_fpcr (unsigned int);
unsigned int __builtin_aarch64_get_fpsr ();
void __builtin_aarch64_set_fpsr (unsigned int);

unsigned long long __builtin_aarch64_get_fpcr64 ();
void __builtin_aarch64_set_fpcr64 (unsigned long long);
unsigned long long __builtin_aarch64_get_fpsr64 ();
void __builtin_aarch64_set_fpsr64 (unsigned long long);
@end smallexample

@node Alpha Built-in Functions
@subsection Alpha Built-in Functions

These built-in functions are available for the Alpha family of
processors, depending on the command-line switches used.

The following built-in functions are always available.  They
all generate the machine instruction that is part of the name.

@smallexample
long __builtin_alpha_implver (void);
long __builtin_alpha_rpcc (void);
long __builtin_alpha_amask (long);
long __builtin_alpha_cmpbge (long, long);
long __builtin_alpha_extbl (long, long);
long __builtin_alpha_extwl (long, long);
long __builtin_alpha_extll (long, long);
long __builtin_alpha_extql (long, long);
long __builtin_alpha_extwh (long, long);
long __builtin_alpha_extlh (long, long);
long __builtin_alpha_extqh (long, long);
long __builtin_alpha_insbl (long, long);
long __builtin_alpha_inswl (long, long);
long __builtin_alpha_insll (long, long);
long __builtin_alpha_insql (long, long);
long __builtin_alpha_inswh (long, long);
long __builtin_alpha_inslh (long, long);
long __builtin_alpha_insqh (long, long);
long __builtin_alpha_mskbl (long, long);
long __builtin_alpha_mskwl (long, long);
long __builtin_alpha_mskll (long, long);
long __builtin_alpha_mskql (long, long);
long __builtin_alpha_mskwh (long, long);
long __builtin_alpha_msklh (long, long);
long __builtin_alpha_mskqh (long, long);
long __builtin_alpha_umulh (long, long);
long __builtin_alpha_zap (long, long);
long __builtin_alpha_zapnot (long, long);
@end smallexample

The following built-in functions are always with @option{-mmax}
or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
later.  They all generate the machine instruction that is part
of the name.

@smallexample
long __builtin_alpha_pklb (long);
long __builtin_alpha_pkwb (long);
long __builtin_alpha_unpkbl (long);
long __builtin_alpha_unpkbw (long);
long __builtin_alpha_minub8 (long, long);
long __builtin_alpha_minsb8 (long, long);
long __builtin_alpha_minuw4 (long, long);
long __builtin_alpha_minsw4 (long, long);
long __builtin_alpha_maxub8 (long, long);
long __builtin_alpha_maxsb8 (long, long);
long __builtin_alpha_maxuw4 (long, long);
long __builtin_alpha_maxsw4 (long, long);
long __builtin_alpha_perr (long, long);
@end smallexample

The following built-in functions are always with @option{-mcix}
or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
later.  They all generate the machine instruction that is part
of the name.

@smallexample
long __builtin_alpha_cttz (long);
long __builtin_alpha_ctlz (long);
long __builtin_alpha_ctpop (long);
@end smallexample

The following built-in functions are available on systems that use the OSF/1
PALcode.  Normally they invoke the @code{rduniq} and @code{wruniq}
PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
@code{rdval} and @code{wrval}.

@smallexample
void *__builtin_thread_pointer (void);
void __builtin_set_thread_pointer (void *);
@end smallexample

@node Altera Nios II Built-in Functions
@subsection Altera Nios II Built-in Functions

These built-in functions are available for the Altera Nios II
family of processors.

The following built-in functions are always available.  They
all generate the machine instruction that is part of the name.

@example
int __builtin_ldbio (volatile const void *);
int __builtin_ldbuio (volatile const void *);
int __builtin_ldhio (volatile const void *);
int __builtin_ldhuio (volatile const void *);
int __builtin_ldwio (volatile const void *);
void __builtin_stbio (volatile void *, int);
void __builtin_sthio (volatile void *, int);
void __builtin_stwio (volatile void *, int);
void __builtin_sync (void);
int __builtin_rdctl (int);
int __builtin_rdprs (int, int);
void __builtin_wrctl (int, int);
void __builtin_flushd (volatile void *);
void __builtin_flushda (volatile void *);
int __builtin_wrpie (int);
void __builtin_eni (int);
int __builtin_ldex (volatile const void *);
int __builtin_stex (volatile void *, int);
int __builtin_ldsex (volatile const void *);
int __builtin_stsex (volatile void *, int);
@end example

The following built-in functions are always available.  They
all generate a Nios II Custom Instruction. The name of the
function represents the types that the function takes and
returns. The letter before the @code{n} is the return type
or void if absent. The @code{n} represents the first parameter
to all the custom instructions, the custom instruction number.
The two letters after the @code{n} represent the up to two
parameters to the function.

The letters represent the following data types:
@table @code
@item <no letter>
@code{void} for return type and no parameter for parameter types.

@item i
@code{int} for return type and parameter type

@item f
@code{float} for return type and parameter type

@item p
@code{void *} for return type and parameter type

@end table

And the function names are:
@example
void __builtin_custom_n (void);
void __builtin_custom_ni (int);
void __builtin_custom_nf (float);
void __builtin_custom_np (void *);
void __builtin_custom_nii (int, int);
void __builtin_custom_nif (int, float);
void __builtin_custom_nip (int, void *);
void __builtin_custom_nfi (float, int);
void __builtin_custom_nff (float, float);
void __builtin_custom_nfp (float, void *);
void __builtin_custom_npi (void *, int);
void __builtin_custom_npf (void *, float);
void __builtin_custom_npp (void *, void *);
int __builtin_custom_in (void);
int __builtin_custom_ini (int);
int __builtin_custom_inf (float);
int __builtin_custom_inp (void *);
int __builtin_custom_inii (int, int);
int __builtin_custom_inif (int, float);
int __builtin_custom_inip (int, void *);
int __builtin_custom_infi (float, int);
int __builtin_custom_inff (float, float);
int __builtin_custom_infp (float, void *);
int __builtin_custom_inpi (void *, int);
int __builtin_custom_inpf (void *, float);
int __builtin_custom_inpp (void *, void *);
float __builtin_custom_fn (void);
float __builtin_custom_fni (int);
float __builtin_custom_fnf (float);
float __builtin_custom_fnp (void *);
float __builtin_custom_fnii (int, int);
float __builtin_custom_fnif (int, float);
float __builtin_custom_fnip (int, void *);
float __builtin_custom_fnfi (float, int);
float __builtin_custom_fnff (float, float);
float __builtin_custom_fnfp (float, void *);
float __builtin_custom_fnpi (void *, int);
float __builtin_custom_fnpf (void *, float);
float __builtin_custom_fnpp (void *, void *);
void * __builtin_custom_pn (void);
void * __builtin_custom_pni (int);
void * __builtin_custom_pnf (float);
void * __builtin_custom_pnp (void *);
void * __builtin_custom_pnii (int, int);
void * __builtin_custom_pnif (int, float);
void * __builtin_custom_pnip (int, void *);
void * __builtin_custom_pnfi (float, int);
void * __builtin_custom_pnff (float, float);
void * __builtin_custom_pnfp (float, void *);
void * __builtin_custom_pnpi (void *, int);
void * __builtin_custom_pnpf (void *, float);
void * __builtin_custom_pnpp (void *, void *);
@end example

@node ARC Built-in Functions
@subsection ARC Built-in Functions

The following built-in functions are provided for ARC targets.  The
built-ins generate the corresponding assembly instructions.  In the
examples given below, the generated code often requires an operand or
result to be in a register.  Where necessary further code will be
generated to ensure this is true, but for brevity this is not
described in each case.

@emph{Note:} Using a built-in to generate an instruction not supported
by a target may cause problems. At present the compiler is not
guaranteed to detect such misuse, and as a result an internal compiler
error may be generated.

@deftypefn {Built-in Function} int __builtin_arc_aligned (void *@var{val}, int @var{alignval})
Return 1 if @var{val} is known to have the byte alignment given
by @var{alignval}, otherwise return 0.
Note that this is different from
@smallexample
__alignof__(*(char *)@var{val}) >= alignval
@end smallexample
because __alignof__ sees only the type of the dereference, whereas
__builtin_arc_align uses alignment information from the pointer
as well as from the pointed-to type.
The information available will depend on optimization level.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_arc_brk (void)
Generates
@example
brk
@end example
@end deftypefn

@deftypefn {Built-in Function} {unsigned int} __builtin_arc_core_read (unsigned int @var{regno})
The operand is the number of a register to be read.  Generates:
@example
mov  @var{dest}, r@var{regno}
@end example
where the value in @var{dest} will be the result returned from the
built-in.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_arc_core_write (unsigned int @var{regno}, unsigned int @var{val})
The first operand is the number of a register to be written, the
second operand is a compile time constant to write into that
register.  Generates:
@example
mov  r@var{regno}, @var{val}
@end example
@end deftypefn

@deftypefn {Built-in Function} int __builtin_arc_divaw (int @var{a}, int @var{b})
Only available if either @option{-mcpu=ARC700} or @option{-meA} is set.
Generates:
@example
divaw  @var{dest}, @var{a}, @var{b}
@end example
where the value in @var{dest} will be the result returned from the
built-in.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_arc_flag (unsigned int @var{a})
Generates
@example
flag  @var{a}
@end example
@end deftypefn

@deftypefn {Built-in Function} {unsigned int} __builtin_arc_lr (unsigned int @var{auxr})
The operand, @var{auxv}, is the address of an auxiliary register and
must be a compile time constant.  Generates:
@example
lr  @var{dest}, [@var{auxr}]
@end example
Where the value in @var{dest} will be the result returned from the
built-in.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_arc_mul64 (int @var{a}, int @var{b})
Only available with @option{-mmul64}.  Generates:
@example
mul64  @var{a}, @var{b}
@end example
@end deftypefn

@deftypefn {Built-in Function} void __builtin_arc_mulu64 (unsigned int @var{a}, unsigned int @var{b})
Only available with @option{-mmul64}.  Generates:
@example
mulu64  @var{a}, @var{b}
@end example
@end deftypefn

@deftypefn {Built-in Function} void __builtin_arc_nop (void)
Generates:
@example
nop
@end example
@end deftypefn

@deftypefn {Built-in Function} int __builtin_arc_norm (int @var{src})
Only valid if the @samp{norm} instruction is available through the
@option{-mnorm} option or by default with @option{-mcpu=ARC700}.
Generates:
@example
norm  @var{dest}, @var{src}
@end example
Where the value in @var{dest} will be the result returned from the
built-in.
@end deftypefn

@deftypefn {Built-in Function}  {short int} __builtin_arc_normw (short int @var{src})
Only valid if the @samp{normw} instruction is available through the
@option{-mnorm} option or by default with @option{-mcpu=ARC700}.
Generates:
@example
normw  @var{dest}, @var{src}
@end example
Where the value in @var{dest} will be the result returned from the
built-in.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_arc_rtie (void)
Generates:
@example
rtie
@end example
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_arc_sleep (int @var{a}
Generates:
@example
sleep  @var{a}
@end example
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_arc_sr (unsigned int @var{val}, unsigned int @var{auxr})
The first argument, @var{val}, is a compile time constant to be
written to the register, the second argument, @var{auxr}, is the
address of an auxiliary register.  Generates:
@example
sr  @var{val}, [@var{auxr}]
@end example
@end deftypefn

@deftypefn {Built-in Function}  int __builtin_arc_swap (int @var{src})
Only valid with @option{-mswap}.  Generates:
@example
swap  @var{dest}, @var{src}
@end example
Where the value in @var{dest} will be the result returned from the
built-in.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_arc_swi (void)
Generates:
@example
swi
@end example
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_arc_sync (void)
Only available with @option{-mcpu=ARC700}.  Generates:
@example
sync
@end example
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_arc_trap_s (unsigned int @var{c})
Only available with @option{-mcpu=ARC700}.  Generates:
@example
trap_s  @var{c}
@end example
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_arc_unimp_s (void)
Only available with @option{-mcpu=ARC700}.  Generates:
@example
unimp_s
@end example
@end deftypefn

The instructions generated by the following builtins are not
considered as candidates for scheduling.  They are not moved around by
the compiler during scheduling, and thus can be expected to appear
where they are put in the C code:
@example
__builtin_arc_brk()
__builtin_arc_core_read()
__builtin_arc_core_write()
__builtin_arc_flag()
__builtin_arc_lr()
__builtin_arc_sleep()
__builtin_arc_sr()
__builtin_arc_swi()
@end example

@node ARC SIMD Built-in Functions
@subsection ARC SIMD Built-in Functions

SIMD builtins provided by the compiler can be used to generate the
vector instructions.  This section describes the available builtins
and their usage in programs.  With the @option{-msimd} option, the
compiler provides 128-bit vector types, which can be specified using
the @code{vector_size} attribute.  The header file @file{arc-simd.h}
can be included to use the following predefined types:
@example
typedef int __v4si   __attribute__((vector_size(16)));
typedef short __v8hi __attribute__((vector_size(16)));
@end example

These types can be used to define 128-bit variables.  The built-in
functions listed in the following section can be used on these
variables to generate the vector operations.

For all builtins, @code{__builtin_arc_@var{someinsn}}, the header file
@file{arc-simd.h} also provides equivalent macros called
@code{_@var{someinsn}} that can be used for programming ease and
improved readability.  The following macros for DMA control are also
provided:
@example
#define _setup_dma_in_channel_reg _vdiwr
#define _setup_dma_out_channel_reg _vdowr
@end example

The following is a complete list of all the SIMD built-ins provided
for ARC, grouped by calling signature.

The following take two @code{__v8hi} arguments and return a
@code{__v8hi} result:
@example
__v8hi __builtin_arc_vaddaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vaddw (__v8hi, __v8hi);
__v8hi __builtin_arc_vand (__v8hi, __v8hi);
__v8hi __builtin_arc_vandaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vavb (__v8hi, __v8hi);
__v8hi __builtin_arc_vavrb (__v8hi, __v8hi);
__v8hi __builtin_arc_vbic (__v8hi, __v8hi);
__v8hi __builtin_arc_vbicaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vdifaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vdifw (__v8hi, __v8hi);
__v8hi __builtin_arc_veqw (__v8hi, __v8hi);
__v8hi __builtin_arc_vh264f (__v8hi, __v8hi);
__v8hi __builtin_arc_vh264ft (__v8hi, __v8hi);
__v8hi __builtin_arc_vh264fw (__v8hi, __v8hi);
__v8hi __builtin_arc_vlew (__v8hi, __v8hi);
__v8hi __builtin_arc_vltw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmaxw (__v8hi, __v8hi);
__v8hi __builtin_arc_vminaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vminw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr1w (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr2w (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr3w (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr4w (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr5w (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr6w (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr7w (__v8hi, __v8hi);
__v8hi __builtin_arc_vmrb (__v8hi, __v8hi);
__v8hi __builtin_arc_vmulaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmulfw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmulw (__v8hi, __v8hi);
__v8hi __builtin_arc_vnew (__v8hi, __v8hi);
__v8hi __builtin_arc_vor (__v8hi, __v8hi);
__v8hi __builtin_arc_vsubaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vsubw (__v8hi, __v8hi);
__v8hi __builtin_arc_vsummw (__v8hi, __v8hi);
__v8hi __builtin_arc_vvc1f (__v8hi, __v8hi);
__v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi);
__v8hi __builtin_arc_vxor (__v8hi, __v8hi);
__v8hi __builtin_arc_vxoraw (__v8hi, __v8hi);
@end example

The following take one @code{__v8hi} and one @code{int} argument and return a
@code{__v8hi} result:

@example
__v8hi __builtin_arc_vbaddw (__v8hi, int);
__v8hi __builtin_arc_vbmaxw (__v8hi, int);
__v8hi __builtin_arc_vbminw (__v8hi, int);
__v8hi __builtin_arc_vbmulaw (__v8hi, int);
__v8hi __builtin_arc_vbmulfw (__v8hi, int);
__v8hi __builtin_arc_vbmulw (__v8hi, int);
__v8hi __builtin_arc_vbrsubw (__v8hi, int);
__v8hi __builtin_arc_vbsubw (__v8hi, int);
@end example

The following take one @code{__v8hi} argument and one @code{int} argument which
must be a 3-bit compile time constant indicating a register number
I0-I7.  They return a @code{__v8hi} result.
@example
__v8hi __builtin_arc_vasrw (__v8hi, const int);
__v8hi __builtin_arc_vsr8 (__v8hi, const int);
__v8hi __builtin_arc_vsr8aw (__v8hi, const int);
@end example

The following take one @code{__v8hi} argument and one @code{int}
argument which must be a 6-bit compile time constant.  They return a
@code{__v8hi} result.
@example
__v8hi __builtin_arc_vasrpwbi (__v8hi, const int);
__v8hi __builtin_arc_vasrrpwbi (__v8hi, const int);
__v8hi __builtin_arc_vasrrwi (__v8hi, const int);
__v8hi __builtin_arc_vasrsrwi (__v8hi, const int);
__v8hi __builtin_arc_vasrwi (__v8hi, const int);
__v8hi __builtin_arc_vsr8awi (__v8hi, const int);
__v8hi __builtin_arc_vsr8i (__v8hi, const int);
@end example

The following take one @code{__v8hi} argument and one @code{int} argument which
must be a 8-bit compile time constant.  They return a @code{__v8hi}
result.
@example
__v8hi __builtin_arc_vd6tapf (__v8hi, const int);
__v8hi __builtin_arc_vmvaw (__v8hi, const int);
__v8hi __builtin_arc_vmvw (__v8hi, const int);
__v8hi __builtin_arc_vmvzw (__v8hi, const int);
@end example

The following take two @code{int} arguments, the second of which which
must be a 8-bit compile time constant.  They return a @code{__v8hi}
result:
@example
__v8hi __builtin_arc_vmovaw (int, const int);
__v8hi __builtin_arc_vmovw (int, const int);
__v8hi __builtin_arc_vmovzw (int, const int);
@end example

The following take a single @code{__v8hi} argument and return a
@code{__v8hi} result:
@example
__v8hi __builtin_arc_vabsaw (__v8hi);
__v8hi __builtin_arc_vabsw (__v8hi);
__v8hi __builtin_arc_vaddsuw (__v8hi);
__v8hi __builtin_arc_vexch1 (__v8hi);
__v8hi __builtin_arc_vexch2 (__v8hi);
__v8hi __builtin_arc_vexch4 (__v8hi);
__v8hi __builtin_arc_vsignw (__v8hi);
__v8hi __builtin_arc_vupbaw (__v8hi);
__v8hi __builtin_arc_vupbw (__v8hi);
__v8hi __builtin_arc_vupsbaw (__v8hi);
__v8hi __builtin_arc_vupsbw (__v8hi);
@end example

The following take two @code{int} arguments and return no result:
@example
void __builtin_arc_vdirun (int, int);
void __builtin_arc_vdorun (int, int);
@end example

The following take two @code{int} arguments and return no result.  The
first argument must a 3-bit compile time constant indicating one of
the DR0-DR7 DMA setup channels:
@example
void __builtin_arc_vdiwr (const int, int);
void __builtin_arc_vdowr (const int, int);
@end example

The following take an @code{int} argument and return no result:
@example
void __builtin_arc_vendrec (int);
void __builtin_arc_vrec (int);
void __builtin_arc_vrecrun (int);
void __builtin_arc_vrun (int);
@end example

The following take a @code{__v8hi} argument and two @code{int}
arguments and return a @code{__v8hi} result.  The second argument must
be a 3-bit compile time constants, indicating one the registers I0-I7,
and the third argument must be an 8-bit compile time constant.

@emph{Note:} Although the equivalent hardware instructions do not take
an SIMD register as an operand, these builtins overwrite the relevant
bits of the @code{__v8hi} register provided as the first argument with
the value loaded from the @code{[Ib, u8]} location in the SDM.

@example
__v8hi __builtin_arc_vld32 (__v8hi, const int, const int);
__v8hi __builtin_arc_vld32wh (__v8hi, const int, const int);
__v8hi __builtin_arc_vld32wl (__v8hi, const int, const int);
__v8hi __builtin_arc_vld64 (__v8hi, const int, const int);
@end example

The following take two @code{int} arguments and return a @code{__v8hi}
result.  The first argument must be a 3-bit compile time constants,
indicating one the registers I0-I7, and the second argument must be an
8-bit compile time constant.

@example
__v8hi __builtin_arc_vld128 (const int, const int);
__v8hi __builtin_arc_vld64w (const int, const int);
@end example

The following take a @code{__v8hi} argument and two @code{int}
arguments and return no result.  The second argument must be a 3-bit
compile time constants, indicating one the registers I0-I7, and the
third argument must be an 8-bit compile time constant.

@example
void __builtin_arc_vst128 (__v8hi, const int, const int);
void __builtin_arc_vst64 (__v8hi, const int, const int);
@end example

The following take a @code{__v8hi} argument and three @code{int}
arguments and return no result.  The second argument must be a 3-bit
compile-time constant, identifying the 16-bit sub-register to be
stored, the third argument must be a 3-bit compile time constants,
indicating one the registers I0-I7, and the fourth argument must be an
8-bit compile time constant.

@example
void __builtin_arc_vst16_n (__v8hi, const int, const int, const int);
void __builtin_arc_vst32_n (__v8hi, const int, const int, const int);
@end example

@node ARM iWMMXt Built-in Functions
@subsection ARM iWMMXt Built-in Functions

These built-in functions are available for the ARM family of
processors when the @option{-mcpu=iwmmxt} switch is used:

@smallexample
typedef int v2si __attribute__ ((vector_size (8)));
typedef short v4hi __attribute__ ((vector_size (8)));
typedef char v8qi __attribute__ ((vector_size (8)));

int __builtin_arm_getwcgr0 (void);
void __builtin_arm_setwcgr0 (int);
int __builtin_arm_getwcgr1 (void);
void __builtin_arm_setwcgr1 (int);
int __builtin_arm_getwcgr2 (void);
void __builtin_arm_setwcgr2 (int);
int __builtin_arm_getwcgr3 (void);
void __builtin_arm_setwcgr3 (int);
int __builtin_arm_textrmsb (v8qi, int);
int __builtin_arm_textrmsh (v4hi, int);
int __builtin_arm_textrmsw (v2si, int);
int __builtin_arm_textrmub (v8qi, int);
int __builtin_arm_textrmuh (v4hi, int);
int __builtin_arm_textrmuw (v2si, int);
v8qi __builtin_arm_tinsrb (v8qi, int, int);
v4hi __builtin_arm_tinsrh (v4hi, int, int);
v2si __builtin_arm_tinsrw (v2si, int, int);
long long __builtin_arm_tmia (long long, int, int);
long long __builtin_arm_tmiabb (long long, int, int);
long long __builtin_arm_tmiabt (long long, int, int);
long long __builtin_arm_tmiaph (long long, int, int);
long long __builtin_arm_tmiatb (long long, int, int);
long long __builtin_arm_tmiatt (long long, int, int);
int __builtin_arm_tmovmskb (v8qi);
int __builtin_arm_tmovmskh (v4hi);
int __builtin_arm_tmovmskw (v2si);
long long __builtin_arm_waccb (v8qi);
long long __builtin_arm_wacch (v4hi);
long long __builtin_arm_waccw (v2si);
v8qi __builtin_arm_waddb (v8qi, v8qi);
v8qi __builtin_arm_waddbss (v8qi, v8qi);
v8qi __builtin_arm_waddbus (v8qi, v8qi);
v4hi __builtin_arm_waddh (v4hi, v4hi);
v4hi __builtin_arm_waddhss (v4hi, v4hi);
v4hi __builtin_arm_waddhus (v4hi, v4hi);
v2si __builtin_arm_waddw (v2si, v2si);
v2si __builtin_arm_waddwss (v2si, v2si);
v2si __builtin_arm_waddwus (v2si, v2si);
v8qi __builtin_arm_walign (v8qi, v8qi, int);
long long __builtin_arm_wand(long long, long long);
long long __builtin_arm_wandn (long long, long long);
v8qi __builtin_arm_wavg2b (v8qi, v8qi);
v8qi __builtin_arm_wavg2br (v8qi, v8qi);
v4hi __builtin_arm_wavg2h (v4hi, v4hi);
v4hi __builtin_arm_wavg2hr (v4hi, v4hi);
v8qi __builtin_arm_wcmpeqb (v8qi, v8qi);
v4hi __builtin_arm_wcmpeqh (v4hi, v4hi);
v2si __builtin_arm_wcmpeqw (v2si, v2si);
v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi);
v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi);
v2si __builtin_arm_wcmpgtsw (v2si, v2si);
v8qi __builtin_arm_wcmpgtub (v8qi, v8qi);
v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi);
v2si __builtin_arm_wcmpgtuw (v2si, v2si);
long long __builtin_arm_wmacs (long long, v4hi, v4hi);
long long __builtin_arm_wmacsz (v4hi, v4hi);
long long __builtin_arm_wmacu (long long, v4hi, v4hi);
long long __builtin_arm_wmacuz (v4hi, v4hi);
v4hi __builtin_arm_wmadds (v4hi, v4hi);
v4hi __builtin_arm_wmaddu (v4hi, v4hi);
v8qi __builtin_arm_wmaxsb (v8qi, v8qi);
v4hi __builtin_arm_wmaxsh (v4hi, v4hi);
v2si __builtin_arm_wmaxsw (v2si, v2si);
v8qi __builtin_arm_wmaxub (v8qi, v8qi);
v4hi __builtin_arm_wmaxuh (v4hi, v4hi);
v2si __builtin_arm_wmaxuw (v2si, v2si);
v8qi __builtin_arm_wminsb (v8qi, v8qi);
v4hi __builtin_arm_wminsh (v4hi, v4hi);
v2si __builtin_arm_wminsw (v2si, v2si);
v8qi __builtin_arm_wminub (v8qi, v8qi);
v4hi __builtin_arm_wminuh (v4hi, v4hi);
v2si __builtin_arm_wminuw (v2si, v2si);
v4hi __builtin_arm_wmulsm (v4hi, v4hi);
v4hi __builtin_arm_wmulul (v4hi, v4hi);
v4hi __builtin_arm_wmulum (v4hi, v4hi);
long long __builtin_arm_wor (long long, long long);
v2si __builtin_arm_wpackdss (long long, long long);
v2si __builtin_arm_wpackdus (long long, long long);
v8qi __builtin_arm_wpackhss (v4hi, v4hi);
v8qi __builtin_arm_wpackhus (v4hi, v4hi);
v4hi __builtin_arm_wpackwss (v2si, v2si);
v4hi __builtin_arm_wpackwus (v2si, v2si);
long long __builtin_arm_wrord (long long, long long);
long long __builtin_arm_wrordi (long long, int);
v4hi __builtin_arm_wrorh (v4hi, long long);
v4hi __builtin_arm_wrorhi (v4hi, int);
v2si __builtin_arm_wrorw (v2si, long long);
v2si __builtin_arm_wrorwi (v2si, int);
v2si __builtin_arm_wsadb (v2si, v8qi, v8qi);
v2si __builtin_arm_wsadbz (v8qi, v8qi);
v2si __builtin_arm_wsadh (v2si, v4hi, v4hi);
v2si __builtin_arm_wsadhz (v4hi, v4hi);
v4hi __builtin_arm_wshufh (v4hi, int);
long long __builtin_arm_wslld (long long, long long);
long long __builtin_arm_wslldi (long long, int);
v4hi __builtin_arm_wsllh (v4hi, long long);
v4hi __builtin_arm_wsllhi (v4hi, int);
v2si __builtin_arm_wsllw (v2si, long long);
v2si __builtin_arm_wsllwi (v2si, int);
long long __builtin_arm_wsrad (long long, long long);
long long __builtin_arm_wsradi (long long, int);
v4hi __builtin_arm_wsrah (v4hi, long long);
v4hi __builtin_arm_wsrahi (v4hi, int);
v2si __builtin_arm_wsraw (v2si, long long);
v2si __builtin_arm_wsrawi (v2si, int);
long long __builtin_arm_wsrld (long long, long long);
long long __builtin_arm_wsrldi (long long, int);
v4hi __builtin_arm_wsrlh (v4hi, long long);
v4hi __builtin_arm_wsrlhi (v4hi, int);
v2si __builtin_arm_wsrlw (v2si, long long);
v2si __builtin_arm_wsrlwi (v2si, int);
v8qi __builtin_arm_wsubb (v8qi, v8qi);
v8qi __builtin_arm_wsubbss (v8qi, v8qi);
v8qi __builtin_arm_wsubbus (v8qi, v8qi);
v4hi __builtin_arm_wsubh (v4hi, v4hi);
v4hi __builtin_arm_wsubhss (v4hi, v4hi);
v4hi __builtin_arm_wsubhus (v4hi, v4hi);
v2si __builtin_arm_wsubw (v2si, v2si);
v2si __builtin_arm_wsubwss (v2si, v2si);
v2si __builtin_arm_wsubwus (v2si, v2si);
v4hi __builtin_arm_wunpckehsb (v8qi);
v2si __builtin_arm_wunpckehsh (v4hi);
long long __builtin_arm_wunpckehsw (v2si);
v4hi __builtin_arm_wunpckehub (v8qi);
v2si __builtin_arm_wunpckehuh (v4hi);
long long __builtin_arm_wunpckehuw (v2si);
v4hi __builtin_arm_wunpckelsb (v8qi);
v2si __builtin_arm_wunpckelsh (v4hi);
long long __builtin_arm_wunpckelsw (v2si);
v4hi __builtin_arm_wunpckelub (v8qi);
v2si __builtin_arm_wunpckeluh (v4hi);
long long __builtin_arm_wunpckeluw (v2si);
v8qi __builtin_arm_wunpckihb (v8qi, v8qi);
v4hi __builtin_arm_wunpckihh (v4hi, v4hi);
v2si __builtin_arm_wunpckihw (v2si, v2si);
v8qi __builtin_arm_wunpckilb (v8qi, v8qi);
v4hi __builtin_arm_wunpckilh (v4hi, v4hi);
v2si __builtin_arm_wunpckilw (v2si, v2si);
long long __builtin_arm_wxor (long long, long long);
long long __builtin_arm_wzero ();
@end smallexample


@node ARM C Language Extensions (ACLE)
@subsection ARM C Language Extensions (ACLE)

GCC implements extensions for C as described in the ARM C Language
Extensions (ACLE) specification, which can be found at
@uref{https://developer.arm.com/documentation/ihi0053/latest/}.

As a part of ACLE, GCC implements extensions for Advanced SIMD as described in
the ARM C Language Extensions Specification.  The complete list of Advanced SIMD
intrinsics can be found at
@uref{https://developer.arm.com/documentation/ihi0073/latest/}.
The built-in intrinsics for the Advanced SIMD extension are available when
NEON is enabled.

Currently, ARM and AArch64 back ends do not support ACLE 2.0 fully.  Both
back ends support CRC32 intrinsics and the ARM back end supports the
Coprocessor intrinsics, all from @file{arm_acle.h}.  The ARM back end's 16-bit
floating-point Advanced SIMD intrinsics currently comply to ACLE v1.1.
AArch64's back end does not have support for 16-bit floating point Advanced SIMD
intrinsics yet.

See @ref{ARM Options} and @ref{AArch64 Options} for more information on the
availability of extensions.

@node ARM Floating Point Status and Control Intrinsics
@subsection ARM Floating Point Status and Control Intrinsics

These built-in functions are available for the ARM family of
processors with floating-point unit.

@smallexample
unsigned int __builtin_arm_get_fpscr ();
void __builtin_arm_set_fpscr (unsigned int);
@end smallexample

@node ARM ARMv8-M Security Extensions
@subsection ARM ARMv8-M Security Extensions

GCC implements the ARMv8-M Security Extensions as described in the ARMv8-M
Security Extensions: Requirements on Development Tools Engineering
Specification, which can be found at
@uref{https://developer.arm.com/documentation/ecm0359818/latest/}.

As part of the Security Extensions GCC implements two new function attributes:
@code{cmse_nonsecure_entry} and @code{cmse_nonsecure_call}.

As part of the Security Extensions GCC implements the intrinsics below.  FPTR
is used here to mean any function pointer type.

@smallexample
cmse_address_info_t cmse_TT (void *);
cmse_address_info_t cmse_TT_fptr (FPTR);
cmse_address_info_t cmse_TTT (void *);
cmse_address_info_t cmse_TTT_fptr (FPTR);
cmse_address_info_t cmse_TTA (void *);
cmse_address_info_t cmse_TTA_fptr (FPTR);
cmse_address_info_t cmse_TTAT (void *);
cmse_address_info_t cmse_TTAT_fptr (FPTR);
void * cmse_check_address_range (void *, size_t, int);
typeof(p) cmse_nsfptr_create (FPTR p);
intptr_t cmse_is_nsfptr (FPTR);
int cmse_nonsecure_caller (void);
@end smallexample

@node AVR Built-in Functions
@subsection AVR Built-in Functions

For each built-in function for AVR, there is an equally named,
uppercase built-in macro defined. That way users can easily query if
or if not a specific built-in is implemented or not. For example, if
@code{__builtin_avr_nop} is available the macro
@code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.

@table @code

@item void __builtin_avr_nop (void)
@itemx void __builtin_avr_sei (void)
@itemx void __builtin_avr_cli (void)
@itemx void __builtin_avr_sleep (void)
@itemx void __builtin_avr_wdr (void)
@itemx unsigned char __builtin_avr_swap (unsigned char)
@itemx unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
@itemx int __builtin_avr_fmuls (char, char)
@itemx int __builtin_avr_fmulsu (char, unsigned char)
These built-in functions map to the respective machine
instruction, i.e.@: @code{nop}, @code{sei}, @code{cli}, @code{sleep},
@code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
as library call if no hardware multiplier is available.

@item void __builtin_avr_delay_cycles (unsigned long ticks)
Delay execution for @var{ticks} cycles. Note that this
built-in does not take into account the effect of interrupts that
might increase delay time. @var{ticks} must be a compile-time
integer constant; delays with a variable number of cycles are not supported.

@item char __builtin_avr_flash_segment (const __memx void*)
This built-in takes a byte address to the 24-bit
@ref{AVR Named Address Spaces,address space} @code{__memx} and returns
the number of the flash segment (the 64 KiB chunk) where the address
points to.  Counting starts at @code{0}.
If the address does not point to flash memory, return @code{-1}.

@item uint8_t __builtin_avr_insert_bits (uint32_t map, uint8_t bits, uint8_t val)
Insert bits from @var{bits} into @var{val} and return the resulting
value. The nibbles of @var{map} determine how the insertion is
performed: Let @var{X} be the @var{n}-th nibble of @var{map}
@enumerate
@item If @var{X} is @code{0xf},
then the @var{n}-th bit of @var{val} is returned unaltered.

@item If X is in the range 0@dots{}7,
then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}

@item If X is in the range 8@dots{}@code{0xe},
then the @var{n}-th result bit is undefined.
@end enumerate

@noindent
One typical use case for this built-in is adjusting input and
output values to non-contiguous port layouts. Some examples:

@smallexample
// same as val, bits is unused
__builtin_avr_insert_bits (0xffffffff, bits, val);
@end smallexample

@smallexample
// same as bits, val is unused
__builtin_avr_insert_bits (0x76543210, bits, val);
@end smallexample

@smallexample
// same as rotating bits by 4
__builtin_avr_insert_bits (0x32107654, bits, 0);
@end smallexample

@smallexample
// high nibble of result is the high nibble of val
// low nibble of result is the low nibble of bits
__builtin_avr_insert_bits (0xffff3210, bits, val);
@end smallexample

@smallexample
// reverse the bit order of bits
__builtin_avr_insert_bits (0x01234567, bits, 0);
@end smallexample

@item void __builtin_avr_nops (unsigned count)
Insert @var{count} @code{NOP} instructions.
The number of instructions must be a compile-time integer constant.

@end table

@noindent
There are many more AVR-specific built-in functions that are used to
implement the ISO/IEC TR 18037 ``Embedded C'' fixed-point functions of
section 7.18a.6.  You don't need to use these built-ins directly.
Instead, use the declarations as supplied by the @code{stdfix.h} header
with GNU-C99:

@smallexample
#include <stdfix.h>

// Re-interpret the bit representation of unsigned 16-bit
// integer @var{uval} as Q-format 0.16 value.
unsigned fract get_bits (uint_ur_t uval)
@{
    return urbits (uval);
@}
@end smallexample

@node Blackfin Built-in Functions
@subsection Blackfin Built-in Functions

Currently, there are two Blackfin-specific built-in functions.  These are
used for generating @code{CSYNC} and @code{SSYNC} machine insns without
using inline assembly; by using these built-in functions the compiler can
automatically add workarounds for hardware errata involving these
instructions.  These functions are named as follows:

@smallexample
void __builtin_bfin_csync (void);
void __builtin_bfin_ssync (void);
@end smallexample

@node BPF Built-in Functions
@subsection BPF Built-in Functions

The following built-in functions are available for eBPF targets.

@deftypefn {Built-in Function} unsigned long long __builtin_bpf_load_byte (unsigned long long @var{offset})
Load a byte from the @code{struct sk_buff} packet data pointed by the register @code{%r6} and return it.
@end deftypefn

@deftypefn {Built-in Function} unsigned long long __builtin_bpf_load_half (unsigned long long @var{offset})
Load 16-bits from the @code{struct sk_buff} packet data pointed by the register @code{%r6} and return it.
@end deftypefn

@deftypefn {Built-in Function} unsigned long long __builtin_bpf_load_word (unsigned long long @var{offset})
Load 32-bits from the @code{struct sk_buff} packet data pointed by the register @code{%r6} and return it.
@end deftypefn

@deftypefn {Built-in Function} void * __builtin_preserve_access_index (@var{expr})
BPF Compile Once-Run Everywhere (CO-RE) support. Instruct GCC to generate CO-RE relocation records for any accesses to aggregate data structures (struct, union, array types) in @var{expr}. This builtin is otherwise transparent, the return value is whatever @var{expr} evaluates to. It is also overloaded: @var{expr} may be of any type (not necessarily a pointer), the return type is the same. Has no effect if @code{-mco-re} is not in effect (either specified or implied).
@end deftypefn

@deftypefn {Built-in Function} unsigned int __builtin_preserve_field_info (@var{expr}, unsigned int @var{kind})
BPF Compile Once-Run Everywhere (CO-RE) support. This builtin is used to
extract information to aid in struct/union relocations.  @var{expr} is
an access to a field of a struct or union. Depending on @var{kind}, different
information is returned to the program. A CO-RE relocation for the access in
@var{expr} with kind @var{kind} is recorded if @code{-mco-re} is in effect.

The following values are supported for @var{kind}:
@table @var
@item FIELD_BYTE_OFFSET = 0
The returned value is the offset, in bytes, of the field from the
beginning of the containing structure. For bitfields, the byte offset
of the containing word.

@item FIELD_BYTE_SIZE = 1
The returned value is the size, in bytes, of the field. For bitfields,
the size in bytes of the containing word.

@item FIELD_EXISTENCE = 2
The returned value is 1 if the field exists, 0 otherwise. Always 1 at
compile time.

@item FIELD_SIGNEDNESS = 3
The returned value is 1 if the field is signed, 0 otherwise.

@item FIELD_LSHIFT_U64 = 4
@itemx FIELD_RSHIFT_U64 = 5
The returned value is the number of bits of left- or right-shifting
respectively needed in order to recover the original value of the field,
after it has been loaded by a read of FIELD_BYTE_SIZE bytes into an
unsigned 64-bit value. Primarily useful for reading bitfield values
from structures which may change between kernel versions.

@end table

Note that the return value is a constant which is known at
compile-time. If the field has a variable offset then
FIELD_BYTE_OFFSET, FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are not
supported. Similarly, if the field has a variable size then
FIELD_BYTE_SIZE, FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are not
supported.

For example, __builtin_preserve_field_info can be used to reliably
extract bitfield values from a structure which may change between
kernel versions:

@example
struct S
@{
  short a;
  int x:7;
  int y:5;
@};

int
read_y (struct S *arg)
@{
  unsigned long long val;
  unsigned int offset = __builtin_preserve_field_info (arg->y, FIELD_BYTE_OFFSET);
  unsigned int size = __builtin_presrve_field_info (arg->y, FIELD_BYTE_SIZE);

  /* Read size bytes from arg + offset into val.  */
  bpf_probe_read (&val, size, arg + offset);

  val <<= __builtin_preserve_field_info (arg->y, FIELD_LSHIFT_U64);

  if (__builtin_preserve_field_info (arg->y, FIELD_SIGNEDNESS))
    val = ((long long) val >> __builtin_preserve_field_info (arg->y, FIELD_RSHIFT_U64));
  else
    val >>= __builtin_preserve_field_info (arg->y, FIELD_RSHIFT_U64);

  return val;
@}

@end example
@end deftypefn

@node FR-V Built-in Functions
@subsection FR-V Built-in Functions

GCC provides many FR-V-specific built-in functions.  In general,
these functions are intended to be compatible with those described
by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
Semiconductor}.  The two exceptions are @code{__MDUNPACKH} and
@code{__MBTOHE}, the GCC forms of which pass 128-bit values by
pointer rather than by value.

Most of the functions are named after specific FR-V instructions.
Such functions are said to be ``directly mapped'' and are summarized
here in tabular form.

@menu
* Argument Types::
* Directly-mapped Integer Functions::
* Directly-mapped Media Functions::
* Raw read/write Functions::
* Other Built-in Functions::
@end menu

@node Argument Types
@subsubsection Argument Types

The arguments to the built-in functions can be divided into three groups:
register numbers, compile-time constants and run-time values.  In order
to make this classification clear at a glance, the arguments and return
values are given the following pseudo types:

@multitable @columnfractions .20 .30 .15 .35
@headitem Pseudo type @tab Real C type @tab Constant? @tab Description
@item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
@item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
@item @code{sw1} @tab @code{int} @tab No @tab a signed word
@item @code{uw2} @tab @code{unsigned long long} @tab No
@tab an unsigned doubleword
@item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
@item @code{const} @tab @code{int} @tab Yes @tab an integer constant
@item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
@item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
@end multitable

These pseudo types are not defined by GCC, they are simply a notational
convenience used in this manual.

Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
and @code{sw2} are evaluated at run time.  They correspond to
register operands in the underlying FR-V instructions.

@code{const} arguments represent immediate operands in the underlying
FR-V instructions.  They must be compile-time constants.

@code{acc} arguments are evaluated at compile time and specify the number
of an accumulator register.  For example, an @code{acc} argument of 2
selects the ACC2 register.

@code{iacc} arguments are similar to @code{acc} arguments but specify the
number of an IACC register.  See @pxref{Other Built-in Functions}
for more details.

@node Directly-mapped Integer Functions
@subsubsection Directly-Mapped Integer Functions

The functions listed below map directly to FR-V I-type instructions.

@multitable @columnfractions .45 .32 .23
@headitem Function prototype @tab Example usage @tab Assembly output
@item @code{sw1 __ADDSS (sw1, sw1)}
@tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
@tab @code{ADDSS @var{a},@var{b},@var{c}}
@item @code{sw1 __SCAN (sw1, sw1)}
@tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
@tab @code{SCAN @var{a},@var{b},@var{c}}
@item @code{sw1 __SCUTSS (sw1)}
@tab @code{@var{b} = __SCUTSS (@var{a})}
@tab @code{SCUTSS @var{a},@var{b}}
@item @code{sw1 __SLASS (sw1, sw1)}
@tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
@tab @code{SLASS @var{a},@var{b},@var{c}}
@item @code{void __SMASS (sw1, sw1)}
@tab @code{__SMASS (@var{a}, @var{b})}
@tab @code{SMASS @var{a},@var{b}}
@item @code{void __SMSSS (sw1, sw1)}
@tab @code{__SMSSS (@var{a}, @var{b})}
@tab @code{SMSSS @var{a},@var{b}}
@item @code{void __SMU (sw1, sw1)}
@tab @code{__SMU (@var{a}, @var{b})}
@tab @code{SMU @var{a},@var{b}}
@item @code{sw2 __SMUL (sw1, sw1)}
@tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
@tab @code{SMUL @var{a},@var{b},@var{c}}
@item @code{sw1 __SUBSS (sw1, sw1)}
@tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
@tab @code{SUBSS @var{a},@var{b},@var{c}}
@item @code{uw2 __UMUL (uw1, uw1)}
@tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
@tab @code{UMUL @var{a},@var{b},@var{c}}
@end multitable

@node Directly-mapped Media Functions
@subsubsection Directly-Mapped Media Functions

The functions listed below map directly to FR-V M-type instructions.

@multitable @columnfractions .45 .32 .23
@headitem Function prototype @tab Example usage @tab Assembly output
@item @code{uw1 __MABSHS (sw1)}
@tab @code{@var{b} = __MABSHS (@var{a})}
@tab @code{MABSHS @var{a},@var{b}}
@item @code{void __MADDACCS (acc, acc)}
@tab @code{__MADDACCS (@var{b}, @var{a})}
@tab @code{MADDACCS @var{a},@var{b}}
@item @code{sw1 __MADDHSS (sw1, sw1)}
@tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
@tab @code{MADDHSS @var{a},@var{b},@var{c}}
@item @code{uw1 __MADDHUS (uw1, uw1)}
@tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
@tab @code{MADDHUS @var{a},@var{b},@var{c}}
@item @code{uw1 __MAND (uw1, uw1)}
@tab @code{@var{c} = __MAND (@var{a}, @var{b})}
@tab @code{MAND @var{a},@var{b},@var{c}}
@item @code{void __MASACCS (acc, acc)}
@tab @code{__MASACCS (@var{b}, @var{a})}
@tab @code{MASACCS @var{a},@var{b}}
@item @code{uw1 __MAVEH (uw1, uw1)}
@tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
@tab @code{MAVEH @var{a},@var{b},@var{c}}
@item @code{uw2 __MBTOH (uw1)}
@tab @code{@var{b} = __MBTOH (@var{a})}
@tab @code{MBTOH @var{a},@var{b}}
@item @code{void __MBTOHE (uw1 *, uw1)}
@tab @code{__MBTOHE (&@var{b}, @var{a})}
@tab @code{MBTOHE @var{a},@var{b}}
@item @code{void __MCLRACC (acc)}
@tab @code{__MCLRACC (@var{a})}
@tab @code{MCLRACC @var{a}}
@item @code{void __MCLRACCA (void)}
@tab @code{__MCLRACCA ()}
@tab @code{MCLRACCA}
@item @code{uw1 __Mcop1 (uw1, uw1)}
@tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
@tab @code{Mcop1 @var{a},@var{b},@var{c}}
@item @code{uw1 __Mcop2 (uw1, uw1)}
@tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
@tab @code{Mcop2 @var{a},@var{b},@var{c}}
@item @code{uw1 __MCPLHI (uw2, const)}
@tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
@tab @code{MCPLHI @var{a},#@var{b},@var{c}}
@item @code{uw1 __MCPLI (uw2, const)}
@tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
@tab @code{MCPLI @var{a},#@var{b},@var{c}}
@item @code{void __MCPXIS (acc, sw1, sw1)}
@tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
@tab @code{MCPXIS @var{a},@var{b},@var{c}}
@item @code{void __MCPXIU (acc, uw1, uw1)}
@tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
@tab @code{MCPXIU @var{a},@var{b},@var{c}}
@item @code{void __MCPXRS (acc, sw1, sw1)}
@tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
@tab @code{MCPXRS @var{a},@var{b},@var{c}}
@item @code{void __MCPXRU (acc, uw1, uw1)}
@tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
@tab @code{MCPXRU @var{a},@var{b},@var{c}}
@item @code{uw1 __MCUT (acc, uw1)}
@tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
@tab @code{MCUT @var{a},@var{b},@var{c}}
@item @code{uw1 __MCUTSS (acc, sw1)}
@tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
@tab @code{MCUTSS @var{a},@var{b},@var{c}}
@item @code{void __MDADDACCS (acc, acc)}
@tab @code{__MDADDACCS (@var{b}, @var{a})}
@tab @code{MDADDACCS @var{a},@var{b}}
@item @code{void __MDASACCS (acc, acc)}
@tab @code{__MDASACCS (@var{b}, @var{a})}
@tab @code{MDASACCS @var{a},@var{b}}
@item @code{uw2 __MDCUTSSI (acc, const)}
@tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
@tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
@item @code{uw2 __MDPACKH (uw2, uw2)}
@tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
@tab @code{MDPACKH @var{a},@var{b},@var{c}}
@item @code{uw2 __MDROTLI (uw2, const)}
@tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
@tab @code{MDROTLI @var{a},#@var{b},@var{c}}
@item @code{void __MDSUBACCS (acc, acc)}
@tab @code{__MDSUBACCS (@var{b}, @var{a})}
@tab @code{MDSUBACCS @var{a},@var{b}}
@item @code{void __MDUNPACKH (uw1 *, uw2)}
@tab @code{__MDUNPACKH (&@var{b}, @var{a})}
@tab @code{MDUNPACKH @var{a},@var{b}}
@item @code{uw2 __MEXPDHD (uw1, const)}
@tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
@tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
@item @code{uw1 __MEXPDHW (uw1, const)}
@tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
@tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
@item @code{uw1 __MHDSETH (uw1, const)}
@tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
@tab @code{MHDSETH @var{a},#@var{b},@var{c}}
@item @code{sw1 __MHDSETS (const)}
@tab @code{@var{b} = __MHDSETS (@var{a})}
@tab @code{MHDSETS #@var{a},@var{b}}
@item @code{uw1 __MHSETHIH (uw1, const)}
@tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
@tab @code{MHSETHIH #@var{a},@var{b}}
@item @code{sw1 __MHSETHIS (sw1, const)}
@tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
@tab @code{MHSETHIS #@var{a},@var{b}}
@item @code{uw1 __MHSETLOH (uw1, const)}
@tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
@tab @code{MHSETLOH #@var{a},@var{b}}
@item @code{sw1 __MHSETLOS (sw1, const)}
@tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
@tab @code{MHSETLOS #@var{a},@var{b}}
@item @code{uw1 __MHTOB (uw2)}
@tab @code{@var{b} = __MHTOB (@var{a})}
@tab @code{MHTOB @var{a},@var{b}}
@item @code{void __MMACHS (acc, sw1, sw1)}
@tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
@tab @code{MMACHS @var{a},@var{b},@var{c}}
@item @code{void __MMACHU (acc, uw1, uw1)}
@tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
@tab @code{MMACHU @var{a},@var{b},@var{c}}
@item @code{void __MMRDHS (acc, sw1, sw1)}
@tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
@tab @code{MMRDHS @var{a},@var{b},@var{c}}
@item @code{void __MMRDHU (acc, uw1, uw1)}
@tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
@tab @code{MMRDHU @var{a},@var{b},@var{c}}
@item @code{void __MMULHS (acc, sw1, sw1)}
@tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
@tab @code{MMULHS @var{a},@var{b},@var{c}}
@item @code{void __MMULHU (acc, uw1, uw1)}
@tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
@tab @code{MMULHU @var{a},@var{b},@var{c}}
@item @code{void __MMULXHS (acc, sw1, sw1)}
@tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
@tab @code{MMULXHS @var{a},@var{b},@var{c}}
@item @code{void __MMULXHU (acc, uw1, uw1)}
@tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
@tab @code{MMULXHU @var{a},@var{b},@var{c}}
@item @code{uw1 __MNOT (uw1)}
@tab @code{@var{b} = __MNOT (@var{a})}
@tab @code{MNOT @var{a},@var{b}}
@item @code{uw1 __MOR (uw1, uw1)}
@tab @code{@var{c} = __MOR (@var{a}, @var{b})}
@tab @code{MOR @var{a},@var{b},@var{c}}
@item @code{uw1 __MPACKH (uh, uh)}
@tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
@tab @code{MPACKH @var{a},@var{b},@var{c}}
@item @code{sw2 __MQADDHSS (sw2, sw2)}
@tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
@tab @code{MQADDHSS @var{a},@var{b},@var{c}}
@item @code{uw2 __MQADDHUS (uw2, uw2)}
@tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
@tab @code{MQADDHUS @var{a},@var{b},@var{c}}
@item @code{void __MQCPXIS (acc, sw2, sw2)}
@tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
@tab @code{MQCPXIS @var{a},@var{b},@var{c}}
@item @code{void __MQCPXIU (acc, uw2, uw2)}
@tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
@tab @code{MQCPXIU @var{a},@var{b},@var{c}}
@item @code{void __MQCPXRS (acc, sw2, sw2)}
@tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
@tab @code{MQCPXRS @var{a},@var{b},@var{c}}
@item @code{void __MQCPXRU (acc, uw2, uw2)}
@tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
@tab @code{MQCPXRU @var{a},@var{b},@var{c}}
@item @code{sw2 __MQLCLRHS (sw2, sw2)}
@tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
@tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
@item @code{sw2 __MQLMTHS (sw2, sw2)}
@tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
@tab @code{MQLMTHS @var{a},@var{b},@var{c}}
@item @code{void __MQMACHS (acc, sw2, sw2)}
@tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
@tab @code{MQMACHS @var{a},@var{b},@var{c}}
@item @code{void __MQMACHU (acc, uw2, uw2)}
@tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
@tab @code{MQMACHU @var{a},@var{b},@var{c}}
@item @code{void __MQMACXHS (acc, sw2, sw2)}
@tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
@tab @code{MQMACXHS @var{a},@var{b},@var{c}}
@item @code{void __MQMULHS (acc, sw2, sw2)}
@tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
@tab @code{MQMULHS @var{a},@var{b},@var{c}}
@item @code{void __MQMULHU (acc, uw2, uw2)}
@tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
@tab @code{MQMULHU @var{a},@var{b},@var{c}}
@item @code{void __MQMULXHS (acc, sw2, sw2)}
@tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
@tab @code{MQMULXHS @var{a},@var{b},@var{c}}
@item @code{void __MQMULXHU (acc, uw2, uw2)}
@tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
@tab @code{MQMULXHU @var{a},@var{b},@var{c}}
@item @code{sw2 __MQSATHS (sw2, sw2)}
@tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
@tab @code{MQSATHS @var{a},@var{b},@var{c}}
@item @code{uw2 __MQSLLHI (uw2, int)}
@tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
@tab @code{MQSLLHI @var{a},@var{b},@var{c}}
@item @code{sw2 __MQSRAHI (sw2, int)}
@tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
@tab @code{MQSRAHI @var{a},@var{b},@var{c}}
@item @code{sw2 __MQSUBHSS (sw2, sw2)}
@tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
@tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
@item @code{uw2 __MQSUBHUS (uw2, uw2)}
@tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
@tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
@item @code{void __MQXMACHS (acc, sw2, sw2)}
@tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
@tab @code{MQXMACHS @var{a},@var{b},@var{c}}
@item @code{void __MQXMACXHS (acc, sw2, sw2)}
@tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
@tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
@item @code{uw1 __MRDACC (acc)}
@tab @code{@var{b} = __MRDACC (@var{a})}
@tab @code{MRDACC @var{a},@var{b}}
@item @code{uw1 __MRDACCG (acc)}
@tab @code{@var{b} = __MRDACCG (@var{a})}
@tab @code{MRDACCG @var{a},@var{b}}
@item @code{uw1 __MROTLI (uw1, const)}
@tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
@tab @code{MROTLI @var{a},#@var{b},@var{c}}
@item @code{uw1 __MROTRI (uw1, const)}
@tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
@tab @code{MROTRI @var{a},#@var{b},@var{c}}
@item @code{sw1 __MSATHS (sw1, sw1)}
@tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
@tab @code{MSATHS @var{a},@var{b},@var{c}}
@item @code{uw1 __MSATHU (uw1, uw1)}
@tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
@tab @code{MSATHU @var{a},@var{b},@var{c}}
@item @code{uw1 __MSLLHI (uw1, const)}
@tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
@tab @code{MSLLHI @var{a},#@var{b},@var{c}}
@item @code{sw1 __MSRAHI (sw1, const)}
@tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
@tab @code{MSRAHI @var{a},#@var{b},@var{c}}
@item @code{uw1 __MSRLHI (uw1, const)}
@tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
@tab @code{MSRLHI @var{a},#@var{b},@var{c}}
@item @code{void __MSUBACCS (acc, acc)}
@tab @code{__MSUBACCS (@var{b}, @var{a})}
@tab @code{MSUBACCS @var{a},@var{b}}
@item @code{sw1 __MSUBHSS (sw1, sw1)}
@tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
@tab @code{MSUBHSS @var{a},@var{b},@var{c}}
@item @code{uw1 __MSUBHUS (uw1, uw1)}
@tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
@tab @code{MSUBHUS @var{a},@var{b},@var{c}}
@item @code{void __MTRAP (void)}
@tab @code{__MTRAP ()}
@tab @code{MTRAP}
@item @code{uw2 __MUNPACKH (uw1)}
@tab @code{@var{b} = __MUNPACKH (@var{a})}
@tab @code{MUNPACKH @var{a},@var{b}}
@item @code{uw1 __MWCUT (uw2, uw1)}
@tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
@tab @code{MWCUT @var{a},@var{b},@var{c}}
@item @code{void __MWTACC (acc, uw1)}
@tab @code{__MWTACC (@var{b}, @var{a})}
@tab @code{MWTACC @var{a},@var{b}}
@item @code{void __MWTACCG (acc, uw1)}
@tab @code{__MWTACCG (@var{b}, @var{a})}
@tab @code{MWTACCG @var{a},@var{b}}
@item @code{uw1 __MXOR (uw1, uw1)}
@tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
@tab @code{MXOR @var{a},@var{b},@var{c}}
@end multitable

@node Raw read/write Functions
@subsubsection Raw Read/Write Functions

This sections describes built-in functions related to read and write
instructions to access memory.  These functions generate
@code{membar} instructions to flush the I/O load and stores where
appropriate, as described in Fujitsu's manual described above.

@table @code

@item unsigned char __builtin_read8 (void *@var{data})
@item unsigned short __builtin_read16 (void *@var{data})
@item unsigned long __builtin_read32 (void *@var{data})
@item unsigned long long __builtin_read64 (void *@var{data})

@item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
@item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
@item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
@item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
@end table

@node Other Built-in Functions
@subsubsection Other Built-in Functions

This section describes built-in functions that are not named after
a specific FR-V instruction.

@table @code
@item sw2 __IACCreadll (iacc @var{reg})
Return the full 64-bit value of IACC0@.  The @var{reg} argument is reserved
for future expansion and must be 0.

@item sw1 __IACCreadl (iacc @var{reg})
Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
Other values of @var{reg} are rejected as invalid.

@item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
Set the full 64-bit value of IACC0 to @var{x}.  The @var{reg} argument
is reserved for future expansion and must be 0.

@item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
is 1.  Other values of @var{reg} are rejected as invalid.

@item void __data_prefetch0 (const void *@var{x})
Use the @code{dcpl} instruction to load the contents of address @var{x}
into the data cache.

@item void __data_prefetch (const void *@var{x})
Use the @code{nldub} instruction to load the contents of address @var{x}
into the data cache.  The instruction is issued in slot I1@.
@end table

@node MIPS DSP Built-in Functions
@subsection MIPS DSP Built-in Functions

The MIPS DSP Application-Specific Extension (ASE) includes new
instructions that are designed to improve the performance of DSP and
media applications.  It provides instructions that operate on packed
8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.

GCC supports MIPS DSP operations using both the generic
vector extensions (@pxref{Vector Extensions}) and a collection of
MIPS-specific built-in functions.  Both kinds of support are
enabled by the @option{-mdsp} command-line option.

Revision 2 of the ASE was introduced in the second half of 2006.
This revision adds extra instructions to the original ASE, but is
otherwise backwards-compatible with it.  You can select revision 2
using the command-line option @option{-mdspr2}; this option implies
@option{-mdsp}.

The SCOUNT and POS bits of the DSP control register are global.  The
WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
POS bits.  During optimization, the compiler does not delete these
instructions and it does not delete calls to functions containing
these instructions.

At present, GCC only provides support for operations on 32-bit
vectors.  The vector type associated with 8-bit integer data is
usually called @code{v4i8}, the vector type associated with Q7
is usually called @code{v4q7}, the vector type associated with 16-bit
integer data is usually called @code{v2i16}, and the vector type
associated with Q15 is usually called @code{v2q15}.  They can be
defined in C as follows:

@smallexample
typedef signed char v4i8 __attribute__ ((vector_size(4)));
typedef signed char v4q7 __attribute__ ((vector_size(4)));
typedef short v2i16 __attribute__ ((vector_size(4)));
typedef short v2q15 __attribute__ ((vector_size(4)));
@end smallexample

@code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
initialized in the same way as aggregates.  For example:

@smallexample
v4i8 a = @{1, 2, 3, 4@};
v4i8 b;
b = (v4i8) @{5, 6, 7, 8@};

v2q15 c = @{0x0fcb, 0x3a75@};
v2q15 d;
d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
@end smallexample

@emph{Note:} The CPU's endianness determines the order in which values
are packed.  On little-endian targets, the first value is the least
significant and the last value is the most significant.  The opposite
order applies to big-endian targets.  For example, the code above
sets the lowest byte of @code{a} to @code{1} on little-endian targets
and @code{4} on big-endian targets.

@emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
representation.  As shown in this example, the integer representation
of a Q7 value can be obtained by multiplying the fractional value by
@code{0x1.0p7}.  The equivalent for Q15 values is to multiply by
@code{0x1.0p15}.  The equivalent for Q31 values is to multiply by
@code{0x1.0p31}.

The table below lists the @code{v4i8} and @code{v2q15} operations for which
hardware support exists.  @code{a} and @code{b} are @code{v4i8} values,
and @code{c} and @code{d} are @code{v2q15} values.

@multitable @columnfractions .50 .50
@headitem C code @tab MIPS instruction
@item @code{a + b} @tab @code{addu.qb}
@item @code{c + d} @tab @code{addq.ph}
@item @code{a - b} @tab @code{subu.qb}
@item @code{c - d} @tab @code{subq.ph}
@end multitable

The table below lists the @code{v2i16} operation for which
hardware support exists for the DSP ASE REV 2.  @code{e} and @code{f} are
@code{v2i16} values.

@multitable @columnfractions .50 .50
@headitem C code @tab MIPS instruction
@item @code{e * f} @tab @code{mul.ph}
@end multitable

It is easier to describe the DSP built-in functions if we first define
the following types:

@smallexample
typedef int q31;
typedef int i32;
typedef unsigned int ui32;
typedef long long a64;
@end smallexample

@code{q31} and @code{i32} are actually the same as @code{int}, but we
use @code{q31} to indicate a Q31 fractional value and @code{i32} to
indicate a 32-bit integer value.  Similarly, @code{a64} is the same as
@code{long long}, but we use @code{a64} to indicate values that are
placed in one of the four DSP accumulators (@code{$ac0},
@code{$ac1}, @code{$ac2} or @code{$ac3}).

Also, some built-in functions prefer or require immediate numbers as
parameters, because the corresponding DSP instructions accept both immediate
numbers and register operands, or accept immediate numbers only.  The
immediate parameters are listed as follows.

@smallexample
imm0_3: 0 to 3.
imm0_7: 0 to 7.
imm0_15: 0 to 15.
imm0_31: 0 to 31.
imm0_63: 0 to 63.
imm0_255: 0 to 255.
imm_n32_31: -32 to 31.
imm_n512_511: -512 to 511.
@end smallexample

The following built-in functions map directly to a particular MIPS DSP
instruction.  Please refer to the architecture specification
for details on what each instruction does.

@smallexample
v2q15 __builtin_mips_addq_ph (v2q15, v2q15);
v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15);
q31 __builtin_mips_addq_s_w (q31, q31);
v4i8 __builtin_mips_addu_qb (v4i8, v4i8);
v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8);
v2q15 __builtin_mips_subq_ph (v2q15, v2q15);
v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15);
q31 __builtin_mips_subq_s_w (q31, q31);
v4i8 __builtin_mips_subu_qb (v4i8, v4i8);
v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8);
i32 __builtin_mips_addsc (i32, i32);
i32 __builtin_mips_addwc (i32, i32);
i32 __builtin_mips_modsub (i32, i32);
i32 __builtin_mips_raddu_w_qb (v4i8);
v2q15 __builtin_mips_absq_s_ph (v2q15);
q31 __builtin_mips_absq_s_w (q31);
v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15);
v2q15 __builtin_mips_precrq_ph_w (q31, q31);
v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31);
v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15);
q31 __builtin_mips_preceq_w_phl (v2q15);
q31 __builtin_mips_preceq_w_phr (v2q15);
v2q15 __builtin_mips_precequ_ph_qbl (v4i8);
v2q15 __builtin_mips_precequ_ph_qbr (v4i8);
v2q15 __builtin_mips_precequ_ph_qbla (v4i8);
v2q15 __builtin_mips_precequ_ph_qbra (v4i8);
v2q15 __builtin_mips_preceu_ph_qbl (v4i8);
v2q15 __builtin_mips_preceu_ph_qbr (v4i8);
v2q15 __builtin_mips_preceu_ph_qbla (v4i8);
v2q15 __builtin_mips_preceu_ph_qbra (v4i8);
v4i8 __builtin_mips_shll_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shll_qb (v4i8, i32);
v2q15 __builtin_mips_shll_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shll_ph (v2q15, i32);
v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shll_s_ph (v2q15, i32);
q31 __builtin_mips_shll_s_w (q31, imm0_31);
q31 __builtin_mips_shll_s_w (q31, i32);
v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shrl_qb (v4i8, i32);
v2q15 __builtin_mips_shra_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shra_ph (v2q15, i32);
v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shra_r_ph (v2q15, i32);
q31 __builtin_mips_shra_r_w (q31, imm0_31);
q31 __builtin_mips_shra_r_w (q31, i32);
v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15);
v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15);
v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15);
q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15);
q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15);
a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8);
a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8);
a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8);
a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8);
a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31);
a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31);
a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15);
a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15);
a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15);
a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15);
i32 __builtin_mips_bitrev (i32);
i32 __builtin_mips_insv (i32, i32);
v4i8 __builtin_mips_repl_qb (imm0_255);
v4i8 __builtin_mips_repl_qb (i32);
v2q15 __builtin_mips_repl_ph (imm_n512_511);
v2q15 __builtin_mips_repl_ph (i32);
void __builtin_mips_cmpu_eq_qb (v4i8, v4i8);
void __builtin_mips_cmpu_lt_qb (v4i8, v4i8);
void __builtin_mips_cmpu_le_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8);
void __builtin_mips_cmp_eq_ph (v2q15, v2q15);
void __builtin_mips_cmp_lt_ph (v2q15, v2q15);
void __builtin_mips_cmp_le_ph (v2q15, v2q15);
v4i8 __builtin_mips_pick_qb (v4i8, v4i8);
v2q15 __builtin_mips_pick_ph (v2q15, v2q15);
v2q15 __builtin_mips_packrl_ph (v2q15, v2q15);
i32 __builtin_mips_extr_w (a64, imm0_31);
i32 __builtin_mips_extr_w (a64, i32);
i32 __builtin_mips_extr_r_w (a64, imm0_31);
i32 __builtin_mips_extr_s_h (a64, i32);
i32 __builtin_mips_extr_rs_w (a64, imm0_31);
i32 __builtin_mips_extr_rs_w (a64, i32);
i32 __builtin_mips_extr_s_h (a64, imm0_31);
i32 __builtin_mips_extr_r_w (a64, i32);
i32 __builtin_mips_extp (a64, imm0_31);
i32 __builtin_mips_extp (a64, i32);
i32 __builtin_mips_extpdp (a64, imm0_31);
i32 __builtin_mips_extpdp (a64, i32);
a64 __builtin_mips_shilo (a64, imm_n32_31);
a64 __builtin_mips_shilo (a64, i32);
a64 __builtin_mips_mthlip (a64, i32);
void __builtin_mips_wrdsp (i32, imm0_63);
i32 __builtin_mips_rddsp (imm0_63);
i32 __builtin_mips_lbux (void *, i32);
i32 __builtin_mips_lhx (void *, i32);
i32 __builtin_mips_lwx (void *, i32);
a64 __builtin_mips_ldx (void *, i32); /* MIPS64 only */
i32 __builtin_mips_bposge32 (void);
a64 __builtin_mips_madd (a64, i32, i32);
a64 __builtin_mips_maddu (a64, ui32, ui32);
a64 __builtin_mips_msub (a64, i32, i32);
a64 __builtin_mips_msubu (a64, ui32, ui32);
a64 __builtin_mips_mult (i32, i32);
a64 __builtin_mips_multu (ui32, ui32);
@end smallexample

The following built-in functions map directly to a particular MIPS DSP REV 2
instruction.  Please refer to the architecture specification
for details on what each instruction does.

@smallexample
v4q7 __builtin_mips_absq_s_qb (v4q7);
v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
i32 __builtin_mips_append (i32, i32, imm0_31);
i32 __builtin_mips_balign (i32, i32, imm0_3);
i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
q31 __builtin_mips_mulq_rs_w (q31, q31);
v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
q31 __builtin_mips_mulq_s_w (q31, q31);
a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
i32 __builtin_mips_prepend (i32, i32, imm0_31);
v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shra_qb (v4i8, i32);
v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
v2i16 __builtin_mips_shrl_ph (v2i16, i32);
v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
q31 __builtin_mips_addqh_w (q31, q31);
q31 __builtin_mips_addqh_r_w (q31, q31);
v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
q31 __builtin_mips_subqh_w (q31, q31);
q31 __builtin_mips_subqh_r_w (q31, q31);
a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
@end smallexample


@node MIPS Paired-Single Support
@subsection MIPS Paired-Single Support

The MIPS64 architecture includes a number of instructions that
operate on pairs of single-precision floating-point values.
Each pair is packed into a 64-bit floating-point register,
with one element being designated the ``upper half'' and
the other being designated the ``lower half''.

GCC supports paired-single operations using both the generic
vector extensions (@pxref{Vector Extensions}) and a collection of
MIPS-specific built-in functions.  Both kinds of support are
enabled by the @option{-mpaired-single} command-line option.

The vector type associated with paired-single values is usually
called @code{v2sf}.  It can be defined in C as follows:

@smallexample
typedef float v2sf __attribute__ ((vector_size (8)));
@end smallexample

@code{v2sf} values are initialized in the same way as aggregates.
For example:

@smallexample
v2sf a = @{1.5, 9.1@};
v2sf b;
float e, f;
b = (v2sf) @{e, f@};
@end smallexample

@emph{Note:} The CPU's endianness determines which value is stored in
the upper half of a register and which value is stored in the lower half.
On little-endian targets, the first value is the lower one and the second
value is the upper one.  The opposite order applies to big-endian targets.
For example, the code above sets the lower half of @code{a} to
@code{1.5} on little-endian targets and @code{9.1} on big-endian targets.

@node MIPS Loongson Built-in Functions
@subsection MIPS Loongson Built-in Functions

GCC provides intrinsics to access the SIMD instructions provided by the
ST Microelectronics Loongson-2E and -2F processors.  These intrinsics,
available after inclusion of the @code{loongson.h} header file,
operate on the following 64-bit vector types:

@itemize
@item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
@item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
@item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
@item @code{int8x8_t}, a vector of eight signed 8-bit integers;
@item @code{int16x4_t}, a vector of four signed 16-bit integers;
@item @code{int32x2_t}, a vector of two signed 32-bit integers.
@end itemize

The intrinsics provided are listed below; each is named after the
machine instruction to which it corresponds, with suffixes added as
appropriate to distinguish intrinsics that expand to the same machine
instruction yet have different argument types.  Refer to the architecture
documentation for a description of the functionality of each
instruction.

@smallexample
int16x4_t packsswh (int32x2_t s, int32x2_t t);
int8x8_t packsshb (int16x4_t s, int16x4_t t);
uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
int32x2_t paddw_s (int32x2_t s, int32x2_t t);
int16x4_t paddh_s (int16x4_t s, int16x4_t t);
int8x8_t paddb_s (int8x8_t s, int8x8_t t);
uint64_t paddd_u (uint64_t s, uint64_t t);
int64_t paddd_s (int64_t s, int64_t t);
int16x4_t paddsh (int16x4_t s, int16x4_t t);
int8x8_t paddsb (int8x8_t s, int8x8_t t);
uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
uint64_t pandn_ud (uint64_t s, uint64_t t);
uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
int64_t pandn_sd (int64_t s, int64_t t);
int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
uint16x4_t pextrh_u (uint16x4_t s, int field);
int16x4_t pextrh_s (int16x4_t s, int field);
uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
int16x4_t pminsh (int16x4_t s, int16x4_t t);
uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
uint8x8_t pmovmskb_u (uint8x8_t s);
int8x8_t pmovmskb_s (int8x8_t s);
uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
int16x4_t pmulhh (int16x4_t s, int16x4_t t);
int16x4_t pmullh (int16x4_t s, int16x4_t t);
int64_t pmuluw (uint32x2_t s, uint32x2_t t);
uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
uint16x4_t biadd (uint8x8_t s);
uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
int16x4_t psllh_s (int16x4_t s, uint8_t amount);
uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
int32x2_t psllw_s (int32x2_t s, uint8_t amount);
uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
int16x4_t psrah_s (int16x4_t s, uint8_t amount);
uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
int32x2_t psraw_s (int32x2_t s, uint8_t amount);
uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
int32x2_t psubw_s (int32x2_t s, int32x2_t t);
int16x4_t psubh_s (int16x4_t s, int16x4_t t);
int8x8_t psubb_s (int8x8_t s, int8x8_t t);
uint64_t psubd_u (uint64_t s, uint64_t t);
int64_t psubd_s (int64_t s, int64_t t);
int16x4_t psubsh (int16x4_t s, int16x4_t t);
int8x8_t psubsb (int8x8_t s, int8x8_t t);
uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
@end smallexample

@menu
* Paired-Single Arithmetic::
* Paired-Single Built-in Functions::
* MIPS-3D Built-in Functions::
@end menu

@node Paired-Single Arithmetic
@subsubsection Paired-Single Arithmetic

The table below lists the @code{v2sf} operations for which hardware
support exists.  @code{a}, @code{b} and @code{c} are @code{v2sf}
values and @code{x} is an integral value.

@multitable @columnfractions .50 .50
@headitem C code @tab MIPS instruction
@item @code{a + b} @tab @code{add.ps}
@item @code{a - b} @tab @code{sub.ps}
@item @code{-a} @tab @code{neg.ps}
@item @code{a * b} @tab @code{mul.ps}
@item @code{a * b + c} @tab @code{madd.ps}
@item @code{a * b - c} @tab @code{msub.ps}
@item @code{-(a * b + c)} @tab @code{nmadd.ps}
@item @code{-(a * b - c)} @tab @code{nmsub.ps}
@item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
@end multitable

Note that the multiply-accumulate instructions can be disabled
using the command-line option @code{-mno-fused-madd}.

@node Paired-Single Built-in Functions
@subsubsection Paired-Single Built-in Functions

The following paired-single functions map directly to a particular
MIPS instruction.  Please refer to the architecture specification
for details on what each instruction does.

@table @code
@item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
Pair lower lower (@code{pll.ps}).

@item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
Pair upper lower (@code{pul.ps}).

@item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
Pair lower upper (@code{plu.ps}).

@item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
Pair upper upper (@code{puu.ps}).

@item v2sf __builtin_mips_cvt_ps_s (float, float)
Convert pair to paired single (@code{cvt.ps.s}).

@item float __builtin_mips_cvt_s_pl (v2sf)
Convert pair lower to single (@code{cvt.s.pl}).

@item float __builtin_mips_cvt_s_pu (v2sf)
Convert pair upper to single (@code{cvt.s.pu}).

@item v2sf __builtin_mips_abs_ps (v2sf)
Absolute value (@code{abs.ps}).

@item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
Align variable (@code{alnv.ps}).

@emph{Note:} The value of the third parameter must be 0 or 4
modulo 8, otherwise the result is unpredictable.  Please read the
instruction description for details.
@end table

The following multi-instruction functions are also available.
In each case, @var{cond} can be any of the 16 floating-point conditions:
@code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
@code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
@code{lt}, @code{nge}, @code{le} or @code{ngt}.

@table @code
@item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
@itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
Conditional move based on floating-point comparison (@code{c.@var{cond}.ps},
@code{movt.ps}/@code{movf.ps}).

The @code{movt} functions return the value @var{x} computed by:

@smallexample
c.@var{cond}.ps @var{cc},@var{a},@var{b}
mov.ps @var{x},@var{c}
movt.ps @var{x},@var{d},@var{cc}
@end smallexample

The @code{movf} functions are similar but use @code{movf.ps} instead
of @code{movt.ps}.

@item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
@itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
Comparison of two paired-single values (@code{c.@var{cond}.ps},
@code{bc1t}/@code{bc1f}).

These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
and return either the upper or lower half of the result.  For example:

@smallexample
v2sf a, b;
if (__builtin_mips_upper_c_eq_ps (a, b))
  upper_halves_are_equal ();
else
  upper_halves_are_unequal ();

if (__builtin_mips_lower_c_eq_ps (a, b))
  lower_halves_are_equal ();
else
  lower_halves_are_unequal ();
@end smallexample
@end table

@node MIPS-3D Built-in Functions
@subsubsection MIPS-3D Built-in Functions

The MIPS-3D Application-Specific Extension (ASE) includes additional
paired-single instructions that are designed to improve the performance
of 3D graphics operations.  Support for these instructions is controlled
by the @option{-mips3d} command-line option.

The functions listed below map directly to a particular MIPS-3D
instruction.  Please refer to the architecture specification for
more details on what each instruction does.

@table @code
@item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
Reduction add (@code{addr.ps}).

@item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
Reduction multiply (@code{mulr.ps}).

@item v2sf __builtin_mips_cvt_pw_ps (v2sf)
Convert paired single to paired word (@code{cvt.pw.ps}).

@item v2sf __builtin_mips_cvt_ps_pw (v2sf)
Convert paired word to paired single (@code{cvt.ps.pw}).

@item float __builtin_mips_recip1_s (float)
@itemx double __builtin_mips_recip1_d (double)
@itemx v2sf __builtin_mips_recip1_ps (v2sf)
Reduced-precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).

@item float __builtin_mips_recip2_s (float, float)
@itemx double __builtin_mips_recip2_d (double, double)
@itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
Reduced-precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).

@item float __builtin_mips_rsqrt1_s (float)
@itemx double __builtin_mips_rsqrt1_d (double)
@itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
Reduced-precision reciprocal square root (sequence step 1)
(@code{rsqrt1.@var{fmt}}).

@item float __builtin_mips_rsqrt2_s (float, float)
@itemx double __builtin_mips_rsqrt2_d (double, double)
@itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
Reduced-precision reciprocal square root (sequence step 2)
(@code{rsqrt2.@var{fmt}}).
@end table

The following multi-instruction functions are also available.
In each case, @var{cond} can be any of the 16 floating-point conditions:
@code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
@code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
@code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.

@table @code
@item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
@itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
@code{bc1t}/@code{bc1f}).

These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
or @code{cabs.@var{cond}.d} and return the result as a boolean value.
For example:

@smallexample
float a, b;
if (__builtin_mips_cabs_eq_s (a, b))
  true ();
else
  false ();
@end smallexample

@item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
@itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
@code{bc1t}/@code{bc1f}).

These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
and return either the upper or lower half of the result.  For example:

@smallexample
v2sf a, b;
if (__builtin_mips_upper_cabs_eq_ps (a, b))
  upper_halves_are_equal ();
else
  upper_halves_are_unequal ();

if (__builtin_mips_lower_cabs_eq_ps (a, b))
  lower_halves_are_equal ();
else
  lower_halves_are_unequal ();
@end smallexample

@item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
@itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
@code{movt.ps}/@code{movf.ps}).

The @code{movt} functions return the value @var{x} computed by:

@smallexample
cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
mov.ps @var{x},@var{c}
movt.ps @var{x},@var{d},@var{cc}
@end smallexample

The @code{movf} functions are similar but use @code{movf.ps} instead
of @code{movt.ps}.

@item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
@itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
@itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
@itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
Comparison of two paired-single values
(@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
@code{bc1any2t}/@code{bc1any2f}).

These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
or @code{cabs.@var{cond}.ps}.  The @code{any} forms return @code{true} if either
result is @code{true} and the @code{all} forms return @code{true} if both results are @code{true}.
For example:

@smallexample
v2sf a, b;
if (__builtin_mips_any_c_eq_ps (a, b))
  one_is_true ();
else
  both_are_false ();

if (__builtin_mips_all_c_eq_ps (a, b))
  both_are_true ();
else
  one_is_false ();
@end smallexample

@item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
@itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
@itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
@itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
Comparison of four paired-single values
(@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
@code{bc1any4t}/@code{bc1any4f}).

These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
The @code{any} forms return @code{true} if any of the four results are @code{true}
and the @code{all} forms return @code{true} if all four results are @code{true}.
For example:

@smallexample
v2sf a, b, c, d;
if (__builtin_mips_any_c_eq_4s (a, b, c, d))
  some_are_true ();
else
  all_are_false ();

if (__builtin_mips_all_c_eq_4s (a, b, c, d))
  all_are_true ();
else
  some_are_false ();
@end smallexample
@end table

@node MIPS SIMD Architecture (MSA) Support
@subsection MIPS SIMD Architecture (MSA) Support

@menu
* MIPS SIMD Architecture Built-in Functions::
@end menu

GCC provides intrinsics to access the SIMD instructions provided by the
MSA MIPS SIMD Architecture.  The interface is made available by including
@code{<msa.h>} and using @option{-mmsa -mhard-float -mfp64 -mnan=2008}.
For each @code{__builtin_msa_*}, there is a shortened name of the intrinsic,
@code{__msa_*}.

MSA implements 128-bit wide vector registers, operating on 8-, 16-, 32- and
64-bit integer, 16- and 32-bit fixed-point, or 32- and 64-bit floating point
data elements.  The following vectors typedefs are included in @code{msa.h}:
@itemize
@item @code{v16i8}, a vector of sixteen signed 8-bit integers;
@item @code{v16u8}, a vector of sixteen unsigned 8-bit integers;
@item @code{v8i16}, a vector of eight signed 16-bit integers;
@item @code{v8u16}, a vector of eight unsigned 16-bit integers;
@item @code{v4i32}, a vector of four signed 32-bit integers;
@item @code{v4u32}, a vector of four unsigned 32-bit integers;
@item @code{v2i64}, a vector of two signed 64-bit integers;
@item @code{v2u64}, a vector of two unsigned 64-bit integers;
@item @code{v4f32}, a vector of four 32-bit floats;
@item @code{v2f64}, a vector of two 64-bit doubles.
@end itemize

Instructions and corresponding built-ins may have additional restrictions and/or
input/output values manipulated:
@itemize
@item @code{imm0_1}, an integer literal in range 0 to 1;
@item @code{imm0_3}, an integer literal in range 0 to 3;
@item @code{imm0_7}, an integer literal in range 0 to 7;
@item @code{imm0_15}, an integer literal in range 0 to 15;
@item @code{imm0_31}, an integer literal in range 0 to 31;
@item @code{imm0_63}, an integer literal in range 0 to 63;
@item @code{imm0_255}, an integer literal in range 0 to 255;
@item @code{imm_n16_15}, an integer literal in range -16 to 15;
@item @code{imm_n512_511}, an integer literal in range -512 to 511;
@item @code{imm_n1024_1022}, an integer literal in range -512 to 511 left
shifted by 1 bit, i.e., -1024, -1022, @dots{}, 1020, 1022;
@item @code{imm_n2048_2044}, an integer literal in range -512 to 511 left
shifted by 2 bits, i.e., -2048, -2044, @dots{}, 2040, 2044;
@item @code{imm_n4096_4088}, an integer literal in range -512 to 511 left
shifted by 3 bits, i.e., -4096, -4088, @dots{}, 4080, 4088;
@item @code{imm1_4}, an integer literal in range 1 to 4;
@item @code{i32, i64, u32, u64, f32, f64}, defined as follows:
@end itemize

@smallexample
@{
typedef int i32;
#if __LONG_MAX__ == __LONG_LONG_MAX__
typedef long i64;
#else
typedef long long i64;
#endif

typedef unsigned int u32;
#if __LONG_MAX__ == __LONG_LONG_MAX__
typedef unsigned long u64;
#else
typedef unsigned long long u64;
#endif

typedef double f64;
typedef float f32;
@}
@end smallexample

@node MIPS SIMD Architecture Built-in Functions
@subsubsection MIPS SIMD Architecture Built-in Functions

The intrinsics provided are listed below; each is named after the
machine instruction.

@smallexample
v16i8 __builtin_msa_add_a_b (v16i8, v16i8);
v8i16 __builtin_msa_add_a_h (v8i16, v8i16);
v4i32 __builtin_msa_add_a_w (v4i32, v4i32);
v2i64 __builtin_msa_add_a_d (v2i64, v2i64);

v16i8 __builtin_msa_adds_a_b (v16i8, v16i8);
v8i16 __builtin_msa_adds_a_h (v8i16, v8i16);
v4i32 __builtin_msa_adds_a_w (v4i32, v4i32);
v2i64 __builtin_msa_adds_a_d (v2i64, v2i64);

v16i8 __builtin_msa_adds_s_b (v16i8, v16i8);
v8i16 __builtin_msa_adds_s_h (v8i16, v8i16);
v4i32 __builtin_msa_adds_s_w (v4i32, v4i32);
v2i64 __builtin_msa_adds_s_d (v2i64, v2i64);

v16u8 __builtin_msa_adds_u_b (v16u8, v16u8);
v8u16 __builtin_msa_adds_u_h (v8u16, v8u16);
v4u32 __builtin_msa_adds_u_w (v4u32, v4u32);
v2u64 __builtin_msa_adds_u_d (v2u64, v2u64);

v16i8 __builtin_msa_addv_b (v16i8, v16i8);
v8i16 __builtin_msa_addv_h (v8i16, v8i16);
v4i32 __builtin_msa_addv_w (v4i32, v4i32);
v2i64 __builtin_msa_addv_d (v2i64, v2i64);

v16i8 __builtin_msa_addvi_b (v16i8, imm0_31);
v8i16 __builtin_msa_addvi_h (v8i16, imm0_31);
v4i32 __builtin_msa_addvi_w (v4i32, imm0_31);
v2i64 __builtin_msa_addvi_d (v2i64, imm0_31);

v16u8 __builtin_msa_and_v (v16u8, v16u8);

v16u8 __builtin_msa_andi_b (v16u8, imm0_255);

v16i8 __builtin_msa_asub_s_b (v16i8, v16i8);
v8i16 __builtin_msa_asub_s_h (v8i16, v8i16);
v4i32 __builtin_msa_asub_s_w (v4i32, v4i32);
v2i64 __builtin_msa_asub_s_d (v2i64, v2i64);

v16u8 __builtin_msa_asub_u_b (v16u8, v16u8);
v8u16 __builtin_msa_asub_u_h (v8u16, v8u16);
v4u32 __builtin_msa_asub_u_w (v4u32, v4u32);
v2u64 __builtin_msa_asub_u_d (v2u64, v2u64);

v16i8 __builtin_msa_ave_s_b (v16i8, v16i8);
v8i16 __builtin_msa_ave_s_h (v8i16, v8i16);
v4i32 __builtin_msa_ave_s_w (v4i32, v4i32);
v2i64 __builtin_msa_ave_s_d (v2i64, v2i64);

v16u8 __builtin_msa_ave_u_b (v16u8, v16u8);
v8u16 __builtin_msa_ave_u_h (v8u16, v8u16);
v4u32 __builtin_msa_ave_u_w (v4u32, v4u32);
v2u64 __builtin_msa_ave_u_d (v2u64, v2u64);

v16i8 __builtin_msa_aver_s_b (v16i8, v16i8);
v8i16 __builtin_msa_aver_s_h (v8i16, v8i16);
v4i32 __builtin_msa_aver_s_w (v4i32, v4i32);
v2i64 __builtin_msa_aver_s_d (v2i64, v2i64);

v16u8 __builtin_msa_aver_u_b (v16u8, v16u8);
v8u16 __builtin_msa_aver_u_h (v8u16, v8u16);
v4u32 __builtin_msa_aver_u_w (v4u32, v4u32);
v2u64 __builtin_msa_aver_u_d (v2u64, v2u64);

v16u8 __builtin_msa_bclr_b (v16u8, v16u8);
v8u16 __builtin_msa_bclr_h (v8u16, v8u16);
v4u32 __builtin_msa_bclr_w (v4u32, v4u32);
v2u64 __builtin_msa_bclr_d (v2u64, v2u64);

v16u8 __builtin_msa_bclri_b (v16u8, imm0_7);
v8u16 __builtin_msa_bclri_h (v8u16, imm0_15);
v4u32 __builtin_msa_bclri_w (v4u32, imm0_31);
v2u64 __builtin_msa_bclri_d (v2u64, imm0_63);

v16u8 __builtin_msa_binsl_b (v16u8, v16u8, v16u8);
v8u16 __builtin_msa_binsl_h (v8u16, v8u16, v8u16);
v4u32 __builtin_msa_binsl_w (v4u32, v4u32, v4u32);
v2u64 __builtin_msa_binsl_d (v2u64, v2u64, v2u64);

v16u8 __builtin_msa_binsli_b (v16u8, v16u8, imm0_7);
v8u16 __builtin_msa_binsli_h (v8u16, v8u16, imm0_15);
v4u32 __builtin_msa_binsli_w (v4u32, v4u32, imm0_31);
v2u64 __builtin_msa_binsli_d (v2u64, v2u64, imm0_63);

v16u8 __builtin_msa_binsr_b (v16u8, v16u8, v16u8);
v8u16 __builtin_msa_binsr_h (v8u16, v8u16, v8u16);
v4u32 __builtin_msa_binsr_w (v4u32, v4u32, v4u32);
v2u64 __builtin_msa_binsr_d (v2u64, v2u64, v2u64);

v16u8 __builtin_msa_binsri_b (v16u8, v16u8, imm0_7);
v8u16 __builtin_msa_binsri_h (v8u16, v8u16, imm0_15);
v4u32 __builtin_msa_binsri_w (v4u32, v4u32, imm0_31);
v2u64 __builtin_msa_binsri_d (v2u64, v2u64, imm0_63);

v16u8 __builtin_msa_bmnz_v (v16u8, v16u8, v16u8);

v16u8 __builtin_msa_bmnzi_b (v16u8, v16u8, imm0_255);

v16u8 __builtin_msa_bmz_v (v16u8, v16u8, v16u8);

v16u8 __builtin_msa_bmzi_b (v16u8, v16u8, imm0_255);

v16u8 __builtin_msa_bneg_b (v16u8, v16u8);
v8u16 __builtin_msa_bneg_h (v8u16, v8u16);
v4u32 __builtin_msa_bneg_w (v4u32, v4u32);
v2u64 __builtin_msa_bneg_d (v2u64, v2u64);

v16u8 __builtin_msa_bnegi_b (v16u8, imm0_7);
v8u16 __builtin_msa_bnegi_h (v8u16, imm0_15);
v4u32 __builtin_msa_bnegi_w (v4u32, imm0_31);
v2u64 __builtin_msa_bnegi_d (v2u64, imm0_63);

i32 __builtin_msa_bnz_b (v16u8);
i32 __builtin_msa_bnz_h (v8u16);
i32 __builtin_msa_bnz_w (v4u32);
i32 __builtin_msa_bnz_d (v2u64);

i32 __builtin_msa_bnz_v (v16u8);

v16u8 __builtin_msa_bsel_v (v16u8, v16u8, v16u8);

v16u8 __builtin_msa_bseli_b (v16u8, v16u8, imm0_255);

v16u8 __builtin_msa_bset_b (v16u8, v16u8);
v8u16 __builtin_msa_bset_h (v8u16, v8u16);
v4u32 __builtin_msa_bset_w (v4u32, v4u32);
v2u64 __builtin_msa_bset_d (v2u64, v2u64);

v16u8 __builtin_msa_bseti_b (v16u8, imm0_7);
v8u16 __builtin_msa_bseti_h (v8u16, imm0_15);
v4u32 __builtin_msa_bseti_w (v4u32, imm0_31);
v2u64 __builtin_msa_bseti_d (v2u64, imm0_63);

i32 __builtin_msa_bz_b (v16u8);
i32 __builtin_msa_bz_h (v8u16);
i32 __builtin_msa_bz_w (v4u32);
i32 __builtin_msa_bz_d (v2u64);

i32 __builtin_msa_bz_v (v16u8);

v16i8 __builtin_msa_ceq_b (v16i8, v16i8);
v8i16 __builtin_msa_ceq_h (v8i16, v8i16);
v4i32 __builtin_msa_ceq_w (v4i32, v4i32);
v2i64 __builtin_msa_ceq_d (v2i64, v2i64);

v16i8 __builtin_msa_ceqi_b (v16i8, imm_n16_15);
v8i16 __builtin_msa_ceqi_h (v8i16, imm_n16_15);
v4i32 __builtin_msa_ceqi_w (v4i32, imm_n16_15);
v2i64 __builtin_msa_ceqi_d (v2i64, imm_n16_15);

i32 __builtin_msa_cfcmsa (imm0_31);

v16i8 __builtin_msa_cle_s_b (v16i8, v16i8);
v8i16 __builtin_msa_cle_s_h (v8i16, v8i16);
v4i32 __builtin_msa_cle_s_w (v4i32, v4i32);
v2i64 __builtin_msa_cle_s_d (v2i64, v2i64);

v16i8 __builtin_msa_cle_u_b (v16u8, v16u8);
v8i16 __builtin_msa_cle_u_h (v8u16, v8u16);
v4i32 __builtin_msa_cle_u_w (v4u32, v4u32);
v2i64 __builtin_msa_cle_u_d (v2u64, v2u64);

v16i8 __builtin_msa_clei_s_b (v16i8, imm_n16_15);
v8i16 __builtin_msa_clei_s_h (v8i16, imm_n16_15);
v4i32 __builtin_msa_clei_s_w (v4i32, imm_n16_15);
v2i64 __builtin_msa_clei_s_d (v2i64, imm_n16_15);

v16i8 __builtin_msa_clei_u_b (v16u8, imm0_31);
v8i16 __builtin_msa_clei_u_h (v8u16, imm0_31);
v4i32 __builtin_msa_clei_u_w (v4u32, imm0_31);
v2i64 __builtin_msa_clei_u_d (v2u64, imm0_31);

v16i8 __builtin_msa_clt_s_b (v16i8, v16i8);
v8i16 __builtin_msa_clt_s_h (v8i16, v8i16);
v4i32 __builtin_msa_clt_s_w (v4i32, v4i32);
v2i64 __builtin_msa_clt_s_d (v2i64, v2i64);

v16i8 __builtin_msa_clt_u_b (v16u8, v16u8);
v8i16 __builtin_msa_clt_u_h (v8u16, v8u16);
v4i32 __builtin_msa_clt_u_w (v4u32, v4u32);
v2i64 __builtin_msa_clt_u_d (v2u64, v2u64);

v16i8 __builtin_msa_clti_s_b (v16i8, imm_n16_15);
v8i16 __builtin_msa_clti_s_h (v8i16, imm_n16_15);
v4i32 __builtin_msa_clti_s_w (v4i32, imm_n16_15);
v2i64 __builtin_msa_clti_s_d (v2i64, imm_n16_15);

v16i8 __builtin_msa_clti_u_b (v16u8, imm0_31);
v8i16 __builtin_msa_clti_u_h (v8u16, imm0_31);
v4i32 __builtin_msa_clti_u_w (v4u32, imm0_31);
v2i64 __builtin_msa_clti_u_d (v2u64, imm0_31);

i32 __builtin_msa_copy_s_b (v16i8, imm0_15);
i32 __builtin_msa_copy_s_h (v8i16, imm0_7);
i32 __builtin_msa_copy_s_w (v4i32, imm0_3);
i64 __builtin_msa_copy_s_d (v2i64, imm0_1);

u32 __builtin_msa_copy_u_b (v16i8, imm0_15);
u32 __builtin_msa_copy_u_h (v8i16, imm0_7);
u32 __builtin_msa_copy_u_w (v4i32, imm0_3);
u64 __builtin_msa_copy_u_d (v2i64, imm0_1);

void __builtin_msa_ctcmsa (imm0_31, i32);

v16i8 __builtin_msa_div_s_b (v16i8, v16i8);
v8i16 __builtin_msa_div_s_h (v8i16, v8i16);
v4i32 __builtin_msa_div_s_w (v4i32, v4i32);
v2i64 __builtin_msa_div_s_d (v2i64, v2i64);

v16u8 __builtin_msa_div_u_b (v16u8, v16u8);
v8u16 __builtin_msa_div_u_h (v8u16, v8u16);
v4u32 __builtin_msa_div_u_w (v4u32, v4u32);
v2u64 __builtin_msa_div_u_d (v2u64, v2u64);

v8i16 __builtin_msa_dotp_s_h (v16i8, v16i8);
v4i32 __builtin_msa_dotp_s_w (v8i16, v8i16);
v2i64 __builtin_msa_dotp_s_d (v4i32, v4i32);

v8u16 __builtin_msa_dotp_u_h (v16u8, v16u8);
v4u32 __builtin_msa_dotp_u_w (v8u16, v8u16);
v2u64 __builtin_msa_dotp_u_d (v4u32, v4u32);

v8i16 __builtin_msa_dpadd_s_h (v8i16, v16i8, v16i8);
v4i32 __builtin_msa_dpadd_s_w (v4i32, v8i16, v8i16);
v2i64 __builtin_msa_dpadd_s_d (v2i64, v4i32, v4i32);

v8u16 __builtin_msa_dpadd_u_h (v8u16, v16u8, v16u8);
v4u32 __builtin_msa_dpadd_u_w (v4u32, v8u16, v8u16);
v2u64 __builtin_msa_dpadd_u_d (v2u64, v4u32, v4u32);

v8i16 __builtin_msa_dpsub_s_h (v8i16, v16i8, v16i8);
v4i32 __builtin_msa_dpsub_s_w (v4i32, v8i16, v8i16);
v2i64 __builtin_msa_dpsub_s_d (v2i64, v4i32, v4i32);

v8i16 __builtin_msa_dpsub_u_h (v8i16, v16u8, v16u8);
v4i32 __builtin_msa_dpsub_u_w (v4i32, v8u16, v8u16);
v2i64 __builtin_msa_dpsub_u_d (v2i64, v4u32, v4u32);

v4f32 __builtin_msa_fadd_w (v4f32, v4f32);
v2f64 __builtin_msa_fadd_d (v2f64, v2f64);

v4i32 __builtin_msa_fcaf_w (v4f32, v4f32);
v2i64 __builtin_msa_fcaf_d (v2f64, v2f64);

v4i32 __builtin_msa_fceq_w (v4f32, v4f32);
v2i64 __builtin_msa_fceq_d (v2f64, v2f64);

v4i32 __builtin_msa_fclass_w (v4f32);
v2i64 __builtin_msa_fclass_d (v2f64);

v4i32 __builtin_msa_fcle_w (v4f32, v4f32);
v2i64 __builtin_msa_fcle_d (v2f64, v2f64);

v4i32 __builtin_msa_fclt_w (v4f32, v4f32);
v2i64 __builtin_msa_fclt_d (v2f64, v2f64);

v4i32 __builtin_msa_fcne_w (v4f32, v4f32);
v2i64 __builtin_msa_fcne_d (v2f64, v2f64);

v4i32 __builtin_msa_fcor_w (v4f32, v4f32);
v2i64 __builtin_msa_fcor_d (v2f64, v2f64);

v4i32 __builtin_msa_fcueq_w (v4f32, v4f32);
v2i64 __builtin_msa_fcueq_d (v2f64, v2f64);

v4i32 __builtin_msa_fcule_w (v4f32, v4f32);
v2i64 __builtin_msa_fcule_d (v2f64, v2f64);

v4i32 __builtin_msa_fcult_w (v4f32, v4f32);
v2i64 __builtin_msa_fcult_d (v2f64, v2f64);

v4i32 __builtin_msa_fcun_w (v4f32, v4f32);
v2i64 __builtin_msa_fcun_d (v2f64, v2f64);

v4i32 __builtin_msa_fcune_w (v4f32, v4f32);
v2i64 __builtin_msa_fcune_d (v2f64, v2f64);

v4f32 __builtin_msa_fdiv_w (v4f32, v4f32);
v2f64 __builtin_msa_fdiv_d (v2f64, v2f64);

v8i16 __builtin_msa_fexdo_h (v4f32, v4f32);
v4f32 __builtin_msa_fexdo_w (v2f64, v2f64);

v4f32 __builtin_msa_fexp2_w (v4f32, v4i32);
v2f64 __builtin_msa_fexp2_d (v2f64, v2i64);

v4f32 __builtin_msa_fexupl_w (v8i16);
v2f64 __builtin_msa_fexupl_d (v4f32);

v4f32 __builtin_msa_fexupr_w (v8i16);
v2f64 __builtin_msa_fexupr_d (v4f32);

v4f32 __builtin_msa_ffint_s_w (v4i32);
v2f64 __builtin_msa_ffint_s_d (v2i64);

v4f32 __builtin_msa_ffint_u_w (v4u32);
v2f64 __builtin_msa_ffint_u_d (v2u64);

v4f32 __builtin_msa_ffql_w (v8i16);
v2f64 __builtin_msa_ffql_d (v4i32);

v4f32 __builtin_msa_ffqr_w (v8i16);
v2f64 __builtin_msa_ffqr_d (v4i32);

v16i8 __builtin_msa_fill_b (i32);
v8i16 __builtin_msa_fill_h (i32);
v4i32 __builtin_msa_fill_w (i32);
v2i64 __builtin_msa_fill_d (i64);

v4f32 __builtin_msa_flog2_w (v4f32);
v2f64 __builtin_msa_flog2_d (v2f64);

v4f32 __builtin_msa_fmadd_w (v4f32, v4f32, v4f32);
v2f64 __builtin_msa_fmadd_d (v2f64, v2f64, v2f64);

v4f32 __builtin_msa_fmax_w (v4f32, v4f32);
v2f64 __builtin_msa_fmax_d (v2f64, v2f64);

v4f32 __builtin_msa_fmax_a_w (v4f32, v4f32);
v2f64 __builtin_msa_fmax_a_d (v2f64, v2f64);

v4f32 __builtin_msa_fmin_w (v4f32, v4f32);
v2f64 __builtin_msa_fmin_d (v2f64, v2f64);

v4f32 __builtin_msa_fmin_a_w (v4f32, v4f32);
v2f64 __builtin_msa_fmin_a_d (v2f64, v2f64);

v4f32 __builtin_msa_fmsub_w (v4f32, v4f32, v4f32);
v2f64 __builtin_msa_fmsub_d (v2f64, v2f64, v2f64);

v4f32 __builtin_msa_fmul_w (v4f32, v4f32);
v2f64 __builtin_msa_fmul_d (v2f64, v2f64);

v4f32 __builtin_msa_frint_w (v4f32);
v2f64 __builtin_msa_frint_d (v2f64);

v4f32 __builtin_msa_frcp_w (v4f32);
v2f64 __builtin_msa_frcp_d (v2f64);

v4f32 __builtin_msa_frsqrt_w (v4f32);
v2f64 __builtin_msa_frsqrt_d (v2f64);

v4i32 __builtin_msa_fsaf_w (v4f32, v4f32);
v2i64 __builtin_msa_fsaf_d (v2f64, v2f64);

v4i32 __builtin_msa_fseq_w (v4f32, v4f32);
v2i64 __builtin_msa_fseq_d (v2f64, v2f64);

v4i32 __builtin_msa_fsle_w (v4f32, v4f32);
v2i64 __builtin_msa_fsle_d (v2f64, v2f64);

v4i32 __builtin_msa_fslt_w (v4f32, v4f32);
v2i64 __builtin_msa_fslt_d (v2f64, v2f64);

v4i32 __builtin_msa_fsne_w (v4f32, v4f32);
v2i64 __builtin_msa_fsne_d (v2f64, v2f64);

v4i32 __builtin_msa_fsor_w (v4f32, v4f32);
v2i64 __builtin_msa_fsor_d (v2f64, v2f64);

v4f32 __builtin_msa_fsqrt_w (v4f32);
v2f64 __builtin_msa_fsqrt_d (v2f64);

v4f32 __builtin_msa_fsub_w (v4f32, v4f32);
v2f64 __builtin_msa_fsub_d (v2f64, v2f64);

v4i32 __builtin_msa_fsueq_w (v4f32, v4f32);
v2i64 __builtin_msa_fsueq_d (v2f64, v2f64);

v4i32 __builtin_msa_fsule_w (v4f32, v4f32);
v2i64 __builtin_msa_fsule_d (v2f64, v2f64);

v4i32 __builtin_msa_fsult_w (v4f32, v4f32);
v2i64 __builtin_msa_fsult_d (v2f64, v2f64);

v4i32 __builtin_msa_fsun_w (v4f32, v4f32);
v2i64 __builtin_msa_fsun_d (v2f64, v2f64);

v4i32 __builtin_msa_fsune_w (v4f32, v4f32);
v2i64 __builtin_msa_fsune_d (v2f64, v2f64);

v4i32 __builtin_msa_ftint_s_w (v4f32);
v2i64 __builtin_msa_ftint_s_d (v2f64);

v4u32 __builtin_msa_ftint_u_w (v4f32);
v2u64 __builtin_msa_ftint_u_d (v2f64);

v8i16 __builtin_msa_ftq_h (v4f32, v4f32);
v4i32 __builtin_msa_ftq_w (v2f64, v2f64);

v4i32 __builtin_msa_ftrunc_s_w (v4f32);
v2i64 __builtin_msa_ftrunc_s_d (v2f64);

v4u32 __builtin_msa_ftrunc_u_w (v4f32);
v2u64 __builtin_msa_ftrunc_u_d (v2f64);

v8i16 __builtin_msa_hadd_s_h (v16i8, v16i8);
v4i32 __builtin_msa_hadd_s_w (v8i16, v8i16);
v2i64 __builtin_msa_hadd_s_d (v4i32, v4i32);

v8u16 __builtin_msa_hadd_u_h (v16u8, v16u8);
v4u32 __builtin_msa_hadd_u_w (v8u16, v8u16);
v2u64 __builtin_msa_hadd_u_d (v4u32, v4u32);

v8i16 __builtin_msa_hsub_s_h (v16i8, v16i8);
v4i32 __builtin_msa_hsub_s_w (v8i16, v8i16);
v2i64 __builtin_msa_hsub_s_d (v4i32, v4i32);

v8i16 __builtin_msa_hsub_u_h (v16u8, v16u8);
v4i32 __builtin_msa_hsub_u_w (v8u16, v8u16);
v2i64 __builtin_msa_hsub_u_d (v4u32, v4u32);

v16i8 __builtin_msa_ilvev_b (v16i8, v16i8);
v8i16 __builtin_msa_ilvev_h (v8i16, v8i16);
v4i32 __builtin_msa_ilvev_w (v4i32, v4i32);
v2i64 __builtin_msa_ilvev_d (v2i64, v2i64);

v16i8 __builtin_msa_ilvl_b (v16i8, v16i8);
v8i16 __builtin_msa_ilvl_h (v8i16, v8i16);
v4i32 __builtin_msa_ilvl_w (v4i32, v4i32);
v2i64 __builtin_msa_ilvl_d (v2i64, v2i64);

v16i8 __builtin_msa_ilvod_b (v16i8, v16i8);
v8i16 __builtin_msa_ilvod_h (v8i16, v8i16);
v4i32 __builtin_msa_ilvod_w (v4i32, v4i32);
v2i64 __builtin_msa_ilvod_d (v2i64, v2i64);

v16i8 __builtin_msa_ilvr_b (v16i8, v16i8);
v8i16 __builtin_msa_ilvr_h (v8i16, v8i16);
v4i32 __builtin_msa_ilvr_w (v4i32, v4i32);
v2i64 __builtin_msa_ilvr_d (v2i64, v2i64);

v16i8 __builtin_msa_insert_b (v16i8, imm0_15, i32);
v8i16 __builtin_msa_insert_h (v8i16, imm0_7, i32);
v4i32 __builtin_msa_insert_w (v4i32, imm0_3, i32);
v2i64 __builtin_msa_insert_d (v2i64, imm0_1, i64);

v16i8 __builtin_msa_insve_b (v16i8, imm0_15, v16i8);
v8i16 __builtin_msa_insve_h (v8i16, imm0_7, v8i16);
v4i32 __builtin_msa_insve_w (v4i32, imm0_3, v4i32);
v2i64 __builtin_msa_insve_d (v2i64, imm0_1, v2i64);

v16i8 __builtin_msa_ld_b (const void *, imm_n512_511);
v8i16 __builtin_msa_ld_h (const void *, imm_n1024_1022);
v4i32 __builtin_msa_ld_w (const void *, imm_n2048_2044);
v2i64 __builtin_msa_ld_d (const void *, imm_n4096_4088);

v16i8 __builtin_msa_ldi_b (imm_n512_511);
v8i16 __builtin_msa_ldi_h (imm_n512_511);
v4i32 __builtin_msa_ldi_w (imm_n512_511);
v2i64 __builtin_msa_ldi_d (imm_n512_511);

v8i16 __builtin_msa_madd_q_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_madd_q_w (v4i32, v4i32, v4i32);

v8i16 __builtin_msa_maddr_q_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_maddr_q_w (v4i32, v4i32, v4i32);

v16i8 __builtin_msa_maddv_b (v16i8, v16i8, v16i8);
v8i16 __builtin_msa_maddv_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_maddv_w (v4i32, v4i32, v4i32);
v2i64 __builtin_msa_maddv_d (v2i64, v2i64, v2i64);

v16i8 __builtin_msa_max_a_b (v16i8, v16i8);
v8i16 __builtin_msa_max_a_h (v8i16, v8i16);
v4i32 __builtin_msa_max_a_w (v4i32, v4i32);
v2i64 __builtin_msa_max_a_d (v2i64, v2i64);

v16i8 __builtin_msa_max_s_b (v16i8, v16i8);
v8i16 __builtin_msa_max_s_h (v8i16, v8i16);
v4i32 __builtin_msa_max_s_w (v4i32, v4i32);
v2i64 __builtin_msa_max_s_d (v2i64, v2i64);

v16u8 __builtin_msa_max_u_b (v16u8, v16u8);
v8u16 __builtin_msa_max_u_h (v8u16, v8u16);
v4u32 __builtin_msa_max_u_w (v4u32, v4u32);
v2u64 __builtin_msa_max_u_d (v2u64, v2u64);

v16i8 __builtin_msa_maxi_s_b (v16i8, imm_n16_15);
v8i16 __builtin_msa_maxi_s_h (v8i16, imm_n16_15);
v4i32 __builtin_msa_maxi_s_w (v4i32, imm_n16_15);
v2i64 __builtin_msa_maxi_s_d (v2i64, imm_n16_15);

v16u8 __builtin_msa_maxi_u_b (v16u8, imm0_31);
v8u16 __builtin_msa_maxi_u_h (v8u16, imm0_31);
v4u32 __builtin_msa_maxi_u_w (v4u32, imm0_31);
v2u64 __builtin_msa_maxi_u_d (v2u64, imm0_31);

v16i8 __builtin_msa_min_a_b (v16i8, v16i8);
v8i16 __builtin_msa_min_a_h (v8i16, v8i16);
v4i32 __builtin_msa_min_a_w (v4i32, v4i32);
v2i64 __builtin_msa_min_a_d (v2i64, v2i64);

v16i8 __builtin_msa_min_s_b (v16i8, v16i8);
v8i16 __builtin_msa_min_s_h (v8i16, v8i16);
v4i32 __builtin_msa_min_s_w (v4i32, v4i32);
v2i64 __builtin_msa_min_s_d (v2i64, v2i64);

v16u8 __builtin_msa_min_u_b (v16u8, v16u8);
v8u16 __builtin_msa_min_u_h (v8u16, v8u16);
v4u32 __builtin_msa_min_u_w (v4u32, v4u32);
v2u64 __builtin_msa_min_u_d (v2u64, v2u64);

v16i8 __builtin_msa_mini_s_b (v16i8, imm_n16_15);
v8i16 __builtin_msa_mini_s_h (v8i16, imm_n16_15);
v4i32 __builtin_msa_mini_s_w (v4i32, imm_n16_15);
v2i64 __builtin_msa_mini_s_d (v2i64, imm_n16_15);

v16u8 __builtin_msa_mini_u_b (v16u8, imm0_31);
v8u16 __builtin_msa_mini_u_h (v8u16, imm0_31);
v4u32 __builtin_msa_mini_u_w (v4u32, imm0_31);
v2u64 __builtin_msa_mini_u_d (v2u64, imm0_31);

v16i8 __builtin_msa_mod_s_b (v16i8, v16i8);
v8i16 __builtin_msa_mod_s_h (v8i16, v8i16);
v4i32 __builtin_msa_mod_s_w (v4i32, v4i32);
v2i64 __builtin_msa_mod_s_d (v2i64, v2i64);

v16u8 __builtin_msa_mod_u_b (v16u8, v16u8);
v8u16 __builtin_msa_mod_u_h (v8u16, v8u16);
v4u32 __builtin_msa_mod_u_w (v4u32, v4u32);
v2u64 __builtin_msa_mod_u_d (v2u64, v2u64);

v16i8 __builtin_msa_move_v (v16i8);

v8i16 __builtin_msa_msub_q_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_msub_q_w (v4i32, v4i32, v4i32);

v8i16 __builtin_msa_msubr_q_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_msubr_q_w (v4i32, v4i32, v4i32);

v16i8 __builtin_msa_msubv_b (v16i8, v16i8, v16i8);
v8i16 __builtin_msa_msubv_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_msubv_w (v4i32, v4i32, v4i32);
v2i64 __builtin_msa_msubv_d (v2i64, v2i64, v2i64);

v8i16 __builtin_msa_mul_q_h (v8i16, v8i16);
v4i32 __builtin_msa_mul_q_w (v4i32, v4i32);

v8i16 __builtin_msa_mulr_q_h (v8i16, v8i16);
v4i32 __builtin_msa_mulr_q_w (v4i32, v4i32);

v16i8 __builtin_msa_mulv_b (v16i8, v16i8);
v8i16 __builtin_msa_mulv_h (v8i16, v8i16);
v4i32 __builtin_msa_mulv_w (v4i32, v4i32);
v2i64 __builtin_msa_mulv_d (v2i64, v2i64);

v16i8 __builtin_msa_nloc_b (v16i8);
v8i16 __builtin_msa_nloc_h (v8i16);
v4i32 __builtin_msa_nloc_w (v4i32);
v2i64 __builtin_msa_nloc_d (v2i64);

v16i8 __builtin_msa_nlzc_b (v16i8);
v8i16 __builtin_msa_nlzc_h (v8i16);
v4i32 __builtin_msa_nlzc_w (v4i32);
v2i64 __builtin_msa_nlzc_d (v2i64);

v16u8 __builtin_msa_nor_v (v16u8, v16u8);

v16u8 __builtin_msa_nori_b (v16u8, imm0_255);

v16u8 __builtin_msa_or_v (v16u8, v16u8);

v16u8 __builtin_msa_ori_b (v16u8, imm0_255);

v16i8 __builtin_msa_pckev_b (v16i8, v16i8);
v8i16 __builtin_msa_pckev_h (v8i16, v8i16);
v4i32 __builtin_msa_pckev_w (v4i32, v4i32);
v2i64 __builtin_msa_pckev_d (v2i64, v2i64);

v16i8 __builtin_msa_pckod_b (v16i8, v16i8);
v8i16 __builtin_msa_pckod_h (v8i16, v8i16);
v4i32 __builtin_msa_pckod_w (v4i32, v4i32);
v2i64 __builtin_msa_pckod_d (v2i64, v2i64);

v16i8 __builtin_msa_pcnt_b (v16i8);
v8i16 __builtin_msa_pcnt_h (v8i16);
v4i32 __builtin_msa_pcnt_w (v4i32);
v2i64 __builtin_msa_pcnt_d (v2i64);

v16i8 __builtin_msa_sat_s_b (v16i8, imm0_7);
v8i16 __builtin_msa_sat_s_h (v8i16, imm0_15);
v4i32 __builtin_msa_sat_s_w (v4i32, imm0_31);
v2i64 __builtin_msa_sat_s_d (v2i64, imm0_63);

v16u8 __builtin_msa_sat_u_b (v16u8, imm0_7);
v8u16 __builtin_msa_sat_u_h (v8u16, imm0_15);
v4u32 __builtin_msa_sat_u_w (v4u32, imm0_31);
v2u64 __builtin_msa_sat_u_d (v2u64, imm0_63);

v16i8 __builtin_msa_shf_b (v16i8, imm0_255);
v8i16 __builtin_msa_shf_h (v8i16, imm0_255);
v4i32 __builtin_msa_shf_w (v4i32, imm0_255);

v16i8 __builtin_msa_sld_b (v16i8, v16i8, i32);
v8i16 __builtin_msa_sld_h (v8i16, v8i16, i32);
v4i32 __builtin_msa_sld_w (v4i32, v4i32, i32);
v2i64 __builtin_msa_sld_d (v2i64, v2i64, i32);

v16i8 __builtin_msa_sldi_b (v16i8, v16i8, imm0_15);
v8i16 __builtin_msa_sldi_h (v8i16, v8i16, imm0_7);
v4i32 __builtin_msa_sldi_w (v4i32, v4i32, imm0_3);
v2i64 __builtin_msa_sldi_d (v2i64, v2i64, imm0_1);

v16i8 __builtin_msa_sll_b (v16i8, v16i8);
v8i16 __builtin_msa_sll_h (v8i16, v8i16);
v4i32 __builtin_msa_sll_w (v4i32, v4i32);
v2i64 __builtin_msa_sll_d (v2i64, v2i64);

v16i8 __builtin_msa_slli_b (v16i8, imm0_7);
v8i16 __builtin_msa_slli_h (v8i16, imm0_15);
v4i32 __builtin_msa_slli_w (v4i32, imm0_31);
v2i64 __builtin_msa_slli_d (v2i64, imm0_63);

v16i8 __builtin_msa_splat_b (v16i8, i32);
v8i16 __builtin_msa_splat_h (v8i16, i32);
v4i32 __builtin_msa_splat_w (v4i32, i32);
v2i64 __builtin_msa_splat_d (v2i64, i32);

v16i8 __builtin_msa_splati_b (v16i8, imm0_15);
v8i16 __builtin_msa_splati_h (v8i16, imm0_7);
v4i32 __builtin_msa_splati_w (v4i32, imm0_3);
v2i64 __builtin_msa_splati_d (v2i64, imm0_1);

v16i8 __builtin_msa_sra_b (v16i8, v16i8);
v8i16 __builtin_msa_sra_h (v8i16, v8i16);
v4i32 __builtin_msa_sra_w (v4i32, v4i32);
v2i64 __builtin_msa_sra_d (v2i64, v2i64);

v16i8 __builtin_msa_srai_b (v16i8, imm0_7);
v8i16 __builtin_msa_srai_h (v8i16, imm0_15);
v4i32 __builtin_msa_srai_w (v4i32, imm0_31);
v2i64 __builtin_msa_srai_d (v2i64, imm0_63);

v16i8 __builtin_msa_srar_b (v16i8, v16i8);
v8i16 __builtin_msa_srar_h (v8i16, v8i16);
v4i32 __builtin_msa_srar_w (v4i32, v4i32);
v2i64 __builtin_msa_srar_d (v2i64, v2i64);

v16i8 __builtin_msa_srari_b (v16i8, imm0_7);
v8i16 __builtin_msa_srari_h (v8i16, imm0_15);
v4i32 __builtin_msa_srari_w (v4i32, imm0_31);
v2i64 __builtin_msa_srari_d (v2i64, imm0_63);

v16i8 __builtin_msa_srl_b (v16i8, v16i8);
v8i16 __builtin_msa_srl_h (v8i16, v8i16);
v4i32 __builtin_msa_srl_w (v4i32, v4i32);
v2i64 __builtin_msa_srl_d (v2i64, v2i64);

v16i8 __builtin_msa_srli_b (v16i8, imm0_7);
v8i16 __builtin_msa_srli_h (v8i16, imm0_15);
v4i32 __builtin_msa_srli_w (v4i32, imm0_31);
v2i64 __builtin_msa_srli_d (v2i64, imm0_63);

v16i8 __builtin_msa_srlr_b (v16i8, v16i8);
v8i16 __builtin_msa_srlr_h (v8i16, v8i16);
v4i32 __builtin_msa_srlr_w (v4i32, v4i32);
v2i64 __builtin_msa_srlr_d (v2i64, v2i64);

v16i8 __builtin_msa_srlri_b (v16i8, imm0_7);
v8i16 __builtin_msa_srlri_h (v8i16, imm0_15);
v4i32 __builtin_msa_srlri_w (v4i32, imm0_31);
v2i64 __builtin_msa_srlri_d (v2i64, imm0_63);

void __builtin_msa_st_b (v16i8, void *, imm_n512_511);
void __builtin_msa_st_h (v8i16, void *, imm_n1024_1022);
void __builtin_msa_st_w (v4i32, void *, imm_n2048_2044);
void __builtin_msa_st_d (v2i64, void *, imm_n4096_4088);

v16i8 __builtin_msa_subs_s_b (v16i8, v16i8);
v8i16 __builtin_msa_subs_s_h (v8i16, v8i16);
v4i32 __builtin_msa_subs_s_w (v4i32, v4i32);
v2i64 __builtin_msa_subs_s_d (v2i64, v2i64);

v16u8 __builtin_msa_subs_u_b (v16u8, v16u8);
v8u16 __builtin_msa_subs_u_h (v8u16, v8u16);
v4u32 __builtin_msa_subs_u_w (v4u32, v4u32);
v2u64 __builtin_msa_subs_u_d (v2u64, v2u64);

v16u8 __builtin_msa_subsus_u_b (v16u8, v16i8);
v8u16 __builtin_msa_subsus_u_h (v8u16, v8i16);
v4u32 __builtin_msa_subsus_u_w (v4u32, v4i32);
v2u64 __builtin_msa_subsus_u_d (v2u64, v2i64);

v16i8 __builtin_msa_subsuu_s_b (v16u8, v16u8);
v8i16 __builtin_msa_subsuu_s_h (v8u16, v8u16);
v4i32 __builtin_msa_subsuu_s_w (v4u32, v4u32);
v2i64 __builtin_msa_subsuu_s_d (v2u64, v2u64);

v16i8 __builtin_msa_subv_b (v16i8, v16i8);
v8i16 __builtin_msa_subv_h (v8i16, v8i16);
v4i32 __builtin_msa_subv_w (v4i32, v4i32);
v2i64 __builtin_msa_subv_d (v2i64, v2i64);

v16i8 __builtin_msa_subvi_b (v16i8, imm0_31);
v8i16 __builtin_msa_subvi_h (v8i16, imm0_31);
v4i32 __builtin_msa_subvi_w (v4i32, imm0_31);
v2i64 __builtin_msa_subvi_d (v2i64, imm0_31);

v16i8 __builtin_msa_vshf_b (v16i8, v16i8, v16i8);
v8i16 __builtin_msa_vshf_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_vshf_w (v4i32, v4i32, v4i32);
v2i64 __builtin_msa_vshf_d (v2i64, v2i64, v2i64);

v16u8 __builtin_msa_xor_v (v16u8, v16u8);

v16u8 __builtin_msa_xori_b (v16u8, imm0_255);
@end smallexample

@node Other MIPS Built-in Functions
@subsection Other MIPS Built-in Functions

GCC provides other MIPS-specific built-in functions:

@table @code
@item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
when this function is available.

@item unsigned int __builtin_mips_get_fcsr (void)
@itemx void __builtin_mips_set_fcsr (unsigned int @var{value})
Get and set the contents of the floating-point control and status register
(FPU control register 31).  These functions are only available in hard-float
code but can be called in both MIPS16 and non-MIPS16 contexts.

@code{__builtin_mips_set_fcsr} can be used to change any bit of the
register except the condition codes, which GCC assumes are preserved.
@end table

@node MSP430 Built-in Functions
@subsection MSP430 Built-in Functions

GCC provides a couple of special builtin functions to aid in the
writing of interrupt handlers in C.

@table @code
@item __bic_SR_register_on_exit (int @var{mask})
This clears the indicated bits in the saved copy of the status register
currently residing on the stack.  This only works inside interrupt
handlers and the changes to the status register will only take affect
once the handler returns.

@item __bis_SR_register_on_exit (int @var{mask})
This sets the indicated bits in the saved copy of the status register
currently residing on the stack.  This only works inside interrupt
handlers and the changes to the status register will only take affect
once the handler returns.

@item __delay_cycles (long long @var{cycles})
This inserts an instruction sequence that takes exactly @var{cycles}
cycles (between 0 and about 17E9) to complete.  The inserted sequence
may use jumps, loops, or no-ops, and does not interfere with any other
instructions.  Note that @var{cycles} must be a compile-time constant
integer - that is, you must pass a number, not a variable that may be
optimized to a constant later.  The number of cycles delayed by this
builtin is exact.
@end table

@node NDS32 Built-in Functions
@subsection NDS32 Built-in Functions

These built-in functions are available for the NDS32 target:

@deftypefn {Built-in Function} void __builtin_nds32_isync (int *@var{addr})
Insert an ISYNC instruction into the instruction stream where
@var{addr} is an instruction address for serialization.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_nds32_isb (void)
Insert an ISB instruction into the instruction stream.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_nds32_mfsr (int @var{sr})
Return the content of a system register which is mapped by @var{sr}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_nds32_mfusr (int @var{usr})
Return the content of a user space register which is mapped by @var{usr}.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_nds32_mtsr (int @var{value}, int @var{sr})
Move the @var{value} to a system register which is mapped by @var{sr}.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_nds32_mtusr (int @var{value}, int @var{usr})
Move the @var{value} to a user space register which is mapped by @var{usr}.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_nds32_setgie_en (void)
Enable global interrupt.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_nds32_setgie_dis (void)
Disable global interrupt.
@end deftypefn

@node picoChip Built-in Functions
@subsection picoChip Built-in Functions

GCC provides an interface to selected machine instructions from the
picoChip instruction set.

@table @code
@item int __builtin_sbc (int @var{value})
Sign bit count.  Return the number of consecutive bits in @var{value}
that have the same value as the sign bit.  The result is the number of
leading sign bits minus one, giving the number of redundant sign bits in
@var{value}.

@item int __builtin_byteswap (int @var{value})
Byte swap.  Return the result of swapping the upper and lower bytes of
@var{value}.

@item int __builtin_brev (int @var{value})
Bit reversal.  Return the result of reversing the bits in
@var{value}.  Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
and so on.

@item int __builtin_adds (int @var{x}, int @var{y})
Saturating addition.  Return the result of adding @var{x} and @var{y},
storing the value 32767 if the result overflows.

@item int __builtin_subs (int @var{x}, int @var{y})
Saturating subtraction.  Return the result of subtracting @var{y} from
@var{x}, storing the value @minus{}32768 if the result overflows.

@item void __builtin_halt (void)
Halt.  The processor stops execution.  This built-in is useful for
implementing assertions.

@end table

@node Basic PowerPC Built-in Functions
@subsection Basic PowerPC Built-in Functions

@menu
* Basic PowerPC Built-in Functions Available on all Configurations::
* Basic PowerPC Built-in Functions Available on ISA 2.05::
* Basic PowerPC Built-in Functions Available on ISA 2.06::
* Basic PowerPC Built-in Functions Available on ISA 2.07::
* Basic PowerPC Built-in Functions Available on ISA 3.0::
* Basic PowerPC Built-in Functions Available on ISA 3.1::
@end menu

This section describes PowerPC built-in functions that do not require
the inclusion of any special header files to declare prototypes or
provide macro definitions.  The sections that follow describe
additional PowerPC built-in functions.

@node Basic PowerPC Built-in Functions Available on all Configurations
@subsubsection Basic PowerPC Built-in Functions Available on all Configurations

@deftypefn {Built-in Function} void __builtin_cpu_init (void)
This function is a @code{nop} on the PowerPC platform and is included solely
to maintain API compatibility with the x86 builtins.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
This function returns a value of @code{1} if the run-time CPU is of type
@var{cpuname} and returns @code{0} otherwise

The @code{__builtin_cpu_is} function requires GLIBC 2.23 or newer
which exports the hardware capability bits.  GCC defines the macro
@code{__BUILTIN_CPU_SUPPORTS__} if the @code{__builtin_cpu_supports}
built-in function is fully supported.

If GCC was configured to use a GLIBC before 2.23, the built-in
function @code{__builtin_cpu_is} always returns a 0 and the compiler
issues a warning.

The following CPU names can be detected:

@table @samp
@item power10
IBM POWER10 Server CPU.
@item power9
IBM POWER9 Server CPU.
@item power8
IBM POWER8 Server CPU.
@item power7
IBM POWER7 Server CPU.
@item power6x
IBM POWER6 Server CPU (RAW mode).
@item power6
IBM POWER6 Server CPU (Architected mode).
@item power5+
IBM POWER5+ Server CPU.
@item power5
IBM POWER5 Server CPU.
@item ppc970
IBM 970 Server CPU (ie, Apple G5).
@item power4
IBM POWER4 Server CPU.
@item ppca2
IBM A2 64-bit Embedded CPU
@item ppc476
IBM PowerPC 476FP 32-bit Embedded CPU.
@item ppc464
IBM PowerPC 464 32-bit Embedded CPU.
@item ppc440
PowerPC 440 32-bit Embedded CPU.
@item ppc405
PowerPC 405 32-bit Embedded CPU.
@item ppc-cell-be
IBM PowerPC Cell Broadband Engine Architecture CPU.
@end table

Here is an example:
@smallexample
#ifdef __BUILTIN_CPU_SUPPORTS__
  if (__builtin_cpu_is ("power8"))
    @{
       do_power8 (); // POWER8 specific implementation.
    @}
  else
#endif
    @{
       do_generic (); // Generic implementation.
    @}
@end smallexample
@end deftypefn

@deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
This function returns a value of @code{1} if the run-time CPU supports the HWCAP
feature @var{feature} and returns @code{0} otherwise.

The @code{__builtin_cpu_supports} function requires GLIBC 2.23 or
newer which exports the hardware capability bits.  GCC defines the
macro @code{__BUILTIN_CPU_SUPPORTS__} if the
@code{__builtin_cpu_supports} built-in function is fully supported.

If GCC was configured to use a GLIBC before 2.23, the built-in
function @code{__builtin_cpu_supports} always returns a 0 and the
compiler issues a warning.

The following features can be
detected:

@table @samp
@item 4xxmac
4xx CPU has a Multiply Accumulator.
@item altivec
CPU has a SIMD/Vector Unit.
@item arch_2_05
CPU supports ISA 2.05 (eg, POWER6)
@item arch_2_06
CPU supports ISA 2.06 (eg, POWER7)
@item arch_2_07
CPU supports ISA 2.07 (eg, POWER8)
@item arch_3_00
CPU supports ISA 3.0 (eg, POWER9)
@item arch_3_1
CPU supports ISA 3.1 (eg, POWER10)
@item archpmu
CPU supports the set of compatible performance monitoring events.
@item booke
CPU supports the Embedded ISA category.
@item cellbe
CPU has a CELL broadband engine.
@item darn
CPU supports the @code{darn} (deliver a random number) instruction.
@item dfp
CPU has a decimal floating point unit.
@item dscr
CPU supports the data stream control register.
@item ebb
CPU supports event base branching.
@item efpdouble
CPU has a SPE double precision floating point unit.
@item efpsingle
CPU has a SPE single precision floating point unit.
@item fpu
CPU has a floating point unit.
@item htm
CPU has hardware transaction memory instructions.
@item htm-nosc
Kernel aborts hardware transactions when a syscall is made.
@item htm-no-suspend
CPU supports hardware transaction memory but does not support the
@code{tsuspend.} instruction.
@item ic_snoop
CPU supports icache snooping capabilities.
@item ieee128
CPU supports 128-bit IEEE binary floating point instructions.
@item isel
CPU supports the integer select instruction.
@item mma
CPU supports the matrix-multiply assist instructions.
@item mmu
CPU has a memory management unit.
@item notb
CPU does not have a timebase (eg, 601 and 403gx).
@item pa6t
CPU supports the PA Semi 6T CORE ISA.
@item power4
CPU supports ISA 2.00 (eg, POWER4)
@item power5
CPU supports ISA 2.02 (eg, POWER5)
@item power5+
CPU supports ISA 2.03 (eg, POWER5+)
@item power6x
CPU supports ISA 2.05 (eg, POWER6) extended opcodes mffgpr and mftgpr.
@item ppc32
CPU supports 32-bit mode execution.
@item ppc601
CPU supports the old POWER ISA (eg, 601)
@item ppc64
CPU supports 64-bit mode execution.
@item ppcle
CPU supports a little-endian mode that uses address swizzling.
@item scv
Kernel supports system call vectored.
@item smt
CPU support simultaneous multi-threading.
@item spe
CPU has a signal processing extension unit.
@item tar
CPU supports the target address register.
@item true_le
CPU supports true little-endian mode.
@item ucache
CPU has unified I/D cache.
@item vcrypto
CPU supports the vector cryptography instructions.
@item vsx
CPU supports the vector-scalar extension.
@end table

Here is an example:
@smallexample
#ifdef __BUILTIN_CPU_SUPPORTS__
  if (__builtin_cpu_supports ("fpu"))
    @{
       asm("fadd %0,%1,%2" : "=d"(dst) : "d"(src1), "d"(src2));
    @}
  else
#endif
    @{
       dst = __fadd (src1, src2); // Software FP addition function.
    @}
@end smallexample
@end deftypefn

The following built-in functions are also available on all PowerPC
processors:
@smallexample
uint64_t __builtin_ppc_get_timebase ();
unsigned long __builtin_ppc_mftb ();
double __builtin_unpack_ibm128 (__ibm128, int);
__ibm128 __builtin_pack_ibm128 (double, double);
double __builtin_mffs (void);
void __builtin_mtfsf (const int, double);
void __builtin_mtfsb0 (const int);
void __builtin_mtfsb1 (const int);
void __builtin_set_fpscr_rn (int);
@end smallexample

The @code{__builtin_ppc_get_timebase} and @code{__builtin_ppc_mftb}
functions generate instructions to read the Time Base Register.  The
@code{__builtin_ppc_get_timebase} function may generate multiple
instructions and always returns the 64 bits of the Time Base Register.
The @code{__builtin_ppc_mftb} function always generates one instruction and
returns the Time Base Register value as an unsigned long, throwing away
the most significant word on 32-bit environments.  The @code{__builtin_mffs}
return the value of the FPSCR register.  Note, ISA 3.0 supports the
@code{__builtin_mffsl()} which permits software to read the control and
non-sticky status bits in the FSPCR without the higher latency associated with
accessing the sticky status bits.  The @code{__builtin_mtfsf} takes a constant
8-bit integer field mask and a double precision floating point argument
and generates the @code{mtfsf} (extended mnemonic) instruction to write new
values to selected fields of the FPSCR.  The
@code{__builtin_mtfsb0} and @code{__builtin_mtfsb1} take the bit to change
as an argument.  The valid bit range is between 0 and 31.  The builtins map to
the @code{mtfsb0} and @code{mtfsb1} instructions which take the argument and
add 32.  Hence these instructions only modify the FPSCR[32:63] bits by
changing the specified bit to a zero or one respectively.  The
@code{__builtin_set_fpscr_rn} builtin allows changing both of the floating
point rounding mode bits.  The argument is a 2-bit value.  The argument can
either be a @code{const int} or stored in a variable. The builtin uses
the ISA 3.0
instruction @code{mffscrn} if available, otherwise it reads the FPSCR, masks
the current rounding mode bits out and OR's in the new value.

@node Basic PowerPC Built-in Functions Available on ISA 2.05
@subsubsection Basic PowerPC Built-in Functions Available on ISA 2.05

The basic built-in functions described in this section are
available on the PowerPC family of processors starting with ISA 2.05
or later.  Unless specific options are explicitly disabled on the
command line, specifying option @option{-mcpu=power6} has the effect of
enabling the @option{-mpowerpc64}, @option{-mpowerpc-gpopt},
@option{-mpowerpc-gfxopt}, @option{-mmfcrf}, @option{-mpopcntb},
@option{-mfprnd}, @option{-mcmpb}, @option{-mhard-dfp}, and
@option{-mrecip-precision} options.  Specify the
@option{-maltivec} option explicitly in
combination with the above options if desired.

The following functions require option @option{-mcmpb}.
@smallexample
unsigned long long __builtin_cmpb (unsigned long long int, unsigned long long int);
unsigned int __builtin_cmpb (unsigned int, unsigned int);
@end smallexample

The @code{__builtin_cmpb} function
performs a byte-wise compare on the contents of its two arguments,
returning the result of the byte-wise comparison as the returned
value.  For each byte comparison, the corresponding byte of the return
value holds 0xff if the input bytes are equal and 0 if the input bytes
are not equal.  If either of the arguments to this built-in function
is wider than 32 bits, the function call expands into the form that
expects @code{unsigned long long int} arguments
which is only available on 64-bit targets.

The following built-in functions are available
when hardware decimal floating point
(@option{-mhard-dfp}) is available:
@smallexample
void __builtin_set_fpscr_drn(int);
_Decimal64 __builtin_ddedpd (int, _Decimal64);
_Decimal128 __builtin_ddedpdq (int, _Decimal128);
_Decimal64 __builtin_denbcd (int, _Decimal64);
_Decimal128 __builtin_denbcdq (int, _Decimal128);
_Decimal64 __builtin_diex (long long, _Decimal64);
_Decimal128 _builtin_diexq (long long, _Decimal128);
_Decimal64 __builtin_dscli (_Decimal64, int);
_Decimal128 __builtin_dscliq (_Decimal128, int);
_Decimal64 __builtin_dscri (_Decimal64, int);
_Decimal128 __builtin_dscriq (_Decimal128, int);
long long __builtin_dxex (_Decimal64);
long long __builtin_dxexq (_Decimal128);
_Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
unsigned long long __builtin_unpack_dec128 (_Decimal128, int);

The @code{__builtin_set_fpscr_drn} builtin allows changing the three decimal
floating point rounding mode bits.  The argument is a 3-bit value.  The
argument can either be a @code{const int} or the value can be stored in
a variable.
The builtin uses the ISA 3.0 instruction @code{mffscdrn} if available.
Otherwise the builtin reads the FPSCR, masks the current decimal rounding
mode bits out and OR's in the new value.

@end smallexample

The following functions require @option{-mhard-float},
@option{-mpowerpc-gfxopt}, and @option{-mpopcntb} options.

@smallexample
double __builtin_recipdiv (double, double);
float __builtin_recipdivf (float, float);
double __builtin_rsqrt (double);
float __builtin_rsqrtf (float);
@end smallexample

The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
@code{__builtin_rsqrtf} functions generate multiple instructions to
implement the reciprocal sqrt functionality using reciprocal sqrt
estimate instructions.

The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
functions generate multiple instructions to implement division using
the reciprocal estimate instructions.

The following functions require @option{-mhard-float} and
@option{-mmultiple} options.

The @code{__builtin_unpack_longdouble} function takes a
@code{long double} argument and a compile time constant of 0 or 1.  If
the constant is 0, the first @code{double} within the
@code{long double} is returned, otherwise the second @code{double}
is returned.  The @code{__builtin_unpack_longdouble} function is only
available if @code{long double} uses the IBM extended double
representation.

The @code{__builtin_pack_longdouble} function takes two @code{double}
arguments and returns a @code{long double} value that combines the two
arguments.  The @code{__builtin_pack_longdouble} function is only
available if @code{long double} uses the IBM extended double
representation.

The @code{__builtin_unpack_ibm128} function takes a @code{__ibm128}
argument and a compile time constant of 0 or 1.  If the constant is 0,
the first @code{double} within the @code{__ibm128} is returned,
otherwise the second @code{double} is returned.

The @code{__builtin_pack_ibm128} function takes two @code{double}
arguments and returns a @code{__ibm128} value that combines the two
arguments.

Additional built-in functions are available for the 64-bit PowerPC
family of processors, for efficient use of 128-bit floating point
(@code{__float128}) values.

@node Basic PowerPC Built-in Functions Available on ISA 2.06
@subsubsection Basic PowerPC Built-in Functions Available on ISA 2.06

The basic built-in functions described in this section are
available on the PowerPC family of processors starting with ISA 2.05
or later.  Unless specific options are explicitly disabled on the
command line, specifying option @option{-mcpu=power7} has the effect of
enabling all the same options as for @option{-mcpu=power6} in
addition to the @option{-maltivec}, @option{-mpopcntd}, and
@option{-mvsx} options.

The following basic built-in functions require @option{-mpopcntd}:
@smallexample
unsigned int __builtin_addg6s (unsigned int, unsigned int);
long long __builtin_bpermd (long long, long long);
unsigned int __builtin_cbcdtd (unsigned int);
unsigned int __builtin_cdtbcd (unsigned int);
long long __builtin_divde (long long, long long);
unsigned long long __builtin_divdeu (unsigned long long, unsigned long long);
int __builtin_divwe (int, int);
unsigned int __builtin_divweu (unsigned int, unsigned int);
vector __int128 __builtin_pack_vector_int128 (long long, long long);
void __builtin_rs6000_speculation_barrier (void);
long long __builtin_unpack_vector_int128 (vector __int128, signed char);
@end smallexample

Of these, the @code{__builtin_divde} and @code{__builtin_divdeu} functions
require a 64-bit environment.

The following basic built-in functions, which are also supported on
x86 targets, require @option{-mfloat128}.
@smallexample
__float128 __builtin_fabsq (__float128);
__float128 __builtin_copysignq (__float128, __float128);
__float128 __builtin_infq (void);
__float128 __builtin_huge_valq (void);
__float128 __builtin_nanq (void);
__float128 __builtin_nansq (void);

__float128 __builtin_sqrtf128 (__float128);
__float128 __builtin_fmaf128 (__float128, __float128, __float128);
@end smallexample

@node Basic PowerPC Built-in Functions Available on ISA 2.07
@subsubsection Basic PowerPC Built-in Functions Available on ISA 2.07

The basic built-in functions described in this section are
available on the PowerPC family of processors starting with ISA 2.07
or later.  Unless specific options are explicitly disabled on the
command line, specifying option @option{-mcpu=power8} has the effect of
enabling all the same options as for @option{-mcpu=power7} in
addition to the @option{-mpower8-fusion}, @option{-mpower8-vector},
@option{-mcrypto}, @option{-mhtm}, @option{-mquad-memory}, and
@option{-mquad-memory-atomic} options.

This section intentionally empty.

@node Basic PowerPC Built-in Functions Available on ISA 3.0
@subsubsection Basic PowerPC Built-in Functions Available on ISA 3.0

The basic built-in functions described in this section are
available on the PowerPC family of processors starting with ISA 3.0
or later.  Unless specific options are explicitly disabled on the
command line, specifying option @option{-mcpu=power9} has the effect of
enabling all the same options as for @option{-mcpu=power8} in
addition to the @option{-misel} option.

The following built-in functions are available on Linux 64-bit systems
that use the ISA 3.0 instruction set (@option{-mcpu=power9}):

@table @code
@item __float128 __builtin_addf128_round_to_odd (__float128, __float128)
Perform a 128-bit IEEE floating point add using round to odd as the
rounding mode.
@findex __builtin_addf128_round_to_odd

@item __float128 __builtin_subf128_round_to_odd (__float128, __float128)
Perform a 128-bit IEEE floating point subtract using round to odd as
the rounding mode.
@findex __builtin_subf128_round_to_odd

@item __float128 __builtin_mulf128_round_to_odd (__float128, __float128)
Perform a 128-bit IEEE floating point multiply using round to odd as
the rounding mode.
@findex __builtin_mulf128_round_to_odd

@item __float128 __builtin_divf128_round_to_odd (__float128, __float128)
Perform a 128-bit IEEE floating point divide using round to odd as
the rounding mode.
@findex __builtin_divf128_round_to_odd

@item __float128 __builtin_sqrtf128_round_to_odd (__float128)
Perform a 128-bit IEEE floating point square root using round to odd
as the rounding mode.
@findex __builtin_sqrtf128_round_to_odd

@item __float128 __builtin_fmaf128_round_to_odd (__float128, __float128, __float128)
Perform a 128-bit IEEE floating point fused multiply and add operation
using round to odd as the rounding mode.
@findex __builtin_fmaf128_round_to_odd

@item double __builtin_truncf128_round_to_odd (__float128)
Convert a 128-bit IEEE floating point value to @code{double} using
round to odd as the rounding mode.
@findex __builtin_truncf128_round_to_odd
@end table

The following additional built-in functions are also available for the
PowerPC family of processors, starting with ISA 3.0 or later:
@smallexample
long long __builtin_darn (void);
long long __builtin_darn_raw (void);
int __builtin_darn_32 (void);
@end smallexample

The @code{__builtin_darn} and @code{__builtin_darn_raw}
functions require a
64-bit environment supporting ISA 3.0 or later.
The @code{__builtin_darn} function provides a 64-bit conditioned
random number.  The @code{__builtin_darn_raw} function provides a
64-bit raw random number.  The @code{__builtin_darn_32} function
provides a 32-bit conditioned random number.

The following additional built-in functions are also available for the
PowerPC family of processors, starting with ISA 3.0 or later:

@smallexample
int __builtin_byte_in_set (unsigned char u, unsigned long long set);
int __builtin_byte_in_range (unsigned char u, unsigned int range);
int __builtin_byte_in_either_range (unsigned char u, unsigned int ranges);

int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_lt_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_lt_td (unsigned int comparison, _Decimal128 value);

int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_gt_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_gt_td (unsigned int comparison, _Decimal128 value);

int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_eq_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_eq_td (unsigned int comparison, _Decimal128 value);

int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_ov_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_ov_td (unsigned int comparison, _Decimal128 value);

double __builtin_mffsl(void);

@end smallexample
The @code{__builtin_byte_in_set} function requires a
64-bit environment supporting ISA 3.0 or later.  This function returns
a non-zero value if and only if its @code{u} argument exactly equals one of
the eight bytes contained within its 64-bit @code{set} argument.

The @code{__builtin_byte_in_range} and
@code{__builtin_byte_in_either_range} require an environment
supporting ISA 3.0 or later.  For these two functions, the
@code{range} argument is encoded as 4 bytes, organized as
@code{hi_1:lo_1:hi_2:lo_2}.
The @code{__builtin_byte_in_range} function returns a
non-zero value if and only if its @code{u} argument is within the
range bounded between @code{lo_2} and @code{hi_2} inclusive.
The @code{__builtin_byte_in_either_range} function returns non-zero if
and only if its @code{u} argument is within either the range bounded
between @code{lo_1} and @code{hi_1} inclusive or the range bounded
between @code{lo_2} and @code{hi_2} inclusive.

The @code{__builtin_dfp_dtstsfi_lt} function returns a non-zero value
if and only if the number of signficant digits of its @code{value} argument
is less than its @code{comparison} argument.  The
@code{__builtin_dfp_dtstsfi_lt_dd} and
@code{__builtin_dfp_dtstsfi_lt_td} functions behave similarly, but
require that the type of the @code{value} argument be
@code{__Decimal64} and @code{__Decimal128} respectively.

The @code{__builtin_dfp_dtstsfi_gt} function returns a non-zero value
if and only if the number of signficant digits of its @code{value} argument
is greater than its @code{comparison} argument.  The
@code{__builtin_dfp_dtstsfi_gt_dd} and
@code{__builtin_dfp_dtstsfi_gt_td} functions behave similarly, but
require that the type of the @code{value} argument be
@code{__Decimal64} and @code{__Decimal128} respectively.

The @code{__builtin_dfp_dtstsfi_eq} function returns a non-zero value
if and only if the number of signficant digits of its @code{value} argument
equals its @code{comparison} argument.  The
@code{__builtin_dfp_dtstsfi_eq_dd} and
@code{__builtin_dfp_dtstsfi_eq_td} functions behave similarly, but
require that the type of the @code{value} argument be
@code{__Decimal64} and @code{__Decimal128} respectively.

The @code{__builtin_dfp_dtstsfi_ov} function returns a non-zero value
if and only if its @code{value} argument has an undefined number of
significant digits, such as when @code{value} is an encoding of @code{NaN}.
The @code{__builtin_dfp_dtstsfi_ov_dd} and
@code{__builtin_dfp_dtstsfi_ov_td} functions behave similarly, but
require that the type of the @code{value} argument be
@code{__Decimal64} and @code{__Decimal128} respectively.

The @code{__builtin_mffsl} uses the ISA 3.0 @code{mffsl} instruction to read
the FPSCR.  The instruction is a lower latency version of the @code{mffs}
instruction.  If the @code{mffsl} instruction is not available, then the
builtin uses the older @code{mffs} instruction to read the FPSCR.

@node Basic PowerPC Built-in Functions Available on ISA 3.1
@subsubsection Basic PowerPC Built-in Functions Available on ISA 3.1

The basic built-in functions described in this section are
available on the PowerPC family of processors starting with ISA 3.1.
Unless specific options are explicitly disabled on the
command line, specifying option @option{-mcpu=power10} has the effect of
enabling all the same options as for @option{-mcpu=power9}.

The following built-in functions are available on Linux 64-bit systems
that use a future architecture instruction set (@option{-mcpu=power10}):

@smallexample
@exdent unsigned long long
@exdent __builtin_cfuged (unsigned long long, unsigned long long)
@end smallexample
Perform a 64-bit centrifuge operation, as if implemented by the
@code{cfuged} instruction.
@findex __builtin_cfuged

@smallexample
@exdent unsigned long long
@exdent __builtin_cntlzdm (unsigned long long, unsigned long long)
@end smallexample
Perform a 64-bit count leading zeros operation under mask, as if
implemented by the @code{cntlzdm} instruction.
@findex __builtin_cntlzdm

@smallexample
@exdent unsigned long long
@exdent __builtin_cnttzdm (unsigned long long, unsigned long long)
@end smallexample
Perform a 64-bit count trailing zeros operation under mask, as if
implemented by the @code{cnttzdm} instruction.
@findex __builtin_cnttzdm

@smallexample
@exdent unsigned long long
@exdent __builtin_pdepd (unsigned long long, unsigned long long)
@end smallexample
Perform a 64-bit parallel bits deposit operation, as if implemented by the
@code{pdepd} instruction.
@findex __builtin_pdepd

@smallexample
@exdent unsigned long long
@exdent __builtin_pextd (unsigned long long, unsigned long long)
@end smallexample
Perform a 64-bit parallel bits extract operation, as if implemented by the
@code{pextd} instruction.
@findex __builtin_pextd

@smallexample
@exdent vector signed __int128 vsx_xl_sext (signed long long, signed char *)

@exdent vector signed __int128 vsx_xl_sext (signed long long, signed short *)

@exdent vector signed __int128 vsx_xl_sext (signed long long, signed int *)

@exdent vector signed __int128 vsx_xl_sext (signed long long, signed long long *)

@exdent vector unsigned __int128 vsx_xl_zext (signed long long, unsigned char *)

@exdent vector unsigned __int128 vsx_xl_zext (signed long long, unsigned short *)

@exdent vector unsigned __int128 vsx_xl_zext (signed long long, unsigned int *)

@exdent vector unsigned __int128 vsx_xl_zext (signed long long, unsigned long long *)
@end smallexample

Load (and sign extend) to an __int128 vector, as if implemented by the ISA 3.1
@code{lxvrbx}, @code{lxvrhx}, @code{lxvrwx}, and  @code{lxvrdx} instructions.
@findex vsx_xl_sext
@findex vsx_xl_zext

@smallexample
@exdent void vec_xst_trunc (vector signed __int128, signed long long, signed char *)

@exdent void vec_xst_trunc (vector signed __int128, signed long long, signed short *)

@exdent void vec_xst_trunc (vector signed __int128, signed long long, signed int *)

@exdent void vec_xst_trunc (vector signed __int128, signed long long, signed long long *)

@exdent void vec_xst_trunc (vector unsigned __int128, signed long long, unsigned char *)

@exdent void vec_xst_trunc (vector unsigned __int128, signed long long, unsigned short *)

@exdent void vec_xst_trunc (vector unsigned __int128, signed long long, unsigned int *)

@exdent void vec_xst_trunc (vector unsigned __int128, signed long long, unsigned long long *)
@end smallexample

Truncate and store the rightmost element of a vector, as if implemented by the
ISA 3.1 @code{stxvrbx}, @code{stxvrhx}, @code{stxvrwx}, and @code{stxvrdx}
instructions.
@findex vec_xst_trunc

@node PowerPC AltiVec/VSX Built-in Functions
@subsection PowerPC AltiVec/VSX Built-in Functions

GCC provides an interface for the PowerPC family of processors to access
the AltiVec operations described in Motorola's AltiVec Programming
Interface Manual.  The interface is made available by including
@code{<altivec.h>} and using @option{-maltivec} and
@option{-mabi=altivec}.  The interface supports the following vector
types.

@smallexample
vector unsigned char
vector signed char
vector bool char

vector unsigned short
vector signed short
vector bool short
vector pixel

vector unsigned int
vector signed int
vector bool int
vector float
@end smallexample

GCC's implementation of the high-level language interface available from
C and C++ code differs from Motorola's documentation in several ways.

@itemize @bullet

@item
A vector constant is a list of constant expressions within curly braces.

@item
A vector initializer requires no cast if the vector constant is of the
same type as the variable it is initializing.

@item
If @code{signed} or @code{unsigned} is omitted, the signedness of the
vector type is the default signedness of the base type.  The default
varies depending on the operating system, so a portable program should
always specify the signedness.

@item
Compiling with @option{-maltivec} adds keywords @code{__vector},
@code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
@code{bool}.  When compiling ISO C, the context-sensitive substitution
of the keywords @code{vector}, @code{pixel} and @code{bool} is
disabled.  To use them, you must include @code{<altivec.h>} instead.

@item
GCC allows using a @code{typedef} name as the type specifier for a
vector type, but only under the following circumstances:

@itemize @bullet

@item
When using @code{__vector} instead of @code{vector}; for example,

@smallexample
typedef signed short int16;
__vector int16 data;
@end smallexample

@item
When using @code{vector} in keyword-and-predefine mode; for example,

@smallexample
typedef signed short int16;
vector int16 data;
@end smallexample

Note that keyword-and-predefine mode is enabled by disabling GNU
extensions (e.g., by using @code{-std=c11}) and including
@code{<altivec.h>}.
@end itemize

@item
For C, overloaded functions are implemented with macros so the following
does not work:

@smallexample
  vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
@end smallexample

@noindent
Since @code{vec_add} is a macro, the vector constant in the example
is treated as four separate arguments.  Wrap the entire argument in
parentheses for this to work.
@end itemize

@emph{Note:} Only the @code{<altivec.h>} interface is supported.
Internally, GCC uses built-in functions to achieve the functionality in
the aforementioned header file, but they are not supported and are
subject to change without notice.

GCC complies with the Power Vector Intrinsic Programming Reference (PVIPR),
which may be found at
@uref{https://openpowerfoundation.org/?resource_lib=power-vector-intrinsic-programming-reference}.
Chapter 4 of this document fully documents the vector API interfaces
that must be
provided by compliant compilers.  Programmers should preferentially use
the interfaces described therein.  However, historically GCC has provided
additional interfaces for access to vector instructions.  These are
briefly described below.  Where the PVIPR provides a portable interface,
other functions in GCC that provide the same capabilities should be
considered deprecated.

The PVIPR documents the following overloaded functions:

@multitable @columnfractions 0.33 0.33 0.33

@item @code{vec_abs}
@tab @code{vec_absd}
@tab @code{vec_abss}
@item @code{vec_add}
@tab @code{vec_addc}
@tab @code{vec_adde}
@item @code{vec_addec}
@tab @code{vec_adds}
@tab @code{vec_all_eq}
@item @code{vec_all_ge}
@tab @code{vec_all_gt}
@tab @code{vec_all_in}
@item @code{vec_all_le}
@tab @code{vec_all_lt}
@tab @code{vec_all_nan}
@item @code{vec_all_ne}
@tab @code{vec_all_nge}
@tab @code{vec_all_ngt}
@item @code{vec_all_nle}
@tab @code{vec_all_nlt}
@tab @code{vec_all_numeric}
@item @code{vec_and}
@tab @code{vec_andc}
@tab @code{vec_any_eq}
@item @code{vec_any_ge}
@tab @code{vec_any_gt}
@tab @code{vec_any_le}
@item @code{vec_any_lt}
@tab @code{vec_any_nan}
@tab @code{vec_any_ne}
@item @code{vec_any_nge}
@tab @code{vec_any_ngt}
@tab @code{vec_any_nle}
@item @code{vec_any_nlt}
@tab @code{vec_any_numeric}
@tab @code{vec_any_out}
@item @code{vec_avg}
@tab @code{vec_bperm}
@tab @code{vec_ceil}
@item @code{vec_cipher_be}
@tab @code{vec_cipherlast_be}
@tab @code{vec_cmpb}
@item @code{vec_cmpeq}
@tab @code{vec_cmpge}
@tab @code{vec_cmpgt}
@item @code{vec_cmple}
@tab @code{vec_cmplt}
@tab @code{vec_cmpne}
@item @code{vec_cmpnez}
@tab @code{vec_cntlz}
@tab @code{vec_cntlz_lsbb}
@item @code{vec_cnttz}
@tab @code{vec_cnttz_lsbb}
@tab @code{vec_cpsgn}
@item @code{vec_ctf}
@tab @code{vec_cts}
@tab @code{vec_ctu}
@item @code{vec_div}
@tab @code{vec_double}
@tab @code{vec_doublee}
@item @code{vec_doubleh}
@tab @code{vec_doublel}
@tab @code{vec_doubleo}
@item @code{vec_eqv}
@tab @code{vec_expte}
@tab @code{vec_extract}
@item @code{vec_extract_exp}
@tab @code{vec_extract_fp32_from_shorth}
@tab @code{vec_extract_fp32_from_shortl}
@item @code{vec_extract_sig}
@tab @code{vec_extract_4b}
@tab @code{vec_first_match_index}
@item @code{vec_first_match_or_eos_index}
@tab @code{vec_first_mismatch_index}
@tab @code{vec_first_mismatch_or_eos_index}
@item @code{vec_float}
@tab @code{vec_float2}
@tab @code{vec_floate}
@item @code{vec_floato}
@tab @code{vec_floor}
@tab @code{vec_gb}
@item @code{vec_insert}
@tab @code{vec_insert_exp}
@tab @code{vec_insert4b}
@item @code{vec_ld}
@tab @code{vec_lde}
@tab @code{vec_ldl}
@item @code{vec_loge}
@tab @code{vec_madd}
@tab @code{vec_madds}
@item @code{vec_max}
@tab @code{vec_mergee}
@tab @code{vec_mergeh}
@item @code{vec_mergel}
@tab @code{vec_mergeo}
@tab @code{vec_mfvscr}
@item @code{vec_min}
@tab @code{vec_mradds}
@tab @code{vec_msub}
@item @code{vec_msum}
@tab @code{vec_msums}
@tab @code{vec_mtvscr}
@item @code{vec_mul}
@tab @code{vec_mule}
@tab @code{vec_mulo}
@item @code{vec_nabs}
@tab @code{vec_nand}
@tab @code{vec_ncipher_be}
@item @code{vec_ncipherlast_be}
@tab @code{vec_nearbyint}
@tab @code{vec_neg}
@item @code{vec_nmadd}
@tab @code{vec_nmsub}
@tab @code{vec_nor}
@item @code{vec_or}
@tab @code{vec_orc}
@tab @code{vec_pack}
@item @code{vec_pack_to_short_fp32}
@tab @code{vec_packpx}
@tab @code{vec_packs}
@item @code{vec_packsu}
@tab @code{vec_parity_lsbb}
@tab @code{vec_perm}
@item @code{vec_permxor}
@tab @code{vec_pmsum_be}
@tab @code{vec_popcnt}
@item @code{vec_re}
@tab @code{vec_recipdiv}
@tab @code{vec_revb}
@item @code{vec_reve}
@tab @code{vec_rint}
@tab @code{vec_rl}
@item @code{vec_rlmi}
@tab @code{vec_rlnm}
@tab @code{vec_round}
@item @code{vec_rsqrt}
@tab @code{vec_rsqrte}
@tab @code{vec_sbox_be}
@item @code{vec_sel}
@tab @code{vec_shasigma_be}
@tab @code{vec_signed}
@item @code{vec_signed2}
@tab @code{vec_signede}
@tab @code{vec_signedo}
@item @code{vec_sl}
@tab @code{vec_sld}
@tab @code{vec_sldw}
@item @code{vec_sll}
@tab @code{vec_slo}
@tab @code{vec_slv}
@item @code{vec_splat}
@tab @code{vec_splat_s8}
@tab @code{vec_splat_s16}
@item @code{vec_splat_s32}
@tab @code{vec_splat_u8}
@tab @code{vec_splat_u16}
@item @code{vec_splat_u32}
@tab @code{vec_splats}
@tab @code{vec_sqrt}
@item @code{vec_sr}
@tab @code{vec_sra}
@tab @code{vec_srl}
@item @code{vec_sro}
@tab @code{vec_srv}
@tab @code{vec_st}
@item @code{vec_ste}
@tab @code{vec_stl}
@tab @code{vec_sub}
@item @code{vec_subc}
@tab @code{vec_sube}
@tab @code{vec_subec}
@item @code{vec_subs}
@tab @code{vec_sum2s}
@tab @code{vec_sum4s}
@item @code{vec_sums}
@tab @code{vec_test_data_class}
@tab @code{vec_trunc}
@item @code{vec_unpackh}
@tab @code{vec_unpackl}
@tab @code{vec_unsigned}
@item @code{vec_unsigned2}
@tab @code{vec_unsignede}
@tab @code{vec_unsignedo}
@item @code{vec_xl}
@tab @code{vec_xl_be}
@tab @code{vec_xl_len}
@item @code{vec_xl_len_r}
@tab @code{vec_xor}
@tab @code{vec_xst}
@item @code{vec_xst_be}
@tab @code{vec_xst_len}
@tab @code{vec_xst_len_r}

@end multitable

@menu
* PowerPC AltiVec Built-in Functions on ISA 2.05::
* PowerPC AltiVec Built-in Functions Available on ISA 2.06::
* PowerPC AltiVec Built-in Functions Available on ISA 2.07::
* PowerPC AltiVec Built-in Functions Available on ISA 3.0::
* PowerPC AltiVec Built-in Functions Available on ISA 3.1::
@end menu

@node PowerPC AltiVec Built-in Functions on ISA 2.05
@subsubsection PowerPC AltiVec Built-in Functions on ISA 2.05

The following interfaces are supported for the generic and specific
AltiVec operations and the AltiVec predicates.  In cases where there
is a direct mapping between generic and specific operations, only the
generic names are shown here, although the specific operations can also
be used.

Arguments that are documented as @code{const int} require literal
integral values within the range required for that operation.

Only functions excluded from the PVIPR are listed here.

@smallexample
void vec_dss (const int);

void vec_dssall (void);

void vec_dst (const vector unsigned char *, int, const int);
void vec_dst (const vector signed char *, int, const int);
void vec_dst (const vector bool char *, int, const int);
void vec_dst (const vector unsigned short *, int, const int);
void vec_dst (const vector signed short *, int, const int);
void vec_dst (const vector bool short *, int, const int);
void vec_dst (const vector pixel *, int, const int);
void vec_dst (const vector unsigned int *, int, const int);
void vec_dst (const vector signed int *, int, const int);
void vec_dst (const vector bool int *, int, const int);
void vec_dst (const vector float *, int, const int);
void vec_dst (const unsigned char *, int, const int);
void vec_dst (const signed char *, int, const int);
void vec_dst (const unsigned short *, int, const int);
void vec_dst (const short *, int, const int);
void vec_dst (const unsigned int *, int, const int);
void vec_dst (const int *, int, const int);
void vec_dst (const float *, int, const int);

void vec_dstst (const vector unsigned char *, int, const int);
void vec_dstst (const vector signed char *, int, const int);
void vec_dstst (const vector bool char *, int, const int);
void vec_dstst (const vector unsigned short *, int, const int);
void vec_dstst (const vector signed short *, int, const int);
void vec_dstst (const vector bool short *, int, const int);
void vec_dstst (const vector pixel *, int, const int);
void vec_dstst (const vector unsigned int *, int, const int);
void vec_dstst (const vector signed int *, int, const int);
void vec_dstst (const vector bool int *, int, const int);
void vec_dstst (const vector float *, int, const int);
void vec_dstst (const unsigned char *, int, const int);
void vec_dstst (const signed char *, int, const int);
void vec_dstst (const unsigned short *, int, const int);
void vec_dstst (const short *, int, const int);
void vec_dstst (const unsigned int *, int, const int);
void vec_dstst (const int *, int, const int);
void vec_dstst (const unsigned long *, int, const int);
void vec_dstst (const long *, int, const int);
void vec_dstst (const float *, int, const int);

void vec_dststt (const vector unsigned char *, int, const int);
void vec_dststt (const vector signed char *, int, const int);
void vec_dststt (const vector bool char *, int, const int);
void vec_dststt (const vector unsigned short *, int, const int);
void vec_dststt (const vector signed short *, int, const int);
void vec_dststt (const vector bool short *, int, const int);
void vec_dststt (const vector pixel *, int, const int);
void vec_dststt (const vector unsigned int *, int, const int);
void vec_dststt (const vector signed int *, int, const int);
void vec_dststt (const vector bool int *, int, const int);
void vec_dststt (const vector float *, int, const int);
void vec_dststt (const unsigned char *, int, const int);
void vec_dststt (const signed char *, int, const int);
void vec_dststt (const unsigned short *, int, const int);
void vec_dststt (const short *, int, const int);
void vec_dststt (const unsigned int *, int, const int);
void vec_dststt (const int *, int, const int);
void vec_dststt (const float *, int, const int);

void vec_dstt (const vector unsigned char *, int, const int);
void vec_dstt (const vector signed char *, int, const int);
void vec_dstt (const vector bool char *, int, const int);
void vec_dstt (const vector unsigned short *, int, const int);
void vec_dstt (const vector signed short *, int, const int);
void vec_dstt (const vector bool short *, int, const int);
void vec_dstt (const vector pixel *, int, const int);
void vec_dstt (const vector unsigned int *, int, const int);
void vec_dstt (const vector signed int *, int, const int);
void vec_dstt (const vector bool int *, int, const int);
void vec_dstt (const vector float *, int, const int);
void vec_dstt (const unsigned char *, int, const int);
void vec_dstt (const signed char *, int, const int);
void vec_dstt (const unsigned short *, int, const int);
void vec_dstt (const short *, int, const int);
void vec_dstt (const unsigned int *, int, const int);
void vec_dstt (const int *, int, const int);
void vec_dstt (const float *, int, const int);

vector signed char vec_lvebx (int, char *);
vector unsigned char vec_lvebx (int, unsigned char *);

vector signed short vec_lvehx (int, short *);
vector unsigned short vec_lvehx (int, unsigned short *);

vector float vec_lvewx (int, float *);
vector signed int vec_lvewx (int, int *);
vector unsigned int vec_lvewx (int, unsigned int *);

vector unsigned char vec_lvsl (int, const unsigned char *);
vector unsigned char vec_lvsl (int, const signed char *);
vector unsigned char vec_lvsl (int, const unsigned short *);
vector unsigned char vec_lvsl (int, const short *);
vector unsigned char vec_lvsl (int, const unsigned int *);
vector unsigned char vec_lvsl (int, const int *);
vector unsigned char vec_lvsl (int, const float *);

vector unsigned char vec_lvsr (int, const unsigned char *);
vector unsigned char vec_lvsr (int, const signed char *);
vector unsigned char vec_lvsr (int, const unsigned short *);
vector unsigned char vec_lvsr (int, const short *);
vector unsigned char vec_lvsr (int, const unsigned int *);
vector unsigned char vec_lvsr (int, const int *);
vector unsigned char vec_lvsr (int, const float *);

void vec_stvebx (vector signed char, int, signed char *);
void vec_stvebx (vector unsigned char, int, unsigned char *);
void vec_stvebx (vector bool char, int, signed char *);
void vec_stvebx (vector bool char, int, unsigned char *);

void vec_stvehx (vector signed short, int, short *);
void vec_stvehx (vector unsigned short, int, unsigned short *);
void vec_stvehx (vector bool short, int, short *);
void vec_stvehx (vector bool short, int, unsigned short *);

void vec_stvewx (vector float, int, float *);
void vec_stvewx (vector signed int, int, int *);
void vec_stvewx (vector unsigned int, int, unsigned int *);
void vec_stvewx (vector bool int, int, int *);
void vec_stvewx (vector bool int, int, unsigned int *);

vector float vec_vaddfp (vector float, vector float);

vector signed char vec_vaddsbs (vector bool char, vector signed char);
vector signed char vec_vaddsbs (vector signed char, vector bool char);
vector signed char vec_vaddsbs (vector signed char, vector signed char);

vector signed short vec_vaddshs (vector bool short, vector signed short);
vector signed short vec_vaddshs (vector signed short, vector bool short);
vector signed short vec_vaddshs (vector signed short, vector signed short);

vector signed int vec_vaddsws (vector bool int, vector signed int);
vector signed int vec_vaddsws (vector signed int, vector bool int);
vector signed int vec_vaddsws (vector signed int, vector signed int);

vector signed char vec_vaddubm (vector bool char, vector signed char);
vector signed char vec_vaddubm (vector signed char, vector bool char);
vector signed char vec_vaddubm (vector signed char, vector signed char);
vector unsigned char vec_vaddubm (vector bool char, vector unsigned char);
vector unsigned char vec_vaddubm (vector unsigned char, vector bool char);
vector unsigned char vec_vaddubm (vector unsigned char, vector unsigned char);

vector unsigned char vec_vaddubs (vector bool char, vector unsigned char);
vector unsigned char vec_vaddubs (vector unsigned char, vector bool char);
vector unsigned char vec_vaddubs (vector unsigned char, vector unsigned char);

vector signed short vec_vadduhm (vector bool short, vector signed short);
vector signed short vec_vadduhm (vector signed short, vector bool short);
vector signed short vec_vadduhm (vector signed short, vector signed short);
vector unsigned short vec_vadduhm (vector bool short, vector unsigned short);
vector unsigned short vec_vadduhm (vector unsigned short, vector bool short);
vector unsigned short vec_vadduhm (vector unsigned short, vector unsigned short);

vector unsigned short vec_vadduhs (vector bool short, vector unsigned short);
vector unsigned short vec_vadduhs (vector unsigned short, vector bool short);
vector unsigned short vec_vadduhs (vector unsigned short, vector unsigned short);

vector signed int vec_vadduwm (vector bool int, vector signed int);
vector signed int vec_vadduwm (vector signed int, vector bool int);
vector signed int vec_vadduwm (vector signed int, vector signed int);
vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
vector unsigned int vec_vadduwm (vector unsigned int, vector unsigned int);

vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
vector unsigned int vec_vadduws (vector unsigned int, vector unsigned int);

vector signed char vec_vavgsb (vector signed char, vector signed char);

vector signed short vec_vavgsh (vector signed short, vector signed short);

vector signed int vec_vavgsw (vector signed int, vector signed int);

vector unsigned char vec_vavgub (vector unsigned char, vector unsigned char);

vector unsigned short vec_vavguh (vector unsigned short, vector unsigned short);

vector unsigned int vec_vavguw (vector unsigned int, vector unsigned int);

vector float vec_vcfsx (vector signed int, const int);

vector float vec_vcfux (vector unsigned int, const int);

vector bool int vec_vcmpeqfp (vector float, vector float);

vector bool char vec_vcmpequb (vector signed char, vector signed char);
vector bool char vec_vcmpequb (vector unsigned char, vector unsigned char);

vector bool short vec_vcmpequh (vector signed short, vector signed short);
vector bool short vec_vcmpequh (vector unsigned short, vector unsigned short);

vector bool int vec_vcmpequw (vector signed int, vector signed int);
vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);

vector bool int vec_vcmpgtfp (vector float, vector float);

vector bool char vec_vcmpgtsb (vector signed char, vector signed char);

vector bool short vec_vcmpgtsh (vector signed short, vector signed short);

vector bool int vec_vcmpgtsw (vector signed int, vector signed int);

vector bool char vec_vcmpgtub (vector unsigned char, vector unsigned char);

vector bool short vec_vcmpgtuh (vector unsigned short, vector unsigned short);

vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);

vector float vec_vmaxfp (vector float, vector float);

vector signed char vec_vmaxsb (vector bool char, vector signed char);
vector signed char vec_vmaxsb (vector signed char, vector bool char);
vector signed char vec_vmaxsb (vector signed char, vector signed char);

vector signed short vec_vmaxsh (vector bool short, vector signed short);
vector signed short vec_vmaxsh (vector signed short, vector bool short);
vector signed short vec_vmaxsh (vector signed short, vector signed short);

vector signed int vec_vmaxsw (vector bool int, vector signed int);
vector signed int vec_vmaxsw (vector signed int, vector bool int);
vector signed int vec_vmaxsw (vector signed int, vector signed int);

vector unsigned char vec_vmaxub (vector bool char, vector unsigned char);
vector unsigned char vec_vmaxub (vector unsigned char, vector bool char);
vector unsigned char vec_vmaxub (vector unsigned char, vector unsigned char);

vector unsigned short vec_vmaxuh (vector bool short, vector unsigned short);
vector unsigned short vec_vmaxuh (vector unsigned short, vector bool short);
vector unsigned short vec_vmaxuh (vector unsigned short, vector unsigned short);

vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
vector unsigned int vec_vmaxuw (vector unsigned int, vector unsigned int);

vector float vec_vminfp (vector float, vector float);

vector signed char vec_vminsb (vector bool char, vector signed char);
vector signed char vec_vminsb (vector signed char, vector bool char);
vector signed char vec_vminsb (vector signed char, vector signed char);

vector signed short vec_vminsh (vector bool short, vector signed short);
vector signed short vec_vminsh (vector signed short, vector bool short);
vector signed short vec_vminsh (vector signed short, vector signed short);

vector signed int vec_vminsw (vector bool int, vector signed int);
vector signed int vec_vminsw (vector signed int, vector bool int);
vector signed int vec_vminsw (vector signed int, vector signed int);

vector unsigned char vec_vminub (vector bool char, vector unsigned char);
vector unsigned char vec_vminub (vector unsigned char, vector bool char);
vector unsigned char vec_vminub (vector unsigned char, vector unsigned char);

vector unsigned short vec_vminuh (vector bool short, vector unsigned short);
vector unsigned short vec_vminuh (vector unsigned short, vector bool short);
vector unsigned short vec_vminuh (vector unsigned short, vector unsigned short);

vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
vector unsigned int vec_vminuw (vector unsigned int, vector unsigned int);

vector bool char vec_vmrghb (vector bool char, vector bool char);
vector signed char vec_vmrghb (vector signed char, vector signed char);
vector unsigned char vec_vmrghb (vector unsigned char, vector unsigned char);

vector bool short vec_vmrghh (vector bool short, vector bool short);
vector signed short vec_vmrghh (vector signed short, vector signed short);
vector unsigned short vec_vmrghh (vector unsigned short, vector unsigned short);
vector pixel vec_vmrghh (vector pixel, vector pixel);

vector float vec_vmrghw (vector float, vector float);
vector bool int vec_vmrghw (vector bool int, vector bool int);
vector signed int vec_vmrghw (vector signed int, vector signed int);
vector unsigned int vec_vmrghw (vector unsigned int, vector unsigned int);

vector bool char vec_vmrglb (vector bool char, vector bool char);
vector signed char vec_vmrglb (vector signed char, vector signed char);
vector unsigned char vec_vmrglb (vector unsigned char, vector unsigned char);

vector bool short vec_vmrglh (vector bool short, vector bool short);
vector signed short vec_vmrglh (vector signed short, vector signed short);
vector unsigned short vec_vmrglh (vector unsigned short, vector unsigned short);
vector pixel vec_vmrglh (vector pixel, vector pixel);

vector float vec_vmrglw (vector float, vector float);
vector signed int vec_vmrglw (vector signed int, vector signed int);
vector unsigned int vec_vmrglw (vector unsigned int, vector unsigned int);
vector bool int vec_vmrglw (vector bool int, vector bool int);

vector signed int vec_vmsummbm (vector signed char, vector unsigned char,
                                vector signed int);

vector signed int vec_vmsumshm (vector signed short, vector signed short,
                                vector signed int);

vector signed int vec_vmsumshs (vector signed short, vector signed short,
                                vector signed int);

vector unsigned int vec_vmsumubm (vector unsigned char, vector unsigned char,
                                  vector unsigned int);

vector unsigned int vec_vmsumuhm (vector unsigned short, vector unsigned short,
                                  vector unsigned int);

vector unsigned int vec_vmsumuhs (vector unsigned short, vector unsigned short,
                                  vector unsigned int);

vector signed short vec_vmulesb (vector signed char, vector signed char);

vector signed int vec_vmulesh (vector signed short, vector signed short);

vector unsigned short vec_vmuleub (vector unsigned char, vector unsigned char);

vector unsigned int vec_vmuleuh (vector unsigned short, vector unsigned short);

vector signed short vec_vmulosb (vector signed char, vector signed char);

vector signed int vec_vmulosh (vector signed short, vector signed short);

vector unsigned short vec_vmuloub (vector unsigned char, vector unsigned char);

vector unsigned int vec_vmulouh (vector unsigned short, vector unsigned short);

vector signed char vec_vpkshss (vector signed short, vector signed short);

vector unsigned char vec_vpkshus (vector signed short, vector signed short);

vector signed short vec_vpkswss (vector signed int, vector signed int);

vector unsigned short vec_vpkswus (vector signed int, vector signed int);

vector bool char vec_vpkuhum (vector bool short, vector bool short);
vector signed char vec_vpkuhum (vector signed short, vector signed short);
vector unsigned char vec_vpkuhum (vector unsigned short, vector unsigned short);

vector unsigned char vec_vpkuhus (vector unsigned short, vector unsigned short);

vector bool short vec_vpkuwum (vector bool int, vector bool int);
vector signed short vec_vpkuwum (vector signed int, vector signed int);
vector unsigned short vec_vpkuwum (vector unsigned int, vector unsigned int);

vector unsigned short vec_vpkuwus (vector unsigned int, vector unsigned int);

vector signed char vec_vrlb (vector signed char, vector unsigned char);
vector unsigned char vec_vrlb (vector unsigned char, vector unsigned char);

vector signed short vec_vrlh (vector signed short, vector unsigned short);
vector unsigned short vec_vrlh (vector unsigned short, vector unsigned short);

vector signed int vec_vrlw (vector signed int, vector unsigned int);
vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);

vector signed char vec_vslb (vector signed char, vector unsigned char);
vector unsigned char vec_vslb (vector unsigned char, vector unsigned char);

vector signed short vec_vslh (vector signed short, vector unsigned short);
vector unsigned short vec_vslh (vector unsigned short, vector unsigned short);

vector signed int vec_vslw (vector signed int, vector unsigned int);
vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);

vector signed char vec_vspltb (vector signed char, const int);
vector unsigned char vec_vspltb (vector unsigned char, const int);
vector bool char vec_vspltb (vector bool char, const int);

vector bool short vec_vsplth (vector bool short, const int);
vector signed short vec_vsplth (vector signed short, const int);
vector unsigned short vec_vsplth (vector unsigned short, const int);
vector pixel vec_vsplth (vector pixel, const int);

vector float vec_vspltw (vector float, const int);
vector signed int vec_vspltw (vector signed int, const int);
vector unsigned int vec_vspltw (vector unsigned int, const int);
vector bool int vec_vspltw (vector bool int, const int);

vector signed char vec_vsrab (vector signed char, vector unsigned char);
vector unsigned char vec_vsrab (vector unsigned char, vector unsigned char);

vector signed short vec_vsrah (vector signed short, vector unsigned short);
vector unsigned short vec_vsrah (vector unsigned short, vector unsigned short);

vector signed int vec_vsraw (vector signed int, vector unsigned int);
vector unsigned int vec_vsraw (vector unsigned int, vector unsigned int);

vector signed char vec_vsrb (vector signed char, vector unsigned char);
vector unsigned char vec_vsrb (vector unsigned char, vector unsigned char);

vector signed short vec_vsrh (vector signed short, vector unsigned short);
vector unsigned short vec_vsrh (vector unsigned short, vector unsigned short);

vector signed int vec_vsrw (vector signed int, vector unsigned int);
vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);

vector float vec_vsubfp (vector float, vector float);

vector signed char vec_vsubsbs (vector bool char, vector signed char);
vector signed char vec_vsubsbs (vector signed char, vector bool char);
vector signed char vec_vsubsbs (vector signed char, vector signed char);

vector signed short vec_vsubshs (vector bool short, vector signed short);
vector signed short vec_vsubshs (vector signed short, vector bool short);
vector signed short vec_vsubshs (vector signed short, vector signed short);

vector signed int vec_vsubsws (vector bool int, vector signed int);
vector signed int vec_vsubsws (vector signed int, vector bool int);
vector signed int vec_vsubsws (vector signed int, vector signed int);

vector signed char vec_vsububm (vector bool char, vector signed char);
vector signed char vec_vsububm (vector signed char, vector bool char);
vector signed char vec_vsububm (vector signed char, vector signed char);
vector unsigned char vec_vsububm (vector bool char, vector unsigned char);
vector unsigned char vec_vsububm (vector unsigned char, vector bool char);
vector unsigned char vec_vsububm (vector unsigned char, vector unsigned char);

vector unsigned char vec_vsububs (vector bool char, vector unsigned char);
vector unsigned char vec_vsububs (vector unsigned char, vector bool char);
vector unsigned char vec_vsububs (vector unsigned char, vector unsigned char);

vector signed short vec_vsubuhm (vector bool short, vector signed short);
vector signed short vec_vsubuhm (vector signed short, vector bool short);
vector signed short vec_vsubuhm (vector signed short, vector signed short);
vector unsigned short vec_vsubuhm (vector bool short, vector unsigned short);
vector unsigned short vec_vsubuhm (vector unsigned short, vector bool short);
vector unsigned short vec_vsubuhm (vector unsigned short, vector unsigned short);

vector unsigned short vec_vsubuhs (vector bool short, vector unsigned short);
vector unsigned short vec_vsubuhs (vector unsigned short, vector bool short);
vector unsigned short vec_vsubuhs (vector unsigned short, vector unsigned short);

vector signed int vec_vsubuwm (vector bool int, vector signed int);
vector signed int vec_vsubuwm (vector signed int, vector bool int);
vector signed int vec_vsubuwm (vector signed int, vector signed int);
vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
vector unsigned int vec_vsubuwm (vector unsigned int, vector unsigned int);

vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
vector unsigned int vec_vsubuws (vector unsigned int, vector unsigned int);

vector signed int vec_vsum4sbs (vector signed char, vector signed int);

vector signed int vec_vsum4shs (vector signed short, vector signed int);

vector unsigned int vec_vsum4ubs (vector unsigned char, vector unsigned int);

vector unsigned int vec_vupkhpx (vector pixel);

vector bool short vec_vupkhsb (vector bool char);
vector signed short vec_vupkhsb (vector signed char);

vector bool int vec_vupkhsh (vector bool short);
vector signed int vec_vupkhsh (vector signed short);

vector unsigned int vec_vupklpx (vector pixel);

vector bool short vec_vupklsb (vector bool char);
vector signed short vec_vupklsb (vector signed char);

vector bool int vec_vupklsh (vector bool short);
vector signed int vec_vupklsh (vector signed short);
@end smallexample

@node PowerPC AltiVec Built-in Functions Available on ISA 2.06
@subsubsection PowerPC AltiVec Built-in Functions Available on ISA 2.06

The AltiVec built-in functions described in this section are
available on the PowerPC family of processors starting with ISA 2.06
or later.  These are normally enabled by adding @option{-mvsx} to the
command line.

When @option{-mvsx} is used, the following additional vector types are
implemented.

@smallexample
vector unsigned __int128
vector signed __int128
vector unsigned long long int
vector signed long long int
vector double
@end smallexample

The long long types are only implemented for 64-bit code generation.

Only functions excluded from the PVIPR are listed here.

@smallexample
void vec_dst (const unsigned long *, int, const int);
void vec_dst (const long *, int, const int);

void vec_dststt (const unsigned long *, int, const int);
void vec_dststt (const long *, int, const int);

void vec_dstt (const unsigned long *, int, const int);
void vec_dstt (const long *, int, const int);

vector unsigned char vec_lvsl (int, const unsigned long *);
vector unsigned char vec_lvsl (int, const long *);

vector unsigned char vec_lvsr (int, const unsigned long *);
vector unsigned char vec_lvsr (int, const long *);

vector unsigned char vec_lvsl (int, const double *);
vector unsigned char vec_lvsr (int, const double *);

vector double vec_vsx_ld (int, const vector double *);
vector double vec_vsx_ld (int, const double *);
vector float vec_vsx_ld (int, const vector float *);
vector float vec_vsx_ld (int, const float *);
vector bool int vec_vsx_ld (int, const vector bool int *);
vector signed int vec_vsx_ld (int, const vector signed int *);
vector signed int vec_vsx_ld (int, const int *);
vector signed int vec_vsx_ld (int, const long *);
vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
vector unsigned int vec_vsx_ld (int, const unsigned int *);
vector unsigned int vec_vsx_ld (int, const unsigned long *);
vector bool short vec_vsx_ld (int, const vector bool short *);
vector pixel vec_vsx_ld (int, const vector pixel *);
vector signed short vec_vsx_ld (int, const vector signed short *);
vector signed short vec_vsx_ld (int, const short *);
vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
vector unsigned short vec_vsx_ld (int, const unsigned short *);
vector bool char vec_vsx_ld (int, const vector bool char *);
vector signed char vec_vsx_ld (int, const vector signed char *);
vector signed char vec_vsx_ld (int, const signed char *);
vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
vector unsigned char vec_vsx_ld (int, const unsigned char *);

void vec_vsx_st (vector double, int, vector double *);
void vec_vsx_st (vector double, int, double *);
void vec_vsx_st (vector float, int, vector float *);
void vec_vsx_st (vector float, int, float *);
void vec_vsx_st (vector signed int, int, vector signed int *);
void vec_vsx_st (vector signed int, int, int *);
void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
void vec_vsx_st (vector unsigned int, int, unsigned int *);
void vec_vsx_st (vector bool int, int, vector bool int *);
void vec_vsx_st (vector bool int, int, unsigned int *);
void vec_vsx_st (vector bool int, int, int *);
void vec_vsx_st (vector signed short, int, vector signed short *);
void vec_vsx_st (vector signed short, int, short *);
void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
void vec_vsx_st (vector unsigned short, int, unsigned short *);
void vec_vsx_st (vector bool short, int, vector bool short *);
void vec_vsx_st (vector bool short, int, unsigned short *);
void vec_vsx_st (vector pixel, int, vector pixel *);
void vec_vsx_st (vector pixel, int, unsigned short *);
void vec_vsx_st (vector pixel, int, short *);
void vec_vsx_st (vector bool short, int, short *);
void vec_vsx_st (vector signed char, int, vector signed char *);
void vec_vsx_st (vector signed char, int, signed char *);
void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
void vec_vsx_st (vector unsigned char, int, unsigned char *);
void vec_vsx_st (vector bool char, int, vector bool char *);
void vec_vsx_st (vector bool char, int, unsigned char *);
void vec_vsx_st (vector bool char, int, signed char *);

vector double vec_xxpermdi (vector double, vector double, const int);
vector float vec_xxpermdi (vector float, vector float, const int);
vector long long vec_xxpermdi (vector long long, vector long long, const int);
vector unsigned long long vec_xxpermdi (vector unsigned long long,
                                        vector unsigned long long, const int);
vector int vec_xxpermdi (vector int, vector int, const int);
vector unsigned int vec_xxpermdi (vector unsigned int,
                                  vector unsigned int, const int);
vector short vec_xxpermdi (vector short, vector short, const int);
vector unsigned short vec_xxpermdi (vector unsigned short,
                                    vector unsigned short, const int);
vector signed char vec_xxpermdi (vector signed char, vector signed char,
                                 const int);
vector unsigned char vec_xxpermdi (vector unsigned char,
                                   vector unsigned char, const int);

vector double vec_xxsldi (vector double, vector double, int);
vector float vec_xxsldi (vector float, vector float, int);
vector long long vec_xxsldi (vector long long, vector long long, int);
vector unsigned long long vec_xxsldi (vector unsigned long long,
                                      vector unsigned long long, int);
vector int vec_xxsldi (vector int, vector int, int);
vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
vector short vec_xxsldi (vector short, vector short, int);
vector unsigned short vec_xxsldi (vector unsigned short,
                                  vector unsigned short, int);
vector signed char vec_xxsldi (vector signed char, vector signed char, int);
vector unsigned char vec_xxsldi (vector unsigned char,
                                 vector unsigned char, int);
@end smallexample

Note that the @samp{vec_ld} and @samp{vec_st} built-in functions always
generate the AltiVec @samp{LVX} and @samp{STVX} instructions even
if the VSX instruction set is available.  The @samp{vec_vsx_ld} and
@samp{vec_vsx_st} built-in functions always generate the VSX @samp{LXVD2X},
@samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.

@node PowerPC AltiVec Built-in Functions Available on ISA 2.07
@subsubsection PowerPC AltiVec Built-in Functions Available on ISA 2.07

If the ISA 2.07 additions to the vector/scalar (power8-vector)
instruction set are available, the following additional functions are
available for both 32-bit and 64-bit targets.  For 64-bit targets, you
can use @var{vector long} instead of @var{vector long long},
@var{vector bool long} instead of @var{vector bool long long}, and
@var{vector unsigned long} instead of @var{vector unsigned long long}.

Only functions excluded from the PVIPR are listed here.

@smallexample
vector long long vec_vaddudm (vector long long, vector long long);
vector long long vec_vaddudm (vector bool long long, vector long long);
vector long long vec_vaddudm (vector long long, vector bool long long);
vector unsigned long long vec_vaddudm (vector unsigned long long,
                                       vector unsigned long long);
vector unsigned long long vec_vaddudm (vector bool unsigned long long,
                                       vector unsigned long long);
vector unsigned long long vec_vaddudm (vector unsigned long long,
                                       vector bool unsigned long long);

vector long long vec_vclz (vector long long);
vector unsigned long long vec_vclz (vector unsigned long long);
vector int vec_vclz (vector int);
vector unsigned int vec_vclz (vector int);
vector short vec_vclz (vector short);
vector unsigned short vec_vclz (vector unsigned short);
vector signed char vec_vclz (vector signed char);
vector unsigned char vec_vclz (vector unsigned char);

vector signed char vec_vclzb (vector signed char);
vector unsigned char vec_vclzb (vector unsigned char);

vector long long vec_vclzd (vector long long);
vector unsigned long long vec_vclzd (vector unsigned long long);

vector short vec_vclzh (vector short);
vector unsigned short vec_vclzh (vector unsigned short);

vector int vec_vclzw (vector int);
vector unsigned int vec_vclzw (vector int);

vector signed char vec_vgbbd (vector signed char);
vector unsigned char vec_vgbbd (vector unsigned char);

vector long long vec_vmaxsd (vector long long, vector long long);

vector unsigned long long vec_vmaxud (vector unsigned long long,
                                      unsigned vector long long);

vector long long vec_vminsd (vector long long, vector long long);

vector unsigned long long vec_vminud (vector long long, vector long long);

vector int vec_vpksdss (vector long long, vector long long);
vector unsigned int vec_vpksdss (vector long long, vector long long);

vector unsigned int vec_vpkudus (vector unsigned long long,
                                 vector unsigned long long);

vector int vec_vpkudum (vector long long, vector long long);
vector unsigned int vec_vpkudum (vector unsigned long long,
                                 vector unsigned long long);
vector bool int vec_vpkudum (vector bool long long, vector bool long long);

vector long long vec_vpopcnt (vector long long);
vector unsigned long long vec_vpopcnt (vector unsigned long long);
vector int vec_vpopcnt (vector int);
vector unsigned int vec_vpopcnt (vector int);
vector short vec_vpopcnt (vector short);
vector unsigned short vec_vpopcnt (vector unsigned short);
vector signed char vec_vpopcnt (vector signed char);
vector unsigned char vec_vpopcnt (vector unsigned char);

vector signed char vec_vpopcntb (vector signed char);
vector unsigned char vec_vpopcntb (vector unsigned char);

vector long long vec_vpopcntd (vector long long);
vector unsigned long long vec_vpopcntd (vector unsigned long long);

vector short vec_vpopcnth (vector short);
vector unsigned short vec_vpopcnth (vector unsigned short);

vector int vec_vpopcntw (vector int);
vector unsigned int vec_vpopcntw (vector int);

vector long long vec_vrld (vector long long, vector unsigned long long);
vector unsigned long long vec_vrld (vector unsigned long long,
                                    vector unsigned long long);

vector long long vec_vsld (vector long long, vector unsigned long long);
vector long long vec_vsld (vector unsigned long long,
                           vector unsigned long long);

vector long long vec_vsrad (vector long long, vector unsigned long long);
vector unsigned long long vec_vsrad (vector unsigned long long,
                                     vector unsigned long long);

vector long long vec_vsrd (vector long long, vector unsigned long long);
vector unsigned long long char vec_vsrd (vector unsigned long long,
                                         vector unsigned long long);

vector long long vec_vsubudm (vector long long, vector long long);
vector long long vec_vsubudm (vector bool long long, vector long long);
vector long long vec_vsubudm (vector long long, vector bool long long);
vector unsigned long long vec_vsubudm (vector unsigned long long,
                                       vector unsigned long long);
vector unsigned long long vec_vsubudm (vector bool long long,
                                       vector unsigned long long);
vector unsigned long long vec_vsubudm (vector unsigned long long,
                                       vector bool long long);

vector long long vec_vupkhsw (vector int);
vector unsigned long long vec_vupkhsw (vector unsigned int);

vector long long vec_vupklsw (vector int);
vector unsigned long long vec_vupklsw (vector int);
@end smallexample

If the ISA 2.07 additions to the vector/scalar (power8-vector)
instruction set are available, the following additional functions are
available for 64-bit targets.  New vector types
(@var{vector __int128} and @var{vector __uint128}) are available
to hold the @var{__int128} and @var{__uint128} types to use these
builtins.

The normal vector extract, and set operations work on
@var{vector __int128} and @var{vector __uint128} types,
but the index value must be 0.

Only functions excluded from the PVIPR are listed here.

@smallexample
vector __int128 vec_vaddcuq (vector __int128, vector __int128);
vector __uint128 vec_vaddcuq (vector __uint128, vector __uint128);

vector __int128 vec_vadduqm (vector __int128, vector __int128);
vector __uint128 vec_vadduqm (vector __uint128, vector __uint128);

vector __int128 vec_vaddecuq (vector __int128, vector __int128,
                                vector __int128);
vector __uint128 vec_vaddecuq (vector __uint128, vector __uint128,
                                 vector __uint128);

vector __int128 vec_vaddeuqm (vector __int128, vector __int128,
                                vector __int128);
vector __uint128 vec_vaddeuqm (vector __uint128, vector __uint128,
                                 vector __uint128);

vector __int128 vec_vsubecuq (vector __int128, vector __int128,
                                vector __int128);
vector __uint128 vec_vsubecuq (vector __uint128, vector __uint128,
                                 vector __uint128);

vector __int128 vec_vsubeuqm (vector __int128, vector __int128,
                                vector __int128);
vector __uint128 vec_vsubeuqm (vector __uint128, vector __uint128,
                                 vector __uint128);

vector __int128 vec_vsubcuq (vector __int128, vector __int128);
vector __uint128 vec_vsubcuq (vector __uint128, vector __uint128);

__int128 vec_vsubuqm (__int128, __int128);
__uint128 vec_vsubuqm (__uint128, __uint128);

vector __int128 __builtin_bcdadd (vector __int128, vector __int128, const int);
vector unsigned char __builtin_bcdadd (vector unsigned char, vector unsigned char,
                                       const int);
int __builtin_bcdadd_lt (vector __int128, vector __int128, const int);
int __builtin_bcdadd_lt (vector unsigned char, vector unsigned char, const int);
int __builtin_bcdadd_eq (vector __int128, vector __int128, const int);
int __builtin_bcdadd_eq (vector unsigned char, vector unsigned char, const int);
int __builtin_bcdadd_gt (vector __int128, vector __int128, const int);
int __builtin_bcdadd_gt (vector unsigned char, vector unsigned char, const int);
int __builtin_bcdadd_ov (vector __int128, vector __int128, const int);
int __builtin_bcdadd_ov (vector unsigned char, vector unsigned char, const int);

vector __int128 __builtin_bcdsub (vector __int128, vector __int128, const int);
vector unsigned char __builtin_bcdsub (vector unsigned char, vector unsigned char,
                                       const int);
int __builtin_bcdsub_lt (vector __int128, vector __int128, const int);
int __builtin_bcdsub_lt (vector unsigned char, vector unsigned char, const int);
int __builtin_bcdsub_eq (vector __int128, vector __int128, const int);
int __builtin_bcdsub_eq (vector unsigned char, vector unsigned char, const int);
int __builtin_bcdsub_gt (vector __int128, vector __int128, const int);
int __builtin_bcdsub_gt (vector unsigned char, vector unsigned char, const int);
int __builtin_bcdsub_ov (vector __int128, vector __int128, const int);
int __builtin_bcdsub_ov (vector unsigned char, vector unsigned char, const int);
@end smallexample

@node PowerPC AltiVec Built-in Functions Available on ISA 3.0
@subsubsection PowerPC AltiVec Built-in Functions Available on ISA 3.0

The following additional built-in functions are also available for the
PowerPC family of processors, starting with ISA 3.0
(@option{-mcpu=power9}) or later.

Only instructions excluded from the PVIPR are listed here.

@smallexample
unsigned int scalar_extract_exp (double source);
unsigned long long int scalar_extract_exp (__ieee128 source);

unsigned long long int scalar_extract_sig (double source);
unsigned __int128 scalar_extract_sig (__ieee128 source);

double scalar_insert_exp (unsigned long long int significand,
                          unsigned long long int exponent);
double scalar_insert_exp (double significand, unsigned long long int exponent);

ieee_128 scalar_insert_exp (unsigned __int128 significand,
                            unsigned long long int exponent);
ieee_128 scalar_insert_exp (ieee_128 significand, unsigned long long int exponent);

int scalar_cmp_exp_gt (double arg1, double arg2);
int scalar_cmp_exp_lt (double arg1, double arg2);
int scalar_cmp_exp_eq (double arg1, double arg2);
int scalar_cmp_exp_unordered (double arg1, double arg2);

bool scalar_test_data_class (float source, const int condition);
bool scalar_test_data_class (double source, const int condition);
bool scalar_test_data_class (__ieee128 source, const int condition);

bool scalar_test_neg (float source);
bool scalar_test_neg (double source);
bool scalar_test_neg (__ieee128 source);
@end smallexample

The @code{scalar_extract_exp} and @code{scalar_extract_sig}
functions require a 64-bit environment supporting ISA 3.0 or later.
The @code{scalar_extract_exp} and @code{scalar_extract_sig} built-in
functions return the significand and the biased exponent value
respectively of their @code{source} arguments.
When supplied with a 64-bit @code{source} argument, the
result returned by @code{scalar_extract_sig} has
the @code{0x0010000000000000} bit set if the
function's @code{source} argument is in normalized form.
Otherwise, this bit is set to 0.
When supplied with a 128-bit @code{source} argument, the
@code{0x00010000000000000000000000000000} bit of the result is
treated similarly.
Note that the sign of the significand is not represented in the result
returned from the @code{scalar_extract_sig} function.  Use the
@code{scalar_test_neg} function to test the sign of its @code{double}
argument.

The @code{scalar_insert_exp}
functions require a 64-bit environment supporting ISA 3.0 or later.
When supplied with a 64-bit first argument, the
@code{scalar_insert_exp} built-in function returns a double-precision
floating point value that is constructed by assembling the values of its
@code{significand} and @code{exponent} arguments.  The sign of the
result is copied from the most significant bit of the
@code{significand} argument.  The significand and exponent components
of the result are composed of the least significant 11 bits of the
@code{exponent} argument and the least significant 52 bits of the
@code{significand} argument respectively.

When supplied with a 128-bit first argument, the
@code{scalar_insert_exp} built-in function returns a quad-precision
ieee floating point value.  The sign bit of the result is copied from
the most significant bit of the @code{significand} argument.
The significand and exponent components of the result are composed of
the least significant 15 bits of the @code{exponent} argument and the
least significant 112 bits of the @code{significand} argument respectively.

The @code{scalar_cmp_exp_gt}, @code{scalar_cmp_exp_lt},
@code{scalar_cmp_exp_eq}, and @code{scalar_cmp_exp_unordered} built-in
functions return a non-zero value if @code{arg1} is greater than, less
than, equal to, or not comparable to @code{arg2} respectively.  The
arguments are not comparable if one or the other equals NaN (not a
number). 

The @code{scalar_test_data_class} built-in function returns 1
if any of the condition tests enabled by the value of the
@code{condition} variable are true, and 0 otherwise.  The
@code{condition} argument must be a compile-time constant integer with
value not exceeding 127.  The
@code{condition} argument is encoded as a bitmask with each bit
enabling the testing of a different condition, as characterized by the
following:
@smallexample
0x40    Test for NaN
0x20    Test for +Infinity
0x10    Test for -Infinity
0x08    Test for +Zero
0x04    Test for -Zero
0x02    Test for +Denormal
0x01    Test for -Denormal
@end smallexample

The @code{scalar_test_neg} built-in function returns 1 if its
@code{source} argument holds a negative value, 0 otherwise.

The following built-in functions are also available for the PowerPC family
of processors, starting with ISA 3.0 or later
(@option{-mcpu=power9}).  These string functions are described
separately in order to group the descriptions closer to the function
prototypes.

Only functions excluded from the PVIPR are listed here.

@smallexample
int vec_all_nez (vector signed char, vector signed char);
int vec_all_nez (vector unsigned char, vector unsigned char);
int vec_all_nez (vector signed short, vector signed short);
int vec_all_nez (vector unsigned short, vector unsigned short);
int vec_all_nez (vector signed int, vector signed int);
int vec_all_nez (vector unsigned int, vector unsigned int);

int vec_any_eqz (vector signed char, vector signed char);
int vec_any_eqz (vector unsigned char, vector unsigned char);
int vec_any_eqz (vector signed short, vector signed short);
int vec_any_eqz (vector unsigned short, vector unsigned short);
int vec_any_eqz (vector signed int, vector signed int);
int vec_any_eqz (vector unsigned int, vector unsigned int);

signed char vec_xlx (unsigned int index, vector signed char data);
unsigned char vec_xlx (unsigned int index, vector unsigned char data);
signed short vec_xlx (unsigned int index, vector signed short data);
unsigned short vec_xlx (unsigned int index, vector unsigned short data);
signed int vec_xlx (unsigned int index, vector signed int data);
unsigned int vec_xlx (unsigned int index, vector unsigned int data);
float vec_xlx (unsigned int index, vector float data);

signed char vec_xrx (unsigned int index, vector signed char data);
unsigned char vec_xrx (unsigned int index, vector unsigned char data);
signed short vec_xrx (unsigned int index, vector signed short data);
unsigned short vec_xrx (unsigned int index, vector unsigned short data);
signed int vec_xrx (unsigned int index, vector signed int data);
unsigned int vec_xrx (unsigned int index, vector unsigned int data);
float vec_xrx (unsigned int index, vector float data);
@end smallexample

The @code{vec_all_nez}, @code{vec_any_eqz}, and @code{vec_cmpnez}
perform pairwise comparisons between the elements at the same
positions within their two vector arguments.
The @code{vec_all_nez} function returns a
non-zero value if and only if all pairwise comparisons are not
equal and no element of either vector argument contains a zero.
The @code{vec_any_eqz} function returns a
non-zero value if and only if at least one pairwise comparison is equal
or if at least one element of either vector argument contains a zero.
The @code{vec_cmpnez} function returns a vector of the same type as
its two arguments, within which each element consists of all ones to
denote that either the corresponding elements of the incoming arguments are
not equal or that at least one of the corresponding elements contains
zero.  Otherwise, the element of the returned vector contains all zeros.

The @code{vec_xlx} and @code{vec_xrx} functions extract the single
element selected by the @code{index} argument from the vector
represented by the @code{data} argument.  The @code{index} argument
always specifies a byte offset, regardless of the size of the vector
element.  With @code{vec_xlx}, @code{index} is the offset of the first
byte of the element to be extracted.  With @code{vec_xrx}, @code{index}
represents the last byte of the element to be extracted, measured
from the right end of the vector.  In other words, the last byte of
the element to be extracted is found at position @code{(15 - index)}.
There is no requirement that @code{index} be a multiple of the vector
element size.  However, if the size of the vector element added to
@code{index} is greater than 15, the content of the returned value is
undefined.

The following functions are also available if the ISA 3.0 instruction
set additions (@option{-mcpu=power9}) are available.

Only functions excluded from the PVIPR are listed here.

@smallexample
vector long long vec_vctz (vector long long);
vector unsigned long long vec_vctz (vector unsigned long long);
vector int vec_vctz (vector int);
vector unsigned int vec_vctz (vector int);
vector short vec_vctz (vector short);
vector unsigned short vec_vctz (vector unsigned short);
vector signed char vec_vctz (vector signed char);
vector unsigned char vec_vctz (vector unsigned char);

vector signed char vec_vctzb (vector signed char);
vector unsigned char vec_vctzb (vector unsigned char);

vector long long vec_vctzd (vector long long);
vector unsigned long long vec_vctzd (vector unsigned long long);

vector short vec_vctzh (vector short);
vector unsigned short vec_vctzh (vector unsigned short);

vector int vec_vctzw (vector int);
vector unsigned int vec_vctzw (vector int);

vector int vec_vprtyb (vector int);
vector unsigned int vec_vprtyb (vector unsigned int);
vector long long vec_vprtyb (vector long long);
vector unsigned long long vec_vprtyb (vector unsigned long long);

vector int vec_vprtybw (vector int);
vector unsigned int vec_vprtybw (vector unsigned int);

vector long long vec_vprtybd (vector long long);
vector unsigned long long vec_vprtybd (vector unsigned long long);
@end smallexample

On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
are available:

@smallexample
vector long vec_vprtyb (vector long);
vector unsigned long vec_vprtyb (vector unsigned long);
vector __int128 vec_vprtyb (vector __int128);
vector __uint128 vec_vprtyb (vector __uint128);

vector long vec_vprtybd (vector long);
vector unsigned long vec_vprtybd (vector unsigned long);

vector __int128 vec_vprtybq (vector __int128);
vector __uint128 vec_vprtybd (vector __uint128);
@end smallexample

The following built-in functions are available for the PowerPC family
of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}).

Only functions excluded from the PVIPR are listed here.

@smallexample
__vector unsigned char
vec_absdb (__vector unsigned char arg1, __vector unsigned char arg2);
__vector unsigned short
vec_absdh (__vector unsigned short arg1, __vector unsigned short arg2);
__vector unsigned int
vec_absdw (__vector unsigned int arg1, __vector unsigned int arg2);
@end smallexample

The @code{vec_absd}, @code{vec_absdb}, @code{vec_absdh}, and
@code{vec_absdw} built-in functions each computes the absolute
differences of the pairs of vector elements supplied in its two vector
arguments, placing the absolute differences into the corresponding
elements of the vector result.

The following built-in functions are available for the PowerPC family
of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
@smallexample
vector unsigned int vec_vrlnm (vector unsigned int, vector unsigned int);
vector unsigned long long vec_vrlnm (vector unsigned long long,
                                     vector unsigned long long);
@end smallexample

The result of @code{vec_vrlnm} is obtained by rotating each element
of the first argument vector left and ANDing it with a mask.  The
second argument vector contains the mask  beginning in bits 11:15,
the mask end in bits 19:23, and the shift count in bits 27:31,
of each element.

If the cryptographic instructions are enabled (@option{-mcrypto} or
@option{-mcpu=power8}), the following builtins are enabled.

Only functions excluded from the PVIPR are listed here.

@smallexample
vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);

vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
                                                    vector unsigned long long);

vector unsigned long long __builtin_crypto_vcipherlast
                                     (vector unsigned long long,
                                      vector unsigned long long);

vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
                                                     vector unsigned long long);

vector unsigned long long __builtin_crypto_vncipherlast (vector unsigned long long,
                                                         vector unsigned long long);

vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
                                                vector unsigned char,
                                                vector unsigned char);

vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
                                                 vector unsigned short,
                                                 vector unsigned short);

vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
                                               vector unsigned int,
                                               vector unsigned int);

vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
                                                     vector unsigned long long,
                                                     vector unsigned long long);

vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
                                               vector unsigned char);

vector unsigned short __builtin_crypto_vpmsumh (vector unsigned short,
                                                vector unsigned short);

vector unsigned int __builtin_crypto_vpmsumw (vector unsigned int,
                                              vector unsigned int);

vector unsigned long long __builtin_crypto_vpmsumd (vector unsigned long long,
                                                    vector unsigned long long);

vector unsigned long long __builtin_crypto_vshasigmad (vector unsigned long long,
                                                       int, int);

vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int, int, int);
@end smallexample

The second argument to @var{__builtin_crypto_vshasigmad} and
@var{__builtin_crypto_vshasigmaw} must be a constant
integer that is 0 or 1.  The third argument to these built-in functions
must be a constant integer in the range of 0 to 15.

The following sign extension builtins are provided:

@smallexample
vector signed int vec_signexti (vector signed char a);
vector signed long long vec_signextll (vector signed char a);
vector signed int vec_signexti (vector signed short a);
vector signed long long vec_signextll (vector signed short a);
vector signed long long vec_signextll (vector signed int a);
vector signed long long vec_signextq (vector signed long long a);
@end smallexample

Each element of the result is produced by sign-extending the element of the
input vector that would fall in the least significant portion of the result
element. For example, a sign-extension of a vector signed char to a vector
signed long long will sign extend the rightmost byte of each doubleword.

@node PowerPC AltiVec Built-in Functions Available on ISA 3.1
@subsubsection PowerPC AltiVec Built-in Functions Available on ISA 3.1

The following additional built-in functions are also available for the
PowerPC family of processors, starting with ISA 3.1 (@option{-mcpu=power10}):


@smallexample
@exdent vector unsigned long long int
@exdent vec_cfuge (vector unsigned long long int, vector unsigned long long int);
@end smallexample
Perform a vector centrifuge operation, as if implemented by the
@code{vcfuged} instruction.
@findex vec_cfuge

@smallexample
@exdent vector unsigned long long int
@exdent vec_cntlzm (vector unsigned long long int, vector unsigned long long int);
@end smallexample
Perform a vector count leading zeros under bit mask operation, as if
implemented by the @code{vclzdm} instruction.
@findex vec_cntlzm

@smallexample
@exdent vector unsigned long long int
@exdent vec_cnttzm (vector unsigned long long int, vector unsigned long long int);
@end smallexample
Perform a vector count trailing zeros under bit mask operation, as if
implemented by the @code{vctzdm} instruction.
@findex vec_cnttzm

@smallexample
@exdent vector signed char
@exdent vec_clrl (vector signed char a, unsigned int n);
@exdent vector unsigned char
@exdent vec_clrl (vector unsigned char a, unsigned int n);
@end smallexample
Clear the left-most @code{(16 - n)} bytes of vector argument @code{a}, as if
implemented by the @code{vclrlb} instruction on a big-endian target
and by the @code{vclrrb} instruction on a little-endian target.  A
value of @code{n} that is greater than 16 is treated as if it equaled 16.
@findex vec_clrl

@smallexample
@exdent vector signed char
@exdent vec_clrr (vector signed char a, unsigned int n);
@exdent vector unsigned char
@exdent vec_clrr (vector unsigned char a, unsigned int n);
@end smallexample
Clear the right-most @code{(16 - n)} bytes of vector argument @code{a}, as if
implemented by the @code{vclrrb} instruction on a big-endian target
and by the @code{vclrlb} instruction on a little-endian target.  A
value of @code{n} that is greater than 16 is treated as if it equaled 16.
@findex vec_clrr

@smallexample
@exdent vector unsigned long long int
@exdent vec_gnb (vector unsigned __int128, const unsigned char);
@end smallexample
Perform a 128-bit vector gather  operation, as if implemented by the
@code{vgnb} instruction.  The second argument must be a literal
integer value between 2 and 7 inclusive.
@findex vec_gnb


Vector Extract

@smallexample
@exdent vector unsigned long long int
@exdent vec_extractl (vector unsigned char, vector unsigned char, unsigned int);
@exdent vector unsigned long long int
@exdent vec_extractl (vector unsigned short, vector unsigned short, unsigned int);
@exdent vector unsigned long long int
@exdent vec_extractl (vector unsigned int, vector unsigned int, unsigned int);
@exdent vector unsigned long long int
@exdent vec_extractl (vector unsigned long long, vector unsigned long long, unsigned int);
@end smallexample
Extract an element from two concatenated vectors starting at the given byte index
in natural-endian order, and place it zero-extended in doubleword 1 of the result
according to natural element order.  If the byte index is out of range for the
data type, the intrinsic will be rejected.
For little-endian, this output will match the placement by the hardware
instruction, i.e., dword[0] in RTL notation.  For big-endian, an additional
instruction is needed to move it from the "left" doubleword to the  "right" one.
For little-endian, semantics matching the @code{vextdubvrx},
@code{vextduhvrx}, @code{vextduwvrx} instruction will be generated, while for
big-endian, semantics matching the @code{vextdubvlx}, @code{vextduhvlx},
@code{vextduwvlx} instructions
will be generated.  Note that some fairly anomalous results can be generated if
the byte index is not aligned on an element boundary for the element being
extracted.  This is a limitation of the bi-endian vector programming model is
consistent with the limitation on @code{vec_perm}.
@findex vec_extractl

@smallexample
@exdent vector unsigned long long int
@exdent vec_extracth (vector unsigned char, vector unsigned char, unsigned int);
@exdent vector unsigned long long int
@exdent vec_extracth (vector unsigned short, vector unsigned short,
unsigned int);
@exdent vector unsigned long long int
@exdent vec_extracth (vector unsigned int, vector unsigned int, unsigned int);
@exdent vector unsigned long long int
@exdent vec_extracth (vector unsigned long long, vector unsigned long long,
unsigned int);
@end smallexample
Extract an element from two concatenated vectors starting at the given byte
index.  The index is based on big endian order for a little endian system.
Similarly, the index is based on little endian order for a big endian system.
The extraced elements are zero-extended and put in doubleword 1
according to natural element order.  If the byte index is out of range for the
data type, the intrinsic will be rejected.  For little-endian, this output
will match the placement by the hardware instruction (vextdubvrx, vextduhvrx,
vextduwvrx, vextddvrx) i.e., dword[0] in RTL
notation.  For big-endian, an additional instruction is needed to move it
from the "left" doubleword to the "right" one.  For little-endian, semantics
matching the @code{vextdubvlx}, @code{vextduhvlx}, @code{vextduwvlx}
instructions will be generated, while for big-endian, semantics matching the
@code{vextdubvrx}, @code{vextduhvrx}, @code{vextduwvrx} instructions will
be generated.  Note that some fairly anomalous
results can be generated if the byte index is not aligned on the
element boundary for the element being extracted.  This is a
limitation of the bi-endian vector programming model consistent with the
limitation on @code{vec_perm}.
@findex vec_extracth
@smallexample
@exdent vector unsigned long long int
@exdent vec_pdep (vector unsigned long long int, vector unsigned long long int);
@end smallexample
Perform a vector parallel bits deposit operation, as if implemented by
the @code{vpdepd} instruction.
@findex vec_pdep

Vector Insert

@smallexample
@exdent vector unsigned char
@exdent vec_insertl (unsigned char, vector unsigned char, unsigned int);
@exdent vector unsigned short
@exdent vec_insertl (unsigned short, vector unsigned short, unsigned int);
@exdent vector unsigned int
@exdent vec_insertl (unsigned int, vector unsigned int, unsigned int);
@exdent vector unsigned long long
@exdent vec_insertl (unsigned long long, vector unsigned long long,
unsigned int);
@exdent vector unsigned char
@exdent vec_insertl (vector unsigned char, vector unsigned char, unsigned int;
@exdent vector unsigned short
@exdent vec_insertl (vector unsigned short, vector unsigned short,
unsigned int);
@exdent vector unsigned int
@exdent vec_insertl (vector unsigned int, vector unsigned int, unsigned int);
@end smallexample

Let src be the first argument, when the first argument is a scalar, or the
rightmost element of the left doubleword of the first argument, when the first
argument is a vector.  Insert the source into the destination at the position
given by the third argument, using natural element order in the second
argument.  The rest of the second argument is unchanged.  If the byte
index is greater than 14 for halfwords, greater than 12 for words, or
greater than 8 for doublewords the result is undefined.   For little-endian,
the generated code will be semantically equivalent to @code{vins[bhwd]rx}
instructions.  Similarly for big-endian it will be semantically equivalent
to @code{vins[bhwd]lx}.  Note that some fairly anomalous results can be
generated if the byte index is not aligned on an element boundary for the
type of element being inserted.
@findex vec_insertl

@smallexample
@exdent vector unsigned char
@exdent vec_inserth (unsigned char, vector unsigned char, unsigned int);
@exdent vector unsigned short
@exdent vec_inserth (unsigned short, vector unsigned short, unsigned int);
@exdent vector unsigned int
@exdent vec_inserth (unsigned int, vector unsigned int, unsigned int);
@exdent vector unsigned long long
@exdent vec_inserth (unsigned long long, vector unsigned long long,
unsigned int);
@exdent vector unsigned char
@exdent vec_inserth (vector unsigned char, vector unsigned char, unsigned int);
@exdent vector unsigned short
@exdent vec_inserth (vector unsigned short, vector unsigned short,
unsigned int);
@exdent vector unsigned int
@exdent vec_inserth (vector unsigned int, vector unsigned int, unsigned int);
@end smallexample

Let src be the first argument, when the first argument is a scalar, or the
rightmost element of the first argument, when the first argument is a vector.
Insert src into the second argument at the position identified by the third
argument, using opposite element order in the second argument, and leaving the
rest of the second argument unchanged.  If the byte index is greater than 14
for halfwords, 12 for words, or 8 for doublewords, the intrinsic will be
rejected. Note that the underlying hardware instruction uses the same register
for the second argument and the result.
For little-endian, the code generation will be semantically equivalent to
@code{vins[bhwd]lx}, while for big-endian it will be semantically equivalent to
@code{vins[bhwd]rx}.
Note that some fairly anomalous results can be generated if the byte index is
not aligned on an element boundary for the sort of element being inserted.
@findex vec_inserth

Vector Replace Element
@smallexample
@exdent vector signed int vec_replace_elt (vector signed int, signed int,
const int);
@exdent vector unsigned int vec_replace_elt (vector unsigned int,
unsigned int, const int);
@exdent vector float vec_replace_elt (vector float, float, const int);
@exdent vector signed long long vec_replace_elt (vector signed long long,
signed long long, const int);
@exdent vector unsigned long long vec_replace_elt (vector unsigned long long,
unsigned long long, const int);
@exdent vector double rec_replace_elt (vector double, double, const int);
@end smallexample
The third argument (constrained to [0,3]) identifies the natural-endian
element number of the first argument that will be replaced by the second
argument to produce the result.  The other elements of the first argument will
remain unchanged in the result.

If it's desirable to insert a word at an unaligned position, use
vec_replace_unaligned instead.

@findex vec_replace_element

Vector Replace Unaligned
@smallexample
@exdent vector unsigned char vec_replace_unaligned (vector unsigned char,
signed int, const int);
@exdent vector unsigned char vec_replace_unaligned (vector unsigned char,
unsigned int, const int);
@exdent vector unsigned char vec_replace_unaligned (vector unsigned char,
float, const int);
@exdent vector unsigned char vec_replace_unaligned (vector unsigned char,
signed long long, const int);
@exdent vector unsigned char vec_replace_unaligned (vector unsigned char,
unsigned long long, const int);
@exdent vector unsigned char vec_replace_unaligned (vector unsigned char,
double, const int);
@end smallexample

The second argument replaces a portion of the first argument to produce the
result, with the rest of the first argument unchanged in the result.  The
third argument identifies the byte index (using left-to-right, or big-endian
order) where the high-order byte of the second argument will be placed, with
the remaining bytes of the second argument placed naturally "to the right"
of the high-order byte.

The programmer is responsible for understanding the endianness issues involved
with the first argument and the result.
@findex vec_replace_unaligned

Vector Shift Left Double Bit Immediate
@smallexample
@exdent vector signed char vec_sldb (vector signed char, vector signed char,
const unsigned int);
@exdent vector unsigned char vec_sldb (vector unsigned char,
vector unsigned char, const unsigned int);
@exdent vector signed short vec_sldb (vector signed short, vector signed short,
const unsigned int);
@exdent vector unsigned short vec_sldb (vector unsigned short,
vector unsigned short, const unsigned int);
@exdent vector signed int vec_sldb (vector signed int, vector signed int,
const unsigned int);
@exdent vector unsigned int vec_sldb (vector unsigned int, vector unsigned int,
const unsigned int);
@exdent vector signed long long vec_sldb (vector signed long long,
vector signed long long, const unsigned int);
@exdent vector unsigned long long vec_sldb (vector unsigned long long,
vector unsigned long long, const unsigned int);
@end smallexample

Shift the combined input vectors left by the amount specified by the low-order
three bits of the third argument, and return the leftmost remaining 128 bits.
Code using this instruction must be endian-aware.

@findex vec_sldb

Vector Shift Right Double Bit Immediate

@smallexample
@exdent vector signed char vec_srdb (vector signed char, vector signed char,
const unsigned int);
@exdent vector unsigned char vec_srdb (vector unsigned char, vector unsigned char,
const unsigned int);
@exdent vector signed short vec_srdb (vector signed short, vector signed short,
const unsigned int);
@exdent vector unsigned short vec_srdb (vector unsigned short, vector unsigned short,
const unsigned int);
@exdent vector signed int vec_srdb (vector signed int, vector signed int,
const unsigned int);
@exdent vector unsigned int vec_srdb (vector unsigned int, vector unsigned int,
const unsigned int);
@exdent vector signed long long vec_srdb (vector signed long long,
vector signed long long, const unsigned int);
@exdent vector unsigned long long vec_srdb (vector unsigned long long,
vector unsigned long long, const unsigned int);
@end smallexample

Shift the combined input vectors right by the amount specified by the low-order
three bits of the third argument, and return the remaining 128 bits.  Code
using this built-in must be endian-aware.

@findex vec_srdb

Vector Splat

@smallexample
@exdent vector signed int vec_splati (const signed int);
@exdent vector float vec_splati (const float);
@end smallexample

Splat a 32-bit immediate into a vector of words.

@findex vec_splati

@smallexample
@exdent vector double vec_splatid (const float);
@end smallexample

Convert a single precision floating-point value to double-precision and splat
the result to a vector of double-precision floats.

@findex vec_splatid

@smallexample
@exdent vector signed int vec_splati_ins (vector signed int,
const unsigned int, const signed int);
@exdent vector unsigned int vec_splati_ins (vector unsigned int,
const unsigned int, const unsigned int);
@exdent vector float vec_splati_ins (vector float, const unsigned int,
const float);
@end smallexample

Argument 2 must be either 0 or 1.  Splat the value of argument 3 into the word
identified by argument 2 of each doubleword of argument 1 and return the
result.  The other words of argument 1 are unchanged.

@findex vec_splati_ins

Vector Blend Variable

@smallexample
@exdent vector signed char vec_blendv (vector signed char, vector signed char,
vector unsigned char);
@exdent vector unsigned char vec_blendv (vector unsigned char,
vector unsigned char, vector unsigned char);
@exdent vector signed short vec_blendv (vector signed short,
vector signed short, vector unsigned short);
@exdent vector unsigned short vec_blendv (vector unsigned short,
vector unsigned short, vector unsigned short);
@exdent vector signed int vec_blendv (vector signed int, vector signed int,
vector unsigned int);
@exdent vector unsigned int vec_blendv (vector unsigned int,
vector unsigned int, vector unsigned int);
@exdent vector signed long long vec_blendv (vector signed long long,
vector signed long long, vector unsigned long long);
@exdent vector unsigned long long vec_blendv (vector unsigned long long,
vector unsigned long long, vector unsigned long long);
@exdent vector float vec_blendv (vector float, vector float,
vector unsigned int);
@exdent vector double vec_blendv (vector double, vector double,
vector unsigned long long);
@end smallexample

Blend the first and second argument vectors according to the sign bits of the
corresponding elements of the third argument vector.  This is similar to the
@code{vsel} and @code{xxsel} instructions but for bigger elements.

@findex vec_blendv

Vector Permute Extended

@smallexample
@exdent vector signed char vec_permx (vector signed char, vector signed char,
vector unsigned char, const int);
@exdent vector unsigned char vec_permx (vector unsigned char,
vector unsigned char, vector unsigned char, const int);
@exdent vector signed short vec_permx (vector signed short,
vector signed short, vector unsigned char, const int);
@exdent vector unsigned short vec_permx (vector unsigned short,
vector unsigned short, vector unsigned char, const int);
@exdent vector signed int vec_permx (vector signed int, vector signed int,
vector unsigned char, const int);
@exdent vector unsigned int vec_permx (vector unsigned int,
vector unsigned int, vector unsigned char, const int);
@exdent vector signed long long vec_permx (vector signed long long,
vector signed long long, vector unsigned char, const int);
@exdent vector unsigned long long vec_permx (vector unsigned long long,
vector unsigned long long, vector unsigned char, const int);
@exdent vector float (vector float, vector float, vector unsigned char,
const int);
@exdent vector double (vector double, vector double, vector unsigned char,
const int);
@end smallexample

Perform a partial permute of the first two arguments, which form a 32-byte
section of an emulated vector up to 256 bytes wide, using the partial permute
control vector in the third argument.  The fourth argument (constrained to
values of 0-7) identifies which 32-byte section of the emulated vector is
contained in the first two arguments.
@findex vec_permx

@smallexample
@exdent vector unsigned long long int
@exdent vec_pext (vector unsigned long long int, vector unsigned long long int);
@end smallexample
Perform a vector parallel bit extract operation, as if implemented by
the @code{vpextd} instruction.
@findex vec_pext

@smallexample
@exdent vector unsigned char vec_stril (vector unsigned char);
@exdent vector signed char vec_stril (vector signed char);
@exdent vector unsigned short vec_stril (vector unsigned short);
@exdent vector signed short vec_stril (vector signed short);
@end smallexample
Isolate the left-most non-zero elements of the incoming vector argument,
replacing all elements to the right of the left-most zero element
found within the argument with zero.  The typical implementation uses
the @code{vstribl} or @code{vstrihl} instruction on big-endian targets
and uses the @code{vstribr} or @code{vstrihr} instruction on
little-endian targets.
@findex vec_stril

@smallexample
@exdent int vec_stril_p (vector unsigned char);
@exdent int vec_stril_p (vector signed char);
@exdent int short vec_stril_p (vector unsigned short);
@exdent int vec_stril_p (vector signed short);
@end smallexample
Return a non-zero value if and only if the argument contains a zero
element.  The typical implementation uses
the @code{vstribl.} or @code{vstrihl.} instruction on big-endian targets
and uses the @code{vstribr.} or @code{vstrihr.} instruction on
little-endian targets.  Choose this built-in to check for presence of
zero element if the same argument is also passed to @code{vec_stril}.
@findex vec_stril_p

@smallexample
@exdent vector unsigned char vec_strir (vector unsigned char);
@exdent vector signed char vec_strir (vector signed char);
@exdent vector unsigned short vec_strir (vector unsigned short);
@exdent vector signed short vec_strir (vector signed short);
@end smallexample
Isolate the right-most non-zero elements of the incoming vector argument,
replacing all elements to the left of the right-most zero element
found within the argument with zero.  The typical implementation uses
the @code{vstribr} or @code{vstrihr} instruction on big-endian targets
and uses the @code{vstribl} or @code{vstrihl} instruction on
little-endian targets.
@findex vec_strir

@smallexample
@exdent int vec_strir_p (vector unsigned char);
@exdent int vec_strir_p (vector signed char);
@exdent int short vec_strir_p (vector unsigned short);
@exdent int vec_strir_p (vector signed short);
@end smallexample
Return a non-zero value if and only if the argument contains a zero
element.  The typical implementation uses
the @code{vstribr.} or @code{vstrihr.} instruction on big-endian targets
and uses the @code{vstribl.} or @code{vstrihl.} instruction on
little-endian targets.  Choose this built-in to check for presence of
zero element if the same argument is also passed to @code{vec_strir}.
@findex vec_strir_p

@smallexample
@exdent vector unsigned char
@exdent vec_ternarylogic (vector unsigned char, vector unsigned char,
            vector unsigned char, const unsigned int);
@exdent vector unsigned short
@exdent vec_ternarylogic (vector unsigned short, vector unsigned short,
            vector unsigned short, const unsigned int);
@exdent vector unsigned int
@exdent vec_ternarylogic (vector unsigned int, vector unsigned int,
            vector unsigned int, const unsigned int);
@exdent vector unsigned long long int
@exdent vec_ternarylogic (vector unsigned long long int, vector unsigned long long int,
            vector unsigned long long int, const unsigned int);
@exdent vector unsigned __int128
@exdent vec_ternarylogic (vector unsigned __int128, vector unsigned __int128,
            vector unsigned __int128, const unsigned int);
@end smallexample
Perform a 128-bit vector evaluate operation, as if implemented by the
@code{xxeval} instruction.  The fourth argument must be a literal
integer value between 0 and 255 inclusive.
@findex vec_ternarylogic

@smallexample
@exdent vector unsigned char vec_genpcvm (vector unsigned char, const int);
@exdent vector unsigned short vec_genpcvm (vector unsigned short, const int);
@exdent vector unsigned int vec_genpcvm (vector unsigned int, const int);
@exdent vector unsigned int vec_genpcvm (vector unsigned long long int,
                                         const int);
@end smallexample

Vector Integer Multiply/Divide/Modulo

@smallexample
@exdent vector signed int
@exdent vec_mulh (vector signed int a, vector signed int b);
@exdent vector unsigned int
@exdent vec_mulh (vector unsigned int a, vector unsigned int b);
@end smallexample

For each integer value @code{i} from 0 to 3, do the following. The integer
value in word element @code{i} of a is multiplied by the integer value in word
element @code{i} of b. The high-order 32 bits of the 64-bit product are placed
into word element @code{i} of the vector returned.

@smallexample
@exdent vector signed long long
@exdent vec_mulh (vector signed long long a, vector signed long long b);
@exdent vector unsigned long long
@exdent vec_mulh (vector unsigned long long a, vector unsigned long long b);
@end smallexample

For each integer value @code{i} from 0 to 1, do the following. The integer
value in doubleword element @code{i} of a is multiplied by the integer value in
doubleword element @code{i} of b. The high-order 64 bits of the 128-bit product
are placed into doubleword element @code{i} of the vector returned.

@smallexample
@exdent vector unsigned long long
@exdent vec_mul (vector unsigned long long a, vector unsigned long long b);
@exdent vector signed long long
@exdent vec_mul (vector signed long long a, vector signed long long b);
@end smallexample

For each integer value @code{i} from 0 to 1, do the following. The integer
value in doubleword element @code{i} of a is multiplied by the integer value in
doubleword element @code{i} of b. The low-order 64 bits of the 128-bit product
are placed into doubleword element @code{i} of the vector returned.

@smallexample
@exdent vector signed int
@exdent vec_div (vector signed int a, vector signed int b);
@exdent vector unsigned int
@exdent vec_div (vector unsigned int a, vector unsigned int b);
@end smallexample

For each integer value @code{i} from 0 to 3, do the following. The integer in
word element @code{i} of a is divided by the integer in word element @code{i}
of b. The unique integer quotient is placed into the word element @code{i} of
the vector returned. If an attempt is made to perform any of the divisions
<anything> ÷ 0 then the quotient is undefined.

@smallexample
@exdent vector signed long long
@exdent vec_div (vector signed long long a, vector signed long long b);
@exdent vector unsigned long long
@exdent vec_div (vector unsigned long long a, vector unsigned long long b);
@end smallexample

For each integer value @code{i} from 0 to 1, do the following. The integer in
doubleword element @code{i} of a is divided by the integer in doubleword
element @code{i} of b. The unique integer quotient is placed into the
doubleword element @code{i} of the vector returned. If an attempt is made to
perform any of the divisions 0x8000_0000_0000_0000 ÷ -1 or <anything> ÷ 0 then
the quotient is undefined.

@smallexample
@exdent vector signed int
@exdent vec_dive (vector signed int a, vector signed int b);
@exdent vector unsigned int
@exdent vec_dive (vector unsigned int a, vector unsigned int b);
@end smallexample

For each integer value @code{i} from 0 to 3, do the following. The integer in
word element @code{i} of a is shifted left by 32 bits, then divided by the
integer in word element @code{i} of b. The unique integer quotient is placed
into the word element @code{i} of the vector returned. If the quotient cannot
be represented in 32 bits, or if an attempt is made to perform any of the
divisions <anything> ÷ 0 then the quotient is undefined.

@smallexample
@exdent vector signed long long
@exdent vec_dive (vector signed long long a, vector signed long long b);
@exdent vector unsigned long long
@exdent vec_dive (vector unsigned long long a, vector unsigned long long b);
@end smallexample

For each integer value @code{i} from 0 to 1, do the following. The integer in
doubleword element @code{i} of a is shifted left by 64 bits, then divided by
the integer in doubleword element @code{i} of b. The unique integer quotient is
placed into the doubleword element @code{i} of the vector returned. If the
quotient cannot be represented in 64 bits, or if an attempt is made to perform
<anything> ÷ 0 then the quotient is undefined.

@smallexample
@exdent vector signed int
@exdent vec_mod (vector signed int a, vector signed int b);
@exdent vector unsigned int
@exdent vec_mod (vector unsigned int a, vector unsigned int b);
@end smallexample

For each integer value @code{i} from 0 to 3, do the following. The integer in
word element @code{i} of a is divided by the integer in word element @code{i}
of b. The unique integer remainder is placed into the word element @code{i} of
the vector returned.  If an attempt is made to perform any of the divisions
0x8000_0000 ÷ -1 or <anything> ÷ 0 then the remainder is undefined.

@smallexample
@exdent vector signed long long
@exdent vec_mod (vector signed long long a, vector signed long long b);
@exdent vector unsigned long long
@exdent vec_mod (vector unsigned long long a, vector unsigned long long b);
@end smallexample

For each integer value @code{i} from 0 to 1, do the following. The integer in
doubleword element @code{i} of a is divided by the integer in doubleword
element @code{i} of b. The unique integer remainder is placed into the
doubleword element @code{i} of the vector returned. If an attempt is made to
perform <anything> ÷ 0 then the remainder is undefined.

Generate PCV from specified Mask size, as if implemented by the
@code{xxgenpcvbm}, @code{xxgenpcvhm}, @code{xxgenpcvwm} instructions, where
immediate value is either 0, 1, 2 or 3.
@findex vec_genpcvm

@smallexample
@exdent vector unsigned __int128 vec_rl (vector unsigned __int128 A,
                                         vector unsigned __int128 B);
@exdent vector signed __int128 vec_rl (vector signed __int128 A,
                                       vector unsigned __int128 B);
@end smallexample

Result value: Each element of R is obtained by rotating the corresponding element
of A left by the number of bits specified by the corresponding element of B.


@smallexample
@exdent vector unsigned __int128 vec_rlmi (vector unsigned __int128,
                                           vector unsigned __int128,
                                           vector unsigned __int128);
@exdent vector signed __int128 vec_rlmi (vector signed __int128,
                                         vector signed __int128,
                                         vector unsigned __int128);
@end smallexample

Returns the result of rotating the first input and inserting it under mask
into the second input.  The first bit in the mask, the last bit in the mask are
obtained from the two 7-bit fields bits [108:115] and bits [117:123]
respectively of the second input.  The shift is obtained from the third input
in the 7-bit field [125:131] where all bits counted from zero at the left.

@smallexample
@exdent vector unsigned __int128 vec_rlnm (vector unsigned __int128,
                                           vector unsigned __int128,
                                           vector unsigned __int128);
@exdent vector signed __int128 vec_rlnm (vector signed __int128,
                                         vector unsigned __int128,
                                         vector unsigned __int128);
@end smallexample

Returns the result of rotating the first input and ANDing it with a mask.  The
first bit in the mask and the last bit in the mask are obtained from the two
7-bit fields bits [117:123] and bits [125:131] respectively of the second
input.  The shift is obtained from the third input in the 7-bit field bits
[125:131] where all bits counted from zero at the left.

@smallexample
@exdent vector unsigned __int128 vec_sl(vector unsigned __int128 A, vector unsigned __int128 B);
@exdent vector signed __int128 vec_sl(vector signed __int128 A, vector unsigned __int128 B);
@end smallexample

Result value: Each element of R is obtained by shifting the corresponding element of
A left by the number of bits specified by the corresponding element of B.

@smallexample
@exdent vector unsigned __int128 vec_sr(vector unsigned __int128 A, vector unsigned __int128 B);
@exdent vector signed __int128 vec_sr(vector signed __int128 A, vector unsigned __int128 B);
@end smallexample

Result value: Each element of R is obtained by shifting the corresponding element of
A right by the number of bits specified by the corresponding element of B.

@smallexample
@exdent vector unsigned __int128 vec_sra(vector unsigned __int128 A, vector unsigned __int128 B);
@exdent vector signed __int128 vec_sra(vector signed __int128 A, vector unsigned __int128 B);
@end smallexample

Result value: Each element of R is obtained by arithmetic shifting the corresponding
element of A right by the number of bits specified by the corresponding element of B.

@smallexample
@exdent vector unsigned __int128 vec_mule (vector unsigned long long,
                                           vector unsigned long long);
@exdent vector signed __int128 vec_mule (vector signed long long,
                                         vector signed long long);
@end smallexample

Returns a vector containing a 128-bit integer result of multiplying the even
doubleword elements of the two inputs.

@smallexample
@exdent vector unsigned __int128 vec_mulo (vector unsigned long long,
                                           vector unsigned long long);
@exdent vector signed __int128 vec_mulo (vector signed long long,
                                         vector signed long long);
@end smallexample

Returns a vector containing a 128-bit integer result of multiplying the odd
doubleword elements of the two inputs.

@smallexample
@exdent vector unsigned __int128 vec_div (vector unsigned __int128,
                                          vector unsigned __int128);
@exdent vector signed __int128 vec_div (vector signed __int128,
                                        vector signed __int128);
@end smallexample

Returns the result of dividing the first operand by the second operand. An
attempt to divide any value by zero or to divide the most negative signed
128-bit integer by negative one results in an undefined value.

@smallexample
@exdent vector unsigned __int128 vec_dive (vector unsigned __int128,
                                           vector unsigned __int128);
@exdent vector signed __int128 vec_dive (vector signed __int128,
                                         vector signed __int128);
@end smallexample

The result is produced by shifting the first input left by 128 bits and
dividing by the second.  If an attempt is made to divide by zero or the result
is larger than 128 bits, the result is undefined.

@smallexample
@exdent vector unsigned __int128 vec_mod (vector unsigned __int128,
                                          vector unsigned __int128);
@exdent vector signed __int128 vec_mod (vector signed __int128,
                                        vector signed __int128);
@end smallexample

The result is the modulo result of dividing the first input  by the second
input.

The following builtins perform 128-bit vector comparisons.  The
@code{vec_all_xx}, @code{vec_any_xx}, and @code{vec_cmpxx}, where @code{xx} is
one of the operations @code{eq, ne, gt, lt, ge, le} perform pairwise
comparisons between the elements at the same positions within their two vector
arguments.  The @code{vec_all_xx}function returns a non-zero value if and only
if all pairwise comparisons are true.  The @code{vec_any_xx} function returns
a non-zero value if and only if at least one pairwise comparison is true.  The
@code{vec_cmpxx}function returns a vector of the same type as its two
arguments, within which each element consists of all ones to denote that
specified logical comparison of the corresponding elements was true.
Otherwise, the element of the returned vector contains all zeros.

@smallexample
vector bool __int128 vec_cmpeq (vector signed __int128, vector signed __int128);
vector bool __int128 vec_cmpeq (vector unsigned __int128, vector unsigned __int128);
vector bool __int128 vec_cmpne (vector signed __int128, vector signed __int128);
vector bool __int128 vec_cmpne (vector unsigned __int128, vector unsigned __int128);
vector bool __int128 vec_cmpgt (vector signed __int128, vector signed __int128);
vector bool __int128 vec_cmpgt (vector unsigned __int128, vector unsigned __int128);
vector bool __int128 vec_cmplt (vector signed __int128, vector signed __int128);
vector bool __int128 vec_cmplt (vector unsigned __int128, vector unsigned __int128);
vector bool __int128 vec_cmpge (vector signed __int128, vector signed __int128);
vector bool __int128 vec_cmpge (vector unsigned __int128, vector unsigned __int128);
vector bool __int128 vec_cmple (vector signed __int128, vector signed __int128);
vector bool __int128 vec_cmple (vector unsigned __int128, vector unsigned __int128);

int vec_all_eq (vector signed __int128, vector signed __int128);
int vec_all_eq (vector unsigned __int128, vector unsigned __int128);
int vec_all_ne (vector signed __int128, vector signed __int128);
int vec_all_ne (vector unsigned __int128, vector unsigned __int128);
int vec_all_gt (vector signed __int128, vector signed __int128);
int vec_all_gt (vector unsigned __int128, vector unsigned __int128);
int vec_all_lt (vector signed __int128, vector signed __int128);
int vec_all_lt (vector unsigned __int128, vector unsigned __int128);
int vec_all_ge (vector signed __int128, vector signed __int128);
int vec_all_ge (vector unsigned __int128, vector unsigned __int128);
int vec_all_le (vector signed __int128, vector signed __int128);
int vec_all_le (vector unsigned __int128, vector unsigned __int128);

int vec_any_eq (vector signed __int128, vector signed __int128);
int vec_any_eq (vector unsigned __int128, vector unsigned __int128);
int vec_any_ne (vector signed __int128, vector signed __int128);
int vec_any_ne (vector unsigned __int128, vector unsigned __int128);
int vec_any_gt (vector signed __int128, vector signed __int128);
int vec_any_gt (vector unsigned __int128, vector unsigned __int128);
int vec_any_lt (vector signed __int128, vector signed __int128);
int vec_any_lt (vector unsigned __int128, vector unsigned __int128);
int vec_any_ge (vector signed __int128, vector signed __int128);
int vec_any_ge (vector unsigned __int128, vector unsigned __int128);
int vec_any_le (vector signed __int128, vector signed __int128);
int vec_any_le (vector unsigned __int128, vector unsigned __int128);
@end smallexample


@node PowerPC Hardware Transactional Memory Built-in Functions
@subsection PowerPC Hardware Transactional Memory Built-in Functions
GCC provides two interfaces for accessing the Hardware Transactional
Memory (HTM) instructions available on some of the PowerPC family
of processors (eg, POWER8).  The two interfaces come in a low level
interface, consisting of built-in functions specific to PowerPC and a
higher level interface consisting of inline functions that are common
between PowerPC and S/390.

@subsubsection PowerPC HTM Low Level Built-in Functions

The following low level built-in functions are available with
@option{-mhtm} or @option{-mcpu=CPU} where CPU is `power8' or later.
They all generate the machine instruction that is part of the name.

The HTM builtins (with the exception of @code{__builtin_tbegin}) return
the full 4-bit condition register value set by their associated hardware
instruction.  The header file @code{htmintrin.h} defines some macros that can
be used to decipher the return value.  The @code{__builtin_tbegin} builtin
returns a simple @code{true} or @code{false} value depending on whether a transaction was
successfully started or not.  The arguments of the builtins match exactly the
type and order of the associated hardware instruction's operands, except for
the @code{__builtin_tcheck} builtin, which does not take any input arguments.
Refer to the ISA manual for a description of each instruction's operands.

@smallexample
unsigned int __builtin_tbegin (unsigned int);
unsigned int __builtin_tend (unsigned int);

unsigned int __builtin_tabort (unsigned int);
unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int);
unsigned int __builtin_tabortdci (unsigned int, unsigned int, int);
unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int);
unsigned int __builtin_tabortwci (unsigned int, unsigned int, int);

unsigned int __builtin_tcheck (void);
unsigned int __builtin_treclaim (unsigned int);
unsigned int __builtin_trechkpt (void);
unsigned int __builtin_tsr (unsigned int);
@end smallexample

In addition to the above HTM built-ins, we have added built-ins for
some common extended mnemonics of the HTM instructions:

@smallexample
unsigned int __builtin_tendall (void);
unsigned int __builtin_tresume (void);
unsigned int __builtin_tsuspend (void);
@end smallexample

Note that the semantics of the above HTM builtins are required to mimic
the locking semantics used for critical sections.  Builtins that are used
to create a new transaction or restart a suspended transaction must have
lock acquisition like semantics while those builtins that end or suspend a
transaction must have lock release like semantics.  Specifically, this must
mimic lock semantics as specified by C++11, for example: Lock acquisition is
as-if an execution of __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE)
that returns 0, and lock release is as-if an execution of
__atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an
implicit implementation-defined lock used for all transactions.  The HTM
instructions associated with with the builtins inherently provide the
correct acquisition and release hardware barriers required.  However,
the compiler must also be prohibited from moving loads and stores across
the builtins in a way that would violate their semantics.  This has been
accomplished by adding memory barriers to the associated HTM instructions
(which is a conservative approach to provide acquire and release semantics).
Earlier versions of the compiler did not treat the HTM instructions as
memory barriers.  A @code{__TM_FENCE__} macro has been added, which can
be used to determine whether the current compiler treats HTM instructions
as memory barriers or not.  This allows the user to explicitly add memory
barriers to their code when using an older version of the compiler.

The following set of built-in functions are available to gain access
to the HTM specific special purpose registers.

@smallexample
unsigned long __builtin_get_texasr (void);
unsigned long __builtin_get_texasru (void);
unsigned long __builtin_get_tfhar (void);
unsigned long __builtin_get_tfiar (void);

void __builtin_set_texasr (unsigned long);
void __builtin_set_texasru (unsigned long);
void __builtin_set_tfhar (unsigned long);
void __builtin_set_tfiar (unsigned long);
@end smallexample

Example usage of these low level built-in functions may look like:

@smallexample
#include <htmintrin.h>

int num_retries = 10;

while (1)
  @{
    if (__builtin_tbegin (0))
      @{
        /* Transaction State Initiated.  */
        if (is_locked (lock))
          __builtin_tabort (0);
        ... transaction code...
        __builtin_tend (0);
        break;
      @}
    else
      @{
        /* Transaction State Failed.  Use locks if the transaction
           failure is "persistent" or we've tried too many times.  */
        if (num_retries-- <= 0
            || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
          @{
            acquire_lock (lock);
            ... non transactional fallback path...
            release_lock (lock);
            break;
          @}
      @}
  @}
@end smallexample

One final built-in function has been added that returns the value of
the 2-bit Transaction State field of the Machine Status Register (MSR)
as stored in @code{CR0}.

@smallexample
unsigned long __builtin_ttest (void)
@end smallexample

This built-in can be used to determine the current transaction state
using the following code example:

@smallexample
#include <htmintrin.h>

unsigned char tx_state = _HTM_STATE (__builtin_ttest ());

if (tx_state == _HTM_TRANSACTIONAL)
  @{
    /* Code to use in transactional state.  */
  @}
else if (tx_state == _HTM_NONTRANSACTIONAL)
  @{
    /* Code to use in non-transactional state.  */
  @}
else if (tx_state == _HTM_SUSPENDED)
  @{
    /* Code to use in transaction suspended state.  */
  @}
@end smallexample

@subsubsection PowerPC HTM High Level Inline Functions

The following high level HTM interface is made available by including
@code{<htmxlintrin.h>} and using @option{-mhtm} or @option{-mcpu=CPU}
where CPU is `power8' or later.  This interface is common between PowerPC
and S/390, allowing users to write one HTM source implementation that
can be compiled and executed on either system.

@smallexample
long __TM_simple_begin (void);
long __TM_begin (void* const TM_buff);
long __TM_end (void);
void __TM_abort (void);
void __TM_named_abort (unsigned char const code);
void __TM_resume (void);
void __TM_suspend (void);

long __TM_is_user_abort (void* const TM_buff);
long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code);
long __TM_is_illegal (void* const TM_buff);
long __TM_is_footprint_exceeded (void* const TM_buff);
long __TM_nesting_depth (void* const TM_buff);
long __TM_is_nested_too_deep(void* const TM_buff);
long __TM_is_conflict(void* const TM_buff);
long __TM_is_failure_persistent(void* const TM_buff);
long __TM_failure_address(void* const TM_buff);
long long __TM_failure_code(void* const TM_buff);
@end smallexample

Using these common set of HTM inline functions, we can create
a more portable version of the HTM example in the previous
section that will work on either PowerPC or S/390:

@smallexample
#include <htmxlintrin.h>

int num_retries = 10;
TM_buff_type TM_buff;

while (1)
  @{
    if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)
      @{
        /* Transaction State Initiated.  */
        if (is_locked (lock))
          __TM_abort ();
        ... transaction code...
        __TM_end ();
        break;
      @}
    else
      @{
        /* Transaction State Failed.  Use locks if the transaction
           failure is "persistent" or we've tried too many times.  */
        if (num_retries-- <= 0
            || __TM_is_failure_persistent (TM_buff))
          @{
            acquire_lock (lock);
            ... non transactional fallback path...
            release_lock (lock);
            break;
          @}
      @}
  @}
@end smallexample

@node PowerPC Atomic Memory Operation Functions
@subsection PowerPC Atomic Memory Operation Functions
ISA 3.0 of the PowerPC added new atomic memory operation (amo)
instructions.  GCC provides support for these instructions in 64-bit
environments.  All of the functions are declared in the include file
@code{amo.h}.

The functions supported are:

@smallexample
#include <amo.h>

uint32_t amo_lwat_add (uint32_t *, uint32_t);
uint32_t amo_lwat_xor (uint32_t *, uint32_t);
uint32_t amo_lwat_ior (uint32_t *, uint32_t);
uint32_t amo_lwat_and (uint32_t *, uint32_t);
uint32_t amo_lwat_umax (uint32_t *, uint32_t);
uint32_t amo_lwat_umin (uint32_t *, uint32_t);
uint32_t amo_lwat_swap (uint32_t *, uint32_t);

int32_t amo_lwat_sadd (int32_t *, int32_t);
int32_t amo_lwat_smax (int32_t *, int32_t);
int32_t amo_lwat_smin (int32_t *, int32_t);
int32_t amo_lwat_sswap (int32_t *, int32_t);

uint64_t amo_ldat_add (uint64_t *, uint64_t);
uint64_t amo_ldat_xor (uint64_t *, uint64_t);
uint64_t amo_ldat_ior (uint64_t *, uint64_t);
uint64_t amo_ldat_and (uint64_t *, uint64_t);
uint64_t amo_ldat_umax (uint64_t *, uint64_t);
uint64_t amo_ldat_umin (uint64_t *, uint64_t);
uint64_t amo_ldat_swap (uint64_t *, uint64_t);

int64_t amo_ldat_sadd (int64_t *, int64_t);
int64_t amo_ldat_smax (int64_t *, int64_t);
int64_t amo_ldat_smin (int64_t *, int64_t);
int64_t amo_ldat_sswap (int64_t *, int64_t);

void amo_stwat_add (uint32_t *, uint32_t);
void amo_stwat_xor (uint32_t *, uint32_t);
void amo_stwat_ior (uint32_t *, uint32_t);
void amo_stwat_and (uint32_t *, uint32_t);
void amo_stwat_umax (uint32_t *, uint32_t);
void amo_stwat_umin (uint32_t *, uint32_t);

void amo_stwat_sadd (int32_t *, int32_t);
void amo_stwat_smax (int32_t *, int32_t);
void amo_stwat_smin (int32_t *, int32_t);

void amo_stdat_add (uint64_t *, uint64_t);
void amo_stdat_xor (uint64_t *, uint64_t);
void amo_stdat_ior (uint64_t *, uint64_t);
void amo_stdat_and (uint64_t *, uint64_t);
void amo_stdat_umax (uint64_t *, uint64_t);
void amo_stdat_umin (uint64_t *, uint64_t);

void amo_stdat_sadd (int64_t *, int64_t);
void amo_stdat_smax (int64_t *, int64_t);
void amo_stdat_smin (int64_t *, int64_t);
@end smallexample

@node PowerPC Matrix-Multiply Assist Built-in Functions
@subsection PowerPC Matrix-Multiply Assist Built-in Functions
ISA 3.1 of the PowerPC added new Matrix-Multiply Assist (MMA) instructions.
GCC provides support for these instructions through the following built-in
functions which are enabled with the @code{-mmma} option.  The vec_t type
below is defined to be a normal vector unsigned char type.  The uint2, uint4
and uint8 parameters are 2-bit, 4-bit and 8-bit unsigned integer constants
respectively.  The compiler will verify that they are constants and that
their values are within range.

The built-in functions supported are:

@smallexample
void __builtin_mma_xvi4ger8 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi8ger4 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi16ger2 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi16ger2s (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf16ger2 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32ger (__vector_quad *, vec_t, vec_t);

void __builtin_mma_xvi4ger8pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi8ger4pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi8ger4spp(__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi16ger2pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi16ger2spp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf16ger2pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf16ger2pn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf16ger2np (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf16ger2nn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2pn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2np (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2nn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32gerpp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32gerpn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32gernp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32gernn (__vector_quad *, vec_t, vec_t);

void __builtin_mma_pmxvi4ger8 (__vector_quad *, vec_t, vec_t, uint4, uint4, uint8);
void __builtin_mma_pmxvi4ger8pp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint8);

void __builtin_mma_pmxvi8ger4 (__vector_quad *, vec_t, vec_t, uint4, uint4, uint4);
void __builtin_mma_pmxvi8ger4pp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint4);
void __builtin_mma_pmxvi8ger4spp(__vector_quad *, vec_t, vec_t, uint4, uint4, uint4);

void __builtin_mma_pmxvi16ger2 (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvi16ger2s (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf16ger2 (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvbf16ger2 (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);

void __builtin_mma_pmxvi16ger2pp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvi16ger2spp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf16ger2pp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf16ger2pn (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf16ger2np (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf16ger2nn (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvbf16ger2pp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvbf16ger2pn (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvbf16ger2np (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvbf16ger2nn (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);

void __builtin_mma_pmxvf32ger (__vector_quad *, vec_t, vec_t, uint4, uint4);
void __builtin_mma_pmxvf32gerpp (__vector_quad *, vec_t, vec_t, uint4, uint4);
void __builtin_mma_pmxvf32gerpn (__vector_quad *, vec_t, vec_t, uint4, uint4);
void __builtin_mma_pmxvf32gernp (__vector_quad *, vec_t, vec_t, uint4, uint4);
void __builtin_mma_pmxvf32gernn (__vector_quad *, vec_t, vec_t, uint4, uint4);

void __builtin_mma_xvf64ger (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xvf64gerpp (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xvf64gerpn (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xvf64gernp (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xvf64gernn (__vector_quad *, __vector_pair, vec_t);

void __builtin_mma_pmxvf64ger (__vector_quad *, __vector_pair, vec_t, uint4, uint2);
void __builtin_mma_pmxvf64gerpp (__vector_quad *, __vector_pair, vec_t, uint4, uint2);
void __builtin_mma_pmxvf64gerpn (__vector_quad *, __vector_pair, vec_t, uint4, uint2);
void __builtin_mma_pmxvf64gernp (__vector_quad *, __vector_pair, vec_t, uint4, uint2);
void __builtin_mma_pmxvf64gernn (__vector_quad *, __vector_pair, vec_t, uint4, uint2);

void __builtin_mma_xxmtacc (__vector_quad *);
void __builtin_mma_xxmfacc (__vector_quad *);
void __builtin_mma_xxsetaccz (__vector_quad *);

void __builtin_mma_build_acc (__vector_quad *, vec_t, vec_t, vec_t, vec_t);
void __builtin_mma_disassemble_acc (void *, __vector_quad *);

void __builtin_vsx_build_pair (__vector_pair *, vec_t, vec_t);
void __builtin_vsx_disassemble_pair (void *, __vector_pair *);

vec_t __builtin_vsx_xvcvspbf16 (vec_t);
vec_t __builtin_vsx_xvcvbf16spn (vec_t);

__vector_pair __builtin_vsx_lxvp (size_t, __vector_pair *);
void __builtin_vsx_stxvp (__vector_pair, size_t, __vector_pair *);
@end smallexample

@node PRU Built-in Functions
@subsection PRU Built-in Functions

GCC provides a couple of special builtin functions to aid in utilizing
special PRU instructions.

The built-in functions supported are:

@table @code
@item __delay_cycles (long long @var{cycles})
This inserts an instruction sequence that takes exactly @var{cycles}
cycles (between 0 and 0xffffffff) to complete.  The inserted sequence
may use jumps, loops, or no-ops, and does not interfere with any other
instructions.  Note that @var{cycles} must be a compile-time constant
integer - that is, you must pass a number, not a variable that may be
optimized to a constant later.  The number of cycles delayed by this
builtin is exact.

@item __halt (void)
This inserts a HALT instruction to stop processor execution.

@item unsigned int __lmbd (unsigned int @var{wordval}, unsigned int @var{bitval})
This inserts LMBD instruction to calculate the left-most bit with value
@var{bitval} in value @var{wordval}.  Only the least significant bit
of @var{bitval} is taken into account.
@end table

@node RISC-V Built-in Functions
@subsection RISC-V Built-in Functions

These built-in functions are available for the RISC-V family of
processors.

@deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
Returns the value that is currently set in the @samp{tp} register.
@end deftypefn

@node RX Built-in Functions
@subsection RX Built-in Functions
GCC supports some of the RX instructions which cannot be expressed in
the C programming language via the use of built-in functions.  The
following functions are supported:

@deftypefn {Built-in Function}  void __builtin_rx_brk (void)
Generates the @code{brk} machine instruction.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_rx_clrpsw (int)
Generates the @code{clrpsw} machine instruction to clear the specified
bit in the processor status word.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_rx_int (int)
Generates the @code{int} machine instruction to generate an interrupt
with the specified value.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_rx_machi (int, int)
Generates the @code{machi} machine instruction to add the result of
multiplying the top 16 bits of the two arguments into the
accumulator.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_rx_maclo (int, int)
Generates the @code{maclo} machine instruction to add the result of
multiplying the bottom 16 bits of the two arguments into the
accumulator.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_rx_mulhi (int, int)
Generates the @code{mulhi} machine instruction to place the result of
multiplying the top 16 bits of the two arguments into the
accumulator.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_rx_mullo (int, int)
Generates the @code{mullo} machine instruction to place the result of
multiplying the bottom 16 bits of the two arguments into the
accumulator.
@end deftypefn

@deftypefn {Built-in Function}  int  __builtin_rx_mvfachi (void)
Generates the @code{mvfachi} machine instruction to read the top
32 bits of the accumulator.
@end deftypefn

@deftypefn {Built-in Function}  int  __builtin_rx_mvfacmi (void)
Generates the @code{mvfacmi} machine instruction to read the middle
32 bits of the accumulator.
@end deftypefn

@deftypefn {Built-in Function}  int __builtin_rx_mvfc (int)
Generates the @code{mvfc} machine instruction which reads the control
register specified in its argument and returns its value.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_rx_mvtachi (int)
Generates the @code{mvtachi} machine instruction to set the top
32 bits of the accumulator.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_rx_mvtaclo (int)
Generates the @code{mvtaclo} machine instruction to set the bottom
32 bits of the accumulator.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_rx_mvtc (int reg, int val)
Generates the @code{mvtc} machine instruction which sets control
register number @code{reg} to @code{val}.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_rx_mvtipl (int)
Generates the @code{mvtipl} machine instruction set the interrupt
priority level.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_rx_racw (int)
Generates the @code{racw} machine instruction to round the accumulator
according to the specified mode.
@end deftypefn

@deftypefn {Built-in Function}  int __builtin_rx_revw (int)
Generates the @code{revw} machine instruction which swaps the bytes in
the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
and also bits 16--23 occupy bits 24--31 and vice versa.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_rx_rmpa (void)
Generates the @code{rmpa} machine instruction which initiates a
repeated multiply and accumulate sequence.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_rx_round (float)
Generates the @code{round} machine instruction which returns the
floating-point argument rounded according to the current rounding mode
set in the floating-point status word register.
@end deftypefn

@deftypefn {Built-in Function}  int __builtin_rx_sat (int)
Generates the @code{sat} machine instruction which returns the
saturated value of the argument.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_rx_setpsw (int)
Generates the @code{setpsw} machine instruction to set the specified
bit in the processor status word.
@end deftypefn

@deftypefn {Built-in Function}  void __builtin_rx_wait (void)
Generates the @code{wait} machine instruction.
@end deftypefn

@node S/390 System z Built-in Functions
@subsection S/390 System z Built-in Functions
@deftypefn {Built-in Function} int __builtin_tbegin (void*)
Generates the @code{tbegin} machine instruction starting a
non-constrained hardware transaction.  If the parameter is non-NULL the
memory area is used to store the transaction diagnostic buffer and
will be passed as first operand to @code{tbegin}.  This buffer can be
defined using the @code{struct __htm_tdb} C struct defined in
@code{htmintrin.h} and must reside on a double-word boundary.  The
second tbegin operand is set to @code{0xff0c}. This enables
save/restore of all GPRs and disables aborts for FPR and AR
manipulations inside the transaction body.  The condition code set by
the tbegin instruction is returned as integer value.  The tbegin
instruction by definition overwrites the content of all FPRs.  The
compiler will generate code which saves and restores the FPRs.  For
soft-float code it is recommended to used the @code{*_nofloat}
variant.  In order to prevent a TDB from being written it is required
to pass a constant zero value as parameter.  Passing a zero value
through a variable is not sufficient.  Although modifications of
access registers inside the transaction will not trigger an
transaction abort it is not supported to actually modify them.  Access
registers do not get saved when entering a transaction. They will have
undefined state when reaching the abort code.
@end deftypefn

Macros for the possible return codes of tbegin are defined in the
@code{htmintrin.h} header file:

@table @code
@item _HTM_TBEGIN_STARTED
@code{tbegin} has been executed as part of normal processing.  The
transaction body is supposed to be executed.
@item _HTM_TBEGIN_INDETERMINATE
The transaction was aborted due to an indeterminate condition which
might be persistent.
@item _HTM_TBEGIN_TRANSIENT
The transaction aborted due to a transient failure.  The transaction
should be re-executed in that case.
@item _HTM_TBEGIN_PERSISTENT
The transaction aborted due to a persistent failure.  Re-execution
under same circumstances will not be productive.
@end table

@defmac _HTM_FIRST_USER_ABORT_CODE
The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h}
specifies the first abort code which can be used for
@code{__builtin_tabort}.  Values below this threshold are reserved for
machine use.
@end defmac

@deftp {Data type} {struct __htm_tdb}
The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes
the structure of the transaction diagnostic block as specified in the
Principles of Operation manual chapter 5-91.
@end deftp

@deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*)
Same as @code{__builtin_tbegin} but without FPR saves and restores.
Using this variant in code making use of FPRs will leave the FPRs in
undefined state when entering the transaction abort handler code.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int)
In addition to @code{__builtin_tbegin} a loop for transient failures
is generated.  If tbegin returns a condition code of 2 the transaction
will be retried as often as specified in the second argument.  The
perform processor assist instruction is used to tell the CPU about the
number of fails so far.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int)
Same as @code{__builtin_tbegin_retry} but without FPR saves and
restores.  Using this variant in code making use of FPRs will leave
the FPRs in undefined state when entering the transaction abort
handler code.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_tbeginc (void)
Generates the @code{tbeginc} machine instruction starting a constrained
hardware transaction.  The second operand is set to @code{0xff08}.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_tend (void)
Generates the @code{tend} machine instruction finishing a transaction
and making the changes visible to other threads.  The condition code
generated by tend is returned as integer value.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_tabort (int)
Generates the @code{tabort} machine instruction with the specified
abort code.  Abort codes from 0 through 255 are reserved and will
result in an error message.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_tx_assist (int)
Generates the @code{ppa rX,rY,1} machine instruction.  Where the
integer parameter is loaded into rX and a value of zero is loaded into
rY.  The integer parameter specifies the number of times the
transaction repeatedly aborted.
@end deftypefn

@deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void)
Generates the @code{etnd} machine instruction.  The current nesting
depth is returned as integer value.  For a nesting depth of 0 the code
is not executed as part of an transaction.
@end deftypefn

@deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t)

Generates the @code{ntstg} machine instruction.  The second argument
is written to the first arguments location.  The store operation will
not be rolled-back in case of an transaction abort.
@end deftypefn

@node SH Built-in Functions
@subsection SH Built-in Functions
The following built-in functions are supported on the SH1, SH2, SH3 and SH4
families of processors:

@deftypefn {Built-in Function} {void} __builtin_set_thread_pointer (void *@var{ptr})
Sets the @samp{GBR} register to the specified value @var{ptr}.  This is usually
used by system code that manages threads and execution contexts.  The compiler
normally does not generate code that modifies the contents of @samp{GBR} and
thus the value is preserved across function calls.  Changing the @samp{GBR}
value in user code must be done with caution, since the compiler might use
@samp{GBR} in order to access thread local variables.

@end deftypefn

@deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
Returns the value that is currently set in the @samp{GBR} register.
Memory loads and stores that use the thread pointer as a base address are
turned into @samp{GBR} based displacement loads and stores, if possible.
For example:
@smallexample
struct my_tcb
@{
   int a, b, c, d, e;
@};

int get_tcb_value (void)
@{
  // Generate @samp{mov.l @@(8,gbr),r0} instruction
  return ((my_tcb*)__builtin_thread_pointer ())->c;
@}

@end smallexample
@end deftypefn

@deftypefn {Built-in Function} {unsigned int} __builtin_sh_get_fpscr (void)
Returns the value that is currently set in the @samp{FPSCR} register.
@end deftypefn

@deftypefn {Built-in Function} {void} __builtin_sh_set_fpscr (unsigned int @var{val})
Sets the @samp{FPSCR} register to the specified value @var{val}, while
preserving the current values of the FR, SZ and PR bits.
@end deftypefn

@node SPARC VIS Built-in Functions
@subsection SPARC VIS Built-in Functions

GCC supports SIMD operations on the SPARC using both the generic vector
extensions (@pxref{Vector Extensions}) as well as built-in functions for
the SPARC Visual Instruction Set (VIS).  When you use the @option{-mvis}
switch, the VIS extension is exposed as the following built-in functions:

@smallexample
typedef int v1si __attribute__ ((vector_size (4)));
typedef int v2si __attribute__ ((vector_size (8)));
typedef short v4hi __attribute__ ((vector_size (8)));
typedef short v2hi __attribute__ ((vector_size (4)));
typedef unsigned char v8qi __attribute__ ((vector_size (8)));
typedef unsigned char v4qi __attribute__ ((vector_size (4)));

void __builtin_vis_write_gsr (int64_t);
int64_t __builtin_vis_read_gsr (void);

void * __builtin_vis_alignaddr (void *, long);
void * __builtin_vis_alignaddrl (void *, long);
int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
v2si __builtin_vis_faligndatav2si (v2si, v2si);
v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);

v4hi __builtin_vis_fexpand (v4qi);

v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);

v4qi __builtin_vis_fpack16 (v4hi);
v8qi __builtin_vis_fpack32 (v2si, v8qi);
v2hi __builtin_vis_fpackfix (v2si);
v8qi __builtin_vis_fpmerge (v4qi, v4qi);

int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);

long __builtin_vis_edge8 (void *, void *);
long __builtin_vis_edge8l (void *, void *);
long __builtin_vis_edge16 (void *, void *);
long __builtin_vis_edge16l (void *, void *);
long __builtin_vis_edge32 (void *, void *);
long __builtin_vis_edge32l (void *, void *);

long __builtin_vis_fcmple16 (v4hi, v4hi);
long __builtin_vis_fcmple32 (v2si, v2si);
long __builtin_vis_fcmpne16 (v4hi, v4hi);
long __builtin_vis_fcmpne32 (v2si, v2si);
long __builtin_vis_fcmpgt16 (v4hi, v4hi);
long __builtin_vis_fcmpgt32 (v2si, v2si);
long __builtin_vis_fcmpeq16 (v4hi, v4hi);
long __builtin_vis_fcmpeq32 (v2si, v2si);

v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
v2si __builtin_vis_fpadd32 (v2si, v2si);
v1si __builtin_vis_fpadd32s (v1si, v1si);
v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
v2si __builtin_vis_fpsub32 (v2si, v2si);
v1si __builtin_vis_fpsub32s (v1si, v1si);

long __builtin_vis_array8 (long, long);
long __builtin_vis_array16 (long, long);
long __builtin_vis_array32 (long, long);
@end smallexample

When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
functions also become available:

@smallexample
long __builtin_vis_bmask (long, long);
int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
v2si __builtin_vis_bshufflev2si (v2si, v2si);
v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);

long __builtin_vis_edge8n (void *, void *);
long __builtin_vis_edge8ln (void *, void *);
long __builtin_vis_edge16n (void *, void *);
long __builtin_vis_edge16ln (void *, void *);
long __builtin_vis_edge32n (void *, void *);
long __builtin_vis_edge32ln (void *, void *);
@end smallexample

When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
functions also become available:

@smallexample
void __builtin_vis_cmask8 (long);
void __builtin_vis_cmask16 (long);
void __builtin_vis_cmask32 (long);

v4hi __builtin_vis_fchksm16 (v4hi, v4hi);

v4hi __builtin_vis_fsll16 (v4hi, v4hi);
v4hi __builtin_vis_fslas16 (v4hi, v4hi);
v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
v4hi __builtin_vis_fsra16 (v4hi, v4hi);
v2si __builtin_vis_fsll16 (v2si, v2si);
v2si __builtin_vis_fslas16 (v2si, v2si);
v2si __builtin_vis_fsrl16 (v2si, v2si);
v2si __builtin_vis_fsra16 (v2si, v2si);

long __builtin_vis_pdistn (v8qi, v8qi);

v4hi __builtin_vis_fmean16 (v4hi, v4hi);

int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
int64_t __builtin_vis_fpsub64 (int64_t, int64_t);

v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
v2si __builtin_vis_fpadds32 (v2si, v2si);
v1si __builtin_vis_fpadds32s (v1si, v1si);
v2si __builtin_vis_fpsubs32 (v2si, v2si);
v1si __builtin_vis_fpsubs32s (v1si, v1si);

long __builtin_vis_fucmple8 (v8qi, v8qi);
long __builtin_vis_fucmpne8 (v8qi, v8qi);
long __builtin_vis_fucmpgt8 (v8qi, v8qi);
long __builtin_vis_fucmpeq8 (v8qi, v8qi);

float __builtin_vis_fhadds (float, float);
double __builtin_vis_fhaddd (double, double);
float __builtin_vis_fhsubs (float, float);
double __builtin_vis_fhsubd (double, double);
float __builtin_vis_fnhadds (float, float);
double __builtin_vis_fnhaddd (double, double);

int64_t __builtin_vis_umulxhi (int64_t, int64_t);
int64_t __builtin_vis_xmulx (int64_t, int64_t);
int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
@end smallexample

When you use the @option{-mvis4} switch, the VIS version 4.0 built-in
functions also become available:

@smallexample
v8qi __builtin_vis_fpadd8 (v8qi, v8qi);
v8qi __builtin_vis_fpadds8 (v8qi, v8qi);
v8qi __builtin_vis_fpaddus8 (v8qi, v8qi);
v4hi __builtin_vis_fpaddus16 (v4hi, v4hi);

v8qi __builtin_vis_fpsub8 (v8qi, v8qi);
v8qi __builtin_vis_fpsubs8 (v8qi, v8qi);
v8qi __builtin_vis_fpsubus8 (v8qi, v8qi);
v4hi __builtin_vis_fpsubus16 (v4hi, v4hi);

long __builtin_vis_fpcmple8 (v8qi, v8qi);
long __builtin_vis_fpcmpgt8 (v8qi, v8qi);
long __builtin_vis_fpcmpule16 (v4hi, v4hi);
long __builtin_vis_fpcmpugt16 (v4hi, v4hi);
long __builtin_vis_fpcmpule32 (v2si, v2si);
long __builtin_vis_fpcmpugt32 (v2si, v2si);

v8qi __builtin_vis_fpmax8 (v8qi, v8qi);
v4hi __builtin_vis_fpmax16 (v4hi, v4hi);
v2si __builtin_vis_fpmax32 (v2si, v2si);

v8qi __builtin_vis_fpmaxu8 (v8qi, v8qi);
v4hi __builtin_vis_fpmaxu16 (v4hi, v4hi);
v2si __builtin_vis_fpmaxu32 (v2si, v2si);

v8qi __builtin_vis_fpmin8 (v8qi, v8qi);
v4hi __builtin_vis_fpmin16 (v4hi, v4hi);
v2si __builtin_vis_fpmin32 (v2si, v2si);

v8qi __builtin_vis_fpminu8 (v8qi, v8qi);
v4hi __builtin_vis_fpminu16 (v4hi, v4hi);
v2si __builtin_vis_fpminu32 (v2si, v2si);
@end smallexample

When you use the @option{-mvis4b} switch, the VIS version 4.0B
built-in functions also become available:

@smallexample
v8qi __builtin_vis_dictunpack8 (double, int);
v4hi __builtin_vis_dictunpack16 (double, int);
v2si __builtin_vis_dictunpack32 (double, int);

long __builtin_vis_fpcmple8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpgt8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpeq8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpne8shl (v8qi, v8qi, int);

long __builtin_vis_fpcmple16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpgt16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpeq16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpne16shl (v4hi, v4hi, int);

long __builtin_vis_fpcmple32shl (v2si, v2si, int);
long __builtin_vis_fpcmpgt32shl (v2si, v2si, int);
long __builtin_vis_fpcmpeq32shl (v2si, v2si, int);
long __builtin_vis_fpcmpne32shl (v2si, v2si, int);

long __builtin_vis_fpcmpule8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpugt8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpule16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpugt16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpule32shl (v2si, v2si, int);
long __builtin_vis_fpcmpugt32shl (v2si, v2si, int);

long __builtin_vis_fpcmpde8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpde16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpde32shl (v2si, v2si, int);

long __builtin_vis_fpcmpur8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpur16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpur32shl (v2si, v2si, int);
@end smallexample

@node TI C6X Built-in Functions
@subsection TI C6X Built-in Functions

GCC provides intrinsics to access certain instructions of the TI C6X
processors.  These intrinsics, listed below, are available after
inclusion of the @code{c6x_intrinsics.h} header file.  They map directly
to C6X instructions.

@smallexample
int _sadd (int, int);
int _ssub (int, int);
int _sadd2 (int, int);
int _ssub2 (int, int);
long long _mpy2 (int, int);
long long _smpy2 (int, int);
int _add4 (int, int);
int _sub4 (int, int);
int _saddu4 (int, int);

int _smpy (int, int);
int _smpyh (int, int);
int _smpyhl (int, int);
int _smpylh (int, int);

int _sshl (int, int);
int _subc (int, int);

int _avg2 (int, int);
int _avgu4 (int, int);

int _clrr (int, int);
int _extr (int, int);
int _extru (int, int);
int _abs (int);
int _abs2 (int);
@end smallexample

@node x86 Built-in Functions
@subsection x86 Built-in Functions

These built-in functions are available for the x86-32 and x86-64 family
of computers, depending on the command-line switches used.

If you specify command-line switches such as @option{-msse},
the compiler could use the extended instruction sets even if the built-ins
are not used explicitly in the program.  For this reason, applications
that perform run-time CPU detection must compile separate files for each
supported architecture, using the appropriate flags.  In particular,
the file containing the CPU detection code should be compiled without
these options.

The following machine modes are available for use with MMX built-in functions
(@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
@code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
vector of eight 8-bit integers.  Some of the built-in functions operate on
MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.

If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
of two 32-bit floating-point values.

If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
floating-point values.  Some instructions use a vector of four 32-bit
integers, these use @code{V4SI}.  Finally, some instructions operate on an
entire vector register, interpreting it as a 128-bit integer, these use mode
@code{TI}.

The x86-32 and x86-64 family of processors use additional built-in
functions for efficient use of @code{TF} (@code{__float128}) 128-bit
floating point and @code{TC} 128-bit complex floating-point values.

The following floating-point built-in functions are always available.  All
of them implement the function that is part of the name.

@smallexample
__float128 __builtin_fabsq (__float128)
__float128 __builtin_copysignq (__float128, __float128)
@end smallexample

The following built-in functions are always available.

@table @code
@item __float128 __builtin_infq (void)
Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
@findex __builtin_infq

@item __float128 __builtin_huge_valq (void)
Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
@findex __builtin_huge_valq

@item __float128 __builtin_nanq (void)
Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
@findex __builtin_nanq

@item __float128 __builtin_nansq (void)
Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
@findex __builtin_nansq
@end table

The following built-in function is always available.

@table @code
@item void __builtin_ia32_pause (void)
Generates the @code{pause} machine instruction with a compiler memory
barrier.
@end table

The following built-in functions are always available and can be used to
check the target platform type.

@deftypefn {Built-in Function} void __builtin_cpu_init (void)
This function runs the CPU detection code to check the type of CPU and the
features supported.  This built-in function needs to be invoked along with the built-in functions
to check CPU type and features, @code{__builtin_cpu_is} and
@code{__builtin_cpu_supports}, only when used in a function that is
executed before any constructors are called.  The CPU detection code is
automatically executed in a very high priority constructor.

For example, this function has to be used in @code{ifunc} resolvers that
check for CPU type using the built-in functions @code{__builtin_cpu_is}
and @code{__builtin_cpu_supports}, or in constructors on targets that
don't support constructor priority.
@smallexample

static void (*resolve_memcpy (void)) (void)
@{
  // ifunc resolvers fire before constructors, explicitly call the init
  // function.
  __builtin_cpu_init ();
  if (__builtin_cpu_supports ("ssse3"))
    return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
  else
    return default_memcpy;
@}

void *memcpy (void *, const void *, size_t)
     __attribute__ ((ifunc ("resolve_memcpy")));
@end smallexample

@end deftypefn

@deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
This function returns a positive integer if the run-time CPU
is of type @var{cpuname}
and returns @code{0} otherwise. The following CPU names can be detected:

@table @samp
@item amd
AMD CPU.

@item intel
Intel CPU.

@item atom
Intel Atom CPU.

@item slm
Intel Silvermont CPU.

@item core2
Intel Core 2 CPU.

@item corei7
Intel Core i7 CPU.

@item nehalem
Intel Core i7 Nehalem CPU.

@item westmere
Intel Core i7 Westmere CPU.

@item sandybridge
Intel Core i7 Sandy Bridge CPU.

@item ivybridge
Intel Core i7 Ivy Bridge CPU.

@item haswell
Intel Core i7 Haswell CPU.

@item broadwell
Intel Core i7 Broadwell CPU.

@item skylake
Intel Core i7 Skylake CPU.

@item skylake-avx512
Intel Core i7 Skylake AVX512 CPU.

@item cannonlake
Intel Core i7 Cannon Lake CPU.

@item icelake-client
Intel Core i7 Ice Lake Client CPU.

@item icelake-server
Intel Core i7 Ice Lake Server CPU.

@item cascadelake
Intel Core i7 Cascadelake CPU.

@item tigerlake
Intel Core i7 Tigerlake CPU.

@item cooperlake
Intel Core i7 Cooperlake CPU.

@item sapphirerapids
Intel Core i7 sapphirerapids CPU.

@item alderlake
Intel Core i7 Alderlake CPU.

@item rocketlake
Intel Core i7 Rocketlake CPU.

@item bonnell
Intel Atom Bonnell CPU.

@item silvermont
Intel Atom Silvermont CPU.

@item goldmont
Intel Atom Goldmont CPU.

@item goldmont-plus
Intel Atom Goldmont Plus CPU.

@item tremont
Intel Atom Tremont CPU.

@item knl
Intel Knights Landing CPU.

@item knm
Intel Knights Mill CPU.

@item lujiazui
ZHAOXIN lujiazui CPU.

@item amdfam10h
AMD Family 10h CPU.

@item barcelona
AMD Family 10h Barcelona CPU.

@item shanghai
AMD Family 10h Shanghai CPU.

@item istanbul
AMD Family 10h Istanbul CPU.

@item btver1
AMD Family 14h CPU.

@item amdfam15h
AMD Family 15h CPU.

@item bdver1
AMD Family 15h Bulldozer version 1.

@item bdver2
AMD Family 15h Bulldozer version 2.

@item bdver3
AMD Family 15h Bulldozer version 3.

@item bdver4
AMD Family 15h Bulldozer version 4.

@item btver2
AMD Family 16h CPU.

@item amdfam17h
AMD Family 17h CPU.

@item znver1
AMD Family 17h Zen version 1.

@item znver2
AMD Family 17h Zen version 2.

@item amdfam19h
AMD Family 19h CPU.

@item znver3
AMD Family 19h Zen version 3.

@item znver4
AMD Family 19h Zen version 4.

@item x86-64
Baseline x86-64 microarchitecture level (as defined in x86-64 psABI).

@item x86-64-v2
x86-64-v2 microarchitecture level.

@item x86-64-v3
x86-64-v3 microarchitecture level.

@item x86-64-v4
x86-64-v4 microarchitecture level.
@end table

Here is an example:
@smallexample
if (__builtin_cpu_is ("corei7"))
  @{
     do_corei7 (); // Core i7 specific implementation.
  @}
else
  @{
     do_generic (); // Generic implementation.
  @}
@end smallexample
@end deftypefn

@deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
This function returns a positive integer if the run-time CPU
supports @var{feature}
and returns @code{0} otherwise. The following features can be detected:

@table @samp
@item cmov
CMOV instruction.
@item mmx
MMX instructions.
@item popcnt
POPCNT instruction.
@item sse
SSE instructions.
@item sse2
SSE2 instructions.
@item sse3
SSE3 instructions.
@item ssse3
SSSE3 instructions.
@item sse4.1
SSE4.1 instructions.
@item sse4.2
SSE4.2 instructions.
@item avx
AVX instructions.
@item avx2
AVX2 instructions.
@item sse4a
SSE4A instructions.
@item fma4
FMA4 instructions.
@item xop
XOP instructions.
@item fma
FMA instructions.
@item avx512f
AVX512F instructions.
@item bmi
BMI instructions.
@item bmi2
BMI2 instructions.
@item aes
AES instructions.
@item pclmul
PCLMUL instructions.
@item avx512vl
AVX512VL instructions.
@item avx512bw
AVX512BW instructions.
@item avx512dq
AVX512DQ instructions.
@item avx512cd
AVX512CD instructions.
@item avx512er
AVX512ER instructions.
@item avx512pf
AVX512PF instructions.
@item avx512vbmi
AVX512VBMI instructions.
@item avx512ifma
AVX512IFMA instructions.
@item avx5124vnniw
AVX5124VNNIW instructions.
@item avx5124fmaps
AVX5124FMAPS instructions.
@item avx512vpopcntdq
AVX512VPOPCNTDQ instructions.
@item avx512vbmi2
AVX512VBMI2 instructions.
@item gfni
GFNI instructions.
@item vpclmulqdq
VPCLMULQDQ instructions.
@item avx512vnni
AVX512VNNI instructions.
@item avx512bitalg
AVX512BITALG instructions.
@end table

Here is an example:
@smallexample
if (__builtin_cpu_supports ("popcnt"))
  @{
     asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
  @}
else
  @{
     count = generic_countbits (n); //generic implementation.
  @}
@end smallexample
@end deftypefn

The following built-in functions are made available by @option{-mmmx}.
All of them generate the machine instruction that is part of the name.

@smallexample
v8qi __builtin_ia32_paddb (v8qi, v8qi);
v4hi __builtin_ia32_paddw (v4hi, v4hi);
v2si __builtin_ia32_paddd (v2si, v2si);
v8qi __builtin_ia32_psubb (v8qi, v8qi);
v4hi __builtin_ia32_psubw (v4hi, v4hi);
v2si __builtin_ia32_psubd (v2si, v2si);
v8qi __builtin_ia32_paddsb (v8qi, v8qi);
v4hi __builtin_ia32_paddsw (v4hi, v4hi);
v8qi __builtin_ia32_psubsb (v8qi, v8qi);
v4hi __builtin_ia32_psubsw (v4hi, v4hi);
v8qi __builtin_ia32_paddusb (v8qi, v8qi);
v4hi __builtin_ia32_paddusw (v4hi, v4hi);
v8qi __builtin_ia32_psubusb (v8qi, v8qi);
v4hi __builtin_ia32_psubusw (v4hi, v4hi);
v4hi __builtin_ia32_pmullw (v4hi, v4hi);
v4hi __builtin_ia32_pmulhw (v4hi, v4hi);
di __builtin_ia32_pand (di, di);
di __builtin_ia32_pandn (di,di);
di __builtin_ia32_por (di, di);
di __builtin_ia32_pxor (di, di);
v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi);
v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi);
v2si __builtin_ia32_pcmpeqd (v2si, v2si);
v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi);
v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi);
v2si __builtin_ia32_pcmpgtd (v2si, v2si);
v8qi __builtin_ia32_punpckhbw (v8qi, v8qi);
v4hi __builtin_ia32_punpckhwd (v4hi, v4hi);
v2si __builtin_ia32_punpckhdq (v2si, v2si);
v8qi __builtin_ia32_punpcklbw (v8qi, v8qi);
v4hi __builtin_ia32_punpcklwd (v4hi, v4hi);
v2si __builtin_ia32_punpckldq (v2si, v2si);
v8qi __builtin_ia32_packsswb (v4hi, v4hi);
v4hi __builtin_ia32_packssdw (v2si, v2si);
v8qi __builtin_ia32_packuswb (v4hi, v4hi);

v4hi __builtin_ia32_psllw (v4hi, v4hi);
v2si __builtin_ia32_pslld (v2si, v2si);
v1di __builtin_ia32_psllq (v1di, v1di);
v4hi __builtin_ia32_psrlw (v4hi, v4hi);
v2si __builtin_ia32_psrld (v2si, v2si);
v1di __builtin_ia32_psrlq (v1di, v1di);
v4hi __builtin_ia32_psraw (v4hi, v4hi);
v2si __builtin_ia32_psrad (v2si, v2si);
v4hi __builtin_ia32_psllwi (v4hi, int);
v2si __builtin_ia32_pslldi (v2si, int);
v1di __builtin_ia32_psllqi (v1di, int);
v4hi __builtin_ia32_psrlwi (v4hi, int);
v2si __builtin_ia32_psrldi (v2si, int);
v1di __builtin_ia32_psrlqi (v1di, int);
v4hi __builtin_ia32_psrawi (v4hi, int);
v2si __builtin_ia32_psradi (v2si, int);
@end smallexample

The following built-in functions are made available either with
@option{-msse}, or with @option{-m3dnowa}.  All of them generate
the machine instruction that is part of the name.

@smallexample
v4hi __builtin_ia32_pmulhuw (v4hi, v4hi);
v8qi __builtin_ia32_pavgb (v8qi, v8qi);
v4hi __builtin_ia32_pavgw (v4hi, v4hi);
v1di __builtin_ia32_psadbw (v8qi, v8qi);
v8qi __builtin_ia32_pmaxub (v8qi, v8qi);
v4hi __builtin_ia32_pmaxsw (v4hi, v4hi);
v8qi __builtin_ia32_pminub (v8qi, v8qi);
v4hi __builtin_ia32_pminsw (v4hi, v4hi);
int __builtin_ia32_pmovmskb (v8qi);
void __builtin_ia32_maskmovq (v8qi, v8qi, char *);
void __builtin_ia32_movntq (di *, di);
void __builtin_ia32_sfence (void);
@end smallexample

The following built-in functions are available when @option{-msse} is used.
All of them generate the machine instruction that is part of the name.

@smallexample
int __builtin_ia32_comieq (v4sf, v4sf);
int __builtin_ia32_comineq (v4sf, v4sf);
int __builtin_ia32_comilt (v4sf, v4sf);
int __builtin_ia32_comile (v4sf, v4sf);
int __builtin_ia32_comigt (v4sf, v4sf);
int __builtin_ia32_comige (v4sf, v4sf);
int __builtin_ia32_ucomieq (v4sf, v4sf);
int __builtin_ia32_ucomineq (v4sf, v4sf);
int __builtin_ia32_ucomilt (v4sf, v4sf);
int __builtin_ia32_ucomile (v4sf, v4sf);
int __builtin_ia32_ucomigt (v4sf, v4sf);
int __builtin_ia32_ucomige (v4sf, v4sf);
v4sf __builtin_ia32_addps (v4sf, v4sf);
v4sf __builtin_ia32_subps (v4sf, v4sf);
v4sf __builtin_ia32_mulps (v4sf, v4sf);
v4sf __builtin_ia32_divps (v4sf, v4sf);
v4sf __builtin_ia32_addss (v4sf, v4sf);
v4sf __builtin_ia32_subss (v4sf, v4sf);
v4sf __builtin_ia32_mulss (v4sf, v4sf);
v4sf __builtin_ia32_divss (v4sf, v4sf);
v4sf __builtin_ia32_cmpeqps (v4sf, v4sf);
v4sf __builtin_ia32_cmpltps (v4sf, v4sf);
v4sf __builtin_ia32_cmpleps (v4sf, v4sf);
v4sf __builtin_ia32_cmpgtps (v4sf, v4sf);
v4sf __builtin_ia32_cmpgeps (v4sf, v4sf);
v4sf __builtin_ia32_cmpunordps (v4sf, v4sf);
v4sf __builtin_ia32_cmpneqps (v4sf, v4sf);
v4sf __builtin_ia32_cmpnltps (v4sf, v4sf);
v4sf __builtin_ia32_cmpnleps (v4sf, v4sf);
v4sf __builtin_ia32_cmpngtps (v4sf, v4sf);
v4sf __builtin_ia32_cmpngeps (v4sf, v4sf);
v4sf __builtin_ia32_cmpordps (v4sf, v4sf);
v4sf __builtin_ia32_cmpeqss (v4sf, v4sf);
v4sf __builtin_ia32_cmpltss (v4sf, v4sf);
v4sf __builtin_ia32_cmpless (v4sf, v4sf);
v4sf __builtin_ia32_cmpunordss (v4sf, v4sf);
v4sf __builtin_ia32_cmpneqss (v4sf, v4sf);
v4sf __builtin_ia32_cmpnltss (v4sf, v4sf);
v4sf __builtin_ia32_cmpnless (v4sf, v4sf);
v4sf __builtin_ia32_cmpordss (v4sf, v4sf);
v4sf __builtin_ia32_maxps (v4sf, v4sf);
v4sf __builtin_ia32_maxss (v4sf, v4sf);
v4sf __builtin_ia32_minps (v4sf, v4sf);
v4sf __builtin_ia32_minss (v4sf, v4sf);
v4sf __builtin_ia32_andps (v4sf, v4sf);
v4sf __builtin_ia32_andnps (v4sf, v4sf);
v4sf __builtin_ia32_orps (v4sf, v4sf);
v4sf __builtin_ia32_xorps (v4sf, v4sf);
v4sf __builtin_ia32_movss (v4sf, v4sf);
v4sf __builtin_ia32_movhlps (v4sf, v4sf);
v4sf __builtin_ia32_movlhps (v4sf, v4sf);
v4sf __builtin_ia32_unpckhps (v4sf, v4sf);
v4sf __builtin_ia32_unpcklps (v4sf, v4sf);
v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si);
v4sf __builtin_ia32_cvtsi2ss (v4sf, int);
v2si __builtin_ia32_cvtps2pi (v4sf);
int __builtin_ia32_cvtss2si (v4sf);
v2si __builtin_ia32_cvttps2pi (v4sf);
int __builtin_ia32_cvttss2si (v4sf);
v4sf __builtin_ia32_rcpps (v4sf);
v4sf __builtin_ia32_rsqrtps (v4sf);
v4sf __builtin_ia32_sqrtps (v4sf);
v4sf __builtin_ia32_rcpss (v4sf);
v4sf __builtin_ia32_rsqrtss (v4sf);
v4sf __builtin_ia32_sqrtss (v4sf);
v4sf __builtin_ia32_shufps (v4sf, v4sf, int);
void __builtin_ia32_movntps (float *, v4sf);
int __builtin_ia32_movmskps (v4sf);
@end smallexample

The following built-in functions are available when @option{-msse} is used.

@table @code
@item v4sf __builtin_ia32_loadups (float *)
Generates the @code{movups} machine instruction as a load from memory.
@item void __builtin_ia32_storeups (float *, v4sf)
Generates the @code{movups} machine instruction as a store to memory.
@item v4sf __builtin_ia32_loadss (float *)
Generates the @code{movss} machine instruction as a load from memory.
@item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
Generates the @code{movhps} machine instruction as a load from memory.
@item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
Generates the @code{movlps} machine instruction as a load from memory
@item void __builtin_ia32_storehps (v2sf *, v4sf)
Generates the @code{movhps} machine instruction as a store to memory.
@item void __builtin_ia32_storelps (v2sf *, v4sf)
Generates the @code{movlps} machine instruction as a store to memory.
@end table

The following built-in functions are available when @option{-msse2} is used.
All of them generate the machine instruction that is part of the name.

@smallexample
int __builtin_ia32_comisdeq (v2df, v2df);
int __builtin_ia32_comisdlt (v2df, v2df);
int __builtin_ia32_comisdle (v2df, v2df);
int __builtin_ia32_comisdgt (v2df, v2df);
int __builtin_ia32_comisdge (v2df, v2df);
int __builtin_ia32_comisdneq (v2df, v2df);
int __builtin_ia32_ucomisdeq (v2df, v2df);
int __builtin_ia32_ucomisdlt (v2df, v2df);
int __builtin_ia32_ucomisdle (v2df, v2df);
int __builtin_ia32_ucomisdgt (v2df, v2df);
int __builtin_ia32_ucomisdge (v2df, v2df);
int __builtin_ia32_ucomisdneq (v2df, v2df);
v2df __builtin_ia32_cmpeqpd (v2df, v2df);
v2df __builtin_ia32_cmpltpd (v2df, v2df);
v2df __builtin_ia32_cmplepd (v2df, v2df);
v2df __builtin_ia32_cmpgtpd (v2df, v2df);
v2df __builtin_ia32_cmpgepd (v2df, v2df);
v2df __builtin_ia32_cmpunordpd (v2df, v2df);
v2df __builtin_ia32_cmpneqpd (v2df, v2df);
v2df __builtin_ia32_cmpnltpd (v2df, v2df);
v2df __builtin_ia32_cmpnlepd (v2df, v2df);
v2df __builtin_ia32_cmpngtpd (v2df, v2df);
v2df __builtin_ia32_cmpngepd (v2df, v2df);
v2df __builtin_ia32_cmpordpd (v2df, v2df);
v2df __builtin_ia32_cmpeqsd (v2df, v2df);
v2df __builtin_ia32_cmpltsd (v2df, v2df);
v2df __builtin_ia32_cmplesd (v2df, v2df);
v2df __builtin_ia32_cmpunordsd (v2df, v2df);
v2df __builtin_ia32_cmpneqsd (v2df, v2df);
v2df __builtin_ia32_cmpnltsd (v2df, v2df);
v2df __builtin_ia32_cmpnlesd (v2df, v2df);
v2df __builtin_ia32_cmpordsd (v2df, v2df);
v2di __builtin_ia32_paddq (v2di, v2di);
v2di __builtin_ia32_psubq (v2di, v2di);
v2df __builtin_ia32_addpd (v2df, v2df);
v2df __builtin_ia32_subpd (v2df, v2df);
v2df __builtin_ia32_mulpd (v2df, v2df);
v2df __builtin_ia32_divpd (v2df, v2df);
v2df __builtin_ia32_addsd (v2df, v2df);
v2df __builtin_ia32_subsd (v2df, v2df);
v2df __builtin_ia32_mulsd (v2df, v2df);
v2df __builtin_ia32_divsd (v2df, v2df);
v2df __builtin_ia32_minpd (v2df, v2df);
v2df __builtin_ia32_maxpd (v2df, v2df);
v2df __builtin_ia32_minsd (v2df, v2df);
v2df __builtin_ia32_maxsd (v2df, v2df);
v2df __builtin_ia32_andpd (v2df, v2df);
v2df __builtin_ia32_andnpd (v2df, v2df);
v2df __builtin_ia32_orpd (v2df, v2df);
v2df __builtin_ia32_xorpd (v2df, v2df);
v2df __builtin_ia32_movsd (v2df, v2df);
v2df __builtin_ia32_unpckhpd (v2df, v2df);
v2df __builtin_ia32_unpcklpd (v2df, v2df);
v16qi __builtin_ia32_paddb128 (v16qi, v16qi);
v8hi __builtin_ia32_paddw128 (v8hi, v8hi);
v4si __builtin_ia32_paddd128 (v4si, v4si);
v2di __builtin_ia32_paddq128 (v2di, v2di);
v16qi __builtin_ia32_psubb128 (v16qi, v16qi);
v8hi __builtin_ia32_psubw128 (v8hi, v8hi);
v4si __builtin_ia32_psubd128 (v4si, v4si);
v2di __builtin_ia32_psubq128 (v2di, v2di);
v8hi __builtin_ia32_pmullw128 (v8hi, v8hi);
v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi);
v2di __builtin_ia32_pand128 (v2di, v2di);
v2di __builtin_ia32_pandn128 (v2di, v2di);
v2di __builtin_ia32_por128 (v2di, v2di);
v2di __builtin_ia32_pxor128 (v2di, v2di);
v16qi __builtin_ia32_pavgb128 (v16qi, v16qi);
v8hi __builtin_ia32_pavgw128 (v8hi, v8hi);
v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi);
v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi);
v4si __builtin_ia32_pcmpeqd128 (v4si, v4si);
v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi);
v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi);
v4si __builtin_ia32_pcmpgtd128 (v4si, v4si);
v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi);
v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi);
v16qi __builtin_ia32_pminub128 (v16qi, v16qi);
v8hi __builtin_ia32_pminsw128 (v8hi, v8hi);
v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi);
v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi);
v4si __builtin_ia32_punpckhdq128 (v4si, v4si);
v2di __builtin_ia32_punpckhqdq128 (v2di, v2di);
v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi);
v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi);
v4si __builtin_ia32_punpckldq128 (v4si, v4si);
v2di __builtin_ia32_punpcklqdq128 (v2di, v2di);
v16qi __builtin_ia32_packsswb128 (v8hi, v8hi);
v8hi __builtin_ia32_packssdw128 (v4si, v4si);
v16qi __builtin_ia32_packuswb128 (v8hi, v8hi);
v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi);
void __builtin_ia32_maskmovdqu (v16qi, v16qi);
v2df __builtin_ia32_loadupd (double *);
void __builtin_ia32_storeupd (double *, v2df);
v2df __builtin_ia32_loadhpd (v2df, double const *);
v2df __builtin_ia32_loadlpd (v2df, double const *);
int __builtin_ia32_movmskpd (v2df);
int __builtin_ia32_pmovmskb128 (v16qi);
void __builtin_ia32_movnti (int *, int);
void __builtin_ia32_movnti64 (long long int *, long long int);
void __builtin_ia32_movntpd (double *, v2df);
void __builtin_ia32_movntdq (v2df *, v2df);
v4si __builtin_ia32_pshufd (v4si, int);
v8hi __builtin_ia32_pshuflw (v8hi, int);
v8hi __builtin_ia32_pshufhw (v8hi, int);
v2di __builtin_ia32_psadbw128 (v16qi, v16qi);
v2df __builtin_ia32_sqrtpd (v2df);
v2df __builtin_ia32_sqrtsd (v2df);
v2df __builtin_ia32_shufpd (v2df, v2df, int);
v2df __builtin_ia32_cvtdq2pd (v4si);
v4sf __builtin_ia32_cvtdq2ps (v4si);
v4si __builtin_ia32_cvtpd2dq (v2df);
v2si __builtin_ia32_cvtpd2pi (v2df);
v4sf __builtin_ia32_cvtpd2ps (v2df);
v4si __builtin_ia32_cvttpd2dq (v2df);
v2si __builtin_ia32_cvttpd2pi (v2df);
v2df __builtin_ia32_cvtpi2pd (v2si);
int __builtin_ia32_cvtsd2si (v2df);
int __builtin_ia32_cvttsd2si (v2df);
long long __builtin_ia32_cvtsd2si64 (v2df);
long long __builtin_ia32_cvttsd2si64 (v2df);
v4si __builtin_ia32_cvtps2dq (v4sf);
v2df __builtin_ia32_cvtps2pd (v4sf);
v4si __builtin_ia32_cvttps2dq (v4sf);
v2df __builtin_ia32_cvtsi2sd (v2df, int);
v2df __builtin_ia32_cvtsi642sd (v2df, long long);
v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df);
v2df __builtin_ia32_cvtss2sd (v2df, v4sf);
void __builtin_ia32_clflush (const void *);
void __builtin_ia32_lfence (void);
void __builtin_ia32_mfence (void);
v16qi __builtin_ia32_loaddqu (const char *);
void __builtin_ia32_storedqu (char *, v16qi);
v1di __builtin_ia32_pmuludq (v2si, v2si);
v2di __builtin_ia32_pmuludq128 (v4si, v4si);
v8hi __builtin_ia32_psllw128 (v8hi, v8hi);
v4si __builtin_ia32_pslld128 (v4si, v4si);
v2di __builtin_ia32_psllq128 (v2di, v2di);
v8hi __builtin_ia32_psrlw128 (v8hi, v8hi);
v4si __builtin_ia32_psrld128 (v4si, v4si);
v2di __builtin_ia32_psrlq128 (v2di, v2di);
v8hi __builtin_ia32_psraw128 (v8hi, v8hi);
v4si __builtin_ia32_psrad128 (v4si, v4si);
v2di __builtin_ia32_pslldqi128 (v2di, int);
v8hi __builtin_ia32_psllwi128 (v8hi, int);
v4si __builtin_ia32_pslldi128 (v4si, int);
v2di __builtin_ia32_psllqi128 (v2di, int);
v2di __builtin_ia32_psrldqi128 (v2di, int);
v8hi __builtin_ia32_psrlwi128 (v8hi, int);
v4si __builtin_ia32_psrldi128 (v4si, int);
v2di __builtin_ia32_psrlqi128 (v2di, int);
v8hi __builtin_ia32_psrawi128 (v8hi, int);
v4si __builtin_ia32_psradi128 (v4si, int);
v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi);
v2di __builtin_ia32_movq128 (v2di);
@end smallexample

The following built-in functions are available when @option{-msse3} is used.
All of them generate the machine instruction that is part of the name.

@smallexample
v2df __builtin_ia32_addsubpd (v2df, v2df);
v4sf __builtin_ia32_addsubps (v4sf, v4sf);
v2df __builtin_ia32_haddpd (v2df, v2df);
v4sf __builtin_ia32_haddps (v4sf, v4sf);
v2df __builtin_ia32_hsubpd (v2df, v2df);
v4sf __builtin_ia32_hsubps (v4sf, v4sf);
v16qi __builtin_ia32_lddqu (char const *);
void __builtin_ia32_monitor (void *, unsigned int, unsigned int);
v4sf __builtin_ia32_movshdup (v4sf);
v4sf __builtin_ia32_movsldup (v4sf);
void __builtin_ia32_mwait (unsigned int, unsigned int);
@end smallexample

The following built-in functions are available when @option{-mssse3} is used.
All of them generate the machine instruction that is part of the name.

@smallexample
v2si __builtin_ia32_phaddd (v2si, v2si);
v4hi __builtin_ia32_phaddw (v4hi, v4hi);
v4hi __builtin_ia32_phaddsw (v4hi, v4hi);
v2si __builtin_ia32_phsubd (v2si, v2si);
v4hi __builtin_ia32_phsubw (v4hi, v4hi);
v4hi __builtin_ia32_phsubsw (v4hi, v4hi);
v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi);
v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi);
v8qi __builtin_ia32_pshufb (v8qi, v8qi);
v8qi __builtin_ia32_psignb (v8qi, v8qi);
v2si __builtin_ia32_psignd (v2si, v2si);
v4hi __builtin_ia32_psignw (v4hi, v4hi);
v1di __builtin_ia32_palignr (v1di, v1di, int);
v8qi __builtin_ia32_pabsb (v8qi);
v2si __builtin_ia32_pabsd (v2si);
v4hi __builtin_ia32_pabsw (v4hi);
@end smallexample

The following built-in functions are available when @option{-mssse3} is used.
All of them generate the machine instruction that is part of the name.

@smallexample
v4si __builtin_ia32_phaddd128 (v4si, v4si);
v8hi __builtin_ia32_phaddw128 (v8hi, v8hi);
v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi);
v4si __builtin_ia32_phsubd128 (v4si, v4si);
v8hi __builtin_ia32_phsubw128 (v8hi, v8hi);
v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi);
v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi);
v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi);
v16qi __builtin_ia32_pshufb128 (v16qi, v16qi);
v16qi __builtin_ia32_psignb128 (v16qi, v16qi);
v4si __builtin_ia32_psignd128 (v4si, v4si);
v8hi __builtin_ia32_psignw128 (v8hi, v8hi);
v2di __builtin_ia32_palignr128 (v2di, v2di, int);
v16qi __builtin_ia32_pabsb128 (v16qi);
v4si __builtin_ia32_pabsd128 (v4si);
v8hi __builtin_ia32_pabsw128 (v8hi);
@end smallexample

The following built-in functions are available when @option{-msse4.1} is
used.  All of them generate the machine instruction that is part of the
name.

@smallexample
v2df __builtin_ia32_blendpd (v2df, v2df, const int);
v4sf __builtin_ia32_blendps (v4sf, v4sf, const int);
v2df __builtin_ia32_blendvpd (v2df, v2df, v2df);
v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf);
v2df __builtin_ia32_dppd (v2df, v2df, const int);
v4sf __builtin_ia32_dpps (v4sf, v4sf, const int);
v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int);
v2di __builtin_ia32_movntdqa (v2di *);
v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int);
v8hi __builtin_ia32_packusdw128 (v4si, v4si);
v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi);
v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int);
v2di __builtin_ia32_pcmpeqq (v2di, v2di);
v8hi __builtin_ia32_phminposuw128 (v8hi);
v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi);
v4si __builtin_ia32_pmaxsd128 (v4si, v4si);
v4si __builtin_ia32_pmaxud128 (v4si, v4si);
v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi);
v16qi __builtin_ia32_pminsb128 (v16qi, v16qi);
v4si __builtin_ia32_pminsd128 (v4si, v4si);
v4si __builtin_ia32_pminud128 (v4si, v4si);
v8hi __builtin_ia32_pminuw128 (v8hi, v8hi);
v4si __builtin_ia32_pmovsxbd128 (v16qi);
v2di __builtin_ia32_pmovsxbq128 (v16qi);
v8hi __builtin_ia32_pmovsxbw128 (v16qi);
v2di __builtin_ia32_pmovsxdq128 (v4si);
v4si __builtin_ia32_pmovsxwd128 (v8hi);
v2di __builtin_ia32_pmovsxwq128 (v8hi);
v4si __builtin_ia32_pmovzxbd128 (v16qi);
v2di __builtin_ia32_pmovzxbq128 (v16qi);
v8hi __builtin_ia32_pmovzxbw128 (v16qi);
v2di __builtin_ia32_pmovzxdq128 (v4si);
v4si __builtin_ia32_pmovzxwd128 (v8hi);
v2di __builtin_ia32_pmovzxwq128 (v8hi);
v2di __builtin_ia32_pmuldq128 (v4si, v4si);
v4si __builtin_ia32_pmulld128 (v4si, v4si);
int __builtin_ia32_ptestc128 (v2di, v2di);
int __builtin_ia32_ptestnzc128 (v2di, v2di);
int __builtin_ia32_ptestz128 (v2di, v2di);
v2df __builtin_ia32_roundpd (v2df, const int);
v4sf __builtin_ia32_roundps (v4sf, const int);
v2df __builtin_ia32_roundsd (v2df, v2df, const int);
v4sf __builtin_ia32_roundss (v4sf, v4sf, const int);
@end smallexample

The following built-in functions are available when @option{-msse4.1} is
used.

@table @code
@item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
Generates the @code{insertps} machine instruction.
@item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
Generates the @code{pextrb} machine instruction.
@item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
Generates the @code{pinsrb} machine instruction.
@item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
Generates the @code{pinsrd} machine instruction.
@item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
Generates the @code{pinsrq} machine instruction in 64bit mode.
@end table

The following built-in functions are changed to generate new SSE4.1
instructions when @option{-msse4.1} is used.

@table @code
@item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
Generates the @code{extractps} machine instruction.
@item int __builtin_ia32_vec_ext_v4si (v4si, const int)
Generates the @code{pextrd} machine instruction.
@item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
Generates the @code{pextrq} machine instruction in 64bit mode.
@end table

The following built-in functions are available when @option{-msse4.2} is
used.  All of them generate the machine instruction that is part of the
name.

@smallexample
v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int);
int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int);
int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int);
int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int);
int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int);
int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int);
int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int);
v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int);
int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int);
int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int);
int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int);
int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int);
int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int);
int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int);
v2di __builtin_ia32_pcmpgtq (v2di, v2di);
@end smallexample

The following built-in functions are available when @option{-msse4.2} is
used.

@table @code
@item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
Generates the @code{crc32b} machine instruction.
@item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
Generates the @code{crc32w} machine instruction.
@item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
Generates the @code{crc32l} machine instruction.
@item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
Generates the @code{crc32q} machine instruction.
@end table

The following built-in functions are changed to generate new SSE4.2
instructions when @option{-msse4.2} is used.

@table @code
@item int __builtin_popcount (unsigned int)
Generates the @code{popcntl} machine instruction.
@item int __builtin_popcountl (unsigned long)
Generates the @code{popcntl} or @code{popcntq} machine instruction,
depending on the size of @code{unsigned long}.
@item int __builtin_popcountll (unsigned long long)
Generates the @code{popcntq} machine instruction.
@end table

The following built-in functions are available when @option{-mavx} is
used. All of them generate the machine instruction that is part of the
name.

@smallexample
v4df __builtin_ia32_addpd256 (v4df,v4df);
v8sf __builtin_ia32_addps256 (v8sf,v8sf);
v4df __builtin_ia32_addsubpd256 (v4df,v4df);
v8sf __builtin_ia32_addsubps256 (v8sf,v8sf);
v4df __builtin_ia32_andnpd256 (v4df,v4df);
v8sf __builtin_ia32_andnps256 (v8sf,v8sf);
v4df __builtin_ia32_andpd256 (v4df,v4df);
v8sf __builtin_ia32_andps256 (v8sf,v8sf);
v4df __builtin_ia32_blendpd256 (v4df,v4df,int);
v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int);
v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df);
v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf);
v2df __builtin_ia32_cmppd (v2df,v2df,int);
v4df __builtin_ia32_cmppd256 (v4df,v4df,int);
v4sf __builtin_ia32_cmpps (v4sf,v4sf,int);
v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int);
v2df __builtin_ia32_cmpsd (v2df,v2df,int);
v4sf __builtin_ia32_cmpss (v4sf,v4sf,int);
v4df __builtin_ia32_cvtdq2pd256 (v4si);
v8sf __builtin_ia32_cvtdq2ps256 (v8si);
v4si __builtin_ia32_cvtpd2dq256 (v4df);
v4sf __builtin_ia32_cvtpd2ps256 (v4df);
v8si __builtin_ia32_cvtps2dq256 (v8sf);
v4df __builtin_ia32_cvtps2pd256 (v4sf);
v4si __builtin_ia32_cvttpd2dq256 (v4df);
v8si __builtin_ia32_cvttps2dq256 (v8sf);
v4df __builtin_ia32_divpd256 (v4df,v4df);
v8sf __builtin_ia32_divps256 (v8sf,v8sf);
v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int);
v4df __builtin_ia32_haddpd256 (v4df,v4df);
v8sf __builtin_ia32_haddps256 (v8sf,v8sf);
v4df __builtin_ia32_hsubpd256 (v4df,v4df);
v8sf __builtin_ia32_hsubps256 (v8sf,v8sf);
v32qi __builtin_ia32_lddqu256 (pcchar);
v32qi __builtin_ia32_loaddqu256 (pcchar);
v4df __builtin_ia32_loadupd256 (pcdouble);
v8sf __builtin_ia32_loadups256 (pcfloat);
v2df __builtin_ia32_maskloadpd (pcv2df,v2df);
v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df);
v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf);
v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf);
void __builtin_ia32_maskstorepd (pv2df,v2df,v2df);
void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df);
void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf);
void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf);
v4df __builtin_ia32_maxpd256 (v4df,v4df);
v8sf __builtin_ia32_maxps256 (v8sf,v8sf);
v4df __builtin_ia32_minpd256 (v4df,v4df);
v8sf __builtin_ia32_minps256 (v8sf,v8sf);
v4df __builtin_ia32_movddup256 (v4df);
int __builtin_ia32_movmskpd256 (v4df);
int __builtin_ia32_movmskps256 (v8sf);
v8sf __builtin_ia32_movshdup256 (v8sf);
v8sf __builtin_ia32_movsldup256 (v8sf);
v4df __builtin_ia32_mulpd256 (v4df,v4df);
v8sf __builtin_ia32_mulps256 (v8sf,v8sf);
v4df __builtin_ia32_orpd256 (v4df,v4df);
v8sf __builtin_ia32_orps256 (v8sf,v8sf);
v2df __builtin_ia32_pd_pd256 (v4df);
v4df __builtin_ia32_pd256_pd (v2df);
v4sf __builtin_ia32_ps_ps256 (v8sf);
v8sf __builtin_ia32_ps256_ps (v4sf);
int __builtin_ia32_ptestc256 (v4di,v4di,ptest);
int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest);
int __builtin_ia32_ptestz256 (v4di,v4di,ptest);
v8sf __builtin_ia32_rcpps256 (v8sf);
v4df __builtin_ia32_roundpd256 (v4df,int);
v8sf __builtin_ia32_roundps256 (v8sf,int);
v8sf __builtin_ia32_rsqrtps_nr256 (v8sf);
v8sf __builtin_ia32_rsqrtps256 (v8sf);
v4df __builtin_ia32_shufpd256 (v4df,v4df,int);
v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int);
v4si __builtin_ia32_si_si256 (v8si);
v8si __builtin_ia32_si256_si (v4si);
v4df __builtin_ia32_sqrtpd256 (v4df);
v8sf __builtin_ia32_sqrtps_nr256 (v8sf);
v8sf __builtin_ia32_sqrtps256 (v8sf);
void __builtin_ia32_storedqu256 (pchar,v32qi);
void __builtin_ia32_storeupd256 (pdouble,v4df);
void __builtin_ia32_storeups256 (pfloat,v8sf);
v4df __builtin_ia32_subpd256 (v4df,v4df);
v8sf __builtin_ia32_subps256 (v8sf,v8sf);
v4df __builtin_ia32_unpckhpd256 (v4df,v4df);
v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf);
v4df __builtin_ia32_unpcklpd256 (v4df,v4df);
v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf);
v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df);
v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf);
v4df __builtin_ia32_vbroadcastsd256 (pcdouble);
v4sf __builtin_ia32_vbroadcastss (pcfloat);
v8sf __builtin_ia32_vbroadcastss256 (pcfloat);
v2df __builtin_ia32_vextractf128_pd256 (v4df,int);
v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int);
v4si __builtin_ia32_vextractf128_si256 (v8si,int);
v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int);
v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int);
v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int);
v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int);
v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int);
v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int);
v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int);
v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int);
v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int);
v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int);
v2df __builtin_ia32_vpermilpd (v2df,int);
v4df __builtin_ia32_vpermilpd256 (v4df,int);
v4sf __builtin_ia32_vpermilps (v4sf,int);
v8sf __builtin_ia32_vpermilps256 (v8sf,int);
v2df __builtin_ia32_vpermilvarpd (v2df,v2di);
v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di);
v4sf __builtin_ia32_vpermilvarps (v4sf,v4si);
v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si);
int __builtin_ia32_vtestcpd (v2df,v2df,ptest);
int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest);
int __builtin_ia32_vtestcps (v4sf,v4sf,ptest);
int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest);
int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest);
int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest);
int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest);
int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest);
int __builtin_ia32_vtestzpd (v2df,v2df,ptest);
int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest);
int __builtin_ia32_vtestzps (v4sf,v4sf,ptest);
int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest);
void __builtin_ia32_vzeroall (void);
void __builtin_ia32_vzeroupper (void);
v4df __builtin_ia32_xorpd256 (v4df,v4df);
v8sf __builtin_ia32_xorps256 (v8sf,v8sf);
@end smallexample

The following built-in functions are available when @option{-mavx2} is
used. All of them generate the machine instruction that is part of the
name.

@smallexample
v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int);
v32qi __builtin_ia32_pabsb256 (v32qi);
v16hi __builtin_ia32_pabsw256 (v16hi);
v8si __builtin_ia32_pabsd256 (v8si);
v16hi __builtin_ia32_packssdw256 (v8si,v8si);
v32qi __builtin_ia32_packsswb256 (v16hi,v16hi);
v16hi __builtin_ia32_packusdw256 (v8si,v8si);
v32qi __builtin_ia32_packuswb256 (v16hi,v16hi);
v32qi __builtin_ia32_paddb256 (v32qi,v32qi);
v16hi __builtin_ia32_paddw256 (v16hi,v16hi);
v8si __builtin_ia32_paddd256 (v8si,v8si);
v4di __builtin_ia32_paddq256 (v4di,v4di);
v32qi __builtin_ia32_paddsb256 (v32qi,v32qi);
v16hi __builtin_ia32_paddsw256 (v16hi,v16hi);
v32qi __builtin_ia32_paddusb256 (v32qi,v32qi);
v16hi __builtin_ia32_paddusw256 (v16hi,v16hi);
v4di __builtin_ia32_palignr256 (v4di,v4di,int);
v4di __builtin_ia32_andsi256 (v4di,v4di);
v4di __builtin_ia32_andnotsi256 (v4di,v4di);
v32qi __builtin_ia32_pavgb256 (v32qi,v32qi);
v16hi __builtin_ia32_pavgw256 (v16hi,v16hi);
v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi);
v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int);
v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi);
v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi);
v8si __builtin_ia32_pcmpeqd256 (c8si,v8si);
v4di __builtin_ia32_pcmpeqq256 (v4di,v4di);
v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi);
v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi);
v8si __builtin_ia32_pcmpgtd256 (v8si,v8si);
v4di __builtin_ia32_pcmpgtq256 (v4di,v4di);
v16hi __builtin_ia32_phaddw256 (v16hi,v16hi);
v8si __builtin_ia32_phaddd256 (v8si,v8si);
v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi);
v16hi __builtin_ia32_phsubw256 (v16hi,v16hi);
v8si __builtin_ia32_phsubd256 (v8si,v8si);
v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi);
v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi);
v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi);
v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi);
v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi);
v8si __builtin_ia32_pmaxsd256 (v8si,v8si);
v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi);
v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi);
v8si __builtin_ia32_pmaxud256 (v8si,v8si);
v32qi __builtin_ia32_pminsb256 (v32qi,v32qi);
v16hi __builtin_ia32_pminsw256 (v16hi,v16hi);
v8si __builtin_ia32_pminsd256 (v8si,v8si);
v32qi __builtin_ia32_pminub256 (v32qi,v32qi);
v16hi __builtin_ia32_pminuw256 (v16hi,v16hi);
v8si __builtin_ia32_pminud256 (v8si,v8si);
int __builtin_ia32_pmovmskb256 (v32qi);
v16hi __builtin_ia32_pmovsxbw256 (v16qi);
v8si __builtin_ia32_pmovsxbd256 (v16qi);
v4di __builtin_ia32_pmovsxbq256 (v16qi);
v8si __builtin_ia32_pmovsxwd256 (v8hi);
v4di __builtin_ia32_pmovsxwq256 (v8hi);
v4di __builtin_ia32_pmovsxdq256 (v4si);
v16hi __builtin_ia32_pmovzxbw256 (v16qi);
v8si __builtin_ia32_pmovzxbd256 (v16qi);
v4di __builtin_ia32_pmovzxbq256 (v16qi);
v8si __builtin_ia32_pmovzxwd256 (v8hi);
v4di __builtin_ia32_pmovzxwq256 (v8hi);
v4di __builtin_ia32_pmovzxdq256 (v4si);
v4di __builtin_ia32_pmuldq256 (v8si,v8si);
v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi);
v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi);
v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi);
v16hi __builtin_ia32_pmullw256 (v16hi,v16hi);
v8si __builtin_ia32_pmulld256 (v8si,v8si);
v4di __builtin_ia32_pmuludq256 (v8si,v8si);
v4di __builtin_ia32_por256 (v4di,v4di);
v16hi __builtin_ia32_psadbw256 (v32qi,v32qi);
v32qi __builtin_ia32_pshufb256 (v32qi,v32qi);
v8si __builtin_ia32_pshufd256 (v8si,int);
v16hi __builtin_ia32_pshufhw256 (v16hi,int);
v16hi __builtin_ia32_pshuflw256 (v16hi,int);
v32qi __builtin_ia32_psignb256 (v32qi,v32qi);
v16hi __builtin_ia32_psignw256 (v16hi,v16hi);
v8si __builtin_ia32_psignd256 (v8si,v8si);
v4di __builtin_ia32_pslldqi256 (v4di,int);
v16hi __builtin_ia32_psllwi256 (16hi,int);
v16hi __builtin_ia32_psllw256(v16hi,v8hi);
v8si __builtin_ia32_pslldi256 (v8si,int);
v8si __builtin_ia32_pslld256(v8si,v4si);
v4di __builtin_ia32_psllqi256 (v4di,int);
v4di __builtin_ia32_psllq256(v4di,v2di);
v16hi __builtin_ia32_psrawi256 (v16hi,int);
v16hi __builtin_ia32_psraw256 (v16hi,v8hi);
v8si __builtin_ia32_psradi256 (v8si,int);
v8si __builtin_ia32_psrad256 (v8si,v4si);
v4di __builtin_ia32_psrldqi256 (v4di, int);
v16hi __builtin_ia32_psrlwi256 (v16hi,int);
v16hi __builtin_ia32_psrlw256 (v16hi,v8hi);
v8si __builtin_ia32_psrldi256 (v8si,int);
v8si __builtin_ia32_psrld256 (v8si,v4si);
v4di __builtin_ia32_psrlqi256 (v4di,int);
v4di __builtin_ia32_psrlq256(v4di,v2di);
v32qi __builtin_ia32_psubb256 (v32qi,v32qi);
v32hi __builtin_ia32_psubw256 (v16hi,v16hi);
v8si __builtin_ia32_psubd256 (v8si,v8si);
v4di __builtin_ia32_psubq256 (v4di,v4di);
v32qi __builtin_ia32_psubsb256 (v32qi,v32qi);
v16hi __builtin_ia32_psubsw256 (v16hi,v16hi);
v32qi __builtin_ia32_psubusb256 (v32qi,v32qi);
v16hi __builtin_ia32_psubusw256 (v16hi,v16hi);
v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi);
v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi);
v8si __builtin_ia32_punpckhdq256 (v8si,v8si);
v4di __builtin_ia32_punpckhqdq256 (v4di,v4di);
v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi);
v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi);
v8si __builtin_ia32_punpckldq256 (v8si,v8si);
v4di __builtin_ia32_punpcklqdq256 (v4di,v4di);
v4di __builtin_ia32_pxor256 (v4di,v4di);
v4di __builtin_ia32_movntdqa256 (pv4di);
v4sf __builtin_ia32_vbroadcastss_ps (v4sf);
v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf);
v4df __builtin_ia32_vbroadcastsd_pd256 (v2df);
v4di __builtin_ia32_vbroadcastsi256 (v2di);
v4si __builtin_ia32_pblendd128 (v4si,v4si);
v8si __builtin_ia32_pblendd256 (v8si,v8si);
v32qi __builtin_ia32_pbroadcastb256 (v16qi);
v16hi __builtin_ia32_pbroadcastw256 (v8hi);
v8si __builtin_ia32_pbroadcastd256 (v4si);
v4di __builtin_ia32_pbroadcastq256 (v2di);
v16qi __builtin_ia32_pbroadcastb128 (v16qi);
v8hi __builtin_ia32_pbroadcastw128 (v8hi);
v4si __builtin_ia32_pbroadcastd128 (v4si);
v2di __builtin_ia32_pbroadcastq128 (v2di);
v8si __builtin_ia32_permvarsi256 (v8si,v8si);
v4df __builtin_ia32_permdf256 (v4df,int);
v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf);
v4di __builtin_ia32_permdi256 (v4di,int);
v4di __builtin_ia32_permti256 (v4di,v4di,int);
v4di __builtin_ia32_extract128i256 (v4di,int);
v4di __builtin_ia32_insert128i256 (v4di,v2di,int);
v8si __builtin_ia32_maskloadd256 (pcv8si,v8si);
v4di __builtin_ia32_maskloadq256 (pcv4di,v4di);
v4si __builtin_ia32_maskloadd (pcv4si,v4si);
v2di __builtin_ia32_maskloadq (pcv2di,v2di);
void __builtin_ia32_maskstored256 (pv8si,v8si,v8si);
void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di);
void __builtin_ia32_maskstored (pv4si,v4si,v4si);
void __builtin_ia32_maskstoreq (pv2di,v2di,v2di);
v8si __builtin_ia32_psllv8si (v8si,v8si);
v4si __builtin_ia32_psllv4si (v4si,v4si);
v4di __builtin_ia32_psllv4di (v4di,v4di);
v2di __builtin_ia32_psllv2di (v2di,v2di);
v8si __builtin_ia32_psrav8si (v8si,v8si);
v4si __builtin_ia32_psrav4si (v4si,v4si);
v8si __builtin_ia32_psrlv8si (v8si,v8si);
v4si __builtin_ia32_psrlv4si (v4si,v4si);
v4di __builtin_ia32_psrlv4di (v4di,v4di);
v2di __builtin_ia32_psrlv2di (v2di,v2di);
v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int);
v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int);
v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int);
v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int);
v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int);
v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int);
v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int);
v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int);
v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int);
v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int);
v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int);
v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int);
v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int);
v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int);
v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int);
v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int);
@end smallexample

The following built-in functions are available when @option{-maes} is
used.  All of them generate the machine instruction that is part of the
name.

@smallexample
v2di __builtin_ia32_aesenc128 (v2di, v2di);
v2di __builtin_ia32_aesenclast128 (v2di, v2di);
v2di __builtin_ia32_aesdec128 (v2di, v2di);
v2di __builtin_ia32_aesdeclast128 (v2di, v2di);
v2di __builtin_ia32_aeskeygenassist128 (v2di, const int);
v2di __builtin_ia32_aesimc128 (v2di);
@end smallexample

The following built-in function is available when @option{-mpclmul} is
used.

@table @code
@item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
Generates the @code{pclmulqdq} machine instruction.
@end table

The following built-in function is available when @option{-mfsgsbase} is
used.  All of them generate the machine instruction that is part of the
name.

@smallexample
unsigned int __builtin_ia32_rdfsbase32 (void);
unsigned long long __builtin_ia32_rdfsbase64 (void);
unsigned int __builtin_ia32_rdgsbase32 (void);
unsigned long long __builtin_ia32_rdgsbase64 (void);
void _writefsbase_u32 (unsigned int);
void _writefsbase_u64 (unsigned long long);
void _writegsbase_u32 (unsigned int);
void _writegsbase_u64 (unsigned long long);
@end smallexample

The following built-in function is available when @option{-mrdrnd} is
used.  All of them generate the machine instruction that is part of the
name.

@smallexample
unsigned int __builtin_ia32_rdrand16_step (unsigned short *);
unsigned int __builtin_ia32_rdrand32_step (unsigned int *);
unsigned int __builtin_ia32_rdrand64_step (unsigned long long *);
@end smallexample

The following built-in function is available when @option{-mptwrite} is
used.  All of them generate the machine instruction that is part of the
name.

@smallexample
void __builtin_ia32_ptwrite32 (unsigned);
void __builtin_ia32_ptwrite64 (unsigned long long);
@end smallexample

The following built-in functions are available when @option{-msse4a} is used.
All of them generate the machine instruction that is part of the name.

@smallexample
void __builtin_ia32_movntsd (double *, v2df);
void __builtin_ia32_movntss (float *, v4sf);
v2di __builtin_ia32_extrq  (v2di, v16qi);
v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int);
v2di __builtin_ia32_insertq (v2di, v2di);
v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int);
@end smallexample

The following built-in functions are available when @option{-mxop} is used.
@smallexample
v2df __builtin_ia32_vfrczpd (v2df);
v4sf __builtin_ia32_vfrczps (v4sf);
v2df __builtin_ia32_vfrczsd (v2df);
v4sf __builtin_ia32_vfrczss (v4sf);
v4df __builtin_ia32_vfrczpd256 (v4df);
v8sf __builtin_ia32_vfrczps256 (v8sf);
v2di __builtin_ia32_vpcmov (v2di, v2di, v2di);
v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di);
v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si);
v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi);
v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi);
v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df);
v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf);
v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di);
v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si);
v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi);
v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi);
v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df);
v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf);
v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi);
v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi);
v4si __builtin_ia32_vpcomeqd (v4si, v4si);
v2di __builtin_ia32_vpcomeqq (v2di, v2di);
v16qi __builtin_ia32_vpcomequb (v16qi, v16qi);
v4si __builtin_ia32_vpcomequd (v4si, v4si);
v2di __builtin_ia32_vpcomequq (v2di, v2di);
v8hi __builtin_ia32_vpcomequw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi);
v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi);
v4si __builtin_ia32_vpcomfalsed (v4si, v4si);
v2di __builtin_ia32_vpcomfalseq (v2di, v2di);
v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi);
v4si __builtin_ia32_vpcomfalseud (v4si, v4si);
v2di __builtin_ia32_vpcomfalseuq (v2di, v2di);
v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi);
v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi);
v4si __builtin_ia32_vpcomged (v4si, v4si);
v2di __builtin_ia32_vpcomgeq (v2di, v2di);
v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi);
v4si __builtin_ia32_vpcomgeud (v4si, v4si);
v2di __builtin_ia32_vpcomgeuq (v2di, v2di);
v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomgew (v8hi, v8hi);
v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi);
v4si __builtin_ia32_vpcomgtd (v4si, v4si);
v2di __builtin_ia32_vpcomgtq (v2di, v2di);
v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi);
v4si __builtin_ia32_vpcomgtud (v4si, v4si);
v2di __builtin_ia32_vpcomgtuq (v2di, v2di);
v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi);
v16qi __builtin_ia32_vpcomleb (v16qi, v16qi);
v4si __builtin_ia32_vpcomled (v4si, v4si);
v2di __builtin_ia32_vpcomleq (v2di, v2di);
v16qi __builtin_ia32_vpcomleub (v16qi, v16qi);
v4si __builtin_ia32_vpcomleud (v4si, v4si);
v2di __builtin_ia32_vpcomleuq (v2di, v2di);
v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomlew (v8hi, v8hi);
v16qi __builtin_ia32_vpcomltb (v16qi, v16qi);
v4si __builtin_ia32_vpcomltd (v4si, v4si);
v2di __builtin_ia32_vpcomltq (v2di, v2di);
v16qi __builtin_ia32_vpcomltub (v16qi, v16qi);
v4si __builtin_ia32_vpcomltud (v4si, v4si);
v2di __builtin_ia32_vpcomltuq (v2di, v2di);
v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomltw (v8hi, v8hi);
v16qi __builtin_ia32_vpcomneb (v16qi, v16qi);
v4si __builtin_ia32_vpcomned (v4si, v4si);
v2di __builtin_ia32_vpcomneq (v2di, v2di);
v16qi __builtin_ia32_vpcomneub (v16qi, v16qi);
v4si __builtin_ia32_vpcomneud (v4si, v4si);
v2di __builtin_ia32_vpcomneuq (v2di, v2di);
v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomnew (v8hi, v8hi);
v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi);
v4si __builtin_ia32_vpcomtrued (v4si, v4si);
v2di __builtin_ia32_vpcomtrueq (v2di, v2di);
v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi);
v4si __builtin_ia32_vpcomtrueud (v4si, v4si);
v2di __builtin_ia32_vpcomtrueuq (v2di, v2di);
v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi);
v4si __builtin_ia32_vphaddbd (v16qi);
v2di __builtin_ia32_vphaddbq (v16qi);
v8hi __builtin_ia32_vphaddbw (v16qi);
v2di __builtin_ia32_vphadddq (v4si);
v4si __builtin_ia32_vphaddubd (v16qi);
v2di __builtin_ia32_vphaddubq (v16qi);
v8hi __builtin_ia32_vphaddubw (v16qi);
v2di __builtin_ia32_vphaddudq (v4si);
v4si __builtin_ia32_vphadduwd (v8hi);
v2di __builtin_ia32_vphadduwq (v8hi);
v4si __builtin_ia32_vphaddwd (v8hi);
v2di __builtin_ia32_vphaddwq (v8hi);
v8hi __builtin_ia32_vphsubbw (v16qi);
v2di __builtin_ia32_vphsubdq (v4si);
v4si __builtin_ia32_vphsubwd (v8hi);
v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si);
v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di);
v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di);
v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si);
v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di);
v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di);
v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si);
v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi);
v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si);
v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi);
v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si);
v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si);
v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi);
v16qi __builtin_ia32_vprotb (v16qi, v16qi);
v4si __builtin_ia32_vprotd (v4si, v4si);
v2di __builtin_ia32_vprotq (v2di, v2di);
v8hi __builtin_ia32_vprotw (v8hi, v8hi);
v16qi __builtin_ia32_vpshab (v16qi, v16qi);
v4si __builtin_ia32_vpshad (v4si, v4si);
v2di __builtin_ia32_vpshaq (v2di, v2di);
v8hi __builtin_ia32_vpshaw (v8hi, v8hi);
v16qi __builtin_ia32_vpshlb (v16qi, v16qi);
v4si __builtin_ia32_vpshld (v4si, v4si);
v2di __builtin_ia32_vpshlq (v2di, v2di);
v8hi __builtin_ia32_vpshlw (v8hi, v8hi);
@end smallexample

The following built-in functions are available when @option{-mfma4} is used.
All of them generate the machine instruction that is part of the name.

@smallexample
v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfmaddsubpd  (v2df, v2df, v2df);
v4sf __builtin_ia32_vfmaddsubps  (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfmsubaddpd  (v2df, v2df, v2df);
v4sf __builtin_ia32_vfmsubaddps  (v4sf, v4sf, v4sf);
v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df);
v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf);
v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df);
v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf);
v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df);
v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf);
v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df);
v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf);
v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df);
v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf);
v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df);
v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf);

@end smallexample

The following built-in functions are available when @option{-mlwp} is used.

@smallexample
void __builtin_ia32_llwpcb16 (void *);
void __builtin_ia32_llwpcb32 (void *);
void __builtin_ia32_llwpcb64 (void *);
void * __builtin_ia32_llwpcb16 (void);
void * __builtin_ia32_llwpcb32 (void);
void * __builtin_ia32_llwpcb64 (void);
void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short);
void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int);
void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int);
unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short);
unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int);
unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int);
@end smallexample

The following built-in functions are available when @option{-mbmi} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
@end smallexample

The following built-in functions are available when @option{-mbmi2} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
unsigned int _bzhi_u32 (unsigned int, unsigned int);
unsigned int _pdep_u32 (unsigned int, unsigned int);
unsigned int _pext_u32 (unsigned int, unsigned int);
unsigned long long _bzhi_u64 (unsigned long long, unsigned long long);
unsigned long long _pdep_u64 (unsigned long long, unsigned long long);
unsigned long long _pext_u64 (unsigned long long, unsigned long long);
@end smallexample

The following built-in functions are available when @option{-mlzcnt} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
unsigned short __builtin_ia32_lzcnt_u16(unsigned short);
unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
@end smallexample

The following built-in functions are available when @option{-mfxsr} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
void __builtin_ia32_fxsave (void *);
void __builtin_ia32_fxrstor (void *);
void __builtin_ia32_fxsave64 (void *);
void __builtin_ia32_fxrstor64 (void *);
@end smallexample

The following built-in functions are available when @option{-mxsave} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
void __builtin_ia32_xsave (void *, long long);
void __builtin_ia32_xrstor (void *, long long);
void __builtin_ia32_xsave64 (void *, long long);
void __builtin_ia32_xrstor64 (void *, long long);
@end smallexample

The following built-in functions are available when @option{-mxsaveopt} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
void __builtin_ia32_xsaveopt (void *, long long);
void __builtin_ia32_xsaveopt64 (void *, long long);
@end smallexample

The following built-in functions are available when @option{-mtbm} is used.
Both of them generate the immediate form of the bextr machine instruction.
@smallexample
unsigned int __builtin_ia32_bextri_u32 (unsigned int,
                                        const unsigned int);
unsigned long long __builtin_ia32_bextri_u64 (unsigned long long,
                                              const unsigned long long);
@end smallexample


The following built-in functions are available when @option{-m3dnow} is used.
All of them generate the machine instruction that is part of the name.

@smallexample
void __builtin_ia32_femms (void);
v8qi __builtin_ia32_pavgusb (v8qi, v8qi);
v2si __builtin_ia32_pf2id (v2sf);
v2sf __builtin_ia32_pfacc (v2sf, v2sf);
v2sf __builtin_ia32_pfadd (v2sf, v2sf);
v2si __builtin_ia32_pfcmpeq (v2sf, v2sf);
v2si __builtin_ia32_pfcmpge (v2sf, v2sf);
v2si __builtin_ia32_pfcmpgt (v2sf, v2sf);
v2sf __builtin_ia32_pfmax (v2sf, v2sf);
v2sf __builtin_ia32_pfmin (v2sf, v2sf);
v2sf __builtin_ia32_pfmul (v2sf, v2sf);
v2sf __builtin_ia32_pfrcp (v2sf);
v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf);
v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf);
v2sf __builtin_ia32_pfrsqrt (v2sf);
v2sf __builtin_ia32_pfsub (v2sf, v2sf);
v2sf __builtin_ia32_pfsubr (v2sf, v2sf);
v2sf __builtin_ia32_pi2fd (v2si);
v4hi __builtin_ia32_pmulhrw (v4hi, v4hi);
@end smallexample

The following built-in functions are available when @option{-m3dnowa} is used.
All of them generate the machine instruction that is part of the name.

@smallexample
v2si __builtin_ia32_pf2iw (v2sf);
v2sf __builtin_ia32_pfnacc (v2sf, v2sf);
v2sf __builtin_ia32_pfpnacc (v2sf, v2sf);
v2sf __builtin_ia32_pi2fw (v2si);
v2sf __builtin_ia32_pswapdsf (v2sf);
v2si __builtin_ia32_pswapdsi (v2si);
@end smallexample

The following built-in functions are available when @option{-mrtm} is used
They are used for restricted transactional memory. These are the internal
low level functions. Normally the functions in 
@ref{x86 transactional memory intrinsics} should be used instead.

@smallexample
int __builtin_ia32_xbegin ();
void __builtin_ia32_xend ();
void __builtin_ia32_xabort (status);
int __builtin_ia32_xtest ();
@end smallexample

The following built-in functions are available when @option{-mmwaitx} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
void __builtin_ia32_monitorx (void *, unsigned int, unsigned int);
void __builtin_ia32_mwaitx (unsigned int, unsigned int, unsigned int);
@end smallexample

The following built-in functions are available when @option{-mclzero} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
void __builtin_i32_clzero (void *);
@end smallexample

The following built-in functions are available when @option{-mpku} is used.
They generate reads and writes to PKRU.
@smallexample
void __builtin_ia32_wrpkru (unsigned int);
unsigned int __builtin_ia32_rdpkru ();
@end smallexample

The following built-in functions are available when
@option{-mshstk} option is used.  They support shadow stack
machine instructions from Intel Control-flow Enforcement Technology (CET).
Each built-in function generates the  machine instruction that is part
of the function's name.  These are the internal low-level functions.
Normally the functions in @ref{x86 control-flow protection intrinsics}
should be used instead.

@smallexample
unsigned int __builtin_ia32_rdsspd (void);
unsigned long long __builtin_ia32_rdsspq (void);
void __builtin_ia32_incsspd (unsigned int);
void __builtin_ia32_incsspq (unsigned long long);
void __builtin_ia32_saveprevssp(void);
void __builtin_ia32_rstorssp(void *);
void __builtin_ia32_wrssd(unsigned int, void *);
void __builtin_ia32_wrssq(unsigned long long, void *);
void __builtin_ia32_wrussd(unsigned int, void *);
void __builtin_ia32_wrussq(unsigned long long, void *);
void __builtin_ia32_setssbsy(void);
void __builtin_ia32_clrssbsy(void *);
@end smallexample

@node x86 transactional memory intrinsics
@subsection x86 Transactional Memory Intrinsics

These hardware transactional memory intrinsics for x86 allow you to use
memory transactions with RTM (Restricted Transactional Memory).
This support is enabled with the @option{-mrtm} option.
For using HLE (Hardware Lock Elision) see 
@ref{x86 specific memory model extensions for transactional memory} instead.

A memory transaction commits all changes to memory in an atomic way,
as visible to other threads. If the transaction fails it is rolled back
and all side effects discarded.

Generally there is no guarantee that a memory transaction ever succeeds
and suitable fallback code always needs to be supplied.

@deftypefn {RTM Function} {unsigned} _xbegin ()
Start a RTM (Restricted Transactional Memory) transaction. 
Returns @code{_XBEGIN_STARTED} when the transaction
started successfully (note this is not 0, so the constant has to be 
explicitly tested).  

If the transaction aborts, all side effects
are undone and an abort code encoded as a bit mask is returned.
The following macros are defined:

@table @code
@item _XABORT_EXPLICIT
Transaction was explicitly aborted with @code{_xabort}.  The parameter passed
to @code{_xabort} is available with @code{_XABORT_CODE(status)}.
@item _XABORT_RETRY
Transaction retry is possible.
@item _XABORT_CONFLICT
Transaction abort due to a memory conflict with another thread.
@item _XABORT_CAPACITY
Transaction abort due to the transaction using too much memory.
@item _XABORT_DEBUG
Transaction abort due to a debug trap.
@item _XABORT_NESTED
Transaction abort in an inner nested transaction.
@end table

There is no guarantee
any transaction ever succeeds, so there always needs to be a valid
fallback path.
@end deftypefn

@deftypefn {RTM Function} {void} _xend ()
Commit the current transaction. When no transaction is active this faults.
All memory side effects of the transaction become visible
to other threads in an atomic manner.
@end deftypefn

@deftypefn {RTM Function} {int} _xtest ()
Return a nonzero value if a transaction is currently active, otherwise 0.
@end deftypefn

@deftypefn {RTM Function} {void} _xabort (status)
Abort the current transaction. When no transaction is active this is a no-op.
The @var{status} is an 8-bit constant; its value is encoded in the return 
value from @code{_xbegin}.
@end deftypefn

Here is an example showing handling for @code{_XABORT_RETRY}
and a fallback path for other failures:

@smallexample
#include <immintrin.h>

int n_tries, max_tries;
unsigned status = _XABORT_EXPLICIT;
...

for (n_tries = 0; n_tries < max_tries; n_tries++) 
  @{
    status = _xbegin ();
    if (status == _XBEGIN_STARTED || !(status & _XABORT_RETRY))
      break;
  @}
if (status == _XBEGIN_STARTED) 
  @{
    ... transaction code...
    _xend ();
  @} 
else 
  @{
    ... non-transactional fallback path...
  @}
@end smallexample

@noindent
Note that, in most cases, the transactional and non-transactional code
must synchronize together to ensure consistency.

@node x86 control-flow protection intrinsics
@subsection x86 Control-Flow Protection Intrinsics

@deftypefn {CET Function} {ret_type} _get_ssp (void)
Get the current value of shadow stack pointer if shadow stack support
from Intel CET is enabled in the hardware or @code{0} otherwise.
The @code{ret_type} is @code{unsigned long long} for 64-bit targets 
and @code{unsigned int} for 32-bit targets.
@end deftypefn

@deftypefn {CET Function} void _inc_ssp (unsigned int)
Increment the current shadow stack pointer by the size specified by the
function argument.  The argument is masked to a byte value for security
reasons, so to increment by more than 255 bytes you must call the function
multiple times.
@end deftypefn

The shadow stack unwind code looks like:

@smallexample
#include <immintrin.h>

/* Unwind the shadow stack for EH.  */
#define _Unwind_Frames_Extra(x)       \
  do                                  \
    @{                                \
      _Unwind_Word ssp = _get_ssp (); \
      if (ssp != 0)                   \
        @{                            \
          _Unwind_Word tmp = (x);     \
          while (tmp > 255)           \
            @{                        \
              _inc_ssp (tmp);         \
              tmp -= 255;             \
            @}                        \
          _inc_ssp (tmp);             \
        @}                            \
    @}                                \
    while (0)
@end smallexample

@noindent
This code runs unconditionally on all 64-bit processors.  For 32-bit
processors the code runs on those that support multi-byte NOP instructions.

@node Target Format Checks
@section Format Checks Specific to Particular Target Machines

For some target machines, GCC supports additional options to the
format attribute
(@pxref{Function Attributes,,Declaring Attributes of Functions}).

@menu
* Solaris Format Checks::
* Darwin Format Checks::
@end menu

@node Solaris Format Checks
@subsection Solaris Format Checks

Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
check.  @code{cmn_err} accepts a subset of the standard @code{printf}
conversions, and the two-argument @code{%b} conversion for displaying
bit-fields.  See the Solaris man page for @code{cmn_err} for more information.

@node Darwin Format Checks
@subsection Darwin Format Checks

In addition to the full set of format archetypes (attribute format style
arguments such as @code{printf}, @code{scanf}, @code{strftime}, and
@code{strfmon}), Darwin targets also support the @code{CFString} (or
@code{__CFString__}) archetype in the @code{format} attribute.
Declarations with this archetype are parsed for correct syntax
and argument types.  However, parsing of the format string itself and
validating arguments against it in calls to such functions is currently
not performed.

Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
also be used as format arguments.  Note that the relevant headers are only likely to be
available on Darwin (OSX) installations.  On such installations, the XCode and system
documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
associated functions.

@node Pragmas
@section Pragmas Accepted by GCC
@cindex pragmas
@cindex @code{#pragma}

GCC supports several types of pragmas, primarily in order to compile
code originally written for other compilers.  Note that in general
we do not recommend the use of pragmas; @xref{Function Attributes},
for further explanation.

The GNU C preprocessor recognizes several pragmas in addition to the
compiler pragmas documented here.  Refer to the CPP manual for more
information.

@menu
* AArch64 Pragmas::
* ARM Pragmas::
* M32C Pragmas::
* MeP Pragmas::
* PRU Pragmas::
* RS/6000 and PowerPC Pragmas::
* S/390 Pragmas::
* Darwin Pragmas::
* Solaris Pragmas::
* Symbol-Renaming Pragmas::
* Structure-Layout Pragmas::
* Weak Pragmas::
* Diagnostic Pragmas::
* Visibility Pragmas::
* Push/Pop Macro Pragmas::
* Function Specific Option Pragmas::
* Loop-Specific Pragmas::
@end menu

@node AArch64 Pragmas
@subsection AArch64 Pragmas

The pragmas defined by the AArch64 target correspond to the AArch64
target function attributes.  They can be specified as below:
@smallexample
#pragma GCC target("string")
@end smallexample

where @code{@var{string}} can be any string accepted as an AArch64 target
attribute.  @xref{AArch64 Function Attributes}, for more details
on the permissible values of @code{string}.

@node ARM Pragmas
@subsection ARM Pragmas

The ARM target defines pragmas for controlling the default addition of
@code{long_call} and @code{short_call} attributes to functions.
@xref{Function Attributes}, for information about the effects of these
attributes.

@table @code
@item long_calls
@cindex pragma, long_calls
Set all subsequent functions to have the @code{long_call} attribute.

@item no_long_calls
@cindex pragma, no_long_calls
Set all subsequent functions to have the @code{short_call} attribute.

@item long_calls_off
@cindex pragma, long_calls_off
Do not affect the @code{long_call} or @code{short_call} attributes of
subsequent functions.
@end table

@node M32C Pragmas
@subsection M32C Pragmas

@table @code
@item GCC memregs @var{number}
@cindex pragma, memregs
Overrides the command-line option @code{-memregs=} for the current
file.  Use with care!  This pragma must be before any function in the
file, and mixing different memregs values in different objects may
make them incompatible.  This pragma is useful when a
performance-critical function uses a memreg for temporary values,
as it may allow you to reduce the number of memregs used.

@item ADDRESS @var{name} @var{address}
@cindex pragma, address
For any declared symbols matching @var{name}, this does three things
to that symbol: it forces the symbol to be located at the given
address (a number), it forces the symbol to be volatile, and it
changes the symbol's scope to be static.  This pragma exists for
compatibility with other compilers, but note that the common
@code{1234H} numeric syntax is not supported (use @code{0x1234}
instead).  Example:

@smallexample
#pragma ADDRESS port3 0x103
char port3;
@end smallexample

@end table

@node MeP Pragmas
@subsection MeP Pragmas

@table @code

@item custom io_volatile (on|off)
@cindex pragma, custom io_volatile
Overrides the command-line option @code{-mio-volatile} for the current
file.  Note that for compatibility with future GCC releases, this
option should only be used once before any @code{io} variables in each
file.

@item GCC coprocessor available @var{registers}
@cindex pragma, coprocessor available
Specifies which coprocessor registers are available to the register
allocator.  @var{registers} may be a single register, register range
separated by ellipses, or comma-separated list of those.  Example:

@smallexample
#pragma GCC coprocessor available $c0...$c10, $c28
@end smallexample

@item GCC coprocessor call_saved @var{registers}
@cindex pragma, coprocessor call_saved
Specifies which coprocessor registers are to be saved and restored by
any function using them.  @var{registers} may be a single register,
register range separated by ellipses, or comma-separated list of
those.  Example:

@smallexample
#pragma GCC coprocessor call_saved $c4...$c6, $c31
@end smallexample

@item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
@cindex pragma, coprocessor subclass
Creates and defines a register class.  These register classes can be
used by inline @code{asm} constructs.  @var{registers} may be a single
register, register range separated by ellipses, or comma-separated
list of those.  Example:

@smallexample
#pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6

asm ("cpfoo %0" : "=B" (x));
@end smallexample

@item GCC disinterrupt @var{name} , @var{name} @dots{}
@cindex pragma, disinterrupt
For the named functions, the compiler adds code to disable interrupts
for the duration of those functions.  If any functions so named 
are not encountered in the source, a warning is emitted that the pragma is
not used.  Examples:

@smallexample
#pragma disinterrupt foo
#pragma disinterrupt bar, grill
int foo () @{ @dots{} @}
@end smallexample

@item GCC call @var{name} , @var{name} @dots{}
@cindex pragma, call
For the named functions, the compiler always uses a register-indirect
call model when calling the named functions.  Examples:

@smallexample
extern int foo ();
#pragma call foo
@end smallexample

@end table

@node PRU Pragmas
@subsection PRU Pragmas

@table @code

@item ctable_entry @var{index} @var{constant_address}
@cindex pragma, ctable_entry
Specifies that the PRU CTABLE entry given by @var{index} has the value
@var{constant_address}.  This enables GCC to emit LBCO/SBCO instructions
when the load/store address is known and can be addressed with some CTABLE
entry.  For example:

@smallexample
/* will compile to "sbco Rx, 2, 0x10, 4" */
#pragma ctable_entry 2 0x4802a000
*(unsigned int *)0x4802a010 = val;
@end smallexample

@end table

@node RS/6000 and PowerPC Pragmas
@subsection RS/6000 and PowerPC Pragmas

The RS/6000 and PowerPC targets define one pragma for controlling
whether or not the @code{longcall} attribute is added to function
declarations by default.  This pragma overrides the @option{-mlongcall}
option, but not the @code{longcall} and @code{shortcall} attributes.
@xref{RS/6000 and PowerPC Options}, for more information about when long
calls are and are not necessary.

@table @code
@item longcall (1)
@cindex pragma, longcall
Apply the @code{longcall} attribute to all subsequent function
declarations.

@item longcall (0)
Do not apply the @code{longcall} attribute to subsequent function
declarations.
@end table

@c Describe h8300 pragmas here.
@c Describe sh pragmas here.
@c Describe v850 pragmas here.

@node S/390 Pragmas
@subsection S/390 Pragmas

The pragmas defined by the S/390 target correspond to the S/390
target function attributes and some the additional options:

@table @samp
@item zvector
@itemx no-zvector
@end table

Note that options of the pragma, unlike options of the target
attribute, do change the value of preprocessor macros like
@code{__VEC__}.  They can be specified as below:

@smallexample
#pragma GCC target("string[,string]...")
#pragma GCC target("string"[,"string"]...)
@end smallexample

@node Darwin Pragmas
@subsection Darwin Pragmas

The following pragmas are available for all architectures running the
Darwin operating system.  These are useful for compatibility with other
Mac OS compilers.

@table @code
@item mark @var{tokens}@dots{}
@cindex pragma, mark
This pragma is accepted, but has no effect.

@item options align=@var{alignment}
@cindex pragma, options align
This pragma sets the alignment of fields in structures.  The values of
@var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
@code{power}, to emulate PowerPC alignment.  Uses of this pragma nest
properly; to restore the previous setting, use @code{reset} for the
@var{alignment}.

@item segment @var{tokens}@dots{}
@cindex pragma, segment
This pragma is accepted, but has no effect.

@item unused (@var{var} [, @var{var}]@dots{})
@cindex pragma, unused
This pragma declares variables to be possibly unused.  GCC does not
produce warnings for the listed variables.  The effect is similar to
that of the @code{unused} attribute, except that this pragma may appear
anywhere within the variables' scopes.
@end table

@node Solaris Pragmas
@subsection Solaris Pragmas

The Solaris target supports @code{#pragma redefine_extname}
(@pxref{Symbol-Renaming Pragmas}).  It also supports additional
@code{#pragma} directives for compatibility with the system compiler.

@table @code
@item align @var{alignment} (@var{variable} [, @var{variable}]...)
@cindex pragma, align

Increase the minimum alignment of each @var{variable} to @var{alignment}.
This is the same as GCC's @code{aligned} attribute @pxref{Variable
Attributes}).  Macro expansion occurs on the arguments to this pragma
when compiling C and Objective-C@.  It does not currently occur when
compiling C++, but this is a bug which may be fixed in a future
release.

@item fini (@var{function} [, @var{function}]...)
@cindex pragma, fini

This pragma causes each listed @var{function} to be called after
main, or during shared module unloading, by adding a call to the
@code{.fini} section.

@item init (@var{function} [, @var{function}]...)
@cindex pragma, init

This pragma causes each listed @var{function} to be called during
initialization (before @code{main}) or during shared module loading, by
adding a call to the @code{.init} section.

@end table

@node Symbol-Renaming Pragmas
@subsection Symbol-Renaming Pragmas

GCC supports a @code{#pragma} directive that changes the name used in
assembly for a given declaration. While this pragma is supported on all
platforms, it is intended primarily to provide compatibility with the
Solaris system headers. This effect can also be achieved using the asm
labels extension (@pxref{Asm Labels}).

@table @code
@item redefine_extname @var{oldname} @var{newname}
@cindex pragma, redefine_extname

This pragma gives the C function @var{oldname} the assembly symbol
@var{newname}.  The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
is defined if this pragma is available (currently on all platforms).
@end table

This pragma and the @code{asm} labels extension interact in a complicated
manner.  Here are some corner cases you may want to be aware of:

@enumerate
@item This pragma silently applies only to declarations with external
linkage.  The @code{asm} label feature does not have this restriction.

@item In C++, this pragma silently applies only to declarations with
``C'' linkage.  Again, @code{asm} labels do not have this restriction.

@item If either of the ways of changing the assembly name of a
declaration are applied to a declaration whose assembly name has
already been determined (either by a previous use of one of these
features, or because the compiler needed the assembly name in order to
generate code), and the new name is different, a warning issues and
the name does not change.

@item The @var{oldname} used by @code{#pragma redefine_extname} is
always the C-language name.
@end enumerate

@node Structure-Layout Pragmas
@subsection Structure-Layout Pragmas

For compatibility with Microsoft Windows compilers, GCC supports a
set of @code{#pragma} directives that change the maximum alignment of
members of structures (other than zero-width bit-fields), unions, and
classes subsequently defined. The @var{n} value below always is required
to be a small power of two and specifies the new alignment in bytes.

@enumerate
@item @code{#pragma pack(@var{n})} simply sets the new alignment.
@item @code{#pragma pack()} sets the alignment to the one that was in
effect when compilation started (see also command-line option
@option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
@item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
setting on an internal stack and then optionally sets the new alignment.
@item @code{#pragma pack(pop)} restores the alignment setting to the one
saved at the top of the internal stack (and removes that stack entry).
Note that @code{#pragma pack([@var{n}])} does not influence this internal
stack; thus it is possible to have @code{#pragma pack(push)} followed by
multiple @code{#pragma pack(@var{n})} instances and finalized by a single
@code{#pragma pack(pop)}.
@end enumerate

Some targets, e.g.@: x86 and PowerPC, support the @code{#pragma ms_struct}
directive which lays out structures and unions subsequently defined as the
documented @code{__attribute__ ((ms_struct))}.

@enumerate
@item @code{#pragma ms_struct on} turns on the Microsoft layout.
@item @code{#pragma ms_struct off} turns off the Microsoft layout.
@item @code{#pragma ms_struct reset} goes back to the default layout.
@end enumerate

Most targets also support the @code{#pragma scalar_storage_order} directive
which lays out structures and unions subsequently defined as the documented
@code{__attribute__ ((scalar_storage_order))}.

@enumerate
@item @code{#pragma scalar_storage_order big-endian} sets the storage order
of the scalar fields to big-endian.
@item @code{#pragma scalar_storage_order little-endian} sets the storage order
of the scalar fields to little-endian.
@item @code{#pragma scalar_storage_order default} goes back to the endianness
that was in effect when compilation started (see also command-line option
@option{-fsso-struct=@var{endianness}} @pxref{C Dialect Options}).
@end enumerate

@node Weak Pragmas
@subsection Weak Pragmas

For compatibility with SVR4, GCC supports a set of @code{#pragma}
directives for declaring symbols to be weak, and defining weak
aliases.

@table @code
@item #pragma weak @var{symbol}
@cindex pragma, weak
This pragma declares @var{symbol} to be weak, as if the declaration
had the attribute of the same name.  The pragma may appear before
or after the declaration of @var{symbol}.  It is not an error for
@var{symbol} to never be defined at all.

@item #pragma weak @var{symbol1} = @var{symbol2}
This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
It is an error if @var{symbol2} is not defined in the current
translation unit.
@end table

@node Diagnostic Pragmas
@subsection Diagnostic Pragmas

GCC allows the user to selectively enable or disable certain types of
diagnostics, and change the kind of the diagnostic.  For example, a
project's policy might require that all sources compile with
@option{-Werror} but certain files might have exceptions allowing
specific types of warnings.  Or, a project might selectively enable
diagnostics and treat them as errors depending on which preprocessor
macros are defined.

@table @code
@item #pragma GCC diagnostic @var{kind} @var{option}
@cindex pragma, diagnostic

Modifies the disposition of a diagnostic.  Note that not all
diagnostics are modifiable; at the moment only warnings (normally
controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
Use @option{-fdiagnostics-show-option} to determine which diagnostics
are controllable and which option controls them.

@var{kind} is @samp{error} to treat this diagnostic as an error,
@samp{warning} to treat it like a warning (even if @option{-Werror} is
in effect), or @samp{ignored} if the diagnostic is to be ignored.
@var{option} is a double quoted string that matches the command-line
option.

@smallexample
#pragma GCC diagnostic warning "-Wformat"
#pragma GCC diagnostic error "-Wformat"
#pragma GCC diagnostic ignored "-Wformat"
@end smallexample

Note that these pragmas override any command-line options.  GCC keeps
track of the location of each pragma, and issues diagnostics according
to the state as of that point in the source file.  Thus, pragmas occurring
after a line do not affect diagnostics caused by that line.

@item #pragma GCC diagnostic push
@itemx #pragma GCC diagnostic pop

Causes GCC to remember the state of the diagnostics as of each
@code{push}, and restore to that point at each @code{pop}.  If a
@code{pop} has no matching @code{push}, the command-line options are
restored.

@smallexample
#pragma GCC diagnostic error "-Wuninitialized"
  foo(a);                       /* error is given for this one */
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuninitialized"
  foo(b);                       /* no diagnostic for this one */
#pragma GCC diagnostic pop
  foo(c);                       /* error is given for this one */
#pragma GCC diagnostic pop
  foo(d);                       /* depends on command-line options */
@end smallexample

@item #pragma GCC diagnostic ignored_attributes

Similarly to @option{-Wno-attributes=}, this pragma allows users to suppress
warnings about unknown scoped attributes (in C++11 and C2X).  For example,
@code{#pragma GCC diagnostic ignored_attributes "vendor::attr"} disables
warning about the following declaration:

@smallexample
[[vendor::attr]] void f();
@end smallexample

whereas @code{#pragma GCC diagnostic ignored_attributes "vendor::"} prevents
warning about both of these declarations:

@smallexample
[[vendor::safe]] void f();
[[vendor::unsafe]] void f2();
@end smallexample

@end table

GCC also offers a simple mechanism for printing messages during
compilation.

@table @code
@item #pragma message @var{string}
@cindex pragma, diagnostic

Prints @var{string} as a compiler message on compilation.  The message
is informational only, and is neither a compilation warning nor an
error.  Newlines can be included in the string by using the @samp{\n}
escape sequence.

@smallexample
#pragma message "Compiling " __FILE__ "..."
@end smallexample

@var{string} may be parenthesized, and is printed with location
information.  For example,

@smallexample
#define DO_PRAGMA(x) _Pragma (#x)
#define TODO(x) DO_PRAGMA(message ("TODO - " #x))

TODO(Remember to fix this)
@end smallexample

@noindent
prints @samp{/tmp/file.c:4: note: #pragma message:
TODO - Remember to fix this}.

@item #pragma GCC error @var{message}
@cindex pragma, diagnostic
Generates an error message.  This pragma @emph{is} considered to
indicate an error in the compilation, and it will be treated as such.

Newlines can be included in the string by using the @samp{\n}
escape sequence.  They will be displayed as newlines even if the
@option{-fmessage-length} option is set to zero.

The error is only generated if the pragma is present in the code after
pre-processing has been completed.  It does not matter however if the
code containing the pragma is unreachable:

@smallexample
#if 0
#pragma GCC error "this error is not seen"
#endif
void foo (void)
@{
  return;
#pragma GCC error "this error is seen"
@}
@end smallexample

@item #pragma GCC warning @var{message}
@cindex pragma, diagnostic
This is just like @samp{pragma GCC error} except that a warning
message is issued instead of an error message.  Unless
@option{-Werror} is in effect, in which case this pragma will generate
an error as well.

@end table

@node Visibility Pragmas
@subsection Visibility Pragmas

@table @code
@item #pragma GCC visibility push(@var{visibility})
@itemx #pragma GCC visibility pop
@cindex pragma, visibility

This pragma allows the user to set the visibility for multiple
declarations without having to give each a visibility attribute
(@pxref{Function Attributes}).

In C++, @samp{#pragma GCC visibility} affects only namespace-scope
declarations.  Class members and template specializations are not
affected; if you want to override the visibility for a particular
member or instantiation, you must use an attribute.

@end table


@node Push/Pop Macro Pragmas
@subsection Push/Pop Macro Pragmas

For compatibility with Microsoft Windows compilers, GCC supports
@samp{#pragma push_macro(@var{"macro_name"})}
and @samp{#pragma pop_macro(@var{"macro_name"})}.

@table @code
@item #pragma push_macro(@var{"macro_name"})
@cindex pragma, push_macro
This pragma saves the value of the macro named as @var{macro_name} to
the top of the stack for this macro.

@item #pragma pop_macro(@var{"macro_name"})
@cindex pragma, pop_macro
This pragma sets the value of the macro named as @var{macro_name} to
the value on top of the stack for this macro. If the stack for
@var{macro_name} is empty, the value of the macro remains unchanged.
@end table

For example:

@smallexample
#define X  1
#pragma push_macro("X")
#undef X
#define X -1
#pragma pop_macro("X")
int x [X];
@end smallexample

@noindent
In this example, the definition of X as 1 is saved by @code{#pragma
push_macro} and restored by @code{#pragma pop_macro}.

@node Function Specific Option Pragmas
@subsection Function Specific Option Pragmas

@table @code
@item #pragma GCC target (@var{string}, @dots{})
@cindex pragma GCC target

This pragma allows you to set target-specific options for functions
defined later in the source file.  One or more strings can be
specified.  Each function that is defined after this point is treated
as if it had been declared with one @code{target(}@var{string}@code{)}
attribute for each @var{string} argument.  The parentheses around
the strings in the pragma are optional.  @xref{Function Attributes},
for more information about the @code{target} attribute and the attribute
syntax.

The @code{#pragma GCC target} pragma is presently implemented for
x86, ARM, AArch64, PowerPC, S/390, and Nios II targets only.

@item #pragma GCC optimize (@var{string}, @dots{})
@cindex pragma GCC optimize

This pragma allows you to set global optimization options for functions
defined later in the source file.  One or more strings can be
specified.  Each function that is defined after this point is treated
as if it had been declared with one @code{optimize(}@var{string}@code{)}
attribute for each @var{string} argument.  The parentheses around
the strings in the pragma are optional.  @xref{Function Attributes},
for more information about the @code{optimize} attribute and the attribute
syntax.

@item #pragma GCC push_options
@itemx #pragma GCC pop_options
@cindex pragma GCC push_options
@cindex pragma GCC pop_options

These pragmas maintain a stack of the current target and optimization
options.  It is intended for include files where you temporarily want
to switch to using a different @samp{#pragma GCC target} or
@samp{#pragma GCC optimize} and then to pop back to the previous
options.

@item #pragma GCC reset_options
@cindex pragma GCC reset_options

This pragma clears the current @code{#pragma GCC target} and
@code{#pragma GCC optimize} to use the default switches as specified
on the command line.

@end table

@node Loop-Specific Pragmas
@subsection Loop-Specific Pragmas

@table @code
@item #pragma GCC ivdep
@cindex pragma GCC ivdep

With this pragma, the programmer asserts that there are no loop-carried
dependencies which would prevent consecutive iterations of
the following loop from executing concurrently with SIMD
(single instruction multiple data) instructions.

For example, the compiler can only unconditionally vectorize the following
loop with the pragma:

@smallexample
void foo (int n, int *a, int *b, int *c)
@{
  int i, j;
#pragma GCC ivdep
  for (i = 0; i < n; ++i)
    a[i] = b[i] + c[i];
@}
@end smallexample

@noindent
In this example, using the @code{restrict} qualifier had the same
effect. In the following example, that would not be possible. Assume
@math{k < -m} or @math{k >= m}. Only with the pragma, the compiler knows
that it can unconditionally vectorize the following loop:

@smallexample
void ignore_vec_dep (int *a, int k, int c, int m)
@{
#pragma GCC ivdep
  for (int i = 0; i < m; i++)
    a[i] = a[i + k] * c;
@}
@end smallexample

@item #pragma GCC unroll @var{n}
@cindex pragma GCC unroll @var{n}

You can use this pragma to control how many times a loop should be unrolled.
It must be placed immediately before a @code{for}, @code{while} or @code{do}
loop or a @code{#pragma GCC ivdep}, and applies only to the loop that follows.
@var{n} is an integer constant expression specifying the unrolling factor.
The values of @math{0} and @math{1} block any unrolling of the loop.

@end table

@node Unnamed Fields
@section Unnamed Structure and Union Fields
@cindex @code{struct}
@cindex @code{union}

As permitted by ISO C11 and for compatibility with other compilers,
GCC allows you to define
a structure or union that contains, as fields, structures and unions
without names.  For example:

@smallexample
struct @{
  int a;
  union @{
    int b;
    float c;
  @};
  int d;
@} foo;
@end smallexample

@noindent
In this example, you are able to access members of the unnamed
union with code like @samp{foo.b}.  Note that only unnamed structs and
unions are allowed, you may not have, for example, an unnamed
@code{int}.

You must never create such structures that cause ambiguous field definitions.
For example, in this structure:

@smallexample
struct @{
  int a;
  struct @{
    int a;
  @};
@} foo;
@end smallexample

@noindent
it is ambiguous which @code{a} is being referred to with @samp{foo.a}.
The compiler gives errors for such constructs.

@opindex fms-extensions
Unless @option{-fms-extensions} is used, the unnamed field must be a
structure or union definition without a tag (for example, @samp{struct
@{ int a; @};}).  If @option{-fms-extensions} is used, the field may
also be a definition with a tag such as @samp{struct foo @{ int a;
@};}, a reference to a previously defined structure or union such as
@samp{struct foo;}, or a reference to a @code{typedef} name for a
previously defined structure or union type.

@opindex fplan9-extensions
The option @option{-fplan9-extensions} enables
@option{-fms-extensions} as well as two other extensions.  First, a
pointer to a structure is automatically converted to a pointer to an
anonymous field for assignments and function calls.  For example:

@smallexample
struct s1 @{ int a; @};
struct s2 @{ struct s1; @};
extern void f1 (struct s1 *);
void f2 (struct s2 *p) @{ f1 (p); @}
@end smallexample

@noindent
In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
converted into a pointer to the anonymous field.

Second, when the type of an anonymous field is a @code{typedef} for a
@code{struct} or @code{union}, code may refer to the field using the
name of the @code{typedef}.

@smallexample
typedef struct @{ int a; @} s1;
struct s2 @{ s1; @};
s1 f1 (struct s2 *p) @{ return p->s1; @}
@end smallexample

These usages are only permitted when they are not ambiguous.

@node Thread-Local
@section Thread-Local Storage
@cindex Thread-Local Storage
@cindex @acronym{TLS}
@cindex @code{__thread}

Thread-local storage (@acronym{TLS}) is a mechanism by which variables
are allocated such that there is one instance of the variable per extant
thread.  The runtime model GCC uses to implement this originates
in the IA-64 processor-specific ABI, but has since been migrated
to other processors as well.  It requires significant support from
the linker (@command{ld}), dynamic linker (@command{ld.so}), and
system libraries (@file{libc.so} and @file{libpthread.so}), so it
is not available everywhere.

At the user level, the extension is visible with a new storage
class keyword: @code{__thread}.  For example:

@smallexample
__thread int i;
extern __thread struct state s;
static __thread char *p;
@end smallexample

The @code{__thread} specifier may be used alone, with the @code{extern}
or @code{static} specifiers, but with no other storage class specifier.
When used with @code{extern} or @code{static}, @code{__thread} must appear
immediately after the other storage class specifier.

The @code{__thread} specifier may be applied to any global, file-scoped
static, function-scoped static, or static data member of a class.  It may
not be applied to block-scoped automatic or non-static data member.

When the address-of operator is applied to a thread-local variable, it is
evaluated at run time and returns the address of the current thread's
instance of that variable.  An address so obtained may be used by any
thread.  When a thread terminates, any pointers to thread-local variables
in that thread become invalid.

No static initialization may refer to the address of a thread-local variable.

In C++, if an initializer is present for a thread-local variable, it must
be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
standard.

See @uref{https://www.akkadia.org/drepper/tls.pdf,
ELF Handling For Thread-Local Storage} for a detailed explanation of
the four thread-local storage addressing models, and how the runtime
is expected to function.

@menu
* C99 Thread-Local Edits::
* C++98 Thread-Local Edits::
@end menu

@node C99 Thread-Local Edits
@subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage

The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
that document the exact semantics of the language extension.

@itemize @bullet
@item
@cite{5.1.2  Execution environments}

Add new text after paragraph 1

@quotation
Within either execution environment, a @dfn{thread} is a flow of
control within a program.  It is implementation defined whether
or not there may be more than one thread associated with a program.
It is implementation defined how threads beyond the first are
created, the name and type of the function called at thread
startup, and how threads may be terminated.  However, objects
with thread storage duration shall be initialized before thread
startup.
@end quotation

@item
@cite{6.2.4  Storage durations of objects}

Add new text before paragraph 3

@quotation
An object whose identifier is declared with the storage-class
specifier @w{@code{__thread}} has @dfn{thread storage duration}.
Its lifetime is the entire execution of the thread, and its
stored value is initialized only once, prior to thread startup.
@end quotation

@item
@cite{6.4.1  Keywords}

Add @code{__thread}.

@item
@cite{6.7.1  Storage-class specifiers}

Add @code{__thread} to the list of storage class specifiers in
paragraph 1.

Change paragraph 2 to

@quotation
With the exception of @code{__thread}, at most one storage-class
specifier may be given [@dots{}].  The @code{__thread} specifier may
be used alone, or immediately following @code{extern} or
@code{static}.
@end quotation

Add new text after paragraph 6

@quotation
The declaration of an identifier for a variable that has
block scope that specifies @code{__thread} shall also
specify either @code{extern} or @code{static}.

The @code{__thread} specifier shall be used only with
variables.
@end quotation
@end itemize

@node C++98 Thread-Local Edits
@subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage

The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
that document the exact semantics of the language extension.

@itemize @bullet
@item
@b{[intro.execution]}

New text after paragraph 4

@quotation
A @dfn{thread} is a flow of control within the abstract machine.
It is implementation defined whether or not there may be more than
one thread.
@end quotation

New text after paragraph 7

@quotation
It is unspecified whether additional action must be taken to
ensure when and whether side effects are visible to other threads.
@end quotation

@item
@b{[lex.key]}

Add @code{__thread}.

@item
@b{[basic.start.main]}

Add after paragraph 5

@quotation
The thread that begins execution at the @code{main} function is called
the @dfn{main thread}.  It is implementation defined how functions
beginning threads other than the main thread are designated or typed.
A function so designated, as well as the @code{main} function, is called
a @dfn{thread startup function}.  It is implementation defined what
happens if a thread startup function returns.  It is implementation
defined what happens to other threads when any thread calls @code{exit}.
@end quotation

@item
@b{[basic.start.init]}

Add after paragraph 4

@quotation
The storage for an object of thread storage duration shall be
statically initialized before the first statement of the thread startup
function.  An object of thread storage duration shall not require
dynamic initialization.
@end quotation

@item
@b{[basic.start.term]}

Add after paragraph 3

@quotation
The type of an object with thread storage duration shall not have a
non-trivial destructor, nor shall it be an array type whose elements
(directly or indirectly) have non-trivial destructors.
@end quotation

@item
@b{[basic.stc]}

Add ``thread storage duration'' to the list in paragraph 1.

Change paragraph 2

@quotation
Thread, static, and automatic storage durations are associated with
objects introduced by declarations [@dots{}].
@end quotation

Add @code{__thread} to the list of specifiers in paragraph 3.

@item
@b{[basic.stc.thread]}

New section before @b{[basic.stc.static]}

@quotation
The keyword @code{__thread} applied to a non-local object gives the
object thread storage duration.

A local variable or class data member declared both @code{static}
and @code{__thread} gives the variable or member thread storage
duration.
@end quotation

@item
@b{[basic.stc.static]}

Change paragraph 1

@quotation
All objects that have neither thread storage duration, dynamic
storage duration nor are local [@dots{}].
@end quotation

@item
@b{[dcl.stc]}

Add @code{__thread} to the list in paragraph 1.

Change paragraph 1

@quotation
With the exception of @code{__thread}, at most one
@var{storage-class-specifier} shall appear in a given
@var{decl-specifier-seq}.  The @code{__thread} specifier may
be used alone, or immediately following the @code{extern} or
@code{static} specifiers.  [@dots{}]
@end quotation

Add after paragraph 5

@quotation
The @code{__thread} specifier can be applied only to the names of objects
and to anonymous unions.
@end quotation

@item
@b{[class.mem]}

Add after paragraph 6

@quotation
Non-@code{static} members shall not be @code{__thread}.
@end quotation
@end itemize

@node Binary constants
@section Binary Constants using the @samp{0b} Prefix
@cindex Binary constants using the @samp{0b} prefix

Integer constants can be written as binary constants, consisting of a
sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
@samp{0B}.  This is particularly useful in environments that operate a
lot on the bit level (like microcontrollers).

The following statements are identical:

@smallexample
i =       42;
i =     0x2a;
i =      052;
i = 0b101010;
@end smallexample

The type of these constants follows the same rules as for octal or
hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
can be applied.

@node C++ Extensions
@chapter Extensions to the C++ Language
@cindex extensions, C++ language
@cindex C++ language extensions

The GNU compiler provides these extensions to the C++ language (and you
can also use most of the C language extensions in your C++ programs).  If you
want to write code that checks whether these features are available, you can
test for the GNU compiler the same way as for C programs: check for a
predefined macro @code{__GNUC__}.  You can also use @code{__GNUG__} to
test specifically for GNU C++ (@pxref{Common Predefined Macros,,
Predefined Macros,cpp,The GNU C Preprocessor}).

@menu
* C++ Volatiles::       What constitutes an access to a volatile object.
* Restricted Pointers:: C99 restricted pointers and references.
* Vague Linkage::       Where G++ puts inlines, vtables and such.
* C++ Interface::       You can use a single C++ header file for both
                        declarations and definitions.
* Template Instantiation:: Methods for ensuring that exactly one copy of
                        each needed template instantiation is emitted.
* Bound member functions:: You can extract a function pointer to the
                        method denoted by a @samp{->*} or @samp{.*} expression.
* C++ Attributes::      Variable, function, and type attributes for C++ only.
* Function Multiversioning::   Declaring multiple function versions.
* Type Traits::         Compiler support for type traits.
* C++ Concepts::        Improved support for generic programming.
* Deprecated Features:: Things will disappear from G++.
* Backwards Compatibility:: Compatibilities with earlier definitions of C++.
@end menu

@node C++ Volatiles
@section When is a Volatile C++ Object Accessed?
@cindex accessing volatiles
@cindex volatile read
@cindex volatile write
@cindex volatile access

The C++ standard differs from the C standard in its treatment of
volatile objects.  It fails to specify what constitutes a volatile
access, except to say that C++ should behave in a similar manner to C
with respect to volatiles, where possible.  However, the different
lvalueness of expressions between C and C++ complicate the behavior.
G++ behaves the same as GCC for volatile access, @xref{C
Extensions,,Volatiles}, for a description of GCC's behavior.

The C and C++ language specifications differ when an object is
accessed in a void context:

@smallexample
volatile int *src = @var{somevalue};
*src;
@end smallexample

The C++ standard specifies that such expressions do not undergo lvalue
to rvalue conversion, and that the type of the dereferenced object may
be incomplete.  The C++ standard does not specify explicitly that it
is lvalue to rvalue conversion that is responsible for causing an
access.  There is reason to believe that it is, because otherwise
certain simple expressions become undefined.  However, because it
would surprise most programmers, G++ treats dereferencing a pointer to
volatile object of complete type as GCC would do for an equivalent
type in C@.  When the object has incomplete type, G++ issues a
warning; if you wish to force an error, you must force a conversion to
rvalue with, for instance, a static cast.

When using a reference to volatile, G++ does not treat equivalent
expressions as accesses to volatiles, but instead issues a warning that
no volatile is accessed.  The rationale for this is that otherwise it
becomes difficult to determine where volatile access occur, and not
possible to ignore the return value from functions returning volatile
references.  Again, if you wish to force a read, cast the reference to
an rvalue.

G++ implements the same behavior as GCC does when assigning to a
volatile object---there is no reread of the assigned-to object, the
assigned rvalue is reused.  Note that in C++ assignment expressions
are lvalues, and if used as an lvalue, the volatile object is
referred to.  For instance, @var{vref} refers to @var{vobj}, as
expected, in the following example:

@smallexample
volatile int vobj;
volatile int &vref = vobj = @var{something};
@end smallexample

@node Restricted Pointers
@section Restricting Pointer Aliasing
@cindex restricted pointers
@cindex restricted references
@cindex restricted this pointer

As with the C front end, G++ understands the C99 feature of restricted pointers,
specified with the @code{__restrict__}, or @code{__restrict} type
qualifier.  Because you cannot compile C++ by specifying the @option{-std=c99}
language flag, @code{restrict} is not a keyword in C++.

In addition to allowing restricted pointers, you can specify restricted
references, which indicate that the reference is not aliased in the local
context.

@smallexample
void fn (int *__restrict__ rptr, int &__restrict__ rref)
@{
  /* @r{@dots{}} */
@}
@end smallexample

@noindent
In the body of @code{fn}, @var{rptr} points to an unaliased integer and
@var{rref} refers to a (different) unaliased integer.

You may also specify whether a member function's @var{this} pointer is
unaliased by using @code{__restrict__} as a member function qualifier.

@smallexample
void T::fn () __restrict__
@{
  /* @r{@dots{}} */
@}
@end smallexample

@noindent
Within the body of @code{T::fn}, @var{this} has the effective
definition @code{T *__restrict__ const this}.  Notice that the
interpretation of a @code{__restrict__} member function qualifier is
different to that of @code{const} or @code{volatile} qualifier, in that it
is applied to the pointer rather than the object.  This is consistent with
other compilers that implement restricted pointers.

As with all outermost parameter qualifiers, @code{__restrict__} is
ignored in function definition matching.  This means you only need to
specify @code{__restrict__} in a function definition, rather than
in a function prototype as well.

@node Vague Linkage
@section Vague Linkage
@cindex vague linkage

There are several constructs in C++ that require space in the object
file but are not clearly tied to a single translation unit.  We say that
these constructs have ``vague linkage''.  Typically such constructs are
emitted wherever they are needed, though sometimes we can be more
clever.

@table @asis
@item Inline Functions
Inline functions are typically defined in a header file which can be
included in many different compilations.  Hopefully they can usually be
inlined, but sometimes an out-of-line copy is necessary, if the address
of the function is taken or if inlining fails.  In general, we emit an
out-of-line copy in all translation units where one is needed.  As an
exception, we only emit inline virtual functions with the vtable, since
it always requires a copy.

Local static variables and string constants used in an inline function
are also considered to have vague linkage, since they must be shared
between all inlined and out-of-line instances of the function.

@item VTables
@cindex vtable
C++ virtual functions are implemented in most compilers using a lookup
table, known as a vtable.  The vtable contains pointers to the virtual
functions provided by a class, and each object of the class contains a
pointer to its vtable (or vtables, in some multiple-inheritance
situations).  If the class declares any non-inline, non-pure virtual
functions, the first one is chosen as the ``key method'' for the class,
and the vtable is only emitted in the translation unit where the key
method is defined.

@emph{Note:} If the chosen key method is later defined as inline, the
vtable is still emitted in every translation unit that defines it.
Make sure that any inline virtuals are declared inline in the class
body, even if they are not defined there.

@item @code{type_info} objects
@cindex @code{type_info}
@cindex RTTI
C++ requires information about types to be written out in order to
implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
For polymorphic classes (classes with virtual functions), the @samp{type_info}
object is written out along with the vtable so that @samp{dynamic_cast}
can determine the dynamic type of a class object at run time.  For all
other types, we write out the @samp{type_info} object when it is used: when
applying @samp{typeid} to an expression, throwing an object, or
referring to a type in a catch clause or exception specification.

@item Template Instantiations
Most everything in this section also applies to template instantiations,
but there are other options as well.
@xref{Template Instantiation,,Where's the Template?}.

@end table

When used with GNU ld version 2.8 or later on an ELF system such as
GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
these constructs will be discarded at link time.  This is known as
COMDAT support.

On targets that don't support COMDAT, but do support weak symbols, GCC
uses them.  This way one copy overrides all the others, but
the unused copies still take up space in the executable.

For targets that do not support either COMDAT or weak symbols,
most entities with vague linkage are emitted as local symbols to
avoid duplicate definition errors from the linker.  This does not happen
for local statics in inlines, however, as having multiple copies
almost certainly breaks things.

@xref{C++ Interface,,Declarations and Definitions in One Header}, for
another way to control placement of these constructs.

@node C++ Interface
@section C++ Interface and Implementation Pragmas

@cindex interface and implementation headers, C++
@cindex C++ interface and implementation headers
@cindex pragmas, interface and implementation

@code{#pragma interface} and @code{#pragma implementation} provide the
user with a way of explicitly directing the compiler to emit entities
with vague linkage (and debugging information) in a particular
translation unit.

@emph{Note:} These @code{#pragma}s have been superceded as of GCC 2.7.2
by COMDAT support and the ``key method'' heuristic
mentioned in @ref{Vague Linkage}.  Using them can actually cause your
program to grow due to unnecessary out-of-line copies of inline
functions.

@table @code
@item #pragma interface
@itemx #pragma interface "@var{subdir}/@var{objects}.h"
@kindex #pragma interface
Use this directive in @emph{header files} that define object classes, to save
space in most of the object files that use those classes.  Normally,
local copies of certain information (backup copies of inline member
functions, debugging information, and the internal tables that implement
virtual functions) must be kept in each object file that includes class
definitions.  You can use this pragma to avoid such duplication.  When a
header file containing @samp{#pragma interface} is included in a
compilation, this auxiliary information is not generated (unless
the main input source file itself uses @samp{#pragma implementation}).
Instead, the object files contain references to be resolved at link
time.

The second form of this directive is useful for the case where you have
multiple headers with the same name in different directories.  If you
use this form, you must specify the same string to @samp{#pragma
implementation}.

@item #pragma implementation
@itemx #pragma implementation "@var{objects}.h"
@kindex #pragma implementation
Use this pragma in a @emph{main input file}, when you want full output from
included header files to be generated (and made globally visible).  The
included header file, in turn, should use @samp{#pragma interface}.
Backup copies of inline member functions, debugging information, and the
internal tables used to implement virtual functions are all generated in
implementation files.

@cindex implied @code{#pragma implementation}
@cindex @code{#pragma implementation}, implied
@cindex naming convention, implementation headers
If you use @samp{#pragma implementation} with no argument, it applies to
an include file with the same basename@footnote{A file's @dfn{basename}
is the name stripped of all leading path information and of trailing
suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
file.  For example, in @file{allclass.cc}, giving just
@samp{#pragma implementation}
by itself is equivalent to @samp{#pragma implementation "allclass.h"}.

Use the string argument if you want a single implementation file to
include code from multiple header files.  (You must also use
@samp{#include} to include the header file; @samp{#pragma
implementation} only specifies how to use the file---it doesn't actually
include it.)

There is no way to split up the contents of a single header file into
multiple implementation files.
@end table

@cindex inlining and C++ pragmas
@cindex C++ pragmas, effect on inlining
@cindex pragmas in C++, effect on inlining
@samp{#pragma implementation} and @samp{#pragma interface} also have an
effect on function inlining.

If you define a class in a header file marked with @samp{#pragma
interface}, the effect on an inline function defined in that class is
similar to an explicit @code{extern} declaration---the compiler emits
no code at all to define an independent version of the function.  Its
definition is used only for inlining with its callers.

@opindex fno-implement-inlines
Conversely, when you include the same header file in a main source file
that declares it as @samp{#pragma implementation}, the compiler emits
code for the function itself; this defines a version of the function
that can be found via pointers (or by callers compiled without
inlining).  If all calls to the function can be inlined, you can avoid
emitting the function by compiling with @option{-fno-implement-inlines}.
If any calls are not inlined, you will get linker errors.

@node Template Instantiation
@section Where's the Template?
@cindex template instantiation

C++ templates were the first language feature to require more
intelligence from the environment than was traditionally found on a UNIX
system.  Somehow the compiler and linker have to make sure that each
template instance occurs exactly once in the executable if it is needed,
and not at all otherwise.  There are two basic approaches to this
problem, which are referred to as the Borland model and the Cfront model.

@table @asis
@item Borland model
Borland C++ solved the template instantiation problem by adding the code
equivalent of common blocks to their linker; the compiler emits template
instances in each translation unit that uses them, and the linker
collapses them together.  The advantage of this model is that the linker
only has to consider the object files themselves; there is no external
complexity to worry about.  The disadvantage is that compilation time
is increased because the template code is being compiled repeatedly.
Code written for this model tends to include definitions of all
templates in the header file, since they must be seen to be
instantiated.

@item Cfront model
The AT&T C++ translator, Cfront, solved the template instantiation
problem by creating the notion of a template repository, an
automatically maintained place where template instances are stored.  A
more modern version of the repository works as follows: As individual
object files are built, the compiler places any template definitions and
instantiations encountered in the repository.  At link time, the link
wrapper adds in the objects in the repository and compiles any needed
instances that were not previously emitted.  The advantages of this
model are more optimal compilation speed and the ability to use the
system linker; to implement the Borland model a compiler vendor also
needs to replace the linker.  The disadvantages are vastly increased
complexity, and thus potential for error; for some code this can be
just as transparent, but in practice it can been very difficult to build
multiple programs in one directory and one program in multiple
directories.  Code written for this model tends to separate definitions
of non-inline member templates into a separate file, which should be
compiled separately.
@end table

G++ implements the Borland model on targets where the linker supports it,
including ELF targets (such as GNU/Linux), Mac OS X and Microsoft Windows.
Otherwise G++ implements neither automatic model.

You have the following options for dealing with template instantiations:

@enumerate
@item
Do nothing.  Code written for the Borland model works fine, but
each translation unit contains instances of each of the templates it
uses.  The duplicate instances will be discarded by the linker, but in
a large program, this can lead to an unacceptable amount of code
duplication in object files or shared libraries.

Duplicate instances of a template can be avoided by defining an explicit
instantiation in one object file, and preventing the compiler from doing
implicit instantiations in any other object files by using an explicit
instantiation declaration, using the @code{extern template} syntax:

@smallexample
extern template int max (int, int);
@end smallexample

This syntax is defined in the C++ 2011 standard, but has been supported by
G++ and other compilers since well before 2011.

Explicit instantiations can be used for the largest or most frequently
duplicated instances, without having to know exactly which other instances
are used in the rest of the program.  You can scatter the explicit
instantiations throughout your program, perhaps putting them in the
translation units where the instances are used or the translation units
that define the templates themselves; you can put all of the explicit
instantiations you need into one big file; or you can create small files
like

@smallexample
#include "Foo.h"
#include "Foo.cc"

template class Foo<int>;
template ostream& operator <<
                (ostream&, const Foo<int>&);
@end smallexample

@noindent
for each of the instances you need, and create a template instantiation
library from those.

This is the simplest option, but also offers flexibility and
fine-grained control when necessary. It is also the most portable
alternative and programs using this approach will work with most modern
compilers.

@item
@opindex fno-implicit-templates
Compile your code with @option{-fno-implicit-templates} to disable the
implicit generation of template instances, and explicitly instantiate
all the ones you use.  This approach requires more knowledge of exactly
which instances you need than do the others, but it's less
mysterious and allows greater control if you want to ensure that only
the intended instances are used.

If you are using Cfront-model code, you can probably get away with not
using @option{-fno-implicit-templates} when compiling files that don't
@samp{#include} the member template definitions.

If you use one big file to do the instantiations, you may want to
compile it without @option{-fno-implicit-templates} so you get all of the
instances required by your explicit instantiations (but not by any
other files) without having to specify them as well.

In addition to forward declaration of explicit instantiations
(with @code{extern}), G++ has extended the template instantiation
syntax to support instantiation of the compiler support data for a
template class (i.e.@: the vtable) without instantiating any of its
members (with @code{inline}), and instantiation of only the static data
members of a template class, without the support data or member
functions (with @code{static}):

@smallexample
inline template class Foo<int>;
static template class Foo<int>;
@end smallexample
@end enumerate

@node Bound member functions
@section Extracting the Function Pointer from a Bound Pointer to Member Function
@cindex pmf
@cindex pointer to member function
@cindex bound pointer to member function

In C++, pointer to member functions (PMFs) are implemented using a wide
pointer of sorts to handle all the possible call mechanisms; the PMF
needs to store information about how to adjust the @samp{this} pointer,
and if the function pointed to is virtual, where to find the vtable, and
where in the vtable to look for the member function.  If you are using
PMFs in an inner loop, you should really reconsider that decision.  If
that is not an option, you can extract the pointer to the function that
would be called for a given object/PMF pair and call it directly inside
the inner loop, to save a bit of time.

Note that you still pay the penalty for the call through a
function pointer; on most modern architectures, such a call defeats the
branch prediction features of the CPU@.  This is also true of normal
virtual function calls.

The syntax for this extension is

@smallexample
extern A a;
extern int (A::*fp)();
typedef int (*fptr)(A *);

fptr p = (fptr)(a.*fp);
@end smallexample

For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
no object is needed to obtain the address of the function.  They can be
converted to function pointers directly:

@smallexample
fptr p1 = (fptr)(&A::foo);
@end smallexample

@opindex Wno-pmf-conversions
You must specify @option{-Wno-pmf-conversions} to use this extension.

@node C++ Attributes
@section C++-Specific Variable, Function, and Type Attributes

Some attributes only make sense for C++ programs.

@table @code
@item abi_tag ("@var{tag}", ...)
@cindex @code{abi_tag} function attribute
@cindex @code{abi_tag} variable attribute
@cindex @code{abi_tag} type attribute
The @code{abi_tag} attribute can be applied to a function, variable, or class
declaration.  It modifies the mangled name of the entity to
incorporate the tag name, in order to distinguish the function or
class from an earlier version with a different ABI; perhaps the class
has changed size, or the function has a different return type that is
not encoded in the mangled name.

The attribute can also be applied to an inline namespace, but does not
affect the mangled name of the namespace; in this case it is only used
for @option{-Wabi-tag} warnings and automatic tagging of functions and
variables.  Tagging inline namespaces is generally preferable to
tagging individual declarations, but the latter is sometimes
necessary, such as when only certain members of a class need to be
tagged.

The argument can be a list of strings of arbitrary length.  The
strings are sorted on output, so the order of the list is
unimportant.

A redeclaration of an entity must not add new ABI tags,
since doing so would change the mangled name.

The ABI tags apply to a name, so all instantiations and
specializations of a template have the same tags.  The attribute will
be ignored if applied to an explicit specialization or instantiation.

The @option{-Wabi-tag} flag enables a warning about a class which does
not have all the ABI tags used by its subobjects and virtual functions; for users with code
that needs to coexist with an earlier ABI, using this option can help
to find all affected types that need to be tagged.

When a type involving an ABI tag is used as the type of a variable or
return type of a function where that tag is not already present in the
signature of the function, the tag is automatically applied to the
variable or function.  @option{-Wabi-tag} also warns about this
situation; this warning can be avoided by explicitly tagging the
variable or function or moving it into a tagged inline namespace.

@item init_priority (@var{priority})
@cindex @code{init_priority} variable attribute

In Standard C++, objects defined at namespace scope are guaranteed to be
initialized in an order in strict accordance with that of their definitions
@emph{in a given translation unit}.  No guarantee is made for initializations
across translation units.  However, GNU C++ allows users to control the
order of initialization of objects defined at namespace scope with the
@code{init_priority} attribute by specifying a relative @var{priority},
a constant integral expression currently bounded between 101 and 65535
inclusive.  Lower numbers indicate a higher priority.

In the following example, @code{A} would normally be created before
@code{B}, but the @code{init_priority} attribute reverses that order:

@smallexample
Some_Class  A  __attribute__ ((init_priority (2000)));
Some_Class  B  __attribute__ ((init_priority (543)));
@end smallexample

@noindent
Note that the particular values of @var{priority} do not matter; only their
relative ordering.

@item warn_unused
@cindex @code{warn_unused} type attribute

For C++ types with non-trivial constructors and/or destructors it is
impossible for the compiler to determine whether a variable of this
type is truly unused if it is not referenced. This type attribute
informs the compiler that variables of this type should be warned
about if they appear to be unused, just like variables of fundamental
types.

This attribute is appropriate for types which just represent a value,
such as @code{std::string}; it is not appropriate for types which
control a resource, such as @code{std::lock_guard}.

This attribute is also accepted in C, but it is unnecessary because C
does not have constructors or destructors.

@end table

@node Function Multiversioning
@section Function Multiversioning
@cindex function versions

With the GNU C++ front end, for x86 targets, you may specify multiple
versions of a function, where each function is specialized for a
specific target feature.  At runtime, the appropriate version of the
function is automatically executed depending on the characteristics of
the execution platform.  Here is an example.

@smallexample
__attribute__ ((target ("default")))
int foo ()
@{
  // The default version of foo.
  return 0;
@}

__attribute__ ((target ("sse4.2")))
int foo ()
@{
  // foo version for SSE4.2
  return 1;
@}

__attribute__ ((target ("arch=atom")))
int foo ()
@{
  // foo version for the Intel ATOM processor
  return 2;
@}

__attribute__ ((target ("arch=amdfam10")))
int foo ()
@{
  // foo version for the AMD Family 0x10 processors.
  return 3;
@}

int main ()
@{
  int (*p)() = &foo;
  assert ((*p) () == foo ());
  return 0;
@}
@end smallexample

In the above example, four versions of function foo are created. The
first version of foo with the target attribute "default" is the default
version.  This version gets executed when no other target specific
version qualifies for execution on a particular platform. A new version
of foo is created by using the same function signature but with a
different target string.  Function foo is called or a pointer to it is
taken just like a regular function.  GCC takes care of doing the
dispatching to call the right version at runtime.  Refer to the
@uref{https://gcc.gnu.org/wiki/FunctionMultiVersioning, GCC wiki on
Function Multiversioning} for more details.

@node Type Traits
@section Type Traits

The C++ front end implements syntactic extensions that allow
compile-time determination of 
various characteristics of a type (or of a
pair of types).

@table @code
@item __has_nothrow_assign (type)
If @code{type} is @code{const}-qualified or is a reference type then
the trait is @code{false}.  Otherwise if @code{__has_trivial_assign (type)}
is @code{true} then the trait is @code{true}, else if @code{type} is
a cv-qualified class or union type with copy assignment operators that are
known not to throw an exception then the trait is @code{true}, else it is
@code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.

@item __has_nothrow_copy (type)
If @code{__has_trivial_copy (type)} is @code{true} then the trait is
@code{true}, else if @code{type} is a cv-qualified class or union type
with copy constructors that are known not to throw an exception then
the trait is @code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.

@item __has_nothrow_constructor (type)
If @code{__has_trivial_constructor (type)} is @code{true} then the trait
is @code{true}, else if @code{type} is a cv class or union type (or array
thereof) with a default constructor that is known not to throw an
exception then the trait is @code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.

@item __has_trivial_assign (type)
If @code{type} is @code{const}- qualified or is a reference type then
the trait is @code{false}.  Otherwise if @code{__is_trivial (type)} is
@code{true} then the trait is @code{true}, else if @code{type} is
a cv-qualified class or union type with a trivial copy assignment
([class.copy]) then the trait is @code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.

@item __has_trivial_copy (type)
If @code{__is_trivial (type)} is @code{true} or @code{type} is a reference
type then the trait is @code{true}, else if @code{type} is a cv class
or union type with a trivial copy constructor ([class.copy]) then the trait
is @code{true}, else it is @code{false}.  Requires: @code{type} shall be
a complete type, (possibly cv-qualified) @code{void}, or an array of unknown
bound.

@item __has_trivial_constructor (type)
If @code{__is_trivial (type)} is @code{true} then the trait is @code{true},
else if @code{type} is a cv-qualified class or union type (or array thereof)
with a trivial default constructor ([class.ctor]) then the trait is @code{true},
else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.

@item __has_trivial_destructor (type)
If @code{__is_trivial (type)} is @code{true} or @code{type} is a reference type
then the trait is @code{true}, else if @code{type} is a cv class or union
type (or array thereof) with a trivial destructor ([class.dtor]) then
the trait is @code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.

@item __has_virtual_destructor (type)
If @code{type} is a class type with a virtual destructor
([class.dtor]) then the trait is @code{true}, else it is @code{false}.
Requires: If @code{type} is a non-union class type, it shall be a complete type.

@item __is_abstract (type)
If @code{type} is an abstract class ([class.abstract]) then the trait
is @code{true}, else it is @code{false}.
Requires: If @code{type} is a non-union class type, it shall be a complete type.

@item __is_aggregate (type)
If @code{type} is an aggregate type ([dcl.init.aggr]) the trait is
@code{true}, else it is @code{false}.
Requires: If @code{type} is a class type, it shall be a complete type.

@item __is_base_of (base_type, derived_type)
If @code{base_type} is a base class of @code{derived_type}
([class.derived]) then the trait is @code{true}, otherwise it is @code{false}.
Top-level cv-qualifications of @code{base_type} and
@code{derived_type} are ignored.  For the purposes of this trait, a
class type is considered is own base.
Requires: if @code{__is_class (base_type)} and @code{__is_class (derived_type)}
are @code{true} and @code{base_type} and @code{derived_type} are not the same
type (disregarding cv-qualifiers), @code{derived_type} shall be a complete
type.  A diagnostic is produced if this requirement is not met.

@item __is_class (type)
If @code{type} is a cv-qualified class type, and not a union type
([basic.compound]) the trait is @code{true}, else it is @code{false}.

@item __is_empty (type)
If @code{__is_class (type)} is @code{false} then the trait is @code{false}.
Otherwise @code{type} is considered empty if and only if: @code{type}
has no non-static data members, or all non-static data members, if
any, are bit-fields of length 0, and @code{type} has no virtual
members, and @code{type} has no virtual base classes, and @code{type}
has no base classes @code{base_type} for which
@code{__is_empty (base_type)} is @code{false}.
Requires: If @code{type} is a non-union class type, it shall be a complete type.

@item __is_enum (type)
If @code{type} is a cv enumeration type ([basic.compound]) the trait is
@code{true}, else it is @code{false}.

@item __is_final (type)
If @code{type} is a class or union type marked @code{final}, then the trait
is @code{true}, else it is @code{false}.
Requires: If @code{type} is a class type, it shall be a complete type.

@item __is_literal_type (type)
If @code{type} is a literal type ([basic.types]) the trait is
@code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.

@item __is_pod (type)
If @code{type} is a cv POD type ([basic.types]) then the trait is @code{true},
else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.

@item __is_polymorphic (type)
If @code{type} is a polymorphic class ([class.virtual]) then the trait
is @code{true}, else it is @code{false}.
Requires: If @code{type} is a non-union class type, it shall be a complete type.

@item __is_standard_layout (type)
If @code{type} is a standard-layout type ([basic.types]) the trait is
@code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, an array of complete types,
or (possibly cv-qualified) @code{void}.

@item __is_trivial (type)
If @code{type} is a trivial type ([basic.types]) the trait is
@code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, an array of complete types,
or (possibly cv-qualified) @code{void}.

@item __is_union (type)
If @code{type} is a cv union type ([basic.compound]) the trait is
@code{true}, else it is @code{false}.

@item __underlying_type (type)
The underlying type of @code{type}.
Requires: @code{type} shall be an enumeration type ([dcl.enum]).

@item __integer_pack (length)
When used as the pattern of a pack expansion within a template
definition, expands to a template argument pack containing integers
from @code{0} to @code{length-1}.  This is provided for efficient
implementation of @code{std::make_integer_sequence}.

@end table


@node C++ Concepts
@section C++ Concepts

C++ concepts provide much-improved support for generic programming. In
particular, they allow the specification of constraints on template arguments.
The constraints are used to extend the usual overloading and partial
specialization capabilities of the language, allowing generic data structures
and algorithms to be ``refined'' based on their properties rather than their
type names.

The following keywords are reserved for concepts.

@table @code
@item assumes
States an expression as an assumption, and if possible, verifies that the
assumption is valid. For example, @code{assume(n > 0)}.

@item axiom
Introduces an axiom definition. Axioms introduce requirements on values.

@item forall
Introduces a universally quantified object in an axiom. For example,
@code{forall (int n) n + 0 == n}).

@item concept
Introduces a concept definition. Concepts are sets of syntactic and semantic
requirements on types and their values.

@item requires
Introduces constraints on template arguments or requirements for a member
function of a class template.

@end table

The front end also exposes a number of internal mechanism that can be used
to simplify the writing of type traits. Note that some of these traits are
likely to be removed in the future.

@table @code
@item __is_same (type1, type2)
A binary type trait: @code{true} whenever the type arguments are the same.

@end table


@node Deprecated Features
@section Deprecated Features

In the past, the GNU C++ compiler was extended to experiment with new
features, at a time when the C++ language was still evolving.  Now that
the C++ standard is complete, some of those features are superseded by
superior alternatives.  Using the old features might cause a warning in
some cases that the feature will be dropped in the future.  In other
cases, the feature might be gone already.

G++ allows a virtual function returning @samp{void *} to be overridden
by one returning a different pointer type.  This extension to the
covariant return type rules is now deprecated and will be removed from a
future version.

The use of default arguments in function pointers, function typedefs
and other places where they are not permitted by the standard is
deprecated and will be removed from a future version of G++.

G++ allows floating-point literals to appear in integral constant expressions,
e.g.@: @samp{ enum E @{ e = int(2.2 * 3.7) @} }
This extension is deprecated and will be removed from a future version.

G++ allows static data members of const floating-point type to be declared
with an initializer in a class definition. The standard only allows
initializers for static members of const integral types and const
enumeration types so this extension has been deprecated and will be removed
from a future version.

G++ allows attributes to follow a parenthesized direct initializer,
e.g.@: @samp{ int f (0) __attribute__ ((something)); } This extension
has been ignored since G++ 3.3 and is deprecated.

G++ allows anonymous structs and unions to have members that are not
public non-static data members (i.e.@: fields).  These extensions are
deprecated.

@node Backwards Compatibility
@section Backwards Compatibility
@cindex Backwards Compatibility
@cindex ARM [Annotated C++ Reference Manual]

Now that there is a definitive ISO standard C++, G++ has a specification
to adhere to.  The C++ language evolved over time, and features that
used to be acceptable in previous drafts of the standard, such as the ARM
[Annotated C++ Reference Manual], are no longer accepted.  In order to allow
compilation of C++ written to such drafts, G++ contains some backwards
compatibilities.  @emph{All such backwards compatibility features are
liable to disappear in future versions of G++.} They should be considered
deprecated.   @xref{Deprecated Features}.

@table @code

@item Implicit C language
Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
scope to set the language.  On such systems, all system header files are
implicitly scoped inside a C language scope.  Such headers must
correctly prototype function argument types, there is no leeway for
@code{()} to indicate an unspecified set of arguments.

@end table

@c  LocalWords:  emph deftypefn builtin ARCv2EM SIMD builtins msimd
@c  LocalWords:  typedef v4si v8hi DMA dma vdiwr vdowr