summaryrefslogtreecommitdiff
path: root/gcc/config/sparc/sparc.c
blob: 75b3d4ef499dedacbebcdcc3a3048a756cf25dfb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
/* Subroutines for insn-output.c for SPARC.
   Copyright (C) 1987-2019 Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com)
   64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
   at Cygnus Support.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#define IN_TARGET_CODE 1

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "gimple.h"
#include "df.h"
#include "tm_p.h"
#include "stringpool.h"
#include "attribs.h"
#include "expmed.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "varasm.h"
#include "output.h"
#include "insn-attr.h"
#include "explow.h"
#include "expr.h"
#include "debug.h"
#include "cfgrtl.h"
#include "common/common-target.h"
#include "gimplify.h"
#include "langhooks.h"
#include "reload.h"
#include "params.h"
#include "tree-pass.h"
#include "context.h"
#include "builtins.h"
#include "tree-vector-builder.h"

/* This file should be included last.  */
#include "target-def.h"

/* Processor costs */

struct processor_costs {
  /* Integer load */
  const int int_load;

  /* Integer signed load */
  const int int_sload;

  /* Integer zeroed load */
  const int int_zload;

  /* Float load */
  const int float_load;

  /* fmov, fneg, fabs */
  const int float_move;

  /* fadd, fsub */
  const int float_plusminus;

  /* fcmp */
  const int float_cmp;

  /* fmov, fmovr */
  const int float_cmove;

  /* fmul */
  const int float_mul;

  /* fdivs */
  const int float_div_sf;

  /* fdivd */
  const int float_div_df;

  /* fsqrts */
  const int float_sqrt_sf;

  /* fsqrtd */
  const int float_sqrt_df;

  /* umul/smul */
  const int int_mul;

  /* mulX */
  const int int_mulX;

  /* integer multiply cost for each bit set past the most
     significant 3, so the formula for multiply cost becomes:

	if (rs1 < 0)
	  highest_bit = highest_clear_bit(rs1);
	else
	  highest_bit = highest_set_bit(rs1);
	if (highest_bit < 3)
	  highest_bit = 3;
	cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);

     A value of zero indicates that the multiply costs is fixed,
     and not variable.  */
  const int int_mul_bit_factor;

  /* udiv/sdiv */
  const int int_div;

  /* divX */
  const int int_divX;

  /* movcc, movr */
  const int int_cmove;

  /* penalty for shifts, due to scheduling rules etc. */
  const int shift_penalty;

  /* cost of a (predictable) branch.  */
  const int branch_cost;
};

static const
struct processor_costs cypress_costs = {
  COSTS_N_INSNS (2), /* int load */
  COSTS_N_INSNS (2), /* int signed load */
  COSTS_N_INSNS (2), /* int zeroed load */
  COSTS_N_INSNS (2), /* float load */
  COSTS_N_INSNS (5), /* fmov, fneg, fabs */
  COSTS_N_INSNS (5), /* fadd, fsub */
  COSTS_N_INSNS (1), /* fcmp */
  COSTS_N_INSNS (1), /* fmov, fmovr */
  COSTS_N_INSNS (7), /* fmul */
  COSTS_N_INSNS (37), /* fdivs */
  COSTS_N_INSNS (37), /* fdivd */
  COSTS_N_INSNS (63), /* fsqrts */
  COSTS_N_INSNS (63), /* fsqrtd */
  COSTS_N_INSNS (1), /* imul */
  COSTS_N_INSNS (1), /* imulX */
  0, /* imul bit factor */
  COSTS_N_INSNS (1), /* idiv */
  COSTS_N_INSNS (1), /* idivX */
  COSTS_N_INSNS (1), /* movcc/movr */
  0, /* shift penalty */
  3 /* branch cost */
};

static const
struct processor_costs supersparc_costs = {
  COSTS_N_INSNS (1), /* int load */
  COSTS_N_INSNS (1), /* int signed load */
  COSTS_N_INSNS (1), /* int zeroed load */
  COSTS_N_INSNS (0), /* float load */
  COSTS_N_INSNS (3), /* fmov, fneg, fabs */
  COSTS_N_INSNS (3), /* fadd, fsub */
  COSTS_N_INSNS (3), /* fcmp */
  COSTS_N_INSNS (1), /* fmov, fmovr */
  COSTS_N_INSNS (3), /* fmul */
  COSTS_N_INSNS (6), /* fdivs */
  COSTS_N_INSNS (9), /* fdivd */
  COSTS_N_INSNS (12), /* fsqrts */
  COSTS_N_INSNS (12), /* fsqrtd */
  COSTS_N_INSNS (4), /* imul */
  COSTS_N_INSNS (4), /* imulX */
  0, /* imul bit factor */
  COSTS_N_INSNS (4), /* idiv */
  COSTS_N_INSNS (4), /* idivX */
  COSTS_N_INSNS (1), /* movcc/movr */
  1, /* shift penalty */
  3 /* branch cost */
};

static const
struct processor_costs hypersparc_costs = {
  COSTS_N_INSNS (1), /* int load */
  COSTS_N_INSNS (1), /* int signed load */
  COSTS_N_INSNS (1), /* int zeroed load */
  COSTS_N_INSNS (1), /* float load */
  COSTS_N_INSNS (1), /* fmov, fneg, fabs */
  COSTS_N_INSNS (1), /* fadd, fsub */
  COSTS_N_INSNS (1), /* fcmp */
  COSTS_N_INSNS (1), /* fmov, fmovr */
  COSTS_N_INSNS (1), /* fmul */
  COSTS_N_INSNS (8), /* fdivs */
  COSTS_N_INSNS (12), /* fdivd */
  COSTS_N_INSNS (17), /* fsqrts */
  COSTS_N_INSNS (17), /* fsqrtd */
  COSTS_N_INSNS (17), /* imul */
  COSTS_N_INSNS (17), /* imulX */
  0, /* imul bit factor */
  COSTS_N_INSNS (17), /* idiv */
  COSTS_N_INSNS (17), /* idivX */
  COSTS_N_INSNS (1), /* movcc/movr */
  0, /* shift penalty */
  3 /* branch cost */
};

static const
struct processor_costs leon_costs = {
  COSTS_N_INSNS (1), /* int load */
  COSTS_N_INSNS (1), /* int signed load */
  COSTS_N_INSNS (1), /* int zeroed load */
  COSTS_N_INSNS (1), /* float load */
  COSTS_N_INSNS (1), /* fmov, fneg, fabs */
  COSTS_N_INSNS (1), /* fadd, fsub */
  COSTS_N_INSNS (1), /* fcmp */
  COSTS_N_INSNS (1), /* fmov, fmovr */
  COSTS_N_INSNS (1), /* fmul */
  COSTS_N_INSNS (15), /* fdivs */
  COSTS_N_INSNS (15), /* fdivd */
  COSTS_N_INSNS (23), /* fsqrts */
  COSTS_N_INSNS (23), /* fsqrtd */
  COSTS_N_INSNS (5), /* imul */
  COSTS_N_INSNS (5), /* imulX */
  0, /* imul bit factor */
  COSTS_N_INSNS (5), /* idiv */
  COSTS_N_INSNS (5), /* idivX */
  COSTS_N_INSNS (1), /* movcc/movr */
  0, /* shift penalty */
  3 /* branch cost */
};

static const
struct processor_costs leon3_costs = {
  COSTS_N_INSNS (1), /* int load */
  COSTS_N_INSNS (1), /* int signed load */
  COSTS_N_INSNS (1), /* int zeroed load */
  COSTS_N_INSNS (1), /* float load */
  COSTS_N_INSNS (1), /* fmov, fneg, fabs */
  COSTS_N_INSNS (1), /* fadd, fsub */
  COSTS_N_INSNS (1), /* fcmp */
  COSTS_N_INSNS (1), /* fmov, fmovr */
  COSTS_N_INSNS (1), /* fmul */
  COSTS_N_INSNS (14), /* fdivs */
  COSTS_N_INSNS (15), /* fdivd */
  COSTS_N_INSNS (22), /* fsqrts */
  COSTS_N_INSNS (23), /* fsqrtd */
  COSTS_N_INSNS (5), /* imul */
  COSTS_N_INSNS (5), /* imulX */
  0, /* imul bit factor */
  COSTS_N_INSNS (35), /* idiv */
  COSTS_N_INSNS (35), /* idivX */
  COSTS_N_INSNS (1), /* movcc/movr */
  0, /* shift penalty */
  3 /* branch cost */
};

static const
struct processor_costs sparclet_costs = {
  COSTS_N_INSNS (3), /* int load */
  COSTS_N_INSNS (3), /* int signed load */
  COSTS_N_INSNS (1), /* int zeroed load */
  COSTS_N_INSNS (1), /* float load */
  COSTS_N_INSNS (1), /* fmov, fneg, fabs */
  COSTS_N_INSNS (1), /* fadd, fsub */
  COSTS_N_INSNS (1), /* fcmp */
  COSTS_N_INSNS (1), /* fmov, fmovr */
  COSTS_N_INSNS (1), /* fmul */
  COSTS_N_INSNS (1), /* fdivs */
  COSTS_N_INSNS (1), /* fdivd */
  COSTS_N_INSNS (1), /* fsqrts */
  COSTS_N_INSNS (1), /* fsqrtd */
  COSTS_N_INSNS (5), /* imul */
  COSTS_N_INSNS (5), /* imulX */
  0, /* imul bit factor */
  COSTS_N_INSNS (5), /* idiv */
  COSTS_N_INSNS (5), /* idivX */
  COSTS_N_INSNS (1), /* movcc/movr */
  0, /* shift penalty */
  3 /* branch cost */
};

static const
struct processor_costs ultrasparc_costs = {
  COSTS_N_INSNS (2), /* int load */
  COSTS_N_INSNS (3), /* int signed load */
  COSTS_N_INSNS (2), /* int zeroed load */
  COSTS_N_INSNS (2), /* float load */
  COSTS_N_INSNS (1), /* fmov, fneg, fabs */
  COSTS_N_INSNS (4), /* fadd, fsub */
  COSTS_N_INSNS (1), /* fcmp */
  COSTS_N_INSNS (2), /* fmov, fmovr */
  COSTS_N_INSNS (4), /* fmul */
  COSTS_N_INSNS (13), /* fdivs */
  COSTS_N_INSNS (23), /* fdivd */
  COSTS_N_INSNS (13), /* fsqrts */
  COSTS_N_INSNS (23), /* fsqrtd */
  COSTS_N_INSNS (4), /* imul */
  COSTS_N_INSNS (4), /* imulX */
  2, /* imul bit factor */
  COSTS_N_INSNS (37), /* idiv */
  COSTS_N_INSNS (68), /* idivX */
  COSTS_N_INSNS (2), /* movcc/movr */
  2, /* shift penalty */
  2 /* branch cost */
};

static const
struct processor_costs ultrasparc3_costs = {
  COSTS_N_INSNS (2), /* int load */
  COSTS_N_INSNS (3), /* int signed load */
  COSTS_N_INSNS (3), /* int zeroed load */
  COSTS_N_INSNS (2), /* float load */
  COSTS_N_INSNS (3), /* fmov, fneg, fabs */
  COSTS_N_INSNS (4), /* fadd, fsub */
  COSTS_N_INSNS (5), /* fcmp */
  COSTS_N_INSNS (3), /* fmov, fmovr */
  COSTS_N_INSNS (4), /* fmul */
  COSTS_N_INSNS (17), /* fdivs */
  COSTS_N_INSNS (20), /* fdivd */
  COSTS_N_INSNS (20), /* fsqrts */
  COSTS_N_INSNS (29), /* fsqrtd */
  COSTS_N_INSNS (6), /* imul */
  COSTS_N_INSNS (6), /* imulX */
  0, /* imul bit factor */
  COSTS_N_INSNS (40), /* idiv */
  COSTS_N_INSNS (71), /* idivX */
  COSTS_N_INSNS (2), /* movcc/movr */
  0, /* shift penalty */
  2 /* branch cost */
};

static const
struct processor_costs niagara_costs = {
  COSTS_N_INSNS (3), /* int load */
  COSTS_N_INSNS (3), /* int signed load */
  COSTS_N_INSNS (3), /* int zeroed load */
  COSTS_N_INSNS (9), /* float load */
  COSTS_N_INSNS (8), /* fmov, fneg, fabs */
  COSTS_N_INSNS (8), /* fadd, fsub */
  COSTS_N_INSNS (26), /* fcmp */
  COSTS_N_INSNS (8), /* fmov, fmovr */
  COSTS_N_INSNS (29), /* fmul */
  COSTS_N_INSNS (54), /* fdivs */
  COSTS_N_INSNS (83), /* fdivd */
  COSTS_N_INSNS (100), /* fsqrts - not implemented in hardware */
  COSTS_N_INSNS (100), /* fsqrtd - not implemented in hardware */
  COSTS_N_INSNS (11), /* imul */
  COSTS_N_INSNS (11), /* imulX */
  0, /* imul bit factor */
  COSTS_N_INSNS (72), /* idiv */
  COSTS_N_INSNS (72), /* idivX */
  COSTS_N_INSNS (1), /* movcc/movr */
  0, /* shift penalty */
  4 /* branch cost */
};

static const
struct processor_costs niagara2_costs = {
  COSTS_N_INSNS (3), /* int load */
  COSTS_N_INSNS (3), /* int signed load */
  COSTS_N_INSNS (3), /* int zeroed load */
  COSTS_N_INSNS (3), /* float load */
  COSTS_N_INSNS (6), /* fmov, fneg, fabs */
  COSTS_N_INSNS (6), /* fadd, fsub */
  COSTS_N_INSNS (6), /* fcmp */
  COSTS_N_INSNS (6), /* fmov, fmovr */
  COSTS_N_INSNS (6), /* fmul */
  COSTS_N_INSNS (19), /* fdivs */
  COSTS_N_INSNS (33), /* fdivd */
  COSTS_N_INSNS (19), /* fsqrts */
  COSTS_N_INSNS (33), /* fsqrtd */
  COSTS_N_INSNS (5), /* imul */
  COSTS_N_INSNS (5), /* imulX */
  0, /* imul bit factor */
  COSTS_N_INSNS (26), /* idiv, average of 12 - 41 cycle range */
  COSTS_N_INSNS (26), /* idivX, average of 12 - 41 cycle range */
  COSTS_N_INSNS (1), /* movcc/movr */
  0, /* shift penalty */
  5 /* branch cost */
};

static const
struct processor_costs niagara3_costs = {
  COSTS_N_INSNS (3), /* int load */
  COSTS_N_INSNS (3), /* int signed load */
  COSTS_N_INSNS (3), /* int zeroed load */
  COSTS_N_INSNS (3), /* float load */
  COSTS_N_INSNS (9), /* fmov, fneg, fabs */
  COSTS_N_INSNS (9), /* fadd, fsub */
  COSTS_N_INSNS (9), /* fcmp */
  COSTS_N_INSNS (9), /* fmov, fmovr */
  COSTS_N_INSNS (9), /* fmul */
  COSTS_N_INSNS (23), /* fdivs */
  COSTS_N_INSNS (37), /* fdivd */
  COSTS_N_INSNS (23), /* fsqrts */
  COSTS_N_INSNS (37), /* fsqrtd */
  COSTS_N_INSNS (9), /* imul */
  COSTS_N_INSNS (9), /* imulX */
  0, /* imul bit factor */
  COSTS_N_INSNS (31), /* idiv, average of 17 - 45 cycle range */
  COSTS_N_INSNS (30), /* idivX, average of 16 - 44 cycle range */
  COSTS_N_INSNS (1), /* movcc/movr */
  0, /* shift penalty */
  5 /* branch cost */
};

static const
struct processor_costs niagara4_costs = {
  COSTS_N_INSNS (5), /* int load */
  COSTS_N_INSNS (5), /* int signed load */
  COSTS_N_INSNS (5), /* int zeroed load */
  COSTS_N_INSNS (5), /* float load */
  COSTS_N_INSNS (11), /* fmov, fneg, fabs */
  COSTS_N_INSNS (11), /* fadd, fsub */
  COSTS_N_INSNS (11), /* fcmp */
  COSTS_N_INSNS (11), /* fmov, fmovr */
  COSTS_N_INSNS (11), /* fmul */
  COSTS_N_INSNS (24), /* fdivs */
  COSTS_N_INSNS (37), /* fdivd */
  COSTS_N_INSNS (24), /* fsqrts */
  COSTS_N_INSNS (37), /* fsqrtd */
  COSTS_N_INSNS (12), /* imul */
  COSTS_N_INSNS (12), /* imulX */
  0, /* imul bit factor */
  COSTS_N_INSNS (50), /* idiv, average of 41 - 60 cycle range */
  COSTS_N_INSNS (35), /* idivX, average of 26 - 44 cycle range */
  COSTS_N_INSNS (1), /* movcc/movr */
  0, /* shift penalty */
  2 /* branch cost */
};

static const
struct processor_costs niagara7_costs = {
  COSTS_N_INSNS (5), /* int load */
  COSTS_N_INSNS (5), /* int signed load */
  COSTS_N_INSNS (5), /* int zeroed load */
  COSTS_N_INSNS (5), /* float load */
  COSTS_N_INSNS (11), /* fmov, fneg, fabs */
  COSTS_N_INSNS (11), /* fadd, fsub */
  COSTS_N_INSNS (11), /* fcmp */
  COSTS_N_INSNS (11), /* fmov, fmovr */
  COSTS_N_INSNS (11), /* fmul */
  COSTS_N_INSNS (24), /* fdivs */
  COSTS_N_INSNS (37), /* fdivd */
  COSTS_N_INSNS (24), /* fsqrts */
  COSTS_N_INSNS (37), /* fsqrtd */
  COSTS_N_INSNS (12), /* imul */
  COSTS_N_INSNS (12), /* imulX */
  0, /* imul bit factor */
  COSTS_N_INSNS (51), /* idiv, average of 42 - 61 cycle range */
  COSTS_N_INSNS (35), /* idivX, average of 26 - 44 cycle range */
  COSTS_N_INSNS (1), /* movcc/movr */
  0, /* shift penalty */
  1 /* branch cost */
};

static const
struct processor_costs m8_costs = {
  COSTS_N_INSNS (3), /* int load */
  COSTS_N_INSNS (3), /* int signed load */
  COSTS_N_INSNS (3), /* int zeroed load */
  COSTS_N_INSNS (3), /* float load */
  COSTS_N_INSNS (9), /* fmov, fneg, fabs */
  COSTS_N_INSNS (9), /* fadd, fsub */
  COSTS_N_INSNS (9), /* fcmp */
  COSTS_N_INSNS (9), /* fmov, fmovr */
  COSTS_N_INSNS (9), /* fmul */
  COSTS_N_INSNS (26), /* fdivs */
  COSTS_N_INSNS (30), /* fdivd */
  COSTS_N_INSNS (33), /* fsqrts */
  COSTS_N_INSNS (41), /* fsqrtd */
  COSTS_N_INSNS (12), /* imul */
  COSTS_N_INSNS (10), /* imulX */
  0, /* imul bit factor */
  COSTS_N_INSNS (57), /* udiv/sdiv */
  COSTS_N_INSNS (30), /* udivx/sdivx */
  COSTS_N_INSNS (1), /* movcc/movr */
  0, /* shift penalty */
  1 /* branch cost */
};

static const struct processor_costs *sparc_costs = &cypress_costs;

#ifdef HAVE_AS_RELAX_OPTION
/* If 'as' and 'ld' are relaxing tail call insns into branch always, use
   "or %o7,%g0,X; call Y; or X,%g0,%o7" always, so that it can be optimized.
   With sethi/jmp, neither 'as' nor 'ld' has an easy way how to find out if
   somebody does not branch between the sethi and jmp.  */
#define LEAF_SIBCALL_SLOT_RESERVED_P 1
#else
#define LEAF_SIBCALL_SLOT_RESERVED_P \
  ((TARGET_ARCH64 && !TARGET_CM_MEDLOW) || flag_pic)
#endif

/* Vector to say how input registers are mapped to output registers.
   HARD_FRAME_POINTER_REGNUM cannot be remapped by this function to
   eliminate it.  You must use -fomit-frame-pointer to get that.  */
char leaf_reg_remap[] =
{ 0, 1, 2, 3, 4, 5, 6, 7,
  -1, -1, -1, -1, -1, -1, 14, -1,
  -1, -1, -1, -1, -1, -1, -1, -1,
  8, 9, 10, 11, 12, 13, -1, 15,

  32, 33, 34, 35, 36, 37, 38, 39,
  40, 41, 42, 43, 44, 45, 46, 47,
  48, 49, 50, 51, 52, 53, 54, 55,
  56, 57, 58, 59, 60, 61, 62, 63,
  64, 65, 66, 67, 68, 69, 70, 71,
  72, 73, 74, 75, 76, 77, 78, 79,
  80, 81, 82, 83, 84, 85, 86, 87,
  88, 89, 90, 91, 92, 93, 94, 95,
  96, 97, 98, 99, 100, 101, 102};

/* Vector, indexed by hard register number, which contains 1
   for a register that is allowable in a candidate for leaf
   function treatment.  */
char sparc_leaf_regs[] =
{ 1, 1, 1, 1, 1, 1, 1, 1,
  0, 0, 0, 0, 0, 0, 1, 0,
  0, 0, 0, 0, 0, 0, 0, 0,
  1, 1, 1, 1, 1, 1, 0, 1,
  1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1};

struct GTY(()) machine_function
{
  /* Size of the frame of the function.  */
  HOST_WIDE_INT frame_size;

  /* Size of the frame of the function minus the register window save area
     and the outgoing argument area.  */
  HOST_WIDE_INT apparent_frame_size;

  /* Register we pretend the frame pointer is allocated to.  Normally, this
     is %fp, but if we are in a leaf procedure, this is (%sp + offset).  We
     record "offset" separately as it may be too big for (reg + disp).  */
  rtx frame_base_reg;
  HOST_WIDE_INT frame_base_offset;

  /* Number of global or FP registers to be saved (as 4-byte quantities).  */
  int n_global_fp_regs;

  /* True if the current function is leaf and uses only leaf regs,
     so that the SPARC leaf function optimization can be applied.
     Private version of crtl->uses_only_leaf_regs, see
     sparc_expand_prologue for the rationale.  */
  int leaf_function_p;

  /* True if the prologue saves local or in registers.  */
  bool save_local_in_regs_p;

  /* True if the data calculated by sparc_expand_prologue are valid.  */
  bool prologue_data_valid_p;
};

#define sparc_frame_size		cfun->machine->frame_size
#define sparc_apparent_frame_size	cfun->machine->apparent_frame_size
#define sparc_frame_base_reg		cfun->machine->frame_base_reg
#define sparc_frame_base_offset		cfun->machine->frame_base_offset
#define sparc_n_global_fp_regs		cfun->machine->n_global_fp_regs
#define sparc_leaf_function_p		cfun->machine->leaf_function_p
#define sparc_save_local_in_regs_p	cfun->machine->save_local_in_regs_p
#define sparc_prologue_data_valid_p	cfun->machine->prologue_data_valid_p

/* 1 if the next opcode is to be specially indented.  */
int sparc_indent_opcode = 0;

static void sparc_option_override (void);
static void sparc_init_modes (void);
static int function_arg_slotno (const CUMULATIVE_ARGS *, machine_mode,
				const_tree, bool, bool, int *, int *);

static int supersparc_adjust_cost (rtx_insn *, int, rtx_insn *, int);
static int hypersparc_adjust_cost (rtx_insn *, int, rtx_insn *, int);

static void sparc_emit_set_const32 (rtx, rtx);
static void sparc_emit_set_const64 (rtx, rtx);
static void sparc_output_addr_vec (rtx);
static void sparc_output_addr_diff_vec (rtx);
static void sparc_output_deferred_case_vectors (void);
static bool sparc_legitimate_address_p (machine_mode, rtx, bool);
static bool sparc_legitimate_constant_p (machine_mode, rtx);
static rtx sparc_builtin_saveregs (void);
static int epilogue_renumber (rtx *, int);
static bool sparc_assemble_integer (rtx, unsigned int, int);
static int set_extends (rtx_insn *);
static void sparc_asm_function_prologue (FILE *);
static void sparc_asm_function_epilogue (FILE *);
#ifdef TARGET_SOLARIS
static void sparc_solaris_elf_asm_named_section (const char *, unsigned int,
						 tree) ATTRIBUTE_UNUSED;
#endif
static int sparc_adjust_cost (rtx_insn *, int, rtx_insn *, int, unsigned int);
static int sparc_issue_rate (void);
static void sparc_sched_init (FILE *, int, int);
static int sparc_use_sched_lookahead (void);

static void emit_soft_tfmode_libcall (const char *, int, rtx *);
static void emit_soft_tfmode_binop (enum rtx_code, rtx *);
static void emit_soft_tfmode_unop (enum rtx_code, rtx *);
static void emit_soft_tfmode_cvt (enum rtx_code, rtx *);
static void emit_hard_tfmode_operation (enum rtx_code, rtx *);

static bool sparc_function_ok_for_sibcall (tree, tree);
static void sparc_init_libfuncs (void);
static void sparc_init_builtins (void);
static void sparc_fpu_init_builtins (void);
static void sparc_vis_init_builtins (void);
static tree sparc_builtin_decl (unsigned, bool);
static rtx sparc_expand_builtin (tree, rtx, rtx, machine_mode, int);
static tree sparc_fold_builtin (tree, int, tree *, bool);
static void sparc_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
				   HOST_WIDE_INT, tree);
static bool sparc_can_output_mi_thunk (const_tree, HOST_WIDE_INT,
				       HOST_WIDE_INT, const_tree);
static struct machine_function * sparc_init_machine_status (void);
static bool sparc_cannot_force_const_mem (machine_mode, rtx);
static rtx sparc_tls_get_addr (void);
static rtx sparc_tls_got (void);
static int sparc_register_move_cost (machine_mode,
				     reg_class_t, reg_class_t);
static bool sparc_rtx_costs (rtx, machine_mode, int, int, int *, bool);
static machine_mode sparc_promote_function_mode (const_tree, machine_mode,
						      int *, const_tree, int);
static bool sparc_strict_argument_naming (cumulative_args_t);
static void sparc_va_start (tree, rtx);
static tree sparc_gimplify_va_arg (tree, tree, gimple_seq *, gimple_seq *);
static bool sparc_vector_mode_supported_p (machine_mode);
static bool sparc_tls_referenced_p (rtx);
static rtx sparc_legitimize_tls_address (rtx);
static rtx sparc_legitimize_pic_address (rtx, rtx);
static rtx sparc_legitimize_address (rtx, rtx, machine_mode);
static rtx sparc_delegitimize_address (rtx);
static bool sparc_mode_dependent_address_p (const_rtx, addr_space_t);
static bool sparc_pass_by_reference (cumulative_args_t,
				     const function_arg_info &);
static void sparc_function_arg_advance (cumulative_args_t,
					const function_arg_info &);
static rtx sparc_function_arg (cumulative_args_t, const function_arg_info &);
static rtx sparc_function_incoming_arg (cumulative_args_t,
					const function_arg_info &);
static pad_direction sparc_function_arg_padding (machine_mode, const_tree);
static unsigned int sparc_function_arg_boundary (machine_mode,
						 const_tree);
static int sparc_arg_partial_bytes (cumulative_args_t,
				    const function_arg_info &);
static bool sparc_return_in_memory (const_tree, const_tree);
static rtx sparc_struct_value_rtx (tree, int);
static rtx sparc_function_value (const_tree, const_tree, bool);
static rtx sparc_libcall_value (machine_mode, const_rtx);
static bool sparc_function_value_regno_p (const unsigned int);
static unsigned HOST_WIDE_INT sparc_asan_shadow_offset (void);
static void sparc_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
static void sparc_file_end (void);
static bool sparc_frame_pointer_required (void);
static bool sparc_can_eliminate (const int, const int);
static void sparc_conditional_register_usage (void);
static bool sparc_use_pseudo_pic_reg (void);
static void sparc_init_pic_reg (void);
#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
static const char *sparc_mangle_type (const_tree);
#endif
static void sparc_trampoline_init (rtx, tree, rtx);
static machine_mode sparc_preferred_simd_mode (scalar_mode);
static reg_class_t sparc_preferred_reload_class (rtx x, reg_class_t rclass);
static bool sparc_lra_p (void);
static bool sparc_print_operand_punct_valid_p (unsigned char);
static void sparc_print_operand (FILE *, rtx, int);
static void sparc_print_operand_address (FILE *, machine_mode, rtx);
static reg_class_t sparc_secondary_reload (bool, rtx, reg_class_t,
					   machine_mode,
					   secondary_reload_info *);
static bool sparc_secondary_memory_needed (machine_mode, reg_class_t,
					   reg_class_t);
static machine_mode sparc_secondary_memory_needed_mode (machine_mode);
static scalar_int_mode sparc_cstore_mode (enum insn_code icode);
static void sparc_atomic_assign_expand_fenv (tree *, tree *, tree *);
static bool sparc_fixed_condition_code_regs (unsigned int *, unsigned int *);
static unsigned int sparc_min_arithmetic_precision (void);
static unsigned int sparc_hard_regno_nregs (unsigned int, machine_mode);
static bool sparc_hard_regno_mode_ok (unsigned int, machine_mode);
static bool sparc_modes_tieable_p (machine_mode, machine_mode);
static bool sparc_can_change_mode_class (machine_mode, machine_mode,
					 reg_class_t);
static HOST_WIDE_INT sparc_constant_alignment (const_tree, HOST_WIDE_INT);
static bool sparc_vectorize_vec_perm_const (machine_mode, rtx, rtx, rtx,
					    const vec_perm_indices &);
static bool sparc_can_follow_jump (const rtx_insn *, const rtx_insn *);

#ifdef SUBTARGET_ATTRIBUTE_TABLE
/* Table of valid machine attributes.  */
static const struct attribute_spec sparc_attribute_table[] =
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
       do_diagnostic, handler, exclude } */
  SUBTARGET_ATTRIBUTE_TABLE,
  { NULL,        0, 0, false, false, false, false, NULL, NULL }
};
#endif

char sparc_hard_reg_printed[8];

/* Initialize the GCC target structure.  */

/* The default is to use .half rather than .short for aligned HI objects.  */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"

#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP "\t.uahalf\t"
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP "\t.uaword\t"
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP "\t.uaxword\t"

/* The target hook has to handle DI-mode values.  */
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER sparc_assemble_integer

#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE sparc_asm_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE sparc_asm_function_epilogue

#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST sparc_adjust_cost
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE sparc_issue_rate
#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT sparc_sched_init
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD sparc_use_sched_lookahead

#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL sparc_function_ok_for_sibcall

#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS sparc_init_libfuncs

#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS sparc_legitimize_address
#undef TARGET_DELEGITIMIZE_ADDRESS
#define TARGET_DELEGITIMIZE_ADDRESS sparc_delegitimize_address
#undef TARGET_MODE_DEPENDENT_ADDRESS_P
#define TARGET_MODE_DEPENDENT_ADDRESS_P sparc_mode_dependent_address_p

#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS sparc_init_builtins
#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL sparc_builtin_decl
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN sparc_expand_builtin
#undef TARGET_FOLD_BUILTIN
#define TARGET_FOLD_BUILTIN sparc_fold_builtin

#if TARGET_TLS
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS true
#endif

#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM sparc_cannot_force_const_mem

#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK sparc_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK sparc_can_output_mi_thunk

#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS sparc_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST sparc_register_move_cost

#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE sparc_promote_function_mode
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING sparc_strict_argument_naming

#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE sparc_pass_by_reference
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES sparc_arg_partial_bytes
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE sparc_function_arg_advance
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG sparc_function_arg
#undef TARGET_FUNCTION_INCOMING_ARG
#define TARGET_FUNCTION_INCOMING_ARG sparc_function_incoming_arg
#undef TARGET_FUNCTION_ARG_PADDING
#define TARGET_FUNCTION_ARG_PADDING sparc_function_arg_padding
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY sparc_function_arg_boundary

#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY sparc_return_in_memory
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX sparc_struct_value_rtx
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE sparc_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE sparc_libcall_value
#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P sparc_function_value_regno_p

#undef TARGET_EXPAND_BUILTIN_SAVEREGS
#define TARGET_EXPAND_BUILTIN_SAVEREGS sparc_builtin_saveregs

#undef TARGET_ASAN_SHADOW_OFFSET
#define TARGET_ASAN_SHADOW_OFFSET sparc_asan_shadow_offset

#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START sparc_va_start
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR sparc_gimplify_va_arg

#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P sparc_vector_mode_supported_p

#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE sparc_preferred_simd_mode

#ifdef SUBTARGET_INSERT_ATTRIBUTES
#undef TARGET_INSERT_ATTRIBUTES
#define TARGET_INSERT_ATTRIBUTES SUBTARGET_INSERT_ATTRIBUTES
#endif

#ifdef SUBTARGET_ATTRIBUTE_TABLE
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE sparc_attribute_table
#endif

#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE sparc_option_override

#ifdef TARGET_THREAD_SSP_OFFSET
#undef TARGET_STACK_PROTECT_GUARD
#define TARGET_STACK_PROTECT_GUARD hook_tree_void_null
#endif

#if TARGET_GNU_TLS && defined(HAVE_AS_SPARC_UA_PCREL)
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
#define TARGET_ASM_OUTPUT_DWARF_DTPREL sparc_output_dwarf_dtprel
#endif

#undef TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_END sparc_file_end

#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED sparc_frame_pointer_required

#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE sparc_can_eliminate

#undef  TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS sparc_preferred_reload_class

#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD sparc_secondary_reload
#undef TARGET_SECONDARY_MEMORY_NEEDED
#define TARGET_SECONDARY_MEMORY_NEEDED sparc_secondary_memory_needed
#undef TARGET_SECONDARY_MEMORY_NEEDED_MODE
#define TARGET_SECONDARY_MEMORY_NEEDED_MODE sparc_secondary_memory_needed_mode

#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE sparc_conditional_register_usage

#undef TARGET_INIT_PIC_REG
#define TARGET_INIT_PIC_REG sparc_init_pic_reg

#undef TARGET_USE_PSEUDO_PIC_REG
#define TARGET_USE_PSEUDO_PIC_REG sparc_use_pseudo_pic_reg

#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
#undef TARGET_MANGLE_TYPE
#define TARGET_MANGLE_TYPE sparc_mangle_type
#endif

#undef TARGET_LRA_P
#define TARGET_LRA_P sparc_lra_p

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P sparc_legitimate_address_p

#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P sparc_legitimate_constant_p

#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT sparc_trampoline_init

#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P sparc_print_operand_punct_valid_p
#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND sparc_print_operand
#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS sparc_print_operand_address

/* The value stored by LDSTUB.  */
#undef TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
#define TARGET_ATOMIC_TEST_AND_SET_TRUEVAL 0xff

#undef TARGET_CSTORE_MODE
#define TARGET_CSTORE_MODE sparc_cstore_mode

#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV sparc_atomic_assign_expand_fenv

#undef TARGET_FIXED_CONDITION_CODE_REGS
#define TARGET_FIXED_CONDITION_CODE_REGS sparc_fixed_condition_code_regs

#undef TARGET_MIN_ARITHMETIC_PRECISION
#define TARGET_MIN_ARITHMETIC_PRECISION sparc_min_arithmetic_precision

#undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS
#define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 1

#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS sparc_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK sparc_hard_regno_mode_ok

#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P sparc_modes_tieable_p

#undef TARGET_CAN_CHANGE_MODE_CLASS
#define TARGET_CAN_CHANGE_MODE_CLASS sparc_can_change_mode_class

#undef TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT sparc_constant_alignment

#undef TARGET_VECTORIZE_VEC_PERM_CONST
#define TARGET_VECTORIZE_VEC_PERM_CONST sparc_vectorize_vec_perm_const

#undef TARGET_CAN_FOLLOW_JUMP
#define TARGET_CAN_FOLLOW_JUMP sparc_can_follow_jump

struct gcc_target targetm = TARGET_INITIALIZER;

/* Return the memory reference contained in X if any, zero otherwise.  */

static rtx
mem_ref (rtx x)
{
  if (GET_CODE (x) == SIGN_EXTEND || GET_CODE (x) == ZERO_EXTEND)
    x = XEXP (x, 0);

  if (MEM_P (x))
    return x;

  return NULL_RTX;
}

/* True if any of INSN's source register(s) is REG.  */

static bool
insn_uses_reg_p (rtx_insn *insn, unsigned int reg)
{
  extract_insn (insn);
  return ((REG_P (recog_data.operand[1])
	   && REGNO (recog_data.operand[1]) == reg)
	  || (recog_data.n_operands == 3
	      && REG_P (recog_data.operand[2])
	      && REGNO (recog_data.operand[2]) == reg));
}

/* True if INSN is a floating-point division or square-root.  */

static bool
div_sqrt_insn_p (rtx_insn *insn)
{
  if (GET_CODE (PATTERN (insn)) != SET)
    return false;

  switch (get_attr_type (insn))
    {
    case TYPE_FPDIVS:
    case TYPE_FPSQRTS:
    case TYPE_FPDIVD:
    case TYPE_FPSQRTD:
      return true;
    default:
      return false;
    }
}

/* True if INSN is a floating-point instruction.  */

static bool
fpop_insn_p (rtx_insn *insn)
{
  if (GET_CODE (PATTERN (insn)) != SET)
    return false;

  switch (get_attr_type (insn))
    {
    case TYPE_FPMOVE:
    case TYPE_FPCMOVE:
    case TYPE_FP:
    case TYPE_FPCMP:
    case TYPE_FPMUL:
    case TYPE_FPDIVS:
    case TYPE_FPSQRTS:
    case TYPE_FPDIVD:
    case TYPE_FPSQRTD:
      return true;
    default:
      return false;
    }
}

/* True if INSN is an atomic instruction.  */

static bool
atomic_insn_for_leon3_p (rtx_insn *insn)
{
  switch (INSN_CODE (insn))
    {
    case CODE_FOR_swapsi:
    case CODE_FOR_ldstub:
    case CODE_FOR_atomic_compare_and_swap_leon3_1:
      return true;
    default:
      return false;
    }
}

/* We use a machine specific pass to enable workarounds for errata.

   We need to have the (essentially) final form of the insn stream in order
   to properly detect the various hazards.  Therefore, this machine specific
   pass runs as late as possible.  */

/* True if INSN is a md pattern or asm statement.  */
#define USEFUL_INSN_P(INSN)						\
  (NONDEBUG_INSN_P (INSN)						\
   && GET_CODE (PATTERN (INSN)) != USE					\
   && GET_CODE (PATTERN (INSN)) != CLOBBER)

static unsigned int
sparc_do_work_around_errata (void)
{
  rtx_insn *insn, *next;

  /* Force all instructions to be split into their final form.  */
  split_all_insns_noflow ();

  /* Now look for specific patterns in the insn stream.  */
  for (insn = get_insns (); insn; insn = next)
    {
      bool insert_nop = false;
      rtx set;
      rtx_insn *jump;
      rtx_sequence *seq;

      /* Look into the instruction in a delay slot.  */
      if (NONJUMP_INSN_P (insn)
	  && (seq = dyn_cast <rtx_sequence *> (PATTERN (insn))))
	{
	  jump = seq->insn (0);
	  insn = seq->insn (1);
	}
      else if (JUMP_P (insn))
	jump = insn;
      else
	jump = NULL;

      /* Place a NOP at the branch target of an integer branch if it is a
	 floating-point operation or a floating-point branch.  */
      if (sparc_fix_gr712rc
	  && jump
	  && jump_to_label_p (jump)
	  && get_attr_branch_type (jump) == BRANCH_TYPE_ICC)
	{
	  rtx_insn *target = next_active_insn (JUMP_LABEL_AS_INSN (jump));
	  if (target
	      && (fpop_insn_p (target)
		  || (JUMP_P (target)
		      && get_attr_branch_type (target) == BRANCH_TYPE_FCC)))
	    emit_insn_before (gen_nop (), target);
	}

      /* Insert a NOP between load instruction and atomic instruction.  Insert
	 a NOP at branch target if there is a load in delay slot and an atomic
	 instruction at branch target.  */
      if (sparc_fix_ut700
	  && NONJUMP_INSN_P (insn)
	  && (set = single_set (insn)) != NULL_RTX
	  && mem_ref (SET_SRC (set))
	  && REG_P (SET_DEST (set)))
	{
	  if (jump && jump_to_label_p (jump))
	    {
	      rtx_insn *target = next_active_insn (JUMP_LABEL_AS_INSN (jump));
	      if (target && atomic_insn_for_leon3_p (target))
		emit_insn_before (gen_nop (), target);
	    }

	  next = next_active_insn (insn);
	  if (!next)
	    break;

	  if (atomic_insn_for_leon3_p (next))
	    insert_nop = true;
	}

      /* Look for a sequence that starts with a fdiv or fsqrt instruction and
	 ends with another fdiv or fsqrt instruction with no dependencies on
	 the former, along with an appropriate pattern in between.  */
      if (sparc_fix_lost_divsqrt
	  && NONJUMP_INSN_P (insn)
	  && div_sqrt_insn_p (insn))
	{
	  int i;
	  int fp_found = 0;
	  rtx_insn *after;

	  const unsigned int dest_reg = REGNO (SET_DEST (single_set (insn)));

	  next = next_active_insn (insn);
	  if (!next)
	    break;

	  for (after = next, i = 0; i < 4; i++)
	    {
	      /* Count floating-point operations.  */
	      if (i != 3 && fpop_insn_p (after))
		{
		  /* If the insn uses the destination register of
		     the div/sqrt, then it cannot be problematic.  */
		  if (insn_uses_reg_p (after, dest_reg))
		    break;
		  fp_found++;
		}

	      /* Count floating-point loads.  */
	      if (i != 3
		  && (set = single_set (after)) != NULL_RTX
		  && REG_P (SET_DEST (set))
		  && REGNO (SET_DEST (set)) > 31)
		{
		  /* If the insn uses the destination register of
		     the div/sqrt, then it cannot be problematic.  */
		  if (REGNO (SET_DEST (set)) == dest_reg)
		    break;
		  fp_found++;
		}

	      /* Check if this is a problematic sequence.  */
	      if (i > 1
		  && fp_found >= 2
		  && div_sqrt_insn_p (after))
		{
		  /* If this is the short version of the problematic
		     sequence we add two NOPs in a row to also prevent
		     the long version.  */
		  if (i == 2)
		    emit_insn_before (gen_nop (), next);
		  insert_nop = true;
		  break;
		}

	      /* No need to scan past a second div/sqrt.  */
	      if (div_sqrt_insn_p (after))
		break;

	      /* Insert NOP before branch.  */
	      if (i < 3
		  && (!NONJUMP_INSN_P (after)
		      || GET_CODE (PATTERN (after)) == SEQUENCE))
		{
		  insert_nop = true;
		  break;
		}

	      after = next_active_insn (after);
	      if (!after)
		break;
	    }
	}

      /* Look for either of these two sequences:

	 Sequence A:
	 1. store of word size or less (e.g. st / stb / sth / stf)
	 2. any single instruction that is not a load or store
	 3. any store instruction (e.g. st / stb / sth / stf / std / stdf)

	 Sequence B:
	 1. store of double word size (e.g. std / stdf)
	 2. any store instruction (e.g. st / stb / sth / stf / std / stdf)  */
      if (sparc_fix_b2bst
	  && NONJUMP_INSN_P (insn)
	  && (set = single_set (insn)) != NULL_RTX
	  && MEM_P (SET_DEST (set)))
	{
	  /* Sequence B begins with a double-word store.  */
	  bool seq_b = GET_MODE_SIZE (GET_MODE (SET_DEST (set))) == 8;
	  rtx_insn *after;
	  int i;

	  next = next_active_insn (insn);
	  if (!next)
	    break;

	  for (after = next, i = 0; i < 2; i++)
	    {
	      /* Skip empty assembly statements.  */
	      if ((GET_CODE (PATTERN (after)) == UNSPEC_VOLATILE)
		  || (USEFUL_INSN_P (after)
		      && (asm_noperands (PATTERN (after))>=0)
		      && !strcmp (decode_asm_operands (PATTERN (after),
						       NULL, NULL, NULL,
						       NULL, NULL), "")))
		after = next_active_insn (after);
	      if (!after)
		break;

	      /* If the insn is a branch, then it cannot be problematic.  */
	      if (!NONJUMP_INSN_P (after)
		  || GET_CODE (PATTERN (after)) == SEQUENCE)
		break;

	      /* Sequence B is only two instructions long.  */
	      if (seq_b)
		{
		  /* Add NOP if followed by a store.  */
		  if ((set = single_set (after)) != NULL_RTX
		      && MEM_P (SET_DEST (set)))
		    insert_nop = true;

		  /* Otherwise it is ok.  */
		  break;
		}

	      /* If the second instruction is a load or a store,
		 then the sequence cannot be problematic.  */
	      if (i == 0)
		{
		  if ((set = single_set (after)) != NULL_RTX
		      && (MEM_P (SET_DEST (set)) || mem_ref (SET_SRC (set))))
		    break;

		  after = next_active_insn (after);
		  if (!after)
		    break;
		}

	      /* Add NOP if third instruction is a store.  */
	      if (i == 1
		  && (set = single_set (after)) != NULL_RTX
		  && MEM_P (SET_DEST (set)))
		insert_nop = true;
	    }
	}

      /* Look for a single-word load into an odd-numbered FP register.  */
      else if (sparc_fix_at697f
	       && NONJUMP_INSN_P (insn)
	       && (set = single_set (insn)) != NULL_RTX
	       && GET_MODE_SIZE (GET_MODE (SET_SRC (set))) == 4
	       && mem_ref (SET_SRC (set))
	       && REG_P (SET_DEST (set))
	       && REGNO (SET_DEST (set)) > 31
	       && REGNO (SET_DEST (set)) % 2 != 0)
	{
	  /* The wrong dependency is on the enclosing double register.  */
	  const unsigned int x = REGNO (SET_DEST (set)) - 1;
	  unsigned int src1, src2, dest;
	  int code;

	  next = next_active_insn (insn);
	  if (!next)
	    break;
	  /* If the insn is a branch, then it cannot be problematic.  */
	  if (!NONJUMP_INSN_P (next) || GET_CODE (PATTERN (next)) == SEQUENCE)
	    continue;

	  extract_insn (next);
	  code = INSN_CODE (next);

	  switch (code)
	    {
	    case CODE_FOR_adddf3:
	    case CODE_FOR_subdf3:
	    case CODE_FOR_muldf3:
	    case CODE_FOR_divdf3:
	      dest = REGNO (recog_data.operand[0]);
	      src1 = REGNO (recog_data.operand[1]);
	      src2 = REGNO (recog_data.operand[2]);
	      if (src1 != src2)
		{
		  /* Case [1-4]:
				 ld [address], %fx+1
				 FPOPd %f{x,y}, %f{y,x}, %f{x,y}  */
		  if ((src1 == x || src2 == x)
		      && (dest == src1 || dest == src2))
		    insert_nop = true;
		}
	      else
		{
		  /* Case 5:
			     ld [address], %fx+1
			     FPOPd %fx, %fx, %fx  */
		  if (src1 == x
		      && dest == src1
		      && (code == CODE_FOR_adddf3 || code == CODE_FOR_muldf3))
		    insert_nop = true;
		}
	      break;

	    case CODE_FOR_sqrtdf2:
	      dest = REGNO (recog_data.operand[0]);
	      src1 = REGNO (recog_data.operand[1]);
	      /* Case 6:
			 ld [address], %fx+1
			 fsqrtd %fx, %fx  */
	      if (src1 == x && dest == src1)
		insert_nop = true;
	      break;

	    default:
	      break;
	    }
	}

      /* Look for a single-word load into an integer register.  */
      else if (sparc_fix_ut699
	       && NONJUMP_INSN_P (insn)
	       && (set = single_set (insn)) != NULL_RTX
	       && GET_MODE_SIZE (GET_MODE (SET_SRC (set))) <= 4
	       && (mem_ref (SET_SRC (set)) != NULL_RTX
		   || INSN_CODE (insn) == CODE_FOR_movsi_pic_gotdata_op)
	       && REG_P (SET_DEST (set))
	       && REGNO (SET_DEST (set)) < 32)
	{
	  /* There is no problem if the second memory access has a data
	     dependency on the first single-cycle load.  */
	  rtx x = SET_DEST (set);

	  next = next_active_insn (insn);
	  if (!next)
	    break;
	  /* If the insn is a branch, then it cannot be problematic.  */
	  if (!NONJUMP_INSN_P (next) || GET_CODE (PATTERN (next)) == SEQUENCE)
	    continue;

	  /* Look for a second memory access to/from an integer register.  */
	  if ((set = single_set (next)) != NULL_RTX)
	    {
	      rtx src = SET_SRC (set);
	      rtx dest = SET_DEST (set);
	      rtx mem;

	      /* LDD is affected.  */
	      if ((mem = mem_ref (src)) != NULL_RTX
		  && REG_P (dest)
		  && REGNO (dest) < 32
		  && !reg_mentioned_p (x, XEXP (mem, 0)))
		insert_nop = true;

	      /* STD is *not* affected.  */
	      else if (MEM_P (dest)
		       && GET_MODE_SIZE (GET_MODE (dest)) <= 4
		       && (src == CONST0_RTX (GET_MODE (dest))
			   || (REG_P (src)
			       && REGNO (src) < 32
			       && REGNO (src) != REGNO (x)))
		       && !reg_mentioned_p (x, XEXP (dest, 0)))
		insert_nop = true;

	      /* GOT accesses uses LD.  */
	      else if (INSN_CODE (next) == CODE_FOR_movsi_pic_gotdata_op
		       && !reg_mentioned_p (x, XEXP (XEXP (src, 0), 1)))
		insert_nop = true;
	    }
	}

      /* Look for a single-word load/operation into an FP register.  */
      else if (sparc_fix_ut699
	       && NONJUMP_INSN_P (insn)
	       && (set = single_set (insn)) != NULL_RTX
	       && GET_MODE_SIZE (GET_MODE (SET_SRC (set))) == 4
	       && REG_P (SET_DEST (set))
	       && REGNO (SET_DEST (set)) > 31)
	{
	  /* Number of instructions in the problematic window.  */
	  const int n_insns = 4;
	  /* The problematic combination is with the sibling FP register.  */
	  const unsigned int x = REGNO (SET_DEST (set));
	  const unsigned int y = x ^ 1;
	  rtx_insn *after;
	  int i;

	  next = next_active_insn (insn);
	  if (!next)
	    break;
	  /* If the insn is a branch, then it cannot be problematic.  */
	  if (!NONJUMP_INSN_P (next) || GET_CODE (PATTERN (next)) == SEQUENCE)
	    continue;

	  /* Look for a second load/operation into the sibling FP register.  */
	  if (!((set = single_set (next)) != NULL_RTX
		&& GET_MODE_SIZE (GET_MODE (SET_SRC (set))) == 4
		&& REG_P (SET_DEST (set))
		&& REGNO (SET_DEST (set)) == y))
	    continue;

	  /* Look for a (possible) store from the FP register in the next N
	     instructions, but bail out if it is again modified or if there
	     is a store from the sibling FP register before this store.  */
	  for (after = next, i = 0; i < n_insns; i++)
	    {
	      bool branch_p;

	      after = next_active_insn (after);
	      if (!after)
		break;

	      /* This is a branch with an empty delay slot.  */
	      if (!NONJUMP_INSN_P (after))
		{
		  if (++i == n_insns)
		    break;
		  branch_p = true;
		  after = NULL;
		}
	      /* This is a branch with a filled delay slot.  */
	      else if (rtx_sequence *seq =
		         dyn_cast <rtx_sequence *> (PATTERN (after)))
		{
		  if (++i == n_insns)
		    break;
		  branch_p = true;
		  after = seq->insn (1);
		}
	      /* This is a regular instruction.  */
	      else
		branch_p = false;

	      if (after && (set = single_set (after)) != NULL_RTX)
		{
		  const rtx src = SET_SRC (set);
		  const rtx dest = SET_DEST (set);
		  const unsigned int size = GET_MODE_SIZE (GET_MODE (dest));

		  /* If the FP register is again modified before the store,
		     then the store isn't affected.  */
		  if (REG_P (dest)
		      && (REGNO (dest) == x
			  || (REGNO (dest) == y && size == 8)))
		    break;

		  if (MEM_P (dest) && REG_P (src))
		    {
		      /* If there is a store from the sibling FP register
			 before the store, then the store is not affected.  */
		      if (REGNO (src) == y || (REGNO (src) == x && size == 8))
			break;

		      /* Otherwise, the store is affected.  */
		      if (REGNO (src) == x && size == 4)
			{
			  insert_nop = true;
			  break;
			}
		    }
		}

	      /* If we have a branch in the first M instructions, then we
		 cannot see the (M+2)th instruction so we play safe.  */
	      if (branch_p && i <= (n_insns - 2))
		{
		  insert_nop = true;
		  break;
		}
	    }
	}

      else
	next = NEXT_INSN (insn);

      if (insert_nop)
	emit_insn_before (gen_nop (), next);
    }

  return 0;
}

namespace {

const pass_data pass_data_work_around_errata =
{
  RTL_PASS, /* type */
  "errata", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_MACH_DEP, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_work_around_errata : public rtl_opt_pass
{
public:
  pass_work_around_errata(gcc::context *ctxt)
    : rtl_opt_pass(pass_data_work_around_errata, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *)
    {
      return sparc_fix_at697f
	     || sparc_fix_ut699 || sparc_fix_ut700 || sparc_fix_gr712rc
	     || sparc_fix_b2bst || sparc_fix_lost_divsqrt;
    }

  virtual unsigned int execute (function *)
    {
      return sparc_do_work_around_errata ();
    }

}; // class pass_work_around_errata

} // anon namespace

rtl_opt_pass *
make_pass_work_around_errata (gcc::context *ctxt)
{
  return new pass_work_around_errata (ctxt);
}

/* Helpers for TARGET_DEBUG_OPTIONS.  */
static void
dump_target_flag_bits (const int flags)
{
  if (flags & MASK_64BIT)
    fprintf (stderr, "64BIT ");
  if (flags & MASK_APP_REGS)
    fprintf (stderr, "APP_REGS ");
  if (flags & MASK_FASTER_STRUCTS)
    fprintf (stderr, "FASTER_STRUCTS ");
  if (flags & MASK_FLAT)
    fprintf (stderr, "FLAT ");
  if (flags & MASK_FMAF)
    fprintf (stderr, "FMAF ");
  if (flags & MASK_FSMULD)
    fprintf (stderr, "FSMULD ");
  if (flags & MASK_FPU)
    fprintf (stderr, "FPU ");
  if (flags & MASK_HARD_QUAD)
    fprintf (stderr, "HARD_QUAD ");
  if (flags & MASK_POPC)
    fprintf (stderr, "POPC ");
  if (flags & MASK_PTR64)
    fprintf (stderr, "PTR64 ");
  if (flags & MASK_STACK_BIAS)
    fprintf (stderr, "STACK_BIAS ");
  if (flags & MASK_UNALIGNED_DOUBLES)
    fprintf (stderr, "UNALIGNED_DOUBLES ");
  if (flags & MASK_V8PLUS)
    fprintf (stderr, "V8PLUS ");
  if (flags & MASK_VIS)
    fprintf (stderr, "VIS ");
  if (flags & MASK_VIS2)
    fprintf (stderr, "VIS2 ");
  if (flags & MASK_VIS3)
    fprintf (stderr, "VIS3 ");
  if (flags & MASK_VIS4)
    fprintf (stderr, "VIS4 ");
  if (flags & MASK_VIS4B)
    fprintf (stderr, "VIS4B ");
  if (flags & MASK_CBCOND)
    fprintf (stderr, "CBCOND ");
  if (flags & MASK_DEPRECATED_V8_INSNS)
    fprintf (stderr, "DEPRECATED_V8_INSNS ");
  if (flags & MASK_SPARCLET)
    fprintf (stderr, "SPARCLET ");
  if (flags & MASK_SPARCLITE)
    fprintf (stderr, "SPARCLITE ");
  if (flags & MASK_V8)
    fprintf (stderr, "V8 ");
  if (flags & MASK_V9)
    fprintf (stderr, "V9 ");
}

static void
dump_target_flags (const char *prefix, const int flags)
{
  fprintf (stderr, "%s: (%08x) [ ", prefix, flags);
  dump_target_flag_bits (flags);
  fprintf(stderr, "]\n");
}

/* Validate and override various options, and do some machine dependent
   initialization.  */

static void
sparc_option_override (void)
{
  /* Map TARGET_CPU_DEFAULT to value for -m{cpu,tune}=.  */
  static struct cpu_default {
    const int cpu;
    const enum sparc_processor_type processor;
  } const cpu_default[] = {
    /* There must be one entry here for each TARGET_CPU value.  */
    { TARGET_CPU_sparc, PROCESSOR_CYPRESS },
    { TARGET_CPU_v8, PROCESSOR_V8 },
    { TARGET_CPU_supersparc, PROCESSOR_SUPERSPARC },
    { TARGET_CPU_hypersparc, PROCESSOR_HYPERSPARC },
    { TARGET_CPU_leon, PROCESSOR_LEON },
    { TARGET_CPU_leon3, PROCESSOR_LEON3 },
    { TARGET_CPU_leon3v7, PROCESSOR_LEON3V7 },
    { TARGET_CPU_sparclite, PROCESSOR_F930 },
    { TARGET_CPU_sparclite86x, PROCESSOR_SPARCLITE86X },
    { TARGET_CPU_sparclet, PROCESSOR_TSC701 },
    { TARGET_CPU_v9, PROCESSOR_V9 },
    { TARGET_CPU_ultrasparc, PROCESSOR_ULTRASPARC },
    { TARGET_CPU_ultrasparc3, PROCESSOR_ULTRASPARC3 },
    { TARGET_CPU_niagara, PROCESSOR_NIAGARA },
    { TARGET_CPU_niagara2, PROCESSOR_NIAGARA2 },
    { TARGET_CPU_niagara3, PROCESSOR_NIAGARA3 },
    { TARGET_CPU_niagara4, PROCESSOR_NIAGARA4 },
    { TARGET_CPU_niagara7, PROCESSOR_NIAGARA7 },
    { TARGET_CPU_m8, PROCESSOR_M8 },
    { -1, PROCESSOR_V7 }
  };
  const struct cpu_default *def;
  /* Table of values for -m{cpu,tune}=.  This must match the order of
     the enum processor_type in sparc-opts.h.  */
  static struct cpu_table {
    const char *const name;
    const int disable;
    const int enable;
  } const cpu_table[] = {
    { "v7",		MASK_ISA, 0 },
    { "cypress",	MASK_ISA, 0 },
    { "v8",		MASK_ISA, MASK_V8 },
    /* TI TMS390Z55 supersparc */
    { "supersparc",	MASK_ISA, MASK_V8 },
    { "hypersparc",	MASK_ISA, MASK_V8 },
    { "leon",		MASK_ISA|MASK_FSMULD, MASK_V8|MASK_LEON },
    { "leon3",		MASK_ISA, MASK_V8|MASK_LEON3 },
    { "leon3v7",	MASK_ISA, MASK_LEON3 },
    { "sparclite",	MASK_ISA, MASK_SPARCLITE },
    /* The Fujitsu MB86930 is the original sparclite chip, with no FPU.  */
    { "f930",		MASK_ISA|MASK_FPU, MASK_SPARCLITE },
    /* The Fujitsu MB86934 is the recent sparclite chip, with an FPU.  */
    { "f934",		MASK_ISA, MASK_SPARCLITE },
    { "sparclite86x",	MASK_ISA|MASK_FPU, MASK_SPARCLITE },
    { "sparclet",	MASK_ISA, MASK_SPARCLET },
    /* TEMIC sparclet */
    { "tsc701",		MASK_ISA, MASK_SPARCLET },
    { "v9",		MASK_ISA, MASK_V9 },
    /* UltraSPARC I, II, IIi */
    { "ultrasparc",	MASK_ISA,
    /* Although insns using %y are deprecated, it is a clear win.  */
      MASK_V9|MASK_DEPRECATED_V8_INSNS },
    /* UltraSPARC III */
    /* ??? Check if %y issue still holds true.  */
    { "ultrasparc3",	MASK_ISA,
      MASK_V9|MASK_DEPRECATED_V8_INSNS|MASK_VIS2 },
    /* UltraSPARC T1 */
    { "niagara",	MASK_ISA,
      MASK_V9|MASK_DEPRECATED_V8_INSNS },
    /* UltraSPARC T2 */
    { "niagara2",	MASK_ISA,
      MASK_V9|MASK_POPC|MASK_VIS2 },
    /* UltraSPARC T3 */
    { "niagara3",	MASK_ISA,
      MASK_V9|MASK_POPC|MASK_VIS3|MASK_FMAF },
    /* UltraSPARC T4 */
    { "niagara4",	MASK_ISA,
      MASK_V9|MASK_POPC|MASK_VIS3|MASK_FMAF|MASK_CBCOND },
    /* UltraSPARC M7 */
    { "niagara7",	MASK_ISA,
      MASK_V9|MASK_POPC|MASK_VIS4|MASK_FMAF|MASK_CBCOND|MASK_SUBXC },
    /* UltraSPARC M8 */
    { "m8",		MASK_ISA,
      MASK_V9|MASK_POPC|MASK_VIS4B|MASK_FMAF|MASK_CBCOND|MASK_SUBXC }
  };
  const struct cpu_table *cpu;
  unsigned int i;

  if (sparc_debug_string != NULL)
    {
      const char *q;
      char *p;

      p = ASTRDUP (sparc_debug_string);
      while ((q = strtok (p, ",")) != NULL)
	{
	  bool invert;
	  int mask;

	  p = NULL;
	  if (*q == '!')
	    {
	      invert = true;
	      q++;
	    }
	  else
	    invert = false;

	  if (! strcmp (q, "all"))
	    mask = MASK_DEBUG_ALL;
	  else if (! strcmp (q, "options"))
	    mask = MASK_DEBUG_OPTIONS;
	  else
	    error ("unknown %<-mdebug-%s%> switch", q);

	  if (invert)
	    sparc_debug &= ~mask;
	  else
	    sparc_debug |= mask;
	}
    }

  /* Enable the FsMULd instruction by default if not explicitly specified by
     the user.  It may be later disabled by the CPU (explicitly or not).  */
  if (TARGET_FPU && !(target_flags_explicit & MASK_FSMULD))
    target_flags |= MASK_FSMULD;

  if (TARGET_DEBUG_OPTIONS)
    {
      dump_target_flags("Initial target_flags", target_flags);
      dump_target_flags("target_flags_explicit", target_flags_explicit);
    }

#ifdef SUBTARGET_OVERRIDE_OPTIONS
  SUBTARGET_OVERRIDE_OPTIONS;
#endif

#ifndef SPARC_BI_ARCH
  /* Check for unsupported architecture size.  */
  if (!TARGET_64BIT != DEFAULT_ARCH32_P)
    error ("%s is not supported by this configuration",
	   DEFAULT_ARCH32_P ? "-m64" : "-m32");
#endif

  /* We force all 64bit archs to use 128 bit long double */
  if (TARGET_ARCH64 && !TARGET_LONG_DOUBLE_128)
    {
      error ("%<-mlong-double-64%> not allowed with %<-m64%>");
      target_flags |= MASK_LONG_DOUBLE_128;
    }

  /* Check that -fcall-saved-REG wasn't specified for out registers.  */
  for (i = 8; i < 16; i++)
    if (!call_used_regs [i])
      {
	error ("%<-fcall-saved-REG%> is not supported for out registers");
        call_used_regs [i] = 1;
      }

  /* Set the default CPU if no -mcpu option was specified.  */
  if (!global_options_set.x_sparc_cpu_and_features)
    {
      for (def = &cpu_default[0]; def->cpu != -1; ++def)
	if (def->cpu == TARGET_CPU_DEFAULT)
	  break;
      gcc_assert (def->cpu != -1);
      sparc_cpu_and_features = def->processor;
    }

  /* Set the default CPU if no -mtune option was specified.  */
  if (!global_options_set.x_sparc_cpu)
    sparc_cpu = sparc_cpu_and_features;

  cpu = &cpu_table[(int) sparc_cpu_and_features];

  if (TARGET_DEBUG_OPTIONS)
    {
      fprintf (stderr, "sparc_cpu_and_features: %s\n", cpu->name);
      dump_target_flags ("cpu->disable", cpu->disable);
      dump_target_flags ("cpu->enable", cpu->enable);
    }

  target_flags &= ~cpu->disable;
  target_flags |= (cpu->enable
#ifndef HAVE_AS_FMAF_HPC_VIS3
		   & ~(MASK_FMAF | MASK_VIS3)
#endif
#ifndef HAVE_AS_SPARC4
		   & ~MASK_CBCOND
#endif
#ifndef HAVE_AS_SPARC5_VIS4
		   & ~(MASK_VIS4 | MASK_SUBXC)
#endif
#ifndef HAVE_AS_SPARC6
		   & ~(MASK_VIS4B)
#endif
#ifndef HAVE_AS_LEON
		   & ~(MASK_LEON | MASK_LEON3)
#endif
		   & ~(target_flags_explicit & MASK_FEATURES)
		   );

  /* FsMULd is a V8 instruction.  */
  if (!TARGET_V8 && !TARGET_V9)
    target_flags &= ~MASK_FSMULD;

  /* -mvis2 implies -mvis.  */
  if (TARGET_VIS2)
    target_flags |= MASK_VIS;

  /* -mvis3 implies -mvis2 and -mvis.  */
  if (TARGET_VIS3)
    target_flags |= MASK_VIS2 | MASK_VIS;

  /* -mvis4 implies -mvis3, -mvis2 and -mvis.  */
  if (TARGET_VIS4)
    target_flags |= MASK_VIS3 | MASK_VIS2 | MASK_VIS;

  /* -mvis4b implies -mvis4, -mvis3, -mvis2 and -mvis */
  if (TARGET_VIS4B)
    target_flags |= MASK_VIS4 | MASK_VIS3 | MASK_VIS2 | MASK_VIS;

  /* Don't allow -mvis, -mvis2, -mvis3, -mvis4, -mvis4b, -mfmaf and -mfsmuld if
     FPU is disabled.  */
  if (!TARGET_FPU)
    target_flags &= ~(MASK_VIS | MASK_VIS2 | MASK_VIS3 | MASK_VIS4
		      | MASK_VIS4B | MASK_FMAF | MASK_FSMULD);

  /* -mvis assumes UltraSPARC+, so we are sure v9 instructions
     are available; -m64 also implies v9.  */
  if (TARGET_VIS || TARGET_ARCH64)
    {
      target_flags |= MASK_V9;
      target_flags &= ~(MASK_V8 | MASK_SPARCLET | MASK_SPARCLITE);
    }

  /* -mvis also implies -mv8plus on 32-bit.  */
  if (TARGET_VIS && !TARGET_ARCH64)
    target_flags |= MASK_V8PLUS;

  /* Use the deprecated v8 insns for sparc64 in 32-bit mode.  */
  if (TARGET_V9 && TARGET_ARCH32)
    target_flags |= MASK_DEPRECATED_V8_INSNS;

  /* V8PLUS requires V9 and makes no sense in 64-bit mode.  */
  if (!TARGET_V9 || TARGET_ARCH64)
    target_flags &= ~MASK_V8PLUS;

  /* Don't use stack biasing in 32-bit mode.  */
  if (TARGET_ARCH32)
    target_flags &= ~MASK_STACK_BIAS;

  /* Use LRA instead of reload, unless otherwise instructed.  */
  if (!(target_flags_explicit & MASK_LRA))
    target_flags |= MASK_LRA;

  /* Enable applicable errata workarounds for LEON3FT.  */
  if (sparc_fix_ut699 || sparc_fix_ut700 || sparc_fix_gr712rc)
    {
      sparc_fix_b2bst = 1;
      sparc_fix_lost_divsqrt = 1;
    }

  /* Disable FsMULd for the UT699 since it doesn't work correctly.  */
  if (sparc_fix_ut699)
    target_flags &= ~MASK_FSMULD;

#ifdef TARGET_DEFAULT_LONG_DOUBLE_128
  if (!(target_flags_explicit & MASK_LONG_DOUBLE_128))
    target_flags |= MASK_LONG_DOUBLE_128;
#endif

  if (TARGET_DEBUG_OPTIONS)
    dump_target_flags ("Final target_flags", target_flags);

  /* Set the code model if no -mcmodel option was specified.  */
  if (global_options_set.x_sparc_code_model)
    {
      if (TARGET_ARCH32)
	error ("%<-mcmodel=%> is not supported in 32-bit mode");
    }
  else
    {
      if (TARGET_ARCH32)
	sparc_code_model = CM_32;
      else
	sparc_code_model = SPARC_DEFAULT_CMODEL;
    }

  /* Set the memory model if no -mmemory-model option was specified.  */
  if (!global_options_set.x_sparc_memory_model)
    {
      /* Choose the memory model for the operating system.  */
      enum sparc_memory_model_type os_default = SUBTARGET_DEFAULT_MEMORY_MODEL;
      if (os_default != SMM_DEFAULT)
	sparc_memory_model = os_default;
      /* Choose the most relaxed model for the processor.  */
      else if (TARGET_V9)
	sparc_memory_model = SMM_RMO;
      else if (TARGET_LEON3)
	sparc_memory_model = SMM_TSO;
      else if (TARGET_LEON)
	sparc_memory_model = SMM_SC;
      else if (TARGET_V8)
	sparc_memory_model = SMM_PSO;
      else
	sparc_memory_model = SMM_SC;
    }

  /* Supply a default value for align_functions.  */
  if (flag_align_functions && !str_align_functions)
    {
      if (sparc_cpu == PROCESSOR_ULTRASPARC
	  || sparc_cpu == PROCESSOR_ULTRASPARC3
	  || sparc_cpu == PROCESSOR_NIAGARA
	  || sparc_cpu == PROCESSOR_NIAGARA2
	  || sparc_cpu == PROCESSOR_NIAGARA3
	  || sparc_cpu == PROCESSOR_NIAGARA4)
	str_align_functions = "32";
      else if (sparc_cpu == PROCESSOR_NIAGARA7
	       || sparc_cpu == PROCESSOR_M8)
	str_align_functions = "64";
    }

  /* Validate PCC_STRUCT_RETURN.  */
  if (flag_pcc_struct_return == DEFAULT_PCC_STRUCT_RETURN)
    flag_pcc_struct_return = (TARGET_ARCH64 ? 0 : 1);

  /* Only use .uaxword when compiling for a 64-bit target.  */
  if (!TARGET_ARCH64)
    targetm.asm_out.unaligned_op.di = NULL;

  /* Set the processor costs.  */
  switch (sparc_cpu)
    {
    case PROCESSOR_V7:
    case PROCESSOR_CYPRESS:
      sparc_costs = &cypress_costs;
      break;
    case PROCESSOR_V8:
    case PROCESSOR_SPARCLITE:
    case PROCESSOR_SUPERSPARC:
      sparc_costs = &supersparc_costs;
      break;
    case PROCESSOR_F930:
    case PROCESSOR_F934:
    case PROCESSOR_HYPERSPARC:
    case PROCESSOR_SPARCLITE86X:
      sparc_costs = &hypersparc_costs;
      break;
    case PROCESSOR_LEON:
      sparc_costs = &leon_costs;
      break;
    case PROCESSOR_LEON3:
    case PROCESSOR_LEON3V7:
      sparc_costs = &leon3_costs;
      break;
    case PROCESSOR_SPARCLET:
    case PROCESSOR_TSC701:
      sparc_costs = &sparclet_costs;
      break;
    case PROCESSOR_V9:
    case PROCESSOR_ULTRASPARC:
      sparc_costs = &ultrasparc_costs;
      break;
    case PROCESSOR_ULTRASPARC3:
      sparc_costs = &ultrasparc3_costs;
      break;
    case PROCESSOR_NIAGARA:
      sparc_costs = &niagara_costs;
      break;
    case PROCESSOR_NIAGARA2:
      sparc_costs = &niagara2_costs;
      break;
    case PROCESSOR_NIAGARA3:
      sparc_costs = &niagara3_costs;
      break;
    case PROCESSOR_NIAGARA4:
      sparc_costs = &niagara4_costs;
      break;
    case PROCESSOR_NIAGARA7:
      sparc_costs = &niagara7_costs;
      break;
    case PROCESSOR_M8:
      sparc_costs = &m8_costs;
      break;
    case PROCESSOR_NATIVE:
      gcc_unreachable ();
    };

  /* PARAM_SIMULTANEOUS_PREFETCHES is the number of prefetches that
     can run at the same time.  More important, it is the threshold
     defining when additional prefetches will be dropped by the
     hardware.

     The UltraSPARC-III features a documented prefetch queue with a
     size of 8.  Additional prefetches issued in the cpu are
     dropped.

     Niagara processors are different.  In these processors prefetches
     are handled much like regular loads.  The L1 miss buffer is 32
     entries, but prefetches start getting affected when 30 entries
     become occupied.  That occupation could be a mix of regular loads
     and prefetches though.  And that buffer is shared by all threads.
     Once the threshold is reached, if the core is running a single
     thread the prefetch will retry.  If more than one thread is
     running, the prefetch will be dropped.

     All this makes it very difficult to determine how many
     simultaneous prefetches can be issued simultaneously, even in a
     single-threaded program.  Experimental results show that setting
     this parameter to 32 works well when the number of threads is not
     high.  */
  maybe_set_param_value (PARAM_SIMULTANEOUS_PREFETCHES,
			 ((sparc_cpu == PROCESSOR_ULTRASPARC
			   || sparc_cpu == PROCESSOR_NIAGARA
			   || sparc_cpu == PROCESSOR_NIAGARA2
			   || sparc_cpu == PROCESSOR_NIAGARA3
			   || sparc_cpu == PROCESSOR_NIAGARA4)
			  ? 2
			  : (sparc_cpu == PROCESSOR_ULTRASPARC3
			     ? 8 : ((sparc_cpu == PROCESSOR_NIAGARA7
				     || sparc_cpu == PROCESSOR_M8)
				    ? 32 : 3))),
			 global_options.x_param_values,
			 global_options_set.x_param_values);

  /* PARAM_L1_CACHE_LINE_SIZE is the size of the L1 cache line, in
     bytes.

     The Oracle SPARC Architecture (previously the UltraSPARC
     Architecture) specification states that when a PREFETCH[A]
     instruction is executed an implementation-specific amount of data
     is prefetched, and that it is at least 64 bytes long (aligned to
     at least 64 bytes).

     However, this is not correct.  The M7 (and implementations prior
     to that) does not guarantee a 64B prefetch into a cache if the
     line size is smaller.  A single cache line is all that is ever
     prefetched.  So for the M7, where the L1D$ has 32B lines and the
     L2D$ and L3 have 64B lines, a prefetch will prefetch 64B into the
     L2 and L3, but only 32B are brought into the L1D$. (Assuming it
     is a read_n prefetch, which is the only type which allocates to
     the L1.)  */
  maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE,
			 (sparc_cpu == PROCESSOR_M8
			  ? 64 : 32),
			 global_options.x_param_values,
			 global_options_set.x_param_values);

  /* PARAM_L1_CACHE_SIZE is the size of the L1D$ (most SPARC chips use
     Hardvard level-1 caches) in kilobytes.  Both UltraSPARC and
     Niagara processors feature a L1D$ of 16KB.  */
  maybe_set_param_value (PARAM_L1_CACHE_SIZE,
			 ((sparc_cpu == PROCESSOR_ULTRASPARC
			   || sparc_cpu == PROCESSOR_ULTRASPARC3
			   || sparc_cpu == PROCESSOR_NIAGARA
			   || sparc_cpu == PROCESSOR_NIAGARA2
			   || sparc_cpu == PROCESSOR_NIAGARA3
			   || sparc_cpu == PROCESSOR_NIAGARA4
			   || sparc_cpu == PROCESSOR_NIAGARA7
			   || sparc_cpu == PROCESSOR_M8)
			  ? 16 : 64),
			 global_options.x_param_values,
			 global_options_set.x_param_values);


  /* PARAM_L2_CACHE_SIZE is the size fo the L2 in kilobytes.  Note
     that 512 is the default in params.def.  */
  maybe_set_param_value (PARAM_L2_CACHE_SIZE,
			 ((sparc_cpu == PROCESSOR_NIAGARA4
			   || sparc_cpu == PROCESSOR_M8)
			  ? 128 : (sparc_cpu == PROCESSOR_NIAGARA7
				   ? 256 : 512)),
			 global_options.x_param_values,
			 global_options_set.x_param_values);
  

  /* Disable save slot sharing for call-clobbered registers by default.
     The IRA sharing algorithm works on single registers only and this
     pessimizes for double floating-point registers.  */
  if (!global_options_set.x_flag_ira_share_save_slots)
    flag_ira_share_save_slots = 0;

  /* Only enable REE by default in 64-bit mode where it helps to eliminate
     redundant 32-to-64-bit extensions.  */
  if (!global_options_set.x_flag_ree && TARGET_ARCH32)
    flag_ree = 0;

  /* Do various machine dependent initializations.  */
  sparc_init_modes ();

  /* Set up function hooks.  */
  init_machine_status = sparc_init_machine_status;
}

/* Miscellaneous utilities.  */

/* Nonzero if CODE, a comparison, is suitable for use in v9 conditional move
   or branch on register contents instructions.  */

int
v9_regcmp_p (enum rtx_code code)
{
  return (code == EQ || code == NE || code == GE || code == LT
	  || code == LE || code == GT);
}

/* Nonzero if OP is a floating point constant which can
   be loaded into an integer register using a single
   sethi instruction.  */

int
fp_sethi_p (rtx op)
{
  if (GET_CODE (op) == CONST_DOUBLE)
    {
      long i;

      REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), i);
      return !SPARC_SIMM13_P (i) && SPARC_SETHI_P (i);
    }

  return 0;
}

/* Nonzero if OP is a floating point constant which can
   be loaded into an integer register using a single
   mov instruction.  */

int
fp_mov_p (rtx op)
{
  if (GET_CODE (op) == CONST_DOUBLE)
    {
      long i;

      REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), i);
      return SPARC_SIMM13_P (i);
    }

  return 0;
}

/* Nonzero if OP is a floating point constant which can
   be loaded into an integer register using a high/losum
   instruction sequence.  */

int
fp_high_losum_p (rtx op)
{
  /* The constraints calling this should only be in
     SFmode move insns, so any constant which cannot
     be moved using a single insn will do.  */
  if (GET_CODE (op) == CONST_DOUBLE)
    {
      long i;

      REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), i);
      return !SPARC_SIMM13_P (i) && !SPARC_SETHI_P (i);
    }

  return 0;
}

/* Return true if the address of LABEL can be loaded by means of the
   mov{si,di}_pic_label_ref patterns in PIC mode.  */

static bool
can_use_mov_pic_label_ref (rtx label)
{
  /* VxWorks does not impose a fixed gap between segments; the run-time
     gap can be different from the object-file gap.  We therefore can't
     assume X - _GLOBAL_OFFSET_TABLE_ is a link-time constant unless we
     are absolutely sure that X is in the same segment as the GOT.
     Unfortunately, the flexibility of linker scripts means that we
     can't be sure of that in general, so assume that GOT-relative
     accesses are never valid on VxWorks.  */
  if (TARGET_VXWORKS_RTP)
    return false;

  /* Similarly, if the label is non-local, it might end up being placed
     in a different section than the current one; now mov_pic_label_ref
     requires the label and the code to be in the same section.  */
  if (LABEL_REF_NONLOCAL_P (label))
    return false;

  /* Finally, if we are reordering basic blocks and partition into hot
     and cold sections, this might happen for any label.  */
  if (flag_reorder_blocks_and_partition)
    return false;

  return true;
}

/* Expand a move instruction.  Return true if all work is done.  */

bool
sparc_expand_move (machine_mode mode, rtx *operands)
{
  /* Handle sets of MEM first.  */
  if (GET_CODE (operands[0]) == MEM)
    {
      /* 0 is a register (or a pair of registers) on SPARC.  */
      if (register_or_zero_operand (operands[1], mode))
	return false;

      if (!reload_in_progress)
	{
	  operands[0] = validize_mem (operands[0]);
	  operands[1] = force_reg (mode, operands[1]);
	}
    }

  /* Fix up TLS cases.  */
  if (TARGET_HAVE_TLS
      && CONSTANT_P (operands[1])
      && sparc_tls_referenced_p (operands [1]))
    {
      operands[1] = sparc_legitimize_tls_address (operands[1]);
      return false;
    }

  /* Fix up PIC cases.  */
  if (flag_pic && CONSTANT_P (operands[1]))
    {
      if (pic_address_needs_scratch (operands[1]))
	operands[1] = sparc_legitimize_pic_address (operands[1], NULL_RTX);

      /* We cannot use the mov{si,di}_pic_label_ref patterns in all cases.  */
      if ((GET_CODE (operands[1]) == LABEL_REF
	   && can_use_mov_pic_label_ref (operands[1]))
	  || (GET_CODE (operands[1]) == CONST
	      && GET_CODE (XEXP (operands[1], 0)) == PLUS
	      && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF
	      && GET_CODE (XEXP (XEXP (operands[1], 0), 1)) == CONST_INT
	      && can_use_mov_pic_label_ref (XEXP (XEXP (operands[1], 0), 0))))
	{
	  if (mode == SImode)
	    {
	      emit_insn (gen_movsi_pic_label_ref (operands[0], operands[1]));
	      return true;
	    }

	  if (mode == DImode)
	    {
	      emit_insn (gen_movdi_pic_label_ref (operands[0], operands[1]));
	      return true;
	    }
	}

      if (symbolic_operand (operands[1], mode))
	{
	  operands[1]
	    = sparc_legitimize_pic_address (operands[1],
					    reload_in_progress
					    ? operands[0] : NULL_RTX);
	  return false;
	}
    }

  /* If we are trying to toss an integer constant into FP registers,
     or loading a FP or vector constant, force it into memory.  */
  if (CONSTANT_P (operands[1])
      && REG_P (operands[0])
      && (SPARC_FP_REG_P (REGNO (operands[0]))
	  || SCALAR_FLOAT_MODE_P (mode)
	  || VECTOR_MODE_P (mode)))
    {
      /* emit_group_store will send such bogosity to us when it is
         not storing directly into memory.  So fix this up to avoid
         crashes in output_constant_pool.  */
      if (operands [1] == const0_rtx)
	operands[1] = CONST0_RTX (mode);

      /* We can clear or set to all-ones FP registers if TARGET_VIS, and
	 always other regs.  */
      if ((TARGET_VIS || REGNO (operands[0]) < SPARC_FIRST_FP_REG)
	  && (const_zero_operand (operands[1], mode)
	      || const_all_ones_operand (operands[1], mode)))
	return false;

      if (REGNO (operands[0]) < SPARC_FIRST_FP_REG
	  /* We are able to build any SF constant in integer registers
	     with at most 2 instructions.  */
	  && (mode == SFmode
	      /* And any DF constant in integer registers if needed.  */
	      || (mode == DFmode && !can_create_pseudo_p ())))
	return false;

      operands[1] = force_const_mem (mode, operands[1]);
      if (!reload_in_progress)
	operands[1] = validize_mem (operands[1]);
      return false;
    }

  /* Accept non-constants and valid constants unmodified.  */
  if (!CONSTANT_P (operands[1])
      || GET_CODE (operands[1]) == HIGH
      || input_operand (operands[1], mode))
    return false;

  switch (mode)
    {
    case E_QImode:
      /* All QImode constants require only one insn, so proceed.  */
      break;

    case E_HImode:
    case E_SImode:
      sparc_emit_set_const32 (operands[0], operands[1]);
      return true;

    case E_DImode:
      /* input_operand should have filtered out 32-bit mode.  */
      sparc_emit_set_const64 (operands[0], operands[1]);
      return true;

    case E_TImode:
      {
	rtx high, low;
	/* TImode isn't available in 32-bit mode.  */
	split_double (operands[1], &high, &low);
	emit_insn (gen_movdi (operand_subword (operands[0], 0, 0, TImode),
			      high));
	emit_insn (gen_movdi (operand_subword (operands[0], 1, 0, TImode),
			      low));
      }
      return true;

    default:
      gcc_unreachable ();
    }

  return false;
}

/* Load OP1, a 32-bit constant, into OP0, a register.
   We know it can't be done in one insn when we get
   here, the move expander guarantees this.  */

static void
sparc_emit_set_const32 (rtx op0, rtx op1)
{
  machine_mode mode = GET_MODE (op0);
  rtx temp = op0;

  if (can_create_pseudo_p ())
    temp = gen_reg_rtx (mode);

  if (GET_CODE (op1) == CONST_INT)
    {
      gcc_assert (!small_int_operand (op1, mode)
		  && !const_high_operand (op1, mode));

      /* Emit them as real moves instead of a HIGH/LO_SUM,
	 this way CSE can see everything and reuse intermediate
	 values if it wants.  */
      emit_insn (gen_rtx_SET (temp, GEN_INT (INTVAL (op1)
					     & ~(HOST_WIDE_INT) 0x3ff)));

      emit_insn (gen_rtx_SET (op0,
			      gen_rtx_IOR (mode, temp,
					   GEN_INT (INTVAL (op1) & 0x3ff))));
    }
  else
    {
      /* A symbol, emit in the traditional way.  */
      emit_insn (gen_rtx_SET (temp, gen_rtx_HIGH (mode, op1)));
      emit_insn (gen_rtx_SET (op0, gen_rtx_LO_SUM (mode, temp, op1)));
    }
}

/* Load OP1, a symbolic 64-bit constant, into OP0, a DImode register.
   If TEMP is nonzero, we are forbidden to use any other scratch
   registers.  Otherwise, we are allowed to generate them as needed.

   Note that TEMP may have TImode if the code model is TARGET_CM_MEDANY
   or TARGET_CM_EMBMEDANY (see the reload_indi and reload_outdi patterns).  */

void
sparc_emit_set_symbolic_const64 (rtx op0, rtx op1, rtx temp)
{
  rtx cst, temp1, temp2, temp3, temp4, temp5;
  rtx ti_temp = 0;

  /* Deal with too large offsets.  */
  if (GET_CODE (op1) == CONST
      && GET_CODE (XEXP (op1, 0)) == PLUS
      && CONST_INT_P (cst = XEXP (XEXP (op1, 0), 1))
      && trunc_int_for_mode (INTVAL (cst), SImode) != INTVAL (cst))
    {
      gcc_assert (!temp);
      temp1 = gen_reg_rtx (DImode);
      temp2 = gen_reg_rtx (DImode);
      sparc_emit_set_const64 (temp2, cst);
      sparc_emit_set_symbolic_const64 (temp1, XEXP (XEXP (op1, 0), 0),
				       NULL_RTX);
      emit_insn (gen_rtx_SET (op0, gen_rtx_PLUS (DImode, temp1, temp2)));
      return;
    }

  if (temp && GET_MODE (temp) == TImode)
    {
      ti_temp = temp;
      temp = gen_rtx_REG (DImode, REGNO (temp));
    }

  /* SPARC-V9 code model support.  */
  switch (sparc_code_model)
    {
    case CM_MEDLOW:
      /* The range spanned by all instructions in the object is less
	 than 2^31 bytes (2GB) and the distance from any instruction
	 to the location of the label _GLOBAL_OFFSET_TABLE_ is less
	 than 2^31 bytes (2GB).

	 The executable must be in the low 4TB of the virtual address
	 space.

	 sethi	%hi(symbol), %temp1
	 or	%temp1, %lo(symbol), %reg  */
      if (temp)
	temp1 = temp;  /* op0 is allowed.  */
      else
	temp1 = gen_reg_rtx (DImode);

      emit_insn (gen_rtx_SET (temp1, gen_rtx_HIGH (DImode, op1)));
      emit_insn (gen_rtx_SET (op0, gen_rtx_LO_SUM (DImode, temp1, op1)));
      break;

    case CM_MEDMID:
      /* The range spanned by all instructions in the object is less
	 than 2^31 bytes (2GB) and the distance from any instruction
	 to the location of the label _GLOBAL_OFFSET_TABLE_ is less
	 than 2^31 bytes (2GB).

	 The executable must be in the low 16TB of the virtual address
	 space.

	 sethi	%h44(symbol), %temp1
	 or	%temp1, %m44(symbol), %temp2
	 sllx	%temp2, 12, %temp3
	 or	%temp3, %l44(symbol), %reg  */
      if (temp)
	{
	  temp1 = op0;
	  temp2 = op0;
	  temp3 = temp;  /* op0 is allowed.  */
	}
      else
	{
	  temp1 = gen_reg_rtx (DImode);
	  temp2 = gen_reg_rtx (DImode);
	  temp3 = gen_reg_rtx (DImode);
	}

      emit_insn (gen_seth44 (temp1, op1));
      emit_insn (gen_setm44 (temp2, temp1, op1));
      emit_insn (gen_rtx_SET (temp3,
			      gen_rtx_ASHIFT (DImode, temp2, GEN_INT (12))));
      emit_insn (gen_setl44 (op0, temp3, op1));
      break;

    case CM_MEDANY:
      /* The range spanned by all instructions in the object is less
	 than 2^31 bytes (2GB) and the distance from any instruction
	 to the location of the label _GLOBAL_OFFSET_TABLE_ is less
	 than 2^31 bytes (2GB).

	 The executable can be placed anywhere in the virtual address
	 space.

	 sethi	%hh(symbol), %temp1
	 sethi	%lm(symbol), %temp2
	 or	%temp1, %hm(symbol), %temp3
	 sllx	%temp3, 32, %temp4
	 or	%temp4, %temp2, %temp5
	 or	%temp5, %lo(symbol), %reg  */
      if (temp)
	{
	  /* It is possible that one of the registers we got for operands[2]
	     might coincide with that of operands[0] (which is why we made
	     it TImode).  Pick the other one to use as our scratch.  */
	  if (rtx_equal_p (temp, op0))
	    {
	      gcc_assert (ti_temp);
	      temp = gen_rtx_REG (DImode, REGNO (temp) + 1);
	    }
	  temp1 = op0;
	  temp2 = temp;  /* op0 is _not_ allowed, see above.  */
	  temp3 = op0;
	  temp4 = op0;
	  temp5 = op0;
	}
      else
	{
	  temp1 = gen_reg_rtx (DImode);
	  temp2 = gen_reg_rtx (DImode);
	  temp3 = gen_reg_rtx (DImode);
	  temp4 = gen_reg_rtx (DImode);
	  temp5 = gen_reg_rtx (DImode);
	}

      emit_insn (gen_sethh (temp1, op1));
      emit_insn (gen_setlm (temp2, op1));
      emit_insn (gen_sethm (temp3, temp1, op1));
      emit_insn (gen_rtx_SET (temp4,
			      gen_rtx_ASHIFT (DImode, temp3, GEN_INT (32))));
      emit_insn (gen_rtx_SET (temp5, gen_rtx_PLUS (DImode, temp4, temp2)));
      emit_insn (gen_setlo (op0, temp5, op1));
      break;

    case CM_EMBMEDANY:
      /* Old old old backwards compatibility kruft here.
	 Essentially it is MEDLOW with a fixed 64-bit
	 virtual base added to all data segment addresses.
	 Text-segment stuff is computed like MEDANY, we can't
	 reuse the code above because the relocation knobs
	 look different.

	 Data segment:	sethi	%hi(symbol), %temp1
			add	%temp1, EMBMEDANY_BASE_REG, %temp2
			or	%temp2, %lo(symbol), %reg  */
      if (data_segment_operand (op1, GET_MODE (op1)))
	{
	  if (temp)
	    {
	      temp1 = temp;  /* op0 is allowed.  */
	      temp2 = op0;
	    }
	  else
	    {
	      temp1 = gen_reg_rtx (DImode);
	      temp2 = gen_reg_rtx (DImode);
	    }

	  emit_insn (gen_embmedany_sethi (temp1, op1));
	  emit_insn (gen_embmedany_brsum (temp2, temp1));
	  emit_insn (gen_embmedany_losum (op0, temp2, op1));
	}

      /* Text segment:	sethi	%uhi(symbol), %temp1
			sethi	%hi(symbol), %temp2
			or	%temp1, %ulo(symbol), %temp3
			sllx	%temp3, 32, %temp4
			or	%temp4, %temp2, %temp5
			or	%temp5, %lo(symbol), %reg  */
      else
	{
	  if (temp)
	    {
	      /* It is possible that one of the registers we got for operands[2]
		 might coincide with that of operands[0] (which is why we made
		 it TImode).  Pick the other one to use as our scratch.  */
	      if (rtx_equal_p (temp, op0))
		{
		  gcc_assert (ti_temp);
		  temp = gen_rtx_REG (DImode, REGNO (temp) + 1);
		}
	      temp1 = op0;
	      temp2 = temp;  /* op0 is _not_ allowed, see above.  */
	      temp3 = op0;
	      temp4 = op0;
	      temp5 = op0;
	    }
	  else
	    {
	      temp1 = gen_reg_rtx (DImode);
	      temp2 = gen_reg_rtx (DImode);
	      temp3 = gen_reg_rtx (DImode);
	      temp4 = gen_reg_rtx (DImode);
	      temp5 = gen_reg_rtx (DImode);
	    }

	  emit_insn (gen_embmedany_textuhi (temp1, op1));
	  emit_insn (gen_embmedany_texthi  (temp2, op1));
	  emit_insn (gen_embmedany_textulo (temp3, temp1, op1));
	  emit_insn (gen_rtx_SET (temp4,
				  gen_rtx_ASHIFT (DImode, temp3, GEN_INT (32))));
	  emit_insn (gen_rtx_SET (temp5, gen_rtx_PLUS (DImode, temp4, temp2)));
	  emit_insn (gen_embmedany_textlo  (op0, temp5, op1));
	}
      break;

    default:
      gcc_unreachable ();
    }
}

/* These avoid problems when cross compiling.  If we do not
   go through all this hair then the optimizer will see
   invalid REG_EQUAL notes or in some cases none at all.  */
static rtx gen_safe_HIGH64 (rtx, HOST_WIDE_INT);
static rtx gen_safe_SET64 (rtx, HOST_WIDE_INT);
static rtx gen_safe_OR64 (rtx, HOST_WIDE_INT);
static rtx gen_safe_XOR64 (rtx, HOST_WIDE_INT);

/* The optimizer is not to assume anything about exactly
   which bits are set for a HIGH, they are unspecified.
   Unfortunately this leads to many missed optimizations
   during CSE.  We mask out the non-HIGH bits, and matches
   a plain movdi, to alleviate this problem.  */
static rtx
gen_safe_HIGH64 (rtx dest, HOST_WIDE_INT val)
{
  return gen_rtx_SET (dest, GEN_INT (val & ~(HOST_WIDE_INT)0x3ff));
}

static rtx
gen_safe_SET64 (rtx dest, HOST_WIDE_INT val)
{
  return gen_rtx_SET (dest, GEN_INT (val));
}

static rtx
gen_safe_OR64 (rtx src, HOST_WIDE_INT val)
{
  return gen_rtx_IOR (DImode, src, GEN_INT (val));
}

static rtx
gen_safe_XOR64 (rtx src, HOST_WIDE_INT val)
{
  return gen_rtx_XOR (DImode, src, GEN_INT (val));
}

/* Worker routines for 64-bit constant formation on arch64.
   One of the key things to be doing in these emissions is
   to create as many temp REGs as possible.  This makes it
   possible for half-built constants to be used later when
   such values are similar to something required later on.
   Without doing this, the optimizer cannot see such
   opportunities.  */

static void sparc_emit_set_const64_quick1 (rtx, rtx,
					   unsigned HOST_WIDE_INT, int);

static void
sparc_emit_set_const64_quick1 (rtx op0, rtx temp,
			       unsigned HOST_WIDE_INT low_bits, int is_neg)
{
  unsigned HOST_WIDE_INT high_bits;

  if (is_neg)
    high_bits = (~low_bits) & 0xffffffff;
  else
    high_bits = low_bits;

  emit_insn (gen_safe_HIGH64 (temp, high_bits));
  if (!is_neg)
    {
      emit_insn (gen_rtx_SET (op0, gen_safe_OR64 (temp, (high_bits & 0x3ff))));
    }
  else
    {
      /* If we are XOR'ing with -1, then we should emit a one's complement
	 instead.  This way the combiner will notice logical operations
	 such as ANDN later on and substitute.  */
      if ((low_bits & 0x3ff) == 0x3ff)
	{
	  emit_insn (gen_rtx_SET (op0, gen_rtx_NOT (DImode, temp)));
	}
      else
	{
	  emit_insn (gen_rtx_SET (op0,
				  gen_safe_XOR64 (temp,
						  (-(HOST_WIDE_INT)0x400
						   | (low_bits & 0x3ff)))));
	}
    }
}

static void sparc_emit_set_const64_quick2 (rtx, rtx, unsigned HOST_WIDE_INT,
					   unsigned HOST_WIDE_INT, int);

static void
sparc_emit_set_const64_quick2 (rtx op0, rtx temp,
			       unsigned HOST_WIDE_INT high_bits,
			       unsigned HOST_WIDE_INT low_immediate,
			       int shift_count)
{
  rtx temp2 = op0;

  if ((high_bits & 0xfffffc00) != 0)
    {
      emit_insn (gen_safe_HIGH64 (temp, high_bits));
      if ((high_bits & ~0xfffffc00) != 0)
	emit_insn (gen_rtx_SET (op0,
				gen_safe_OR64 (temp, (high_bits & 0x3ff))));
      else
	temp2 = temp;
    }
  else
    {
      emit_insn (gen_safe_SET64 (temp, high_bits));
      temp2 = temp;
    }

  /* Now shift it up into place.  */
  emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, temp2,
					       GEN_INT (shift_count))));

  /* If there is a low immediate part piece, finish up by
     putting that in as well.  */
  if (low_immediate != 0)
    emit_insn (gen_rtx_SET (op0, gen_safe_OR64 (op0, low_immediate)));
}

static void sparc_emit_set_const64_longway (rtx, rtx, unsigned HOST_WIDE_INT,
					    unsigned HOST_WIDE_INT);

/* Full 64-bit constant decomposition.  Even though this is the
   'worst' case, we still optimize a few things away.  */
static void
sparc_emit_set_const64_longway (rtx op0, rtx temp,
				unsigned HOST_WIDE_INT high_bits,
				unsigned HOST_WIDE_INT low_bits)
{
  rtx sub_temp = op0;

  if (can_create_pseudo_p ())
    sub_temp = gen_reg_rtx (DImode);

  if ((high_bits & 0xfffffc00) != 0)
    {
      emit_insn (gen_safe_HIGH64 (temp, high_bits));
      if ((high_bits & ~0xfffffc00) != 0)
	emit_insn (gen_rtx_SET (sub_temp,
				gen_safe_OR64 (temp, (high_bits & 0x3ff))));
      else
	sub_temp = temp;
    }
  else
    {
      emit_insn (gen_safe_SET64 (temp, high_bits));
      sub_temp = temp;
    }

  if (can_create_pseudo_p ())
    {
      rtx temp2 = gen_reg_rtx (DImode);
      rtx temp3 = gen_reg_rtx (DImode);
      rtx temp4 = gen_reg_rtx (DImode);

      emit_insn (gen_rtx_SET (temp4, gen_rtx_ASHIFT (DImode, sub_temp,
						     GEN_INT (32))));

      emit_insn (gen_safe_HIGH64 (temp2, low_bits));
      if ((low_bits & ~0xfffffc00) != 0)
	{
	  emit_insn (gen_rtx_SET (temp3,
				  gen_safe_OR64 (temp2, (low_bits & 0x3ff))));
	  emit_insn (gen_rtx_SET (op0, gen_rtx_PLUS (DImode, temp4, temp3)));
	}
      else
	{
	  emit_insn (gen_rtx_SET (op0, gen_rtx_PLUS (DImode, temp4, temp2)));
	}
    }
  else
    {
      rtx low1 = GEN_INT ((low_bits >> (32 - 12))          & 0xfff);
      rtx low2 = GEN_INT ((low_bits >> (32 - 12 - 12))     & 0xfff);
      rtx low3 = GEN_INT ((low_bits >> (32 - 12 - 12 - 8)) & 0x0ff);
      int to_shift = 12;

      /* We are in the middle of reload, so this is really
	 painful.  However we do still make an attempt to
	 avoid emitting truly stupid code.  */
      if (low1 != const0_rtx)
	{
	  emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, sub_temp,
						       GEN_INT (to_shift))));
	  emit_insn (gen_rtx_SET (op0, gen_rtx_IOR (DImode, op0, low1)));
	  sub_temp = op0;
	  to_shift = 12;
	}
      else
	{
	  to_shift += 12;
	}
      if (low2 != const0_rtx)
	{
	  emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, sub_temp,
						       GEN_INT (to_shift))));
	  emit_insn (gen_rtx_SET (op0, gen_rtx_IOR (DImode, op0, low2)));
	  sub_temp = op0;
	  to_shift = 8;
	}
      else
	{
	  to_shift += 8;
	}
      emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, sub_temp,
						   GEN_INT (to_shift))));
      if (low3 != const0_rtx)
	emit_insn (gen_rtx_SET (op0, gen_rtx_IOR (DImode, op0, low3)));
      /* phew...  */
    }
}

/* Analyze a 64-bit constant for certain properties.  */
static void analyze_64bit_constant (unsigned HOST_WIDE_INT,
				    unsigned HOST_WIDE_INT,
				    int *, int *, int *);

static void
analyze_64bit_constant (unsigned HOST_WIDE_INT high_bits,
			unsigned HOST_WIDE_INT low_bits,
			int *hbsp, int *lbsp, int *abbasp)
{
  int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
  int i;

  lowest_bit_set = highest_bit_set = -1;
  i = 0;
  do
    {
      if ((lowest_bit_set == -1)
	  && ((low_bits >> i) & 1))
	lowest_bit_set = i;
      if ((highest_bit_set == -1)
	  && ((high_bits >> (32 - i - 1)) & 1))
	highest_bit_set = (64 - i - 1);
    }
  while (++i < 32
	 && ((highest_bit_set == -1)
	     || (lowest_bit_set == -1)));
  if (i == 32)
    {
      i = 0;
      do
	{
	  if ((lowest_bit_set == -1)
	      && ((high_bits >> i) & 1))
	    lowest_bit_set = i + 32;
	  if ((highest_bit_set == -1)
	      && ((low_bits >> (32 - i - 1)) & 1))
	    highest_bit_set = 32 - i - 1;
	}
      while (++i < 32
	     && ((highest_bit_set == -1)
		 || (lowest_bit_set == -1)));
    }
  /* If there are no bits set this should have gone out
     as one instruction!  */
  gcc_assert (lowest_bit_set != -1 && highest_bit_set != -1);
  all_bits_between_are_set = 1;
  for (i = lowest_bit_set; i <= highest_bit_set; i++)
    {
      if (i < 32)
	{
	  if ((low_bits & (1 << i)) != 0)
	    continue;
	}
      else
	{
	  if ((high_bits & (1 << (i - 32))) != 0)
	    continue;
	}
      all_bits_between_are_set = 0;
      break;
    }
  *hbsp = highest_bit_set;
  *lbsp = lowest_bit_set;
  *abbasp = all_bits_between_are_set;
}

static int const64_is_2insns (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);

static int
const64_is_2insns (unsigned HOST_WIDE_INT high_bits,
		   unsigned HOST_WIDE_INT low_bits)
{
  int highest_bit_set, lowest_bit_set, all_bits_between_are_set;

  if (high_bits == 0
      || high_bits == 0xffffffff)
    return 1;

  analyze_64bit_constant (high_bits, low_bits,
			  &highest_bit_set, &lowest_bit_set,
			  &all_bits_between_are_set);

  if ((highest_bit_set == 63
       || lowest_bit_set == 0)
      && all_bits_between_are_set != 0)
    return 1;

  if ((highest_bit_set - lowest_bit_set) < 21)
    return 1;

  return 0;
}

static unsigned HOST_WIDE_INT create_simple_focus_bits (unsigned HOST_WIDE_INT,
							unsigned HOST_WIDE_INT,
							int, int);

static unsigned HOST_WIDE_INT
create_simple_focus_bits (unsigned HOST_WIDE_INT high_bits,
			  unsigned HOST_WIDE_INT low_bits,
			  int lowest_bit_set, int shift)
{
  HOST_WIDE_INT hi, lo;

  if (lowest_bit_set < 32)
    {
      lo = (low_bits >> lowest_bit_set) << shift;
      hi = ((high_bits << (32 - lowest_bit_set)) << shift);
    }
  else
    {
      lo = 0;
      hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
    }
  gcc_assert (! (hi & lo));
  return (hi | lo);
}

/* Here we are sure to be arch64 and this is an integer constant
   being loaded into a register.  Emit the most efficient
   insn sequence possible.  Detection of all the 1-insn cases
   has been done already.  */
static void
sparc_emit_set_const64 (rtx op0, rtx op1)
{
  unsigned HOST_WIDE_INT high_bits, low_bits;
  int lowest_bit_set, highest_bit_set;
  int all_bits_between_are_set;
  rtx temp = 0;

  /* Sanity check that we know what we are working with.  */
  gcc_assert (TARGET_ARCH64
	      && (GET_CODE (op0) == SUBREG
		  || (REG_P (op0) && ! SPARC_FP_REG_P (REGNO (op0)))));

  if (! can_create_pseudo_p ())
    temp = op0;

  if (GET_CODE (op1) != CONST_INT)
    {
      sparc_emit_set_symbolic_const64 (op0, op1, temp);
      return;
    }

  if (! temp)
    temp = gen_reg_rtx (DImode);

  high_bits = ((INTVAL (op1) >> 32) & 0xffffffff);
  low_bits = (INTVAL (op1) & 0xffffffff);

  /* low_bits	bits 0  --> 31
     high_bits	bits 32 --> 63  */

  analyze_64bit_constant (high_bits, low_bits,
			  &highest_bit_set, &lowest_bit_set,
			  &all_bits_between_are_set);

  /* First try for a 2-insn sequence.  */

  /* These situations are preferred because the optimizer can
   * do more things with them:
   * 1) mov	-1, %reg
   *    sllx	%reg, shift, %reg
   * 2) mov	-1, %reg
   *    srlx	%reg, shift, %reg
   * 3) mov	some_small_const, %reg
   *    sllx	%reg, shift, %reg
   */
  if (((highest_bit_set == 63
	|| lowest_bit_set == 0)
       && all_bits_between_are_set != 0)
      || ((highest_bit_set - lowest_bit_set) < 12))
    {
      HOST_WIDE_INT the_const = -1;
      int shift = lowest_bit_set;

      if ((highest_bit_set != 63
	   && lowest_bit_set != 0)
	  || all_bits_between_are_set == 0)
	{
	  the_const =
	    create_simple_focus_bits (high_bits, low_bits,
				      lowest_bit_set, 0);
	}
      else if (lowest_bit_set == 0)
	shift = -(63 - highest_bit_set);

      gcc_assert (SPARC_SIMM13_P (the_const));
      gcc_assert (shift != 0);

      emit_insn (gen_safe_SET64 (temp, the_const));
      if (shift > 0)
	emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, temp,
						     GEN_INT (shift))));
      else if (shift < 0)
	emit_insn (gen_rtx_SET (op0, gen_rtx_LSHIFTRT (DImode, temp,
						       GEN_INT (-shift))));
      return;
    }

  /* Now a range of 22 or less bits set somewhere.
   * 1) sethi	%hi(focus_bits), %reg
   *    sllx	%reg, shift, %reg
   * 2) sethi	%hi(focus_bits), %reg
   *    srlx	%reg, shift, %reg
   */
  if ((highest_bit_set - lowest_bit_set) < 21)
    {
      unsigned HOST_WIDE_INT focus_bits =
	create_simple_focus_bits (high_bits, low_bits,
				  lowest_bit_set, 10);

      gcc_assert (SPARC_SETHI_P (focus_bits));
      gcc_assert (lowest_bit_set != 10);

      emit_insn (gen_safe_HIGH64 (temp, focus_bits));

      /* If lowest_bit_set == 10 then a sethi alone could have done it.  */
      if (lowest_bit_set < 10)
	emit_insn (gen_rtx_SET (op0,
				gen_rtx_LSHIFTRT (DImode, temp,
						  GEN_INT (10 - lowest_bit_set))));
      else if (lowest_bit_set > 10)
	emit_insn (gen_rtx_SET (op0,
				gen_rtx_ASHIFT (DImode, temp,
						GEN_INT (lowest_bit_set - 10))));
      return;
    }

  /* 1) sethi	%hi(low_bits), %reg
   *    or	%reg, %lo(low_bits), %reg
   * 2) sethi	%hi(~low_bits), %reg
   *	xor	%reg, %lo(-0x400 | (low_bits & 0x3ff)), %reg
   */
  if (high_bits == 0
      || high_bits == 0xffffffff)
    {
      sparc_emit_set_const64_quick1 (op0, temp, low_bits,
				     (high_bits == 0xffffffff));
      return;
    }

  /* Now, try 3-insn sequences.  */

  /* 1) sethi	%hi(high_bits), %reg
   *    or	%reg, %lo(high_bits), %reg
   *    sllx	%reg, 32, %reg
   */
  if (low_bits == 0)
    {
      sparc_emit_set_const64_quick2 (op0, temp, high_bits, 0, 32);
      return;
    }

  /* We may be able to do something quick
     when the constant is negated, so try that.  */
  if (const64_is_2insns ((~high_bits) & 0xffffffff,
			 (~low_bits) & 0xfffffc00))
    {
      /* NOTE: The trailing bits get XOR'd so we need the
	 non-negated bits, not the negated ones.  */
      unsigned HOST_WIDE_INT trailing_bits = low_bits & 0x3ff;

      if ((((~high_bits) & 0xffffffff) == 0
	   && ((~low_bits) & 0x80000000) == 0)
	  || (((~high_bits) & 0xffffffff) == 0xffffffff
	      && ((~low_bits) & 0x80000000) != 0))
	{
	  unsigned HOST_WIDE_INT fast_int = (~low_bits & 0xffffffff);

	  if ((SPARC_SETHI_P (fast_int)
	       && (~high_bits & 0xffffffff) == 0)
	      || SPARC_SIMM13_P (fast_int))
	    emit_insn (gen_safe_SET64 (temp, fast_int));
	  else
	    sparc_emit_set_const64 (temp, GEN_INT (fast_int));
	}
      else
	{
	  rtx negated_const;
	  negated_const = GEN_INT (((~low_bits) & 0xfffffc00) |
				   (((HOST_WIDE_INT)((~high_bits) & 0xffffffff))<<32));
	  sparc_emit_set_const64 (temp, negated_const);
	}

      /* If we are XOR'ing with -1, then we should emit a one's complement
	 instead.  This way the combiner will notice logical operations
	 such as ANDN later on and substitute.  */
      if (trailing_bits == 0x3ff)
	{
	  emit_insn (gen_rtx_SET (op0, gen_rtx_NOT (DImode, temp)));
	}
      else
	{
	  emit_insn (gen_rtx_SET (op0,
				  gen_safe_XOR64 (temp,
						  (-0x400 | trailing_bits))));
	}
      return;
    }

  /* 1) sethi	%hi(xxx), %reg
   *    or	%reg, %lo(xxx), %reg
   *	sllx	%reg, yyy, %reg
   *
   * ??? This is just a generalized version of the low_bits==0
   * thing above, FIXME...
   */
  if ((highest_bit_set - lowest_bit_set) < 32)
    {
      unsigned HOST_WIDE_INT focus_bits =
	create_simple_focus_bits (high_bits, low_bits,
				  lowest_bit_set, 0);

      /* We can't get here in this state.  */
      gcc_assert (highest_bit_set >= 32 && lowest_bit_set < 32);

      /* So what we know is that the set bits straddle the
	 middle of the 64-bit word.  */
      sparc_emit_set_const64_quick2 (op0, temp,
				     focus_bits, 0,
				     lowest_bit_set);
      return;
    }

  /* 1) sethi	%hi(high_bits), %reg
   *    or	%reg, %lo(high_bits), %reg
   *    sllx	%reg, 32, %reg
   *	or	%reg, low_bits, %reg
   */
  if (SPARC_SIMM13_P (low_bits) && ((int)low_bits > 0))
    {
      sparc_emit_set_const64_quick2 (op0, temp, high_bits, low_bits, 32);
      return;
    }

  /* The easiest way when all else fails, is full decomposition.  */
  sparc_emit_set_const64_longway (op0, temp, high_bits, low_bits);
}

/* Implement TARGET_FIXED_CONDITION_CODE_REGS.  */

static bool
sparc_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
{
  *p1 = SPARC_ICC_REG;
  *p2 = SPARC_FCC_REG;
  return true;
}

/* Implement TARGET_MIN_ARITHMETIC_PRECISION.  */

static unsigned int
sparc_min_arithmetic_precision (void)
{
  return 32;
}

/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
   return the mode to be used for the comparison.  For floating-point,
   CCFP[E]mode is used.  CCNZmode should be used when the first operand
   is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
   processing is needed.  */

machine_mode
select_cc_mode (enum rtx_code op, rtx x, rtx y)
{
  if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
    {
      switch (op)
	{
	case EQ:
	case NE:
	case UNORDERED:
	case ORDERED:
	case UNLT:
	case UNLE:
	case UNGT:
	case UNGE:
	case UNEQ:
	  return CCFPmode;

	case LT:
	case LE:
	case GT:
	case GE:
	case LTGT:
	  return CCFPEmode;

	default:
	  gcc_unreachable ();
	}
    }
  else if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
	    || GET_CODE (x) == NEG || GET_CODE (x) == ASHIFT)
	   && y == const0_rtx)
    {
      if (TARGET_ARCH64 && GET_MODE (x) == DImode)
	return CCXNZmode;
      else
	return CCNZmode;
    }
  else
    {
      /* This is for the cmp<mode>_sne pattern.  */
      if (GET_CODE (x) == NOT && y == constm1_rtx)
	{
	  if (TARGET_ARCH64 && GET_MODE (x) == DImode)
	    return CCXCmode;
	  else
	    return CCCmode;
	}

      /* This is for the [u]addvdi4_sp32 and [u]subvdi4_sp32 patterns.  */
      if (!TARGET_ARCH64 && GET_MODE (x) == DImode)
	{
	  if (GET_CODE (y) == UNSPEC
	      && (XINT (y, 1) == UNSPEC_ADDV
		 || XINT (y, 1) == UNSPEC_SUBV
	         || XINT (y, 1) == UNSPEC_NEGV))
	    return CCVmode;
	  else
	    return CCCmode;
	}

      if (TARGET_ARCH64 && GET_MODE (x) == DImode)
	return CCXmode;
      else
	return CCmode;
    }
}

/* Emit the compare insn and return the CC reg for a CODE comparison
   with operands X and Y.  */

static rtx
gen_compare_reg_1 (enum rtx_code code, rtx x, rtx y)
{
  machine_mode mode;
  rtx cc_reg;

  if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
    return x;

  mode = SELECT_CC_MODE (code, x, y);

  /* ??? We don't have movcc patterns so we cannot generate pseudo regs for the
     fcc regs (cse can't tell they're really call clobbered regs and will
     remove a duplicate comparison even if there is an intervening function
     call - it will then try to reload the cc reg via an int reg which is why
     we need the movcc patterns).  It is possible to provide the movcc
     patterns by using the ldxfsr/stxfsr v9 insns.  I tried it: you need two
     registers (say %g1,%g5) and it takes about 6 insns.  A better fix would be
     to tell cse that CCFPE mode registers (even pseudos) are call
     clobbered.  */

  /* ??? This is an experiment.  Rather than making changes to cse which may
     or may not be easy/clean, we do our own cse.  This is possible because
     we will generate hard registers.  Cse knows they're call clobbered (it
     doesn't know the same thing about pseudos). If we guess wrong, no big
     deal, but if we win, great!  */

  if (TARGET_V9 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
#if 1 /* experiment */
    {
      int reg;
      /* We cycle through the registers to ensure they're all exercised.  */
      static int next_fcc_reg = 0;
      /* Previous x,y for each fcc reg.  */
      static rtx prev_args[4][2];

      /* Scan prev_args for x,y.  */
      for (reg = 0; reg < 4; reg++)
	if (prev_args[reg][0] == x && prev_args[reg][1] == y)
	  break;
      if (reg == 4)
	{
	  reg = next_fcc_reg;
	  prev_args[reg][0] = x;
	  prev_args[reg][1] = y;
	  next_fcc_reg = (next_fcc_reg + 1) & 3;
	}
      cc_reg = gen_rtx_REG (mode, reg + SPARC_FIRST_V9_FCC_REG);
    }
#else
    cc_reg = gen_reg_rtx (mode);
#endif /* ! experiment */
  else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
    cc_reg = gen_rtx_REG (mode, SPARC_FCC_REG);
  else
    cc_reg = gen_rtx_REG (mode, SPARC_ICC_REG);

  /* We shouldn't get there for TFmode if !TARGET_HARD_QUAD.  If we do, this
     will only result in an unrecognizable insn so no point in asserting.  */
  emit_insn (gen_rtx_SET (cc_reg, gen_rtx_COMPARE (mode, x, y)));

  return cc_reg;
}


/* Emit the compare insn and return the CC reg for the comparison in CMP.  */

rtx
gen_compare_reg (rtx cmp)
{
  return gen_compare_reg_1 (GET_CODE (cmp), XEXP (cmp, 0), XEXP (cmp, 1));
}

/* This function is used for v9 only.
   DEST is the target of the Scc insn.
   CODE is the code for an Scc's comparison.
   X and Y are the values we compare.

   This function is needed to turn

	   (set (reg:SI 110)
	       (gt (reg:CCX 100 %icc)
	           (const_int 0)))
   into
	   (set (reg:SI 110)
	       (gt:DI (reg:CCX 100 %icc)
	           (const_int 0)))

   IE: The instruction recognizer needs to see the mode of the comparison to
   find the right instruction. We could use "gt:DI" right in the
   define_expand, but leaving it out allows us to handle DI, SI, etc.  */

static int
gen_v9_scc (rtx dest, enum rtx_code compare_code, rtx x, rtx y)
{
  if (! TARGET_ARCH64
      && (GET_MODE (x) == DImode
	  || GET_MODE (dest) == DImode))
    return 0;

  /* Try to use the movrCC insns.  */
  if (TARGET_ARCH64
      && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
      && y == const0_rtx
      && v9_regcmp_p (compare_code))
    {
      rtx op0 = x;
      rtx temp;

      /* Special case for op0 != 0.  This can be done with one instruction if
	 dest == x.  */

      if (compare_code == NE
	  && GET_MODE (dest) == DImode
	  && rtx_equal_p (op0, dest))
	{
	  emit_insn (gen_rtx_SET (dest,
			      gen_rtx_IF_THEN_ELSE (DImode,
				       gen_rtx_fmt_ee (compare_code, DImode,
						       op0, const0_rtx),
				       const1_rtx,
				       dest)));
	  return 1;
	}

      if (reg_overlap_mentioned_p (dest, op0))
	{
	  /* Handle the case where dest == x.
	     We "early clobber" the result.  */
	  op0 = gen_reg_rtx (GET_MODE (x));
	  emit_move_insn (op0, x);
	}

      emit_insn (gen_rtx_SET (dest, const0_rtx));
      if (GET_MODE (op0) != DImode)
	{
	  temp = gen_reg_rtx (DImode);
	  convert_move (temp, op0, 0);
	}
      else
	temp = op0;
      emit_insn (gen_rtx_SET (dest,
			  gen_rtx_IF_THEN_ELSE (GET_MODE (dest),
				   gen_rtx_fmt_ee (compare_code, DImode,
						   temp, const0_rtx),
				   const1_rtx,
				   dest)));
      return 1;
    }
  else
    {
      x = gen_compare_reg_1 (compare_code, x, y);
      y = const0_rtx;

      emit_insn (gen_rtx_SET (dest, const0_rtx));
      emit_insn (gen_rtx_SET (dest,
			  gen_rtx_IF_THEN_ELSE (GET_MODE (dest),
				   gen_rtx_fmt_ee (compare_code,
						   GET_MODE (x), x, y),
				    const1_rtx, dest)));
      return 1;
    }
}


/* Emit an scc insn.  For seq, sne, sgeu, and sltu, we can do this
   without jumps using the addx/subx instructions.  */

bool
emit_scc_insn (rtx operands[])
{
  rtx tem, x, y;
  enum rtx_code code;
  machine_mode mode;

  /* The quad-word fp compare library routines all return nonzero to indicate
     true, which is different from the equivalent libgcc routines, so we must
     handle them specially here.  */
  if (GET_MODE (operands[2]) == TFmode && ! TARGET_HARD_QUAD)
    {
      operands[1] = sparc_emit_float_lib_cmp (operands[2], operands[3],
					      GET_CODE (operands[1]));
      operands[2] = XEXP (operands[1], 0);
      operands[3] = XEXP (operands[1], 1);
    }

  code = GET_CODE (operands[1]);
  x = operands[2];
  y = operands[3];
  mode = GET_MODE (x);

  /* For seq/sne on v9 we use the same code as v8 (the addx/subx method has
     more applications).  The exception to this is "reg != 0" which can
     be done in one instruction on v9 (so we do it).  */
  if ((code == EQ || code == NE) && (mode == SImode || mode == DImode))
    {
      if (y != const0_rtx)
	x = force_reg (mode, gen_rtx_XOR (mode, x, y));

      rtx pat = gen_rtx_SET (operands[0],
			     gen_rtx_fmt_ee (code, GET_MODE (operands[0]),
					     x, const0_rtx));

      /* If we can use addx/subx or addxc, add a clobber for CC.  */
      if (mode == SImode || (code == NE && TARGET_VIS3))
	{
	  rtx clobber
	    = gen_rtx_CLOBBER (VOIDmode,
			       gen_rtx_REG (mode == SImode ? CCmode : CCXmode,
					    SPARC_ICC_REG));
	  pat = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, pat, clobber));
	}

      emit_insn (pat);
      return true;
    }

  /* We can do LTU in DImode using the addxc instruction with VIS3.  */
  if (TARGET_ARCH64
      && mode == DImode
      && !((code == LTU || code == GTU) && TARGET_VIS3)
      && gen_v9_scc (operands[0], code, x, y))
    return true;

  /* We can do LTU and GEU using the addx/subx instructions too.  And
     for GTU/LEU, if both operands are registers swap them and fall
     back to the easy case.  */
  if (code == GTU || code == LEU)
    {
      if ((GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
          && (GET_CODE (y) == REG || GET_CODE (y) == SUBREG))
        {
          tem = x;
          x = y;
          y = tem;
          code = swap_condition (code);
        }
    }

  if (code == LTU || code == GEU)
    {
      emit_insn (gen_rtx_SET (operands[0],
			      gen_rtx_fmt_ee (code, GET_MODE (operands[0]),
					      gen_compare_reg_1 (code, x, y),
					      const0_rtx)));
      return true;
    }

  /* All the posibilities to use addx/subx based sequences has been
     exhausted, try for a 3 instruction sequence using v9 conditional
     moves.  */
  if (TARGET_V9 && gen_v9_scc (operands[0], code, x, y))
    return true;

  /* Nope, do branches.  */
  return false;
}

/* Emit a conditional jump insn for the v9 architecture using comparison code
   CODE and jump target LABEL.
   This function exists to take advantage of the v9 brxx insns.  */

static void
emit_v9_brxx_insn (enum rtx_code code, rtx op0, rtx label)
{
  emit_jump_insn (gen_rtx_SET (pc_rtx,
			   gen_rtx_IF_THEN_ELSE (VOIDmode,
				    gen_rtx_fmt_ee (code, GET_MODE (op0),
						    op0, const0_rtx),
				    gen_rtx_LABEL_REF (VOIDmode, label),
				    pc_rtx)));
}

/* Emit a conditional jump insn for the UA2011 architecture using
   comparison code CODE and jump target LABEL.  This function exists
   to take advantage of the UA2011 Compare and Branch insns.  */

static void
emit_cbcond_insn (enum rtx_code code, rtx op0, rtx op1, rtx label)
{
  rtx if_then_else;

  if_then_else = gen_rtx_IF_THEN_ELSE (VOIDmode,
				       gen_rtx_fmt_ee(code, GET_MODE(op0),
						      op0, op1),
				       gen_rtx_LABEL_REF (VOIDmode, label),
				       pc_rtx);

  emit_jump_insn (gen_rtx_SET (pc_rtx, if_then_else));
}

void
emit_conditional_branch_insn (rtx operands[])
{
  /* The quad-word fp compare library routines all return nonzero to indicate
     true, which is different from the equivalent libgcc routines, so we must
     handle them specially here.  */
  if (GET_MODE (operands[1]) == TFmode && ! TARGET_HARD_QUAD)
    {
      operands[0] = sparc_emit_float_lib_cmp (operands[1], operands[2],
					      GET_CODE (operands[0]));
      operands[1] = XEXP (operands[0], 0);
      operands[2] = XEXP (operands[0], 1);
    }

  /* If we can tell early on that the comparison is against a constant
     that won't fit in the 5-bit signed immediate field of a cbcond,
     use one of the other v9 conditional branch sequences.  */
  if (TARGET_CBCOND
      && GET_CODE (operands[1]) == REG
      && (GET_MODE (operands[1]) == SImode
	  || (TARGET_ARCH64 && GET_MODE (operands[1]) == DImode))
      && (GET_CODE (operands[2]) != CONST_INT
	  || SPARC_SIMM5_P (INTVAL (operands[2]))))
    {
      emit_cbcond_insn (GET_CODE (operands[0]), operands[1], operands[2], operands[3]);
      return;
    }

  if (TARGET_ARCH64 && operands[2] == const0_rtx
      && GET_CODE (operands[1]) == REG
      && GET_MODE (operands[1]) == DImode)
    {
      emit_v9_brxx_insn (GET_CODE (operands[0]), operands[1], operands[3]);
      return;
    }

  operands[1] = gen_compare_reg (operands[0]);
  operands[2] = const0_rtx;
  operands[0] = gen_rtx_fmt_ee (GET_CODE (operands[0]), VOIDmode,
				operands[1], operands[2]);
  emit_jump_insn (gen_cbranchcc4 (operands[0], operands[1], operands[2],
				  operands[3]));
}


/* Generate a DFmode part of a hard TFmode register.
   REG is the TFmode hard register, LOW is 1 for the
   low 64bit of the register and 0 otherwise.
 */
rtx
gen_df_reg (rtx reg, int low)
{
  int regno = REGNO (reg);

  if ((WORDS_BIG_ENDIAN == 0) ^ (low != 0))
    regno += (TARGET_ARCH64 && SPARC_INT_REG_P (regno)) ? 1 : 2;
  return gen_rtx_REG (DFmode, regno);
}

/* Generate a call to FUNC with OPERANDS.  Operand 0 is the return value.
   Unlike normal calls, TFmode operands are passed by reference.  It is
   assumed that no more than 3 operands are required.  */

static void
emit_soft_tfmode_libcall (const char *func_name, int nargs, rtx *operands)
{
  rtx ret_slot = NULL, arg[3], func_sym;
  int i;

  /* We only expect to be called for conversions, unary, and binary ops.  */
  gcc_assert (nargs == 2 || nargs == 3);

  for (i = 0; i < nargs; ++i)
    {
      rtx this_arg = operands[i];
      rtx this_slot;

      /* TFmode arguments and return values are passed by reference.  */
      if (GET_MODE (this_arg) == TFmode)
	{
	  int force_stack_temp;

	  force_stack_temp = 0;
	  if (TARGET_BUGGY_QP_LIB && i == 0)
	    force_stack_temp = 1;

	  if (GET_CODE (this_arg) == MEM
	      && ! force_stack_temp)
	    {
	      tree expr = MEM_EXPR (this_arg);
	      if (expr)
		mark_addressable (expr);
	      this_arg = XEXP (this_arg, 0);
	    }
	  else if (CONSTANT_P (this_arg)
		   && ! force_stack_temp)
	    {
	      this_slot = force_const_mem (TFmode, this_arg);
	      this_arg = XEXP (this_slot, 0);
	    }
	  else
	    {
	      this_slot = assign_stack_temp (TFmode, GET_MODE_SIZE (TFmode));

	      /* Operand 0 is the return value.  We'll copy it out later.  */
	      if (i > 0)
		emit_move_insn (this_slot, this_arg);
	      else
		ret_slot = this_slot;

	      this_arg = XEXP (this_slot, 0);
	    }
	}

      arg[i] = this_arg;
    }

  func_sym = gen_rtx_SYMBOL_REF (Pmode, func_name);

  if (GET_MODE (operands[0]) == TFmode)
    {
      if (nargs == 2)
	emit_library_call (func_sym, LCT_NORMAL, VOIDmode,
			   arg[0], GET_MODE (arg[0]),
			   arg[1], GET_MODE (arg[1]));
      else
	emit_library_call (func_sym, LCT_NORMAL, VOIDmode,
			   arg[0], GET_MODE (arg[0]),
			   arg[1], GET_MODE (arg[1]),
			   arg[2], GET_MODE (arg[2]));

      if (ret_slot)
	emit_move_insn (operands[0], ret_slot);
    }
  else
    {
      rtx ret;

      gcc_assert (nargs == 2);

      ret = emit_library_call_value (func_sym, operands[0], LCT_NORMAL,
				     GET_MODE (operands[0]),
				     arg[1], GET_MODE (arg[1]));

      if (ret != operands[0])
	emit_move_insn (operands[0], ret);
    }
}

/* Expand soft-float TFmode calls to sparc abi routines.  */

static void
emit_soft_tfmode_binop (enum rtx_code code, rtx *operands)
{
  const char *func;

  switch (code)
    {
    case PLUS:
      func = "_Qp_add";
      break;
    case MINUS:
      func = "_Qp_sub";
      break;
    case MULT:
      func = "_Qp_mul";
      break;
    case DIV:
      func = "_Qp_div";
      break;
    default:
      gcc_unreachable ();
    }

  emit_soft_tfmode_libcall (func, 3, operands);
}

static void
emit_soft_tfmode_unop (enum rtx_code code, rtx *operands)
{
  const char *func;

  gcc_assert (code == SQRT);
  func = "_Qp_sqrt";

  emit_soft_tfmode_libcall (func, 2, operands);
}

static void
emit_soft_tfmode_cvt (enum rtx_code code, rtx *operands)
{
  const char *func;

  switch (code)
    {
    case FLOAT_EXTEND:
      switch (GET_MODE (operands[1]))
	{
	case E_SFmode:
	  func = "_Qp_stoq";
	  break;
	case E_DFmode:
	  func = "_Qp_dtoq";
	  break;
	default:
	  gcc_unreachable ();
	}
      break;

    case FLOAT_TRUNCATE:
      switch (GET_MODE (operands[0]))
	{
	case E_SFmode:
	  func = "_Qp_qtos";
	  break;
	case E_DFmode:
	  func = "_Qp_qtod";
	  break;
	default:
	  gcc_unreachable ();
	}
      break;

    case FLOAT:
      switch (GET_MODE (operands[1]))
	{
	case E_SImode:
	  func = "_Qp_itoq";
	  if (TARGET_ARCH64)
	    operands[1] = gen_rtx_SIGN_EXTEND (DImode, operands[1]);
	  break;
	case E_DImode:
	  func = "_Qp_xtoq";
	  break;
	default:
	  gcc_unreachable ();
	}
      break;

    case UNSIGNED_FLOAT:
      switch (GET_MODE (operands[1]))
	{
	case E_SImode:
	  func = "_Qp_uitoq";
	  if (TARGET_ARCH64)
	    operands[1] = gen_rtx_ZERO_EXTEND (DImode, operands[1]);
	  break;
	case E_DImode:
	  func = "_Qp_uxtoq";
	  break;
	default:
	  gcc_unreachable ();
	}
      break;

    case FIX:
      switch (GET_MODE (operands[0]))
	{
	case E_SImode:
	  func = "_Qp_qtoi";
	  break;
	case E_DImode:
	  func = "_Qp_qtox";
	  break;
	default:
	  gcc_unreachable ();
	}
      break;

    case UNSIGNED_FIX:
      switch (GET_MODE (operands[0]))
	{
	case E_SImode:
	  func = "_Qp_qtoui";
	  break;
	case E_DImode:
	  func = "_Qp_qtoux";
	  break;
	default:
	  gcc_unreachable ();
	}
      break;

    default:
      gcc_unreachable ();
    }

  emit_soft_tfmode_libcall (func, 2, operands);
}

/* Expand a hard-float tfmode operation.  All arguments must be in
   registers.  */

static void
emit_hard_tfmode_operation (enum rtx_code code, rtx *operands)
{
  rtx op, dest;

  if (GET_RTX_CLASS (code) == RTX_UNARY)
    {
      operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
      op = gen_rtx_fmt_e (code, GET_MODE (operands[0]), operands[1]);
    }
  else
    {
      operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
      operands[2] = force_reg (GET_MODE (operands[2]), operands[2]);
      op = gen_rtx_fmt_ee (code, GET_MODE (operands[0]),
			   operands[1], operands[2]);
    }

  if (register_operand (operands[0], VOIDmode))
    dest = operands[0];
  else
    dest = gen_reg_rtx (GET_MODE (operands[0]));

  emit_insn (gen_rtx_SET (dest, op));

  if (dest != operands[0])
    emit_move_insn (operands[0], dest);
}

void
emit_tfmode_binop (enum rtx_code code, rtx *operands)
{
  if (TARGET_HARD_QUAD)
    emit_hard_tfmode_operation (code, operands);
  else
    emit_soft_tfmode_binop (code, operands);
}

void
emit_tfmode_unop (enum rtx_code code, rtx *operands)
{
  if (TARGET_HARD_QUAD)
    emit_hard_tfmode_operation (code, operands);
  else
    emit_soft_tfmode_unop (code, operands);
}

void
emit_tfmode_cvt (enum rtx_code code, rtx *operands)
{
  if (TARGET_HARD_QUAD)
    emit_hard_tfmode_operation (code, operands);
  else
    emit_soft_tfmode_cvt (code, operands);
}

/* Return nonzero if a branch/jump/call instruction will be emitting
   nop into its delay slot.  */

int
empty_delay_slot (rtx_insn *insn)
{
  rtx seq;

  /* If no previous instruction (should not happen), return true.  */
  if (PREV_INSN (insn) == NULL)
    return 1;

  seq = NEXT_INSN (PREV_INSN (insn));
  if (GET_CODE (PATTERN (seq)) == SEQUENCE)
    return 0;

  return 1;
}

/* Return nonzero if we should emit a nop after a cbcond instruction.
   The cbcond instruction does not have a delay slot, however there is
   a severe performance penalty if a control transfer appears right
   after a cbcond.  Therefore we emit a nop when we detect this
   situation.  */

int
emit_cbcond_nop (rtx_insn *insn)
{
  rtx next = next_active_insn (insn);

  if (!next)
    return 1;

  if (NONJUMP_INSN_P (next)
      && GET_CODE (PATTERN (next)) == SEQUENCE)
    next = XVECEXP (PATTERN (next), 0, 0);
  else if (CALL_P (next)
	   && GET_CODE (PATTERN (next)) == PARALLEL)
    {
      rtx delay = XVECEXP (PATTERN (next), 0, 1);

      if (GET_CODE (delay) == RETURN)
	{
	  /* It's a sibling call.  Do not emit the nop if we're going
	     to emit something other than the jump itself as the first
	     instruction of the sibcall sequence.  */
	  if (sparc_leaf_function_p || TARGET_FLAT)
	    return 0;
	}
    }

  if (NONJUMP_INSN_P (next))
    return 0;

  return 1;
}

/* Return nonzero if TRIAL can go into the call delay slot.  */

int
eligible_for_call_delay (rtx_insn *trial)
{
  rtx pat;

  if (get_attr_in_branch_delay (trial) == IN_BRANCH_DELAY_FALSE)
    return 0;

  /* Binutils allows
       call __tls_get_addr, %tgd_call (foo)
        add %l7, %o0, %o0, %tgd_add (foo)
     while Sun as/ld does not.  */
  if (TARGET_GNU_TLS || !TARGET_TLS)
    return 1;

  pat = PATTERN (trial);

  /* We must reject tgd_add{32|64}, i.e.
       (set (reg) (plus (reg) (unspec [(reg) (symbol_ref)] UNSPEC_TLSGD)))
     and tldm_add{32|64}, i.e.
       (set (reg) (plus (reg) (unspec [(reg) (symbol_ref)] UNSPEC_TLSLDM)))
     for Sun as/ld.  */
  if (GET_CODE (pat) == SET
      && GET_CODE (SET_SRC (pat)) == PLUS)
    {
      rtx unspec = XEXP (SET_SRC (pat), 1);

      if (GET_CODE (unspec) == UNSPEC
	  && (XINT (unspec, 1) == UNSPEC_TLSGD
	      || XINT (unspec, 1) == UNSPEC_TLSLDM))
	return 0;
    }

  return 1;
}

/* Return nonzero if TRIAL, an insn, can be combined with a 'restore'
   instruction.  RETURN_P is true if the v9 variant 'return' is to be
   considered in the test too.

   TRIAL must be a SET whose destination is a REG appropriate for the
   'restore' instruction or, if RETURN_P is true, for the 'return'
   instruction.  */

static int
eligible_for_restore_insn (rtx trial, bool return_p)
{
  rtx pat = PATTERN (trial);
  rtx src = SET_SRC (pat);
  bool src_is_freg = false;
  rtx src_reg;

  /* Since we now can do moves between float and integer registers when
     VIS3 is enabled, we have to catch this case.  We can allow such
     moves when doing a 'return' however.  */
  src_reg = src;
  if (GET_CODE (src_reg) == SUBREG)
    src_reg = SUBREG_REG (src_reg);
  if (GET_CODE (src_reg) == REG
      && SPARC_FP_REG_P (REGNO (src_reg)))
    src_is_freg = true;

  /* The 'restore src,%g0,dest' pattern for word mode and below.  */
  if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT
      && arith_operand (src, GET_MODE (src))
      && ! src_is_freg)
    {
      if (TARGET_ARCH64)
        return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);
      else
        return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode);
    }

  /* The 'restore src,%g0,dest' pattern for double-word mode.  */
  else if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT
	   && arith_double_operand (src, GET_MODE (src))
	   && ! src_is_freg)
    return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);

  /* The 'restore src,%g0,dest' pattern for float if no FPU.  */
  else if (! TARGET_FPU && register_operand (src, SFmode))
    return 1;

  /* The 'restore src,%g0,dest' pattern for double if no FPU.  */
  else if (! TARGET_FPU && TARGET_ARCH64 && register_operand (src, DFmode))
    return 1;

  /* If we have the 'return' instruction, anything that does not use
     local or output registers and can go into a delay slot wins.  */
  else if (return_p && TARGET_V9 && !epilogue_renumber (&pat, 1))
    return 1;

  /* The 'restore src1,src2,dest' pattern for SImode.  */
  else if (GET_CODE (src) == PLUS
	   && register_operand (XEXP (src, 0), SImode)
	   && arith_operand (XEXP (src, 1), SImode))
    return 1;

  /* The 'restore src1,src2,dest' pattern for DImode.  */
  else if (GET_CODE (src) == PLUS
	   && register_operand (XEXP (src, 0), DImode)
	   && arith_double_operand (XEXP (src, 1), DImode))
    return 1;

  /* The 'restore src1,%lo(src2),dest' pattern.  */
  else if (GET_CODE (src) == LO_SUM
	   && ! TARGET_CM_MEDMID
	   && ((register_operand (XEXP (src, 0), SImode)
	        && immediate_operand (XEXP (src, 1), SImode))
	       || (TARGET_ARCH64
		   && register_operand (XEXP (src, 0), DImode)
		   && immediate_operand (XEXP (src, 1), DImode))))
    return 1;

  /* The 'restore src,src,dest' pattern.  */
  else if (GET_CODE (src) == ASHIFT
	   && (register_operand (XEXP (src, 0), SImode)
	       || register_operand (XEXP (src, 0), DImode))
	   && XEXP (src, 1) == const1_rtx)
    return 1;

  return 0;
}

/* Return nonzero if TRIAL can go into the function return's delay slot.  */

int
eligible_for_return_delay (rtx_insn *trial)
{
  int regno;
  rtx pat;

  /* If the function uses __builtin_eh_return, the eh_return machinery
     occupies the delay slot.  */
  if (crtl->calls_eh_return)
    return 0;

  if (get_attr_in_branch_delay (trial) == IN_BRANCH_DELAY_FALSE)
    return 0;

  /* In the case of a leaf or flat function, anything can go into the slot.  */
  if (sparc_leaf_function_p || TARGET_FLAT)
    return 1;

  if (!NONJUMP_INSN_P (trial))
    return 0;

  pat = PATTERN (trial);
  if (GET_CODE (pat) == PARALLEL)
    {
      int i;

      if (! TARGET_V9)
	return 0;
      for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
	{
	  rtx expr = XVECEXP (pat, 0, i);
	  if (GET_CODE (expr) != SET)
	    return 0;
	  if (GET_CODE (SET_DEST (expr)) != REG)
	    return 0;
	  regno = REGNO (SET_DEST (expr));
	  if (regno >= 8 && regno < 24)
	    return 0;
	}
      return !epilogue_renumber (&pat, 1);
    }

  if (GET_CODE (pat) != SET)
    return 0;

  if (GET_CODE (SET_DEST (pat)) != REG)
    return 0;

  regno = REGNO (SET_DEST (pat));

  /* Otherwise, only operations which can be done in tandem with
     a `restore' or `return' insn can go into the delay slot.  */
  if (regno >= 8 && regno < 24)
    return 0;

  /* If this instruction sets up floating point register and we have a return
     instruction, it can probably go in.  But restore will not work
     with FP_REGS.  */
  if (! SPARC_INT_REG_P (regno))
    return TARGET_V9 && !epilogue_renumber (&pat, 1);

  return eligible_for_restore_insn (trial, true);
}

/* Return nonzero if TRIAL can go into the sibling call's delay slot.  */

int
eligible_for_sibcall_delay (rtx_insn *trial)
{
  rtx pat;

  if (get_attr_in_branch_delay (trial) == IN_BRANCH_DELAY_FALSE)
    return 0;

  if (!NONJUMP_INSN_P (trial))
    return 0;

  pat = PATTERN (trial);

  if (sparc_leaf_function_p || TARGET_FLAT)
    {
      /* If the tail call is done using the call instruction,
	 we have to restore %o7 in the delay slot.  */
      if (LEAF_SIBCALL_SLOT_RESERVED_P)
	return 0;

      /* %g1 is used to build the function address */
      if (reg_mentioned_p (gen_rtx_REG (Pmode, 1), pat))
	return 0;

      return 1;
    }

  if (GET_CODE (pat) != SET)
    return 0;

  /* Otherwise, only operations which can be done in tandem with
     a `restore' insn can go into the delay slot.  */
  if (GET_CODE (SET_DEST (pat)) != REG
      || (REGNO (SET_DEST (pat)) >= 8 && REGNO (SET_DEST (pat)) < 24)
      || ! SPARC_INT_REG_P (REGNO (SET_DEST (pat))))
    return 0;

  /* If it mentions %o7, it can't go in, because sibcall will clobber it
     in most cases.  */
  if (reg_mentioned_p (gen_rtx_REG (Pmode, 15), pat))
    return 0;

  return eligible_for_restore_insn (trial, false);
}

/* Determine if it's legal to put X into the constant pool.  This
   is not possible if X contains the address of a symbol that is
   not constant (TLS) or not known at final link time (PIC).  */

static bool
sparc_cannot_force_const_mem (machine_mode mode, rtx x)
{
  switch (GET_CODE (x))
    {
    case CONST_INT:
    case CONST_WIDE_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
      /* Accept all non-symbolic constants.  */
      return false;

    case LABEL_REF:
      /* Labels are OK iff we are non-PIC.  */
      return flag_pic != 0;

    case SYMBOL_REF:
      /* 'Naked' TLS symbol references are never OK,
	 non-TLS symbols are OK iff we are non-PIC.  */
      if (SYMBOL_REF_TLS_MODEL (x))
	return true;
      else
	return flag_pic != 0;

    case CONST:
      return sparc_cannot_force_const_mem (mode, XEXP (x, 0));
    case PLUS:
    case MINUS:
      return sparc_cannot_force_const_mem (mode, XEXP (x, 0))
         || sparc_cannot_force_const_mem (mode, XEXP (x, 1));
    case UNSPEC:
      return true;
    default:
      gcc_unreachable ();
    }
}

/* Global Offset Table support.  */
static GTY(()) rtx got_symbol_rtx = NULL_RTX;
static GTY(()) rtx got_register_rtx = NULL_RTX;
static GTY(()) rtx got_helper_rtx = NULL_RTX;

static GTY(()) bool got_helper_needed = false;

/* Return the SYMBOL_REF for the Global Offset Table.  */

static rtx
sparc_got (void)
{
  if (!got_symbol_rtx)
    got_symbol_rtx = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");

  return got_symbol_rtx;
}

/* Wrapper around the load_pcrel_sym{si,di} patterns.  */

static rtx
gen_load_pcrel_sym (rtx op0, rtx op1, rtx op2)
{
  int orig_flag_pic = flag_pic;
  rtx insn;

  /* The load_pcrel_sym{si,di} patterns require absolute addressing.  */
  flag_pic = 0;
  if (TARGET_ARCH64)
    insn = gen_load_pcrel_symdi (op0, op1, op2, GEN_INT (REGNO (op0)));
  else
    insn = gen_load_pcrel_symsi (op0, op1, op2, GEN_INT (REGNO (op0)));
  flag_pic = orig_flag_pic;

  return insn;
}

/* Output the load_pcrel_sym{si,di} patterns.  */

const char *
output_load_pcrel_sym (rtx *operands)
{
  if (flag_delayed_branch)
    {
      output_asm_insn ("sethi\t%%hi(%a1-4), %0", operands);
      output_asm_insn ("call\t%a2", operands);
      output_asm_insn (" add\t%0, %%lo(%a1+4), %0", operands);
    }
  else
    {
      output_asm_insn ("sethi\t%%hi(%a1-8), %0", operands);
      output_asm_insn ("add\t%0, %%lo(%a1-4), %0", operands);
      output_asm_insn ("call\t%a2", operands);
      output_asm_insn (" nop", NULL);
    }

  if (operands[2] == got_helper_rtx)
    got_helper_needed = true;

  return "";
}

#ifdef HAVE_GAS_HIDDEN
# define USE_HIDDEN_LINKONCE 1
#else
# define USE_HIDDEN_LINKONCE 0
#endif

/* Emit code to load the GOT register.  */

void
load_got_register (void)
{
  rtx insn;

  if (TARGET_VXWORKS_RTP)
    {
      if (!got_register_rtx)
	got_register_rtx = pic_offset_table_rtx;

      insn = gen_vxworks_load_got ();
    }
  else
    {
      if (!got_register_rtx)
	got_register_rtx = gen_rtx_REG (Pmode, GLOBAL_OFFSET_TABLE_REGNUM);

      /* The GOT symbol is subject to a PC-relative relocation so we need a
	 helper function to add the PC value and thus get the final value.  */
      if (!got_helper_rtx)
	{
	  char name[32];

	  /* Skip the leading '%' as that cannot be used in a symbol name.  */
	  if (USE_HIDDEN_LINKONCE)
	    sprintf (name, "__sparc_get_pc_thunk.%s",
		     reg_names[REGNO (got_register_rtx)] + 1);
	  else
	    ASM_GENERATE_INTERNAL_LABEL (name, "LADDPC",
					 REGNO (got_register_rtx));

	  got_helper_rtx = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
	}

      insn
	= gen_load_pcrel_sym (got_register_rtx, sparc_got (), got_helper_rtx);
    }

  emit_insn (insn);
}

/* Ensure that we are not using patterns that are not OK with PIC.  */

int
check_pic (int i)
{
  rtx op;

  switch (flag_pic)
    {
    case 1:
      op = recog_data.operand[i];
      gcc_assert (GET_CODE (op) != SYMBOL_REF
	  	  && (GET_CODE (op) != CONST
		      || (GET_CODE (XEXP (op, 0)) == MINUS
			  && XEXP (XEXP (op, 0), 0) == sparc_got ()
			  && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST)));
      /* fallthrough */
    case 2:
    default:
      return 1;
    }
}

/* Return true if X is an address which needs a temporary register when
   reloaded while generating PIC code.  */

int
pic_address_needs_scratch (rtx x)
{
  /* An address which is a symbolic plus a non SMALL_INT needs a temp reg.  */
  if (GET_CODE (x) == CONST
      && GET_CODE (XEXP (x, 0)) == PLUS
      && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
      && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
      && !SMALL_INT (XEXP (XEXP (x, 0), 1)))
    return 1;

  return 0;
}

/* Determine if a given RTX is a valid constant.  We already know this
   satisfies CONSTANT_P.  */

static bool
sparc_legitimate_constant_p (machine_mode mode, rtx x)
{
  switch (GET_CODE (x))
    {
    case CONST:
    case SYMBOL_REF:
      if (sparc_tls_referenced_p (x))
	return false;
      break;

    case CONST_DOUBLE:
      /* Floating point constants are generally not ok.
	 The only exception is 0.0 and all-ones in VIS.  */
      if (TARGET_VIS
	  && SCALAR_FLOAT_MODE_P (mode)
	  && (const_zero_operand (x, mode)
	      || const_all_ones_operand (x, mode)))
	return true;

      return false;

    case CONST_VECTOR:
      /* Vector constants are generally not ok.
	 The only exception is 0 or -1 in VIS.  */
      if (TARGET_VIS
	  && (const_zero_operand (x, mode)
	      || const_all_ones_operand (x, mode)))
	return true;

      return false;

    default:
      break;
    }

  return true;
}

/* Determine if a given RTX is a valid constant address.  */

bool
constant_address_p (rtx x)
{
  switch (GET_CODE (x))
    {
    case LABEL_REF:
    case CONST_INT:
    case HIGH:
      return true;

    case CONST:
      if (flag_pic && pic_address_needs_scratch (x))
	return false;
      return sparc_legitimate_constant_p (Pmode, x);

    case SYMBOL_REF:
      return !flag_pic && sparc_legitimate_constant_p (Pmode, x);

    default:
      return false;
    }
}

/* Nonzero if the constant value X is a legitimate general operand
   when generating PIC code.  It is given that flag_pic is on and
   that X satisfies CONSTANT_P.  */

bool
legitimate_pic_operand_p (rtx x)
{
  if (pic_address_needs_scratch (x))
    return false;
  if (sparc_tls_referenced_p (x))
    return false;
  return true;
}

/* Return true if X is a representation of the PIC register.  */

static bool
sparc_pic_register_p (rtx x)
{
  if (!REG_P (x) || !pic_offset_table_rtx)
    return false;

  if (x == pic_offset_table_rtx)
    return true;

  if (!HARD_REGISTER_P (pic_offset_table_rtx)
      && (HARD_REGISTER_P (x) || lra_in_progress || reload_in_progress)
      && ORIGINAL_REGNO (x) == REGNO (pic_offset_table_rtx))
    return true;

  return false;
}

#define RTX_OK_FOR_OFFSET_P(X, MODE)			\
  (CONST_INT_P (X)					\
   && INTVAL (X) >= -0x1000				\
   && INTVAL (X) <= (0x1000 - GET_MODE_SIZE (MODE)))

#define RTX_OK_FOR_OLO10_P(X, MODE)			\
  (CONST_INT_P (X)					\
   && INTVAL (X) >= -0x1000				\
   && INTVAL (X) <= (0xc00 - GET_MODE_SIZE (MODE)))

/* Handle the TARGET_LEGITIMATE_ADDRESS_P target hook.

   On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
   ordinarily.  This changes a bit when generating PIC.  */

static bool
sparc_legitimate_address_p (machine_mode mode, rtx addr, bool strict)
{
  rtx rs1 = NULL, rs2 = NULL, imm1 = NULL;

  if (REG_P (addr) || GET_CODE (addr) == SUBREG)
    rs1 = addr;
  else if (GET_CODE (addr) == PLUS)
    {
      rs1 = XEXP (addr, 0);
      rs2 = XEXP (addr, 1);

      /* Canonicalize.  REG comes first, if there are no regs,
	 LO_SUM comes first.  */
      if (!REG_P (rs1)
	  && GET_CODE (rs1) != SUBREG
	  && (REG_P (rs2)
	      || GET_CODE (rs2) == SUBREG
	      || (GET_CODE (rs2) == LO_SUM && GET_CODE (rs1) != LO_SUM)))
	{
	  rs1 = XEXP (addr, 1);
	  rs2 = XEXP (addr, 0);
	}

      if ((flag_pic == 1
	   && sparc_pic_register_p (rs1)
	   && !REG_P (rs2)
	   && GET_CODE (rs2) != SUBREG
	   && GET_CODE (rs2) != LO_SUM
	   && GET_CODE (rs2) != MEM
	   && !(GET_CODE (rs2) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (rs2))
	   && (! symbolic_operand (rs2, VOIDmode) || mode == Pmode)
	   && (GET_CODE (rs2) != CONST_INT || SMALL_INT (rs2)))
	  || ((REG_P (rs1)
	       || GET_CODE (rs1) == SUBREG)
	      && RTX_OK_FOR_OFFSET_P (rs2, mode)))
	{
	  imm1 = rs2;
	  rs2 = NULL;
	}
      else if ((REG_P (rs1) || GET_CODE (rs1) == SUBREG)
	       && (REG_P (rs2) || GET_CODE (rs2) == SUBREG))
	{
	  /* We prohibit REG + REG for TFmode when there are no quad move insns
	     and we consequently need to split.  We do this because REG+REG
	     is not an offsettable address.  If we get the situation in reload
	     where source and destination of a movtf pattern are both MEMs with
	     REG+REG address, then only one of them gets converted to an
	     offsettable address.  */
	  if (mode == TFmode
	      && ! (TARGET_ARCH64 && TARGET_HARD_QUAD))
	    return 0;

	  /* Likewise for TImode, but in all cases.  */
	  if (mode == TImode)
	    return 0;

	  /* We prohibit REG + REG on ARCH32 if not optimizing for
	     DFmode/DImode because then mem_min_alignment is likely to be zero
	     after reload and the  forced split would lack a matching splitter
	     pattern.  */
	  if (TARGET_ARCH32 && !optimize
	      && (mode == DFmode || mode == DImode))
	    return 0;
	}
      else if (USE_AS_OFFSETABLE_LO10
	       && GET_CODE (rs1) == LO_SUM
	       && TARGET_ARCH64
	       && ! TARGET_CM_MEDMID
	       && RTX_OK_FOR_OLO10_P (rs2, mode))
	{
	  rs2 = NULL;
	  imm1 = XEXP (rs1, 1);
	  rs1 = XEXP (rs1, 0);
	  if (!CONSTANT_P (imm1)
	      || (GET_CODE (rs1) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (rs1)))
	    return 0;
	}
    }
  else if (GET_CODE (addr) == LO_SUM)
    {
      rs1 = XEXP (addr, 0);
      imm1 = XEXP (addr, 1);

      if (!CONSTANT_P (imm1)
	  || (GET_CODE (rs1) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (rs1)))
	return 0;

      /* We can't allow TFmode in 32-bit mode, because an offset greater
	 than the alignment (8) may cause the LO_SUM to overflow.  */
      if (mode == TFmode && TARGET_ARCH32)
	return 0;

      /* During reload, accept the HIGH+LO_SUM construct generated by
	 sparc_legitimize_reload_address.  */
      if (reload_in_progress
	  && GET_CODE (rs1) == HIGH
	  && XEXP (rs1, 0) == imm1)
	return 1;
    }
  else if (GET_CODE (addr) == CONST_INT && SMALL_INT (addr))
    return 1;
  else
    return 0;

  if (GET_CODE (rs1) == SUBREG)
    rs1 = SUBREG_REG (rs1);
  if (!REG_P (rs1))
    return 0;

  if (rs2)
    {
      if (GET_CODE (rs2) == SUBREG)
	rs2 = SUBREG_REG (rs2);
      if (!REG_P (rs2))
	return 0;
    }

  if (strict)
    {
      if (!REGNO_OK_FOR_BASE_P (REGNO (rs1))
	  || (rs2 && !REGNO_OK_FOR_BASE_P (REGNO (rs2))))
	return 0;
    }
  else
    {
      if ((! SPARC_INT_REG_P (REGNO (rs1))
	   && REGNO (rs1) != FRAME_POINTER_REGNUM
	   && REGNO (rs1) < FIRST_PSEUDO_REGISTER)
	  || (rs2
	      && (! SPARC_INT_REG_P (REGNO (rs2))
		  && REGNO (rs2) != FRAME_POINTER_REGNUM
		  && REGNO (rs2) < FIRST_PSEUDO_REGISTER)))
	return 0;
    }
  return 1;
}

/* Return the SYMBOL_REF for the tls_get_addr function.  */

static GTY(()) rtx sparc_tls_symbol = NULL_RTX;

static rtx
sparc_tls_get_addr (void)
{
  if (!sparc_tls_symbol)
    sparc_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, "__tls_get_addr");

  return sparc_tls_symbol;
}

/* Return the Global Offset Table to be used in TLS mode.  */

static rtx
sparc_tls_got (void)
{
  /* In PIC mode, this is just the PIC offset table.  */
  if (flag_pic)
    {
      crtl->uses_pic_offset_table = 1;
      return pic_offset_table_rtx;
    }

  /* In non-PIC mode, Sun as (unlike GNU as) emits PC-relative relocations for
     the GOT symbol with the 32-bit ABI, so we reload the GOT register.  */
  if (TARGET_SUN_TLS && TARGET_ARCH32)
    {
      load_got_register ();
      return got_register_rtx;
    }

  /* In all other cases, we load a new pseudo with the GOT symbol.  */
  return copy_to_reg (sparc_got ());
}

/* Return true if X contains a thread-local symbol.  */

static bool
sparc_tls_referenced_p (rtx x)
{
  if (!TARGET_HAVE_TLS)
    return false;

  if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS)
    x = XEXP (XEXP (x, 0), 0);

  if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x))
    return true;

  /* That's all we handle in sparc_legitimize_tls_address for now.  */
  return false;
}

/* ADDR contains a thread-local SYMBOL_REF.  Generate code to compute
   this (thread-local) address.  */

static rtx
sparc_legitimize_tls_address (rtx addr)
{
  rtx temp1, temp2, temp3, ret, o0, got;
  rtx_insn *insn;

  gcc_assert (can_create_pseudo_p ());

  if (GET_CODE (addr) == SYMBOL_REF)
    /* Although the various sethi/or sequences generate SImode values, many of
       them can be transformed by the linker when relaxing and, if relaxing to
       local-exec, will become a sethi/xor pair, which is signed and therefore
       a full DImode value in 64-bit mode.  Thus we must use Pmode, lest these
       values be spilled onto the stack in 64-bit mode.  */
    switch (SYMBOL_REF_TLS_MODEL (addr))
      {
      case TLS_MODEL_GLOBAL_DYNAMIC:
	start_sequence ();
	temp1 = gen_reg_rtx (Pmode);
	temp2 = gen_reg_rtx (Pmode);
	ret = gen_reg_rtx (Pmode);
	o0 = gen_rtx_REG (Pmode, 8);
	got = sparc_tls_got ();
	if (TARGET_ARCH32)
	  {
	    emit_insn (gen_tgd_hi22si (temp1, addr));
	    emit_insn (gen_tgd_lo10si (temp2, temp1, addr));
	    emit_insn (gen_tgd_addsi (o0, got, temp2, addr));
	    insn = emit_call_insn (gen_tgd_callsi (o0, sparc_tls_get_addr (),
						   addr, const1_rtx));
	  }
	else
	  {
	    emit_insn (gen_tgd_hi22di (temp1, addr));
	    emit_insn (gen_tgd_lo10di (temp2, temp1, addr));
	    emit_insn (gen_tgd_adddi (o0, got, temp2, addr));
	    insn = emit_call_insn (gen_tgd_calldi (o0, sparc_tls_get_addr (),
						   addr, const1_rtx));
	  }
	use_reg (&CALL_INSN_FUNCTION_USAGE (insn), o0);
	RTL_CONST_CALL_P (insn) = 1;
	insn = get_insns ();
	end_sequence ();
	emit_libcall_block (insn, ret, o0, addr);
	break;

      case TLS_MODEL_LOCAL_DYNAMIC:
	start_sequence ();
	temp1 = gen_reg_rtx (Pmode);
	temp2 = gen_reg_rtx (Pmode);
	temp3 = gen_reg_rtx (Pmode);
	ret = gen_reg_rtx (Pmode);
	o0 = gen_rtx_REG (Pmode, 8);
	got = sparc_tls_got ();
	if (TARGET_ARCH32)
	  {
	    emit_insn (gen_tldm_hi22si (temp1));
	    emit_insn (gen_tldm_lo10si (temp2, temp1));
	    emit_insn (gen_tldm_addsi (o0, got, temp2));
	    insn = emit_call_insn (gen_tldm_callsi (o0, sparc_tls_get_addr (),
						    const1_rtx));
	  }
	else
	  {
	    emit_insn (gen_tldm_hi22di (temp1));
	    emit_insn (gen_tldm_lo10di (temp2, temp1));
	    emit_insn (gen_tldm_adddi (o0, got, temp2));
	    insn = emit_call_insn (gen_tldm_calldi (o0, sparc_tls_get_addr (),
						    const1_rtx));
	  }
	use_reg (&CALL_INSN_FUNCTION_USAGE (insn), o0);
	RTL_CONST_CALL_P (insn) = 1;
	insn = get_insns ();
	end_sequence ();
	/* Attach a unique REG_EQUAL, to allow the RTL optimizers to
	  share the LD_BASE result with other LD model accesses.  */
	emit_libcall_block (insn, temp3, o0,
			    gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
					    UNSPEC_TLSLD_BASE));
	temp1 = gen_reg_rtx (Pmode);
	temp2 = gen_reg_rtx (Pmode);
	if (TARGET_ARCH32)
	  {
	    emit_insn (gen_tldo_hix22si (temp1, addr));
	    emit_insn (gen_tldo_lox10si (temp2, temp1, addr));
	    emit_insn (gen_tldo_addsi (ret, temp3, temp2, addr));
	  }
	else
	  {
	    emit_insn (gen_tldo_hix22di (temp1, addr));
	    emit_insn (gen_tldo_lox10di (temp2, temp1, addr));
	    emit_insn (gen_tldo_adddi (ret, temp3, temp2, addr));
	  }
	break;

      case TLS_MODEL_INITIAL_EXEC:
	temp1 = gen_reg_rtx (Pmode);
	temp2 = gen_reg_rtx (Pmode);
	temp3 = gen_reg_rtx (Pmode);
	got = sparc_tls_got ();
	if (TARGET_ARCH32)
	  {
	    emit_insn (gen_tie_hi22si (temp1, addr));
	    emit_insn (gen_tie_lo10si (temp2, temp1, addr));
	    emit_insn (gen_tie_ld32 (temp3, got, temp2, addr));
	  }
	else
	  {
	    emit_insn (gen_tie_hi22di (temp1, addr));
	    emit_insn (gen_tie_lo10di (temp2, temp1, addr));
	    emit_insn (gen_tie_ld64 (temp3, got, temp2, addr));
	  }
        if (TARGET_SUN_TLS)
	  {
	    ret = gen_reg_rtx (Pmode);
	    if (TARGET_ARCH32)
	      emit_insn (gen_tie_addsi (ret, gen_rtx_REG (Pmode, 7),
					temp3, addr));
	    else
	      emit_insn (gen_tie_adddi (ret, gen_rtx_REG (Pmode, 7),
					temp3, addr));
	  }
	else
	  ret = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, 7), temp3);
	break;

      case TLS_MODEL_LOCAL_EXEC:
	temp1 = gen_reg_rtx (Pmode);
	temp2 = gen_reg_rtx (Pmode);
	if (TARGET_ARCH32)
	  {
	    emit_insn (gen_tle_hix22si (temp1, addr));
	    emit_insn (gen_tle_lox10si (temp2, temp1, addr));
	  }
	else
	  {
	    emit_insn (gen_tle_hix22di (temp1, addr));
	    emit_insn (gen_tle_lox10di (temp2, temp1, addr));
	  }
	ret = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, 7), temp2);
	break;

      default:
	gcc_unreachable ();
      }

  else if (GET_CODE (addr) == CONST)
    {
      rtx base, offset;

      gcc_assert (GET_CODE (XEXP (addr, 0)) == PLUS);

      base = sparc_legitimize_tls_address (XEXP (XEXP (addr, 0), 0));
      offset = XEXP (XEXP (addr, 0), 1);

      base = force_operand (base, NULL_RTX);
      if (!(GET_CODE (offset) == CONST_INT && SMALL_INT (offset)))
	offset = force_reg (Pmode, offset);
      ret = gen_rtx_PLUS (Pmode, base, offset);
    }

  else
    gcc_unreachable ();  /* for now ... */

  return ret;
}

/* Legitimize PIC addresses.  If the address is already position-independent,
   we return ORIG.  Newly generated position-independent addresses go into a
   reg.  This is REG if nonzero, otherwise we allocate register(s) as
   necessary.  */

static rtx
sparc_legitimize_pic_address (rtx orig, rtx reg)
{
  if (GET_CODE (orig) == SYMBOL_REF
      /* See the comment in sparc_expand_move.  */
      || (GET_CODE (orig) == LABEL_REF && !can_use_mov_pic_label_ref (orig)))
    {
      bool gotdata_op = false;
      rtx pic_ref, address;
      rtx_insn *insn;

      if (!reg)
	{
	  gcc_assert (can_create_pseudo_p ());
	  reg = gen_reg_rtx (Pmode);
	}

      if (flag_pic == 2)
	{
	  /* If not during reload, allocate another temp reg here for loading
	     in the address, so that these instructions can be optimized
	     properly.  */
	  rtx temp_reg = can_create_pseudo_p () ? gen_reg_rtx (Pmode) : reg;

	  /* Must put the SYMBOL_REF inside an UNSPEC here so that cse
	     won't get confused into thinking that these two instructions
	     are loading in the true address of the symbol.  If in the
	     future a PIC rtx exists, that should be used instead.  */
	  if (TARGET_ARCH64)
	    {
	      emit_insn (gen_movdi_high_pic (temp_reg, orig));
	      emit_insn (gen_movdi_lo_sum_pic (temp_reg, temp_reg, orig));
	    }
	  else
	    {
	      emit_insn (gen_movsi_high_pic (temp_reg, orig));
	      emit_insn (gen_movsi_lo_sum_pic (temp_reg, temp_reg, orig));
	    }

	  address = temp_reg;
	  gotdata_op = true;
	}
      else
	address = orig;

      crtl->uses_pic_offset_table = 1;
      if (gotdata_op)
	{
	  if (TARGET_ARCH64)
	    insn = emit_insn (gen_movdi_pic_gotdata_op (reg,
							pic_offset_table_rtx,
							address, orig));
	  else
	    insn = emit_insn (gen_movsi_pic_gotdata_op (reg,
							pic_offset_table_rtx,
							address, orig));
	}
      else
	{
	  pic_ref
	    = gen_const_mem (Pmode,
			     gen_rtx_PLUS (Pmode,
					   pic_offset_table_rtx, address));
	  insn = emit_move_insn (reg, pic_ref);
	}

      /* Put a REG_EQUAL note on this insn, so that it can be optimized
	 by loop.  */
      set_unique_reg_note (insn, REG_EQUAL, orig);
      return reg;
    }
  else if (GET_CODE (orig) == CONST)
    {
      rtx base, offset;

      if (GET_CODE (XEXP (orig, 0)) == PLUS
	  && sparc_pic_register_p (XEXP (XEXP (orig, 0), 0)))
	return orig;

      if (!reg)
	{
	  gcc_assert (can_create_pseudo_p ());
	  reg = gen_reg_rtx (Pmode);
	}

      gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
      base = sparc_legitimize_pic_address (XEXP (XEXP (orig, 0), 0), reg);
      offset = sparc_legitimize_pic_address (XEXP (XEXP (orig, 0), 1),
			 		     base == reg ? NULL_RTX : reg);

      if (GET_CODE (offset) == CONST_INT)
	{
	  if (SMALL_INT (offset))
	    return plus_constant (Pmode, base, INTVAL (offset));
	  else if (can_create_pseudo_p ())
	    offset = force_reg (Pmode, offset);
	  else
	    /* If we reach here, then something is seriously wrong.  */
	    gcc_unreachable ();
	}
      return gen_rtx_PLUS (Pmode, base, offset);
    }
  else if (GET_CODE (orig) == LABEL_REF)
    /* ??? We ought to be checking that the register is live instead, in case
       it is eliminated.  */
    crtl->uses_pic_offset_table = 1;

  return orig;
}

/* Try machine-dependent ways of modifying an illegitimate address X
   to be legitimate.  If we find one, return the new, valid address.

   OLDX is the address as it was before break_out_memory_refs was called.
   In some cases it is useful to look at this to decide what needs to be done.

   MODE is the mode of the operand pointed to by X.

   On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG.  */

static rtx
sparc_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
			  machine_mode mode)
{
  rtx orig_x = x;

  if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == MULT)
    x = gen_rtx_PLUS (Pmode, XEXP (x, 1),
		      force_operand (XEXP (x, 0), NULL_RTX));
  if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == MULT)
    x = gen_rtx_PLUS (Pmode, XEXP (x, 0),
		      force_operand (XEXP (x, 1), NULL_RTX));
  if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS)
    x = gen_rtx_PLUS (Pmode, force_operand (XEXP (x, 0), NULL_RTX),
		      XEXP (x, 1));
  if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == PLUS)
    x = gen_rtx_PLUS (Pmode, XEXP (x, 0),
		      force_operand (XEXP (x, 1), NULL_RTX));

  if (x != orig_x && sparc_legitimate_address_p (mode, x, FALSE))
    return x;

  if (sparc_tls_referenced_p (x))
    x = sparc_legitimize_tls_address (x);
  else if (flag_pic)
    x = sparc_legitimize_pic_address (x, NULL_RTX);
  else if (GET_CODE (x) == PLUS && CONSTANT_ADDRESS_P (XEXP (x, 1)))
    x = gen_rtx_PLUS (Pmode, XEXP (x, 0),
		      copy_to_mode_reg (Pmode, XEXP (x, 1)));
  else if (GET_CODE (x) == PLUS && CONSTANT_ADDRESS_P (XEXP (x, 0)))
    x = gen_rtx_PLUS (Pmode, XEXP (x, 1),
		      copy_to_mode_reg (Pmode, XEXP (x, 0)));
  else if (GET_CODE (x) == SYMBOL_REF
	   || GET_CODE (x) == CONST
	   || GET_CODE (x) == LABEL_REF)
    x = copy_to_suggested_reg (x, NULL_RTX, Pmode);

  return x;
}

/* Delegitimize an address that was legitimized by the above function.  */

static rtx
sparc_delegitimize_address (rtx x)
{
  x = delegitimize_mem_from_attrs (x);

  if (GET_CODE (x) == LO_SUM)
    x = XEXP (x, 1);

  if (GET_CODE (x) == UNSPEC)
    switch (XINT (x, 1))
      {
      case UNSPEC_MOVE_PIC:
      case UNSPEC_TLSLE:
	x = XVECEXP (x, 0, 0);
	gcc_assert (GET_CODE (x) == SYMBOL_REF);
	break;
      case UNSPEC_MOVE_GOTDATA:
	x = XVECEXP (x, 0, 2);
	gcc_assert (GET_CODE (x) == SYMBOL_REF);
	break;
      default:
	break;
      }

  /* This is generated by mov{si,di}_pic_label_ref in PIC mode.  */
  if (GET_CODE (x) == MINUS
      && (XEXP (x, 0) == got_register_rtx
	  || sparc_pic_register_p (XEXP (x, 0))))
    {
      rtx y = XEXP (x, 1);

      if (GET_CODE (y) == LO_SUM)
	y = XEXP (y, 1);

      if (GET_CODE (y) == UNSPEC && XINT (y, 1) == UNSPEC_MOVE_PIC_LABEL)
	{
	  x = XVECEXP (y, 0, 0);
	  gcc_assert (GET_CODE (x) == LABEL_REF
		      || (GET_CODE (x) == CONST
			  && GET_CODE (XEXP (x, 0)) == PLUS
			  && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF
			  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT));
	}
    }

  return x;
}

/* SPARC implementation of LEGITIMIZE_RELOAD_ADDRESS.  Returns a value to
   replace the input X, or the original X if no replacement is called for.
   The output parameter *WIN is 1 if the calling macro should goto WIN,
   0 if it should not.

   For SPARC, we wish to handle addresses by splitting them into
   HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
   This cuts the number of extra insns by one.

   Do nothing when generating PIC code and the address is a symbolic
   operand or requires a scratch register.  */

rtx
sparc_legitimize_reload_address (rtx x, machine_mode mode,
				 int opnum, int type,
				 int ind_levels ATTRIBUTE_UNUSED, int *win)
{
  /* Decompose SImode constants into HIGH+LO_SUM.  */
  if (CONSTANT_P (x)
      && (mode != TFmode || TARGET_ARCH64)
      && GET_MODE (x) == SImode
      && GET_CODE (x) != LO_SUM
      && GET_CODE (x) != HIGH
      && sparc_code_model <= CM_MEDLOW
      && !(flag_pic
	   && (symbolic_operand (x, Pmode) || pic_address_needs_scratch (x))))
    {
      x = gen_rtx_LO_SUM (GET_MODE (x), gen_rtx_HIGH (GET_MODE (x), x), x);
      push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
		   BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
		   opnum, (enum reload_type)type);
      *win = 1;
      return x;
    }

  /* We have to recognize what we have already generated above.  */
  if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == HIGH)
    {
      push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
		   BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
		   opnum, (enum reload_type)type);
      *win = 1;
      return x;
    }

  *win = 0;
  return x;
}

/* Return true if ADDR (a legitimate address expression)
   has an effect that depends on the machine mode it is used for.

   In PIC mode,

      (mem:HI [%l7+a])

   is not equivalent to

      (mem:QI [%l7+a]) (mem:QI [%l7+a+1])

   because [%l7+a+1] is interpreted as the address of (a+1).  */


static bool
sparc_mode_dependent_address_p (const_rtx addr,
				addr_space_t as ATTRIBUTE_UNUSED)
{
  if (GET_CODE (addr) == PLUS
      && sparc_pic_register_p (XEXP (addr, 0))
      && symbolic_operand (XEXP (addr, 1), VOIDmode))
    return true;

  return false;
}

/* Emit a call instruction with the pattern given by PAT.  ADDR is the
   address of the call target.  */

void
sparc_emit_call_insn (rtx pat, rtx addr)
{
  rtx_insn *insn;

  insn = emit_call_insn (pat);

  /* The PIC register is live on entry to VxWorks PIC PLT entries.  */
  if (TARGET_VXWORKS_RTP
      && flag_pic
      && GET_CODE (addr) == SYMBOL_REF
      && (SYMBOL_REF_DECL (addr)
	  ? !targetm.binds_local_p (SYMBOL_REF_DECL (addr))
	  : !SYMBOL_REF_LOCAL_P (addr)))
    {
      use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
      crtl->uses_pic_offset_table = 1;
    }
}

/* Return 1 if RTX is a MEM which is known to be aligned to at
   least a DESIRED byte boundary.  */

int
mem_min_alignment (rtx mem, int desired)
{
  rtx addr, base, offset;

  /* If it's not a MEM we can't accept it.  */
  if (GET_CODE (mem) != MEM)
    return 0;

  /* Obviously...  */
  if (!TARGET_UNALIGNED_DOUBLES
      && MEM_ALIGN (mem) / BITS_PER_UNIT >= (unsigned)desired)
    return 1;

  /* ??? The rest of the function predates MEM_ALIGN so
     there is probably a bit of redundancy.  */
  addr = XEXP (mem, 0);
  base = offset = NULL_RTX;
  if (GET_CODE (addr) == PLUS)
    {
      if (GET_CODE (XEXP (addr, 0)) == REG)
	{
	  base = XEXP (addr, 0);

	  /* What we are saying here is that if the base
	     REG is aligned properly, the compiler will make
	     sure any REG based index upon it will be so
	     as well.  */
	  if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
	    offset = XEXP (addr, 1);
	  else
	    offset = const0_rtx;
	}
    }
  else if (GET_CODE (addr) == REG)
    {
      base = addr;
      offset = const0_rtx;
    }

  if (base != NULL_RTX)
    {
      int regno = REGNO (base);

      if (regno != HARD_FRAME_POINTER_REGNUM && regno != STACK_POINTER_REGNUM)
	{
	  /* Check if the compiler has recorded some information
	     about the alignment of the base REG.  If reload has
	     completed, we already matched with proper alignments.
	     If not running global_alloc, reload might give us
	     unaligned pointer to local stack though.  */
	  if (((cfun != 0
		&& REGNO_POINTER_ALIGN (regno) >= desired * BITS_PER_UNIT)
	       || (optimize && reload_completed))
	      && (INTVAL (offset) & (desired - 1)) == 0)
	    return 1;
	}
      else
	{
	  if (((INTVAL (offset) - SPARC_STACK_BIAS) & (desired - 1)) == 0)
	    return 1;
	}
    }
  else if (! TARGET_UNALIGNED_DOUBLES
	   || CONSTANT_P (addr)
	   || GET_CODE (addr) == LO_SUM)
    {
      /* Anything else we know is properly aligned unless TARGET_UNALIGNED_DOUBLES
	 is true, in which case we can only assume that an access is aligned if
	 it is to a constant address, or the address involves a LO_SUM.  */
      return 1;
    }

  /* An obviously unaligned address.  */
  return 0;
}


/* Vectors to keep interesting information about registers where it can easily
   be got.  We used to use the actual mode value as the bit number, but there
   are more than 32 modes now.  Instead we use two tables: one indexed by
   hard register number, and one indexed by mode.  */

/* The purpose of sparc_mode_class is to shrink the range of modes so that
   they all fit (as bit numbers) in a 32-bit word (again).  Each real mode is
   mapped into one sparc_mode_class mode.  */

enum sparc_mode_class {
  H_MODE, S_MODE, D_MODE, T_MODE, O_MODE,
  SF_MODE, DF_MODE, TF_MODE, OF_MODE,
  CC_MODE, CCFP_MODE
};

/* Modes for single-word and smaller quantities.  */
#define S_MODES \
  ((1 << (int) H_MODE) | (1 << (int) S_MODE) | (1 << (int) SF_MODE))

/* Modes for double-word and smaller quantities.  */
#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << (int) DF_MODE))

/* Modes for quad-word and smaller quantities.  */
#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))

/* Modes for 8-word and smaller quantities.  */
#define O_MODES (T_MODES | (1 << (int) O_MODE) | (1 << (int) OF_MODE))

/* Modes for single-float quantities.  */
#define SF_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))

/* Modes for double-float and smaller quantities.  */
#define DF_MODES (SF_MODES | (1 << (int) D_MODE) | (1 << (int) DF_MODE))

/* Modes for quad-float and smaller quantities.  */
#define TF_MODES (DF_MODES | (1 << (int) TF_MODE))

/* Modes for quad-float pairs and smaller quantities.  */
#define OF_MODES (TF_MODES | (1 << (int) OF_MODE))

/* Modes for double-float only quantities.  */
#define DF_MODES_NO_S ((1 << (int) D_MODE) | (1 << (int) DF_MODE))

/* Modes for quad-float and double-float only quantities.  */
#define TF_MODES_NO_S (DF_MODES_NO_S | (1 << (int) TF_MODE))

/* Modes for quad-float pairs and double-float only quantities.  */
#define OF_MODES_NO_S (TF_MODES_NO_S | (1 << (int) OF_MODE))

/* Modes for condition codes.  */
#define CC_MODES (1 << (int) CC_MODE)
#define CCFP_MODES (1 << (int) CCFP_MODE)

/* Value is 1 if register/mode pair is acceptable on sparc.

   The funny mixture of D and T modes is because integer operations
   do not specially operate on tetra quantities, so non-quad-aligned
   registers can hold quadword quantities (except %o4 and %i4 because
   they cross fixed registers).

   ??? Note that, despite the settings, non-double-aligned parameter
   registers can hold double-word quantities in 32-bit mode.  */

/* This points to either the 32-bit or the 64-bit version.  */
static const int *hard_regno_mode_classes;

static const int hard_32bit_mode_classes[] = {
  S_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
  T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
  T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
  T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,

  OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
  OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
  OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
  OF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,

  /* FP regs f32 to f63.  Only the even numbered registers actually exist,
     and none can hold SFmode/SImode values.  */
  OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
  OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
  OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
  OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, TF_MODES_NO_S, 0, DF_MODES_NO_S, 0,

  /* %fcc[0123] */
  CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES,

  /* %icc, %sfp, %gsr */
  CC_MODES, 0, D_MODES
};

static const int hard_64bit_mode_classes[] = {
  D_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
  O_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
  T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
  O_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,

  OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
  OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
  OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
  OF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,

  /* FP regs f32 to f63.  Only the even numbered registers actually exist,
     and none can hold SFmode/SImode values.  */
  OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
  OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
  OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
  OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, TF_MODES_NO_S, 0, DF_MODES_NO_S, 0,

  /* %fcc[0123] */
  CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES,

  /* %icc, %sfp, %gsr */
  CC_MODES, 0, D_MODES
};

static int sparc_mode_class [NUM_MACHINE_MODES];

enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];

static void
sparc_init_modes (void)
{
  int i;

  for (i = 0; i < NUM_MACHINE_MODES; i++)
    {
      machine_mode m = (machine_mode) i;
      unsigned int size = GET_MODE_SIZE (m);

      switch (GET_MODE_CLASS (m))
	{
	case MODE_INT:
	case MODE_PARTIAL_INT:
	case MODE_COMPLEX_INT:
	  if (size < 4)
	    sparc_mode_class[i] = 1 << (int) H_MODE;
	  else if (size == 4)
	    sparc_mode_class[i] = 1 << (int) S_MODE;
	  else if (size == 8)
	    sparc_mode_class[i] = 1 << (int) D_MODE;
	  else if (size == 16)
	    sparc_mode_class[i] = 1 << (int) T_MODE;
	  else if (size == 32)
	    sparc_mode_class[i] = 1 << (int) O_MODE;
	  else
	    sparc_mode_class[i] = 0;
	  break;
	case MODE_VECTOR_INT:
	  if (size == 4)
	    sparc_mode_class[i] = 1 << (int) SF_MODE;
	  else if (size == 8)
	    sparc_mode_class[i] = 1 << (int) DF_MODE;
	  else
	    sparc_mode_class[i] = 0;
	  break;
	case MODE_FLOAT:
	case MODE_COMPLEX_FLOAT:
	  if (size == 4)
	    sparc_mode_class[i] = 1 << (int) SF_MODE;
	  else if (size == 8)
	    sparc_mode_class[i] = 1 << (int) DF_MODE;
	  else if (size == 16)
	    sparc_mode_class[i] = 1 << (int) TF_MODE;
	  else if (size == 32)
	    sparc_mode_class[i] = 1 << (int) OF_MODE;
	  else
	    sparc_mode_class[i] = 0;
	  break;
	case MODE_CC:
	  if (m == CCFPmode || m == CCFPEmode)
	    sparc_mode_class[i] = 1 << (int) CCFP_MODE;
	  else
	    sparc_mode_class[i] = 1 << (int) CC_MODE;
	  break;
	default:
	  sparc_mode_class[i] = 0;
	  break;
	}
    }

  if (TARGET_ARCH64)
    hard_regno_mode_classes = hard_64bit_mode_classes;
  else
    hard_regno_mode_classes = hard_32bit_mode_classes;

  /* Initialize the array used by REGNO_REG_CLASS.  */
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if (i < 16 && TARGET_V8PLUS)
	sparc_regno_reg_class[i] = I64_REGS;
      else if (i < 32 || i == FRAME_POINTER_REGNUM)
	sparc_regno_reg_class[i] = GENERAL_REGS;
      else if (i < 64)
	sparc_regno_reg_class[i] = FP_REGS;
      else if (i < 96)
	sparc_regno_reg_class[i] = EXTRA_FP_REGS;
      else if (i < 100)
	sparc_regno_reg_class[i] = FPCC_REGS;
      else
	sparc_regno_reg_class[i] = NO_REGS;
    }
}

/* Return whether REGNO, a global or FP register, must be saved/restored.  */

static inline bool
save_global_or_fp_reg_p (unsigned int regno,
			 int leaf_function ATTRIBUTE_UNUSED)
{
  return !call_used_or_fixed_reg_p (regno) && df_regs_ever_live_p (regno);
}

/* Return whether the return address register (%i7) is needed.  */

static inline bool
return_addr_reg_needed_p (int leaf_function)
{
  /* If it is live, for example because of __builtin_return_address (0).  */
  if (df_regs_ever_live_p (RETURN_ADDR_REGNUM))
    return true;

  /* Otherwise, it is needed as save register if %o7 is clobbered.  */
  if (!leaf_function
      /* Loading the GOT register clobbers %o7.  */
      || crtl->uses_pic_offset_table
      || df_regs_ever_live_p (INCOMING_RETURN_ADDR_REGNUM))
    return true;

  return false;
}

/* Return whether REGNO, a local or in register, must be saved/restored.  */

static bool
save_local_or_in_reg_p (unsigned int regno, int leaf_function)
{
  /* General case: call-saved registers live at some point.  */
  if (!call_used_or_fixed_reg_p (regno) && df_regs_ever_live_p (regno))
    return true;

  /* Frame pointer register (%fp) if needed.  */
  if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
    return true;

  /* Return address register (%i7) if needed.  */
  if (regno == RETURN_ADDR_REGNUM && return_addr_reg_needed_p (leaf_function))
    return true;

  /* GOT register (%l7) if needed.  */
  if (got_register_rtx && regno == REGNO (got_register_rtx))
    return true;

  /* If the function accesses prior frames, the frame pointer and the return
     address of the previous frame must be saved on the stack.  */
  if (crtl->accesses_prior_frames
      && (regno == HARD_FRAME_POINTER_REGNUM || regno == RETURN_ADDR_REGNUM))
    return true;

  return false;
}

/* Compute the frame size required by the function.  This function is called
   during the reload pass and also by sparc_expand_prologue.  */

static HOST_WIDE_INT
sparc_compute_frame_size (HOST_WIDE_INT size, int leaf_function)
{
  HOST_WIDE_INT frame_size, apparent_frame_size;
  int args_size, n_global_fp_regs = 0;
  bool save_local_in_regs_p = false;
  unsigned int i;

  /* If the function allocates dynamic stack space, the dynamic offset is
     computed early and contains REG_PARM_STACK_SPACE, so we need to cope.  */
  if (leaf_function && !cfun->calls_alloca)
    args_size = 0;
  else
    args_size = crtl->outgoing_args_size + REG_PARM_STACK_SPACE (cfun->decl);

  /* Calculate space needed for global registers.  */
  if (TARGET_ARCH64)
    {
      for (i = 0; i < 8; i++)
	if (save_global_or_fp_reg_p (i, 0))
	  n_global_fp_regs += 2;
    }
  else
    {
      for (i = 0; i < 8; i += 2)
	if (save_global_or_fp_reg_p (i, 0)
	    || save_global_or_fp_reg_p (i + 1, 0))
	  n_global_fp_regs += 2;
    }

  /* In the flat window model, find out which local and in registers need to
     be saved.  We don't reserve space in the current frame for them as they
     will be spilled into the register window save area of the caller's frame.
     However, as soon as we use this register window save area, we must create
     that of the current frame to make it the live one.  */
  if (TARGET_FLAT)
    for (i = 16; i < 32; i++)
      if (save_local_or_in_reg_p (i, leaf_function))
	{
	 save_local_in_regs_p = true;
	 break;
	}

  /* Calculate space needed for FP registers.  */
  for (i = 32; i < (TARGET_V9 ? 96 : 64); i += 2)
    if (save_global_or_fp_reg_p (i, 0) || save_global_or_fp_reg_p (i + 1, 0))
      n_global_fp_regs += 2;

  if (size == 0
      && n_global_fp_regs == 0
      && args_size == 0
      && !save_local_in_regs_p)
    frame_size = apparent_frame_size = 0;
  else
    {
      /* Start from the apparent frame size.  */
      apparent_frame_size = ROUND_UP (size, 8) + n_global_fp_regs * 4;

      /* We need to add the size of the outgoing argument area.  */
      frame_size = apparent_frame_size + ROUND_UP (args_size, 8);

      /* And that of the register window save area.  */
      frame_size += FIRST_PARM_OFFSET (cfun->decl);

      /* Finally, bump to the appropriate alignment.  */
      frame_size = SPARC_STACK_ALIGN (frame_size);
    }

  /* Set up values for use in prologue and epilogue.  */
  sparc_frame_size = frame_size;
  sparc_apparent_frame_size = apparent_frame_size;
  sparc_n_global_fp_regs = n_global_fp_regs;
  sparc_save_local_in_regs_p = save_local_in_regs_p;

  return frame_size;
}

/* Implement the macro INITIAL_ELIMINATION_OFFSET, return the OFFSET.  */

int
sparc_initial_elimination_offset (int to)
{
  int offset;

  if (to == STACK_POINTER_REGNUM)
    offset = sparc_compute_frame_size (get_frame_size (), crtl->is_leaf);
  else
    offset = 0;

  offset += SPARC_STACK_BIAS;
  return offset;
}

/* Output any necessary .register pseudo-ops.  */

void
sparc_output_scratch_registers (FILE *file ATTRIBUTE_UNUSED)
{
  int i;

  if (TARGET_ARCH32)
    return;

  /* Check if %g[2367] were used without
     .register being printed for them already.  */
  for (i = 2; i < 8; i++)
    {
      if (df_regs_ever_live_p (i)
	  && ! sparc_hard_reg_printed [i])
	{
	  sparc_hard_reg_printed [i] = 1;
	  /* %g7 is used as TLS base register, use #ignore
	     for it instead of #scratch.  */
	  fprintf (file, "\t.register\t%%g%d, #%s\n", i,
		   i == 7 ? "ignore" : "scratch");
	}
      if (i == 3) i = 5;
    }
}

#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)

#if PROBE_INTERVAL > 4096
#error Cannot use indexed addressing mode for stack probing
#endif

/* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE,
   inclusive.  These are offsets from the current stack pointer.

   Note that we don't use the REG+REG addressing mode for the probes because
   of the stack bias in 64-bit mode.  And it doesn't really buy us anything
   so the advantages of having a single code win here.  */

static void
sparc_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size)
{
  rtx g1 = gen_rtx_REG (Pmode, 1);

  /* See if we have a constant small number of probes to generate.  If so,
     that's the easy case.  */
  if (size <= PROBE_INTERVAL)
    {
      emit_move_insn (g1, GEN_INT (first));
      emit_insn (gen_rtx_SET (g1,
			      gen_rtx_MINUS (Pmode, stack_pointer_rtx, g1)));
      emit_stack_probe (plus_constant (Pmode, g1, -size));
    }

  /* The run-time loop is made up of 9 insns in the generic case while the
     compile-time loop is made up of 4+2*(n-2) insns for n # of intervals.  */
  else if (size <= 4 * PROBE_INTERVAL)
    {
      HOST_WIDE_INT i;

      emit_move_insn (g1, GEN_INT (first + PROBE_INTERVAL));
      emit_insn (gen_rtx_SET (g1,
			      gen_rtx_MINUS (Pmode, stack_pointer_rtx, g1)));
      emit_stack_probe (g1);

      /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 2 until
	 it exceeds SIZE.  If only two probes are needed, this will not
	 generate any code.  Then probe at FIRST + SIZE.  */
      for (i = 2 * PROBE_INTERVAL; i < size; i += PROBE_INTERVAL)
	{
	  emit_insn (gen_rtx_SET (g1,
				  plus_constant (Pmode, g1, -PROBE_INTERVAL)));
	  emit_stack_probe (g1);
	}

      emit_stack_probe (plus_constant (Pmode, g1,
				       (i - PROBE_INTERVAL) - size));
    }

  /* Otherwise, do the same as above, but in a loop.  Note that we must be
     extra careful with variables wrapping around because we might be at
     the very top (or the very bottom) of the address space and we have
     to be able to handle this case properly; in particular, we use an
     equality test for the loop condition.  */
  else
    {
      HOST_WIDE_INT rounded_size;
      rtx g4 = gen_rtx_REG (Pmode, 4);

      emit_move_insn (g1, GEN_INT (first));


      /* Step 1: round SIZE to the previous multiple of the interval.  */

      rounded_size = ROUND_DOWN (size, PROBE_INTERVAL);
      emit_move_insn (g4, GEN_INT (rounded_size));


      /* Step 2: compute initial and final value of the loop counter.  */

      /* TEST_ADDR = SP + FIRST.  */
      emit_insn (gen_rtx_SET (g1,
			      gen_rtx_MINUS (Pmode, stack_pointer_rtx, g1)));

      /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
      emit_insn (gen_rtx_SET (g4, gen_rtx_MINUS (Pmode, g1, g4)));


      /* Step 3: the loop

	 while (TEST_ADDR != LAST_ADDR)
	   {
	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
	     probe at TEST_ADDR
	   }

	 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
	 until it is equal to ROUNDED_SIZE.  */

      if (TARGET_ARCH64)
	emit_insn (gen_probe_stack_rangedi (g1, g1, g4));
      else
	emit_insn (gen_probe_stack_rangesi (g1, g1, g4));


      /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
	 that SIZE is equal to ROUNDED_SIZE.  */

      if (size != rounded_size)
	emit_stack_probe (plus_constant (Pmode, g4, rounded_size - size));
    }

  /* Make sure nothing is scheduled before we are done.  */
  emit_insn (gen_blockage ());
}

/* Probe a range of stack addresses from REG1 to REG2 inclusive.  These are
   absolute addresses.  */

const char *
output_probe_stack_range (rtx reg1, rtx reg2)
{
  static int labelno = 0;
  char loop_lab[32];
  rtx xops[2];

  ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++);

  /* Loop.  */
  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);

  /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
  xops[0] = reg1;
  xops[1] = GEN_INT (-PROBE_INTERVAL);
  output_asm_insn ("add\t%0, %1, %0", xops);

  /* Test if TEST_ADDR == LAST_ADDR.  */
  xops[1] = reg2;
  output_asm_insn ("cmp\t%0, %1", xops);

  /* Probe at TEST_ADDR and branch.  */
  if (TARGET_ARCH64)
    fputs ("\tbne,pt\t%xcc,", asm_out_file);
  else
    fputs ("\tbne\t", asm_out_file);
  assemble_name_raw (asm_out_file, loop_lab);
  fputc ('\n', asm_out_file);
  xops[1] = GEN_INT (SPARC_STACK_BIAS);
  output_asm_insn (" st\t%%g0, [%0+%1]", xops);

  return "";
}

/* Emit code to save/restore registers from LOW to HIGH at BASE+OFFSET as
   needed.  LOW is supposed to be double-word aligned for 32-bit registers.
   SAVE_P decides whether a register must be saved/restored.  ACTION_TRUE
   is the action to be performed if SAVE_P returns true and ACTION_FALSE
   the action to be performed if it returns false.  Return the new offset.  */

typedef bool (*sorr_pred_t) (unsigned int, int);
typedef enum { SORR_NONE, SORR_ADVANCE, SORR_SAVE, SORR_RESTORE } sorr_act_t;

static int
emit_save_or_restore_regs (unsigned int low, unsigned int high, rtx base,
			   int offset, int leaf_function, sorr_pred_t save_p,
			   sorr_act_t action_true, sorr_act_t action_false)
{
  unsigned int i;
  rtx mem;
  rtx_insn *insn;

  if (TARGET_ARCH64 && high <= 32)
    {
      int fp_offset = -1;

      for (i = low; i < high; i++)
	{
	  if (save_p (i, leaf_function))
	    {
	      mem = gen_frame_mem (DImode, plus_constant (Pmode,
							  base, offset));
	      if (action_true == SORR_SAVE)
		{
		  insn = emit_move_insn (mem, gen_rtx_REG (DImode, i));
		  RTX_FRAME_RELATED_P (insn) = 1;
		}
	      else  /* action_true == SORR_RESTORE */
		{
		  /* The frame pointer must be restored last since its old
		     value may be used as base address for the frame.  This
		     is problematic in 64-bit mode only because of the lack
		     of double-word load instruction.  */
		  if (i == HARD_FRAME_POINTER_REGNUM)
		    fp_offset = offset;
		  else
		    emit_move_insn (gen_rtx_REG (DImode, i), mem);
		}
	      offset += 8;
	    }
	  else if (action_false == SORR_ADVANCE)
	    offset += 8;
	}

      if (fp_offset >= 0)
	{
	  mem = gen_frame_mem (DImode, plus_constant (Pmode, base, fp_offset));
	  emit_move_insn (hard_frame_pointer_rtx, mem);
	}
    }
  else
    {
      for (i = low; i < high; i += 2)
	{
	  bool reg0 = save_p (i, leaf_function);
	  bool reg1 = save_p (i + 1, leaf_function);
	  machine_mode mode;
	  int regno;

	  if (reg0 && reg1)
	    {
	      mode = SPARC_INT_REG_P (i) ? E_DImode : E_DFmode;
	      regno = i;
	    }
	  else if (reg0)
	    {
	      mode = SPARC_INT_REG_P (i) ? E_SImode : E_SFmode;
	      regno = i;
	    }
	  else if (reg1)
	    {
	      mode = SPARC_INT_REG_P (i) ? E_SImode : E_SFmode;
	      regno = i + 1;
	      offset += 4;
	    }
	  else
	    {
	      if (action_false == SORR_ADVANCE)
		offset += 8;
	      continue;
	    }

	  mem = gen_frame_mem (mode, plus_constant (Pmode, base, offset));
	  if (action_true == SORR_SAVE)
	    {
	      insn = emit_move_insn (mem, gen_rtx_REG (mode, regno));
	      RTX_FRAME_RELATED_P (insn) = 1;
	      if (mode == DImode)
		{
		  rtx set1, set2;
		  mem = gen_frame_mem (SImode, plus_constant (Pmode, base,
							      offset));
		  set1 = gen_rtx_SET (mem, gen_rtx_REG (SImode, regno));
		  RTX_FRAME_RELATED_P (set1) = 1;
		  mem
		    = gen_frame_mem (SImode, plus_constant (Pmode, base,
							    offset + 4));
		  set2 = gen_rtx_SET (mem, gen_rtx_REG (SImode, regno + 1));
		  RTX_FRAME_RELATED_P (set2) = 1;
		  add_reg_note (insn, REG_FRAME_RELATED_EXPR,
				gen_rtx_PARALLEL (VOIDmode,
						  gen_rtvec (2, set1, set2)));
		}
	    }
	  else  /* action_true == SORR_RESTORE */
	    emit_move_insn (gen_rtx_REG (mode, regno), mem);

	  /* Bump and round down to double word
	     in case we already bumped by 4.  */
	  offset = ROUND_DOWN (offset + 8, 8);
	}
    }

  return offset;
}

/* Emit code to adjust BASE to OFFSET.  Return the new base.  */

static rtx
emit_adjust_base_to_offset (rtx base, int offset)
{
  /* ??? This might be optimized a little as %g1 might already have a
     value close enough that a single add insn will do.  */
  /* ??? Although, all of this is probably only a temporary fix because
     if %g1 can hold a function result, then sparc_expand_epilogue will
     lose (the result will be clobbered).  */
  rtx new_base = gen_rtx_REG (Pmode, 1);
  emit_move_insn (new_base, GEN_INT (offset));
  emit_insn (gen_rtx_SET (new_base, gen_rtx_PLUS (Pmode, base, new_base)));
  return new_base;
}

/* Emit code to save/restore call-saved global and FP registers.  */

static void
emit_save_or_restore_global_fp_regs (rtx base, int offset, sorr_act_t action)
{
  if (offset < -4096 || offset + sparc_n_global_fp_regs * 4 > 4095)
    {
      base = emit_adjust_base_to_offset  (base, offset);
      offset = 0;
    }

  offset
    = emit_save_or_restore_regs (0, 8, base, offset, 0,
				 save_global_or_fp_reg_p, action, SORR_NONE);
  emit_save_or_restore_regs (32, TARGET_V9 ? 96 : 64, base, offset, 0,
			     save_global_or_fp_reg_p, action, SORR_NONE);
}

/* Emit code to save/restore call-saved local and in registers.  */

static void
emit_save_or_restore_local_in_regs (rtx base, int offset, sorr_act_t action)
{
  if (offset < -4096 || offset + 16 * UNITS_PER_WORD > 4095)
    {
      base = emit_adjust_base_to_offset  (base, offset);
      offset = 0;
    }

  emit_save_or_restore_regs (16, 32, base, offset, sparc_leaf_function_p,
			     save_local_or_in_reg_p, action, SORR_ADVANCE);
}

/* Emit a window_save insn.  */

static rtx_insn *
emit_window_save (rtx increment)
{
  rtx_insn *insn = emit_insn (gen_window_save (increment));
  RTX_FRAME_RELATED_P (insn) = 1;

  /* The incoming return address (%o7) is saved in %i7.  */
  add_reg_note (insn, REG_CFA_REGISTER,
		gen_rtx_SET (gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM),
			     gen_rtx_REG (Pmode,
					  INCOMING_RETURN_ADDR_REGNUM)));

  /* The window save event.  */
  add_reg_note (insn, REG_CFA_WINDOW_SAVE, const0_rtx);

  /* The CFA is %fp, the hard frame pointer.  */
  add_reg_note (insn, REG_CFA_DEF_CFA,
		plus_constant (Pmode, hard_frame_pointer_rtx,
			       INCOMING_FRAME_SP_OFFSET));

  return insn;
}

/* Generate an increment for the stack pointer.  */

static rtx
gen_stack_pointer_inc (rtx increment)
{
  return gen_rtx_SET (stack_pointer_rtx,
		      gen_rtx_PLUS (Pmode,
				    stack_pointer_rtx,
				    increment));
}

/* Expand the function prologue.  The prologue is responsible for reserving
   storage for the frame, saving the call-saved registers and loading the
   GOT register if needed.  */

void
sparc_expand_prologue (void)
{
  HOST_WIDE_INT size;
  rtx_insn *insn;

  /* Compute a snapshot of crtl->uses_only_leaf_regs.  Relying
     on the final value of the flag means deferring the prologue/epilogue
     expansion until just before the second scheduling pass, which is too
     late to emit multiple epilogues or return insns.

     Of course we are making the assumption that the value of the flag
     will not change between now and its final value.  Of the three parts
     of the formula, only the last one can reasonably vary.  Let's take a
     closer look, after assuming that the first two ones are set to true
     (otherwise the last value is effectively silenced).

     If only_leaf_regs_used returns false, the global predicate will also
     be false so the actual frame size calculated below will be positive.
     As a consequence, the save_register_window insn will be emitted in
     the instruction stream; now this insn explicitly references %fp
     which is not a leaf register so only_leaf_regs_used will always
     return false subsequently.

     If only_leaf_regs_used returns true, we hope that the subsequent
     optimization passes won't cause non-leaf registers to pop up.  For
     example, the regrename pass has special provisions to not rename to
     non-leaf registers in a leaf function.  */
  sparc_leaf_function_p
    = optimize > 0 && crtl->is_leaf && only_leaf_regs_used ();

  size = sparc_compute_frame_size (get_frame_size(), sparc_leaf_function_p);

  if (flag_stack_usage_info)
    current_function_static_stack_size = size;

  if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK
      || flag_stack_clash_protection)
    {
      if (crtl->is_leaf && !cfun->calls_alloca)
	{
	  if (size > PROBE_INTERVAL && size > get_stack_check_protect ())
	    sparc_emit_probe_stack_range (get_stack_check_protect (),
					  size - get_stack_check_protect ());
	}
      else if (size > 0)
	sparc_emit_probe_stack_range (get_stack_check_protect (), size);
    }

  if (size == 0)
    ; /* do nothing.  */
  else if (sparc_leaf_function_p)
    {
      rtx size_int_rtx = GEN_INT (-size);

      if (size <= 4096)
	insn = emit_insn (gen_stack_pointer_inc (size_int_rtx));
      else if (size <= 8192)
	{
	  insn = emit_insn (gen_stack_pointer_inc (GEN_INT (-4096)));
	  RTX_FRAME_RELATED_P (insn) = 1;

	  /* %sp is still the CFA register.  */
	  insn = emit_insn (gen_stack_pointer_inc (GEN_INT (4096 - size)));
	}
      else
	{
	  rtx size_rtx = gen_rtx_REG (Pmode, 1);
	  emit_move_insn (size_rtx, size_int_rtx);
	  insn = emit_insn (gen_stack_pointer_inc (size_rtx));
	  add_reg_note (insn, REG_FRAME_RELATED_EXPR,
			gen_stack_pointer_inc (size_int_rtx));
	}

      RTX_FRAME_RELATED_P (insn) = 1;
    }
  else
    {
      rtx size_int_rtx = GEN_INT (-size);

      if (size <= 4096)
	emit_window_save (size_int_rtx);
      else if (size <= 8192)
	{
	  emit_window_save (GEN_INT (-4096));

	  /* %sp is not the CFA register anymore.  */
	  emit_insn (gen_stack_pointer_inc (GEN_INT (4096 - size)));

	  /* Make sure no %fp-based store is issued until after the frame is
	     established.  The offset between the frame pointer and the stack
	     pointer is calculated relative to the value of the stack pointer
	     at the end of the function prologue, and moving instructions that
	     access the stack via the frame pointer between the instructions
	     that decrement the stack pointer could result in accessing the
	     register window save area, which is volatile.  */
	  emit_insn (gen_frame_blockage ());
	}
      else
	{
	  rtx size_rtx = gen_rtx_REG (Pmode, 1);
	  emit_move_insn (size_rtx, size_int_rtx);
	  emit_window_save (size_rtx);
	}
    }

  if (sparc_leaf_function_p)
    {
      sparc_frame_base_reg = stack_pointer_rtx;
      sparc_frame_base_offset = size + SPARC_STACK_BIAS;
    }
  else
    {
      sparc_frame_base_reg = hard_frame_pointer_rtx;
      sparc_frame_base_offset = SPARC_STACK_BIAS;
    }

  if (sparc_n_global_fp_regs > 0)
    emit_save_or_restore_global_fp_regs (sparc_frame_base_reg,
				         sparc_frame_base_offset
					   - sparc_apparent_frame_size,
					 SORR_SAVE);

  /* Advertise that the data calculated just above are now valid.  */
  sparc_prologue_data_valid_p = true;
}

/* Expand the function prologue.  The prologue is responsible for reserving
   storage for the frame, saving the call-saved registers and loading the
   GOT register if needed.  */

void
sparc_flat_expand_prologue (void)
{
  HOST_WIDE_INT size;
  rtx_insn *insn;

  sparc_leaf_function_p = optimize > 0 && crtl->is_leaf;

  size = sparc_compute_frame_size (get_frame_size(), sparc_leaf_function_p);

  if (flag_stack_usage_info)
    current_function_static_stack_size = size;

  if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK
      || flag_stack_clash_protection)
    {
      if (crtl->is_leaf && !cfun->calls_alloca)
	{
	  if (size > PROBE_INTERVAL && size > get_stack_check_protect ())
	    sparc_emit_probe_stack_range (get_stack_check_protect (),
					  size - get_stack_check_protect ());
	}
      else if (size > 0)
	sparc_emit_probe_stack_range (get_stack_check_protect (), size);
    }

  if (sparc_save_local_in_regs_p)
    emit_save_or_restore_local_in_regs (stack_pointer_rtx, SPARC_STACK_BIAS,
					SORR_SAVE);

  if (size == 0)
    ; /* do nothing.  */
  else
    {
      rtx size_int_rtx, size_rtx;

      size_rtx = size_int_rtx = GEN_INT (-size);

      /* We establish the frame (i.e. decrement the stack pointer) first, even
	 if we use a frame pointer, because we cannot clobber any call-saved
	 registers, including the frame pointer, if we haven't created a new
	 register save area, for the sake of compatibility with the ABI.  */
      if (size <= 4096)
	insn = emit_insn (gen_stack_pointer_inc (size_int_rtx));
      else if (size <= 8192 && !frame_pointer_needed)
	{
	  insn = emit_insn (gen_stack_pointer_inc (GEN_INT (-4096)));
	  RTX_FRAME_RELATED_P (insn) = 1;
	  insn = emit_insn (gen_stack_pointer_inc (GEN_INT (4096 - size)));
	}
      else
	{
	  size_rtx = gen_rtx_REG (Pmode, 1);
	  emit_move_insn (size_rtx, size_int_rtx);
	  insn = emit_insn (gen_stack_pointer_inc (size_rtx));
	  add_reg_note (insn, REG_CFA_ADJUST_CFA,
			gen_stack_pointer_inc (size_int_rtx));
	}
      RTX_FRAME_RELATED_P (insn) = 1;

      /* Ensure nothing is scheduled until after the frame is established.  */
      emit_insn (gen_blockage ());

      if (frame_pointer_needed)
	{
	  insn = emit_insn (gen_rtx_SET (hard_frame_pointer_rtx,
					 gen_rtx_MINUS (Pmode,
							stack_pointer_rtx,
							size_rtx)));
	  RTX_FRAME_RELATED_P (insn) = 1;

	  add_reg_note (insn, REG_CFA_ADJUST_CFA,
			gen_rtx_SET (hard_frame_pointer_rtx,
				     plus_constant (Pmode, stack_pointer_rtx,
						    size)));
	}

      if (return_addr_reg_needed_p (sparc_leaf_function_p))
	{
	  rtx o7 = gen_rtx_REG (Pmode, INCOMING_RETURN_ADDR_REGNUM);
	  rtx i7 = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);

	  insn = emit_move_insn (i7, o7);
	  RTX_FRAME_RELATED_P (insn) = 1;

	  add_reg_note (insn, REG_CFA_REGISTER, gen_rtx_SET (i7, o7));

	  /* Prevent this instruction from ever being considered dead,
	     even if this function has no epilogue.  */
	  emit_use (i7);
	}
    }

  if (frame_pointer_needed)
    {
      sparc_frame_base_reg = hard_frame_pointer_rtx;
      sparc_frame_base_offset = SPARC_STACK_BIAS;
    }
  else
    {
      sparc_frame_base_reg = stack_pointer_rtx;
      sparc_frame_base_offset = size + SPARC_STACK_BIAS;
    }

  if (sparc_n_global_fp_regs > 0)
    emit_save_or_restore_global_fp_regs (sparc_frame_base_reg,
				         sparc_frame_base_offset
					   - sparc_apparent_frame_size,
					 SORR_SAVE);

  /* Advertise that the data calculated just above are now valid.  */
  sparc_prologue_data_valid_p = true;
}

/* This function generates the assembly code for function entry, which boils
   down to emitting the necessary .register directives.  */

static void
sparc_asm_function_prologue (FILE *file)
{
  /* Check that the assumption we made in sparc_expand_prologue is valid.  */
  if (!TARGET_FLAT)
    gcc_assert (sparc_leaf_function_p == crtl->uses_only_leaf_regs);

  sparc_output_scratch_registers (file);
}

/* Expand the function epilogue, either normal or part of a sibcall.
   We emit all the instructions except the return or the call.  */

void
sparc_expand_epilogue (bool for_eh)
{
  HOST_WIDE_INT size = sparc_frame_size;

  if (cfun->calls_alloca)
    emit_insn (gen_frame_blockage ());

  if (sparc_n_global_fp_regs > 0)
    emit_save_or_restore_global_fp_regs (sparc_frame_base_reg,
				         sparc_frame_base_offset
					   - sparc_apparent_frame_size,
					 SORR_RESTORE);

  if (size == 0 || for_eh)
    ; /* do nothing.  */
  else if (sparc_leaf_function_p)
    {
      if (size <= 4096)
	emit_insn (gen_stack_pointer_inc (GEN_INT (size)));
      else if (size <= 8192)
	{
	  emit_insn (gen_stack_pointer_inc (GEN_INT (4096)));
	  emit_insn (gen_stack_pointer_inc (GEN_INT (size - 4096)));
	}
      else
	{
	  rtx reg = gen_rtx_REG (Pmode, 1);
	  emit_move_insn (reg, GEN_INT (size));
	  emit_insn (gen_stack_pointer_inc (reg));
	}
    }
}

/* Expand the function epilogue, either normal or part of a sibcall.
   We emit all the instructions except the return or the call.  */

void
sparc_flat_expand_epilogue (bool for_eh)
{
  HOST_WIDE_INT size = sparc_frame_size;

  if (sparc_n_global_fp_regs > 0)
    emit_save_or_restore_global_fp_regs (sparc_frame_base_reg,
				         sparc_frame_base_offset
					   - sparc_apparent_frame_size,
					 SORR_RESTORE);

  /* If we have a frame pointer, we'll need both to restore it before the
     frame is destroyed and use its current value in destroying the frame.
     Since we don't have an atomic way to do that in the flat window model,
     we save the current value into a temporary register (%g1).  */
  if (frame_pointer_needed && !for_eh)
    emit_move_insn (gen_rtx_REG (Pmode, 1), hard_frame_pointer_rtx);

  if (return_addr_reg_needed_p (sparc_leaf_function_p))
    emit_move_insn (gen_rtx_REG (Pmode, INCOMING_RETURN_ADDR_REGNUM),
		    gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM));

  if (sparc_save_local_in_regs_p)
    emit_save_or_restore_local_in_regs (sparc_frame_base_reg,
					sparc_frame_base_offset,
					SORR_RESTORE);

  if (size == 0 || for_eh)
    ; /* do nothing.  */
  else if (frame_pointer_needed)
    {
      /* Make sure the frame is destroyed after everything else is done.  */
      emit_insn (gen_blockage ());

      emit_move_insn (stack_pointer_rtx, gen_rtx_REG (Pmode, 1));
    }
  else
    {
      /* Likewise.  */
      emit_insn (gen_blockage ());

      if (size <= 4096)
	emit_insn (gen_stack_pointer_inc (GEN_INT (size)));
      else if (size <= 8192)
	{
	  emit_insn (gen_stack_pointer_inc (GEN_INT (4096)));
	  emit_insn (gen_stack_pointer_inc (GEN_INT (size - 4096)));
	}
      else
	{
	  rtx reg = gen_rtx_REG (Pmode, 1);
	  emit_move_insn (reg, GEN_INT (size));
	  emit_insn (gen_stack_pointer_inc (reg));
	}
    }
}

/* Return true if it is appropriate to emit `return' instructions in the
   body of a function.  */

bool
sparc_can_use_return_insn_p (void)
{
  return sparc_prologue_data_valid_p
	 && sparc_n_global_fp_regs == 0
	 && TARGET_FLAT
	    ? (sparc_frame_size == 0 && !sparc_save_local_in_regs_p)
	    : (sparc_frame_size == 0 || !sparc_leaf_function_p);
}

/* This function generates the assembly code for function exit.  */

static void
sparc_asm_function_epilogue (FILE *file)
{
  /* If the last two instructions of a function are "call foo; dslot;"
     the return address might point to the first instruction in the next
     function and we have to output a dummy nop for the sake of sane
     backtraces in such cases.  This is pointless for sibling calls since
     the return address is explicitly adjusted.  */

  rtx_insn *insn = get_last_insn ();

  rtx last_real_insn = prev_real_insn (insn);
  if (last_real_insn
      && NONJUMP_INSN_P (last_real_insn)
      && GET_CODE (PATTERN (last_real_insn)) == SEQUENCE)
    last_real_insn = XVECEXP (PATTERN (last_real_insn), 0, 0);

  if (last_real_insn
      && CALL_P (last_real_insn)
      && !SIBLING_CALL_P (last_real_insn))
    fputs("\tnop\n", file);

  sparc_output_deferred_case_vectors ();
}

/* Output a 'restore' instruction.  */

static void
output_restore (rtx pat)
{
  rtx operands[3];

  if (! pat)
    {
      fputs ("\t restore\n", asm_out_file);
      return;
    }

  gcc_assert (GET_CODE (pat) == SET);

  operands[0] = SET_DEST (pat);
  pat = SET_SRC (pat);

  switch (GET_CODE (pat))
    {
      case PLUS:
	operands[1] = XEXP (pat, 0);
	operands[2] = XEXP (pat, 1);
	output_asm_insn (" restore %r1, %2, %Y0", operands);
	break;
      case LO_SUM:
	operands[1] = XEXP (pat, 0);
	operands[2] = XEXP (pat, 1);
	output_asm_insn (" restore %r1, %%lo(%a2), %Y0", operands);
	break;
      case ASHIFT:
	operands[1] = XEXP (pat, 0);
	gcc_assert (XEXP (pat, 1) == const1_rtx);
	output_asm_insn (" restore %r1, %r1, %Y0", operands);
	break;
      default:
	operands[1] = pat;
	output_asm_insn (" restore %%g0, %1, %Y0", operands);
	break;
    }
}

/* Output a return.  */

const char *
output_return (rtx_insn *insn)
{
  if (crtl->calls_eh_return)
    {
      /* If the function uses __builtin_eh_return, the eh_return
	 machinery occupies the delay slot.  */
      gcc_assert (!final_sequence);

      if (flag_delayed_branch)
	{
	  if (!TARGET_FLAT && TARGET_V9)
	    fputs ("\treturn\t%i7+8\n", asm_out_file);
	  else
	    {
	      if (!TARGET_FLAT)
		fputs ("\trestore\n", asm_out_file);

	      fputs ("\tjmp\t%o7+8\n", asm_out_file);
	    }

	  fputs ("\t add\t%sp, %g1, %sp\n", asm_out_file);
	}
      else
	{
	  if (!TARGET_FLAT)
	    fputs ("\trestore\n", asm_out_file);

	  fputs ("\tadd\t%sp, %g1, %sp\n", asm_out_file);
	  fputs ("\tjmp\t%o7+8\n\t nop\n", asm_out_file);
	}
    }
  else if (sparc_leaf_function_p || TARGET_FLAT)
    {
      /* This is a leaf or flat function so we don't have to bother restoring
	 the register window, which frees us from dealing with the convoluted
	 semantics of restore/return.  We simply output the jump to the
	 return address and the insn in the delay slot (if any).  */

      return "jmp\t%%o7+%)%#";
    }
  else
    {
      /* This is a regular function so we have to restore the register window.
	 We may have a pending insn for the delay slot, which will be either
	 combined with the 'restore' instruction or put in the delay slot of
	 the 'return' instruction.  */

      if (final_sequence)
	{
	  rtx_insn *delay;
	  rtx pat;

	  delay = NEXT_INSN (insn);
	  gcc_assert (delay);

	  pat = PATTERN (delay);

	  if (TARGET_V9 && ! epilogue_renumber (&pat, 1))
	    {
	      epilogue_renumber (&pat, 0);
	      return "return\t%%i7+%)%#";
	    }
	  else
	    {
	      output_asm_insn ("jmp\t%%i7+%)", NULL);

	      /* We're going to output the insn in the delay slot manually.
		 Make sure to output its source location first.  */
	      PATTERN (delay) = gen_blockage ();
	      INSN_CODE (delay) = -1;
	      final_scan_insn (delay, asm_out_file, optimize, 0, NULL);
	      INSN_LOCATION (delay) = UNKNOWN_LOCATION;

	      output_restore (pat);
	    }
	}
      else
        {
	  /* The delay slot is empty.  */
	  if (TARGET_V9)
	    return "return\t%%i7+%)\n\t nop";
	  else if (flag_delayed_branch)
	    return "jmp\t%%i7+%)\n\t restore";
	  else
	    return "restore\n\tjmp\t%%o7+%)\n\t nop";
	}
    }

  return "";
}

/* Output a sibling call.  */

const char *
output_sibcall (rtx_insn *insn, rtx call_operand)
{
  rtx operands[1];

  gcc_assert (flag_delayed_branch);

  operands[0] = call_operand;

  if (sparc_leaf_function_p || TARGET_FLAT)
    {
      /* This is a leaf or flat function so we don't have to bother restoring
	 the register window.  We simply output the jump to the function and
	 the insn in the delay slot (if any).  */

      gcc_assert (!(LEAF_SIBCALL_SLOT_RESERVED_P && final_sequence));

      if (final_sequence)
	output_asm_insn ("sethi\t%%hi(%a0), %%g1\n\tjmp\t%%g1 + %%lo(%a0)%#",
			 operands);
      else
	/* Use or with rs2 %%g0 instead of mov, so that as/ld can optimize
	   it into branch if possible.  */
	output_asm_insn ("or\t%%o7, %%g0, %%g1\n\tcall\t%a0, 0\n\t or\t%%g1, %%g0, %%o7",
			 operands);
    }
  else
    {
      /* This is a regular function so we have to restore the register window.
	 We may have a pending insn for the delay slot, which will be combined
	 with the 'restore' instruction.  */

      output_asm_insn ("call\t%a0, 0", operands);

      if (final_sequence)
	{
	  rtx_insn *delay;
	  rtx pat;

	  delay = NEXT_INSN (insn);
	  gcc_assert (delay);

	  pat = PATTERN (delay);

	  /* We're going to output the insn in the delay slot manually.
	     Make sure to output its source location first.  */
	  PATTERN (delay) = gen_blockage ();
	  INSN_CODE (delay) = -1;
	  final_scan_insn (delay, asm_out_file, optimize, 0, NULL);
	  INSN_LOCATION (delay) = UNKNOWN_LOCATION;

	  output_restore (pat);
	}
      else
	output_restore (NULL_RTX);
    }

  return "";
}

/* Functions for handling argument passing.

   For 32-bit, the first 6 args are normally in registers and the rest are
   pushed.  Any arg that starts within the first 6 words is at least
   partially passed in a register unless its data type forbids.

   For 64-bit, the argument registers are laid out as an array of 16 elements
   and arguments are added sequentially.  The first 6 int args and up to the
   first 16 fp args (depending on size) are passed in regs.

   Slot    Stack   Integral   Float   Float in structure   Double   Long Double
   ----    -----   --------   -----   ------------------   ------   -----------
    15   [SP+248]              %f31       %f30,%f31         %d30
    14   [SP+240]              %f29       %f28,%f29         %d28       %q28
    13   [SP+232]              %f27       %f26,%f27         %d26
    12   [SP+224]              %f25       %f24,%f25         %d24       %q24
    11   [SP+216]              %f23       %f22,%f23         %d22
    10   [SP+208]              %f21       %f20,%f21         %d20       %q20
     9   [SP+200]              %f19       %f18,%f19         %d18
     8   [SP+192]              %f17       %f16,%f17         %d16       %q16
     7   [SP+184]              %f15       %f14,%f15         %d14
     6   [SP+176]              %f13       %f12,%f13         %d12       %q12
     5   [SP+168]     %o5      %f11       %f10,%f11         %d10
     4   [SP+160]     %o4       %f9        %f8,%f9           %d8        %q8
     3   [SP+152]     %o3       %f7        %f6,%f7           %d6
     2   [SP+144]     %o2       %f5        %f4,%f5           %d4        %q4
     1   [SP+136]     %o1       %f3        %f2,%f3           %d2
     0   [SP+128]     %o0       %f1        %f0,%f1           %d0        %q0

   Here SP = %sp if -mno-stack-bias or %sp+stack_bias otherwise.

   Integral arguments are always passed as 64-bit quantities appropriately
   extended.

   Passing of floating point values is handled as follows.
   If a prototype is in scope:
     If the value is in a named argument (i.e. not a stdarg function or a
     value not part of the `...') then the value is passed in the appropriate
     fp reg.
     If the value is part of the `...' and is passed in one of the first 6
     slots then the value is passed in the appropriate int reg.
     If the value is part of the `...' and is not passed in one of the first 6
     slots then the value is passed in memory.
   If a prototype is not in scope:
     If the value is one of the first 6 arguments the value is passed in the
     appropriate integer reg and the appropriate fp reg.
     If the value is not one of the first 6 arguments the value is passed in
     the appropriate fp reg and in memory.


   Summary of the calling conventions implemented by GCC on the SPARC:

   32-bit ABI:
                                size      argument     return value

      small integer              <4       int. reg.      int. reg.
      word                        4       int. reg.      int. reg.
      double word                 8       int. reg.      int. reg.

      _Complex small integer     <8       int. reg.      int. reg.
      _Complex word               8       int. reg.      int. reg.
      _Complex double word       16        memory        int. reg.

      vector integer            <=8       int. reg.       FP reg.
      vector integer             >8        memory         memory

      float                       4       int. reg.       FP reg.
      double                      8       int. reg.       FP reg.
      long double                16        memory         memory

      _Complex float              8        memory         FP reg.
      _Complex double            16        memory         FP reg.
      _Complex long double       32        memory         FP reg.

      vector float              any        memory         memory

      aggregate                 any        memory         memory



    64-bit ABI:
                                size      argument     return value

      small integer              <8       int. reg.      int. reg.
      word                        8       int. reg.      int. reg.
      double word                16       int. reg.      int. reg.

      _Complex small integer    <16       int. reg.      int. reg.
      _Complex word              16       int. reg.      int. reg.
      _Complex double word       32        memory        int. reg.

      vector integer           <=16        FP reg.        FP reg.
      vector integer       16<s<=32        memory         FP reg.
      vector integer            >32        memory         memory

      float                       4        FP reg.        FP reg.
      double                      8        FP reg.        FP reg.
      long double                16        FP reg.        FP reg.

      _Complex float              8        FP reg.        FP reg.
      _Complex double            16        FP reg.        FP reg.
      _Complex long double       32        memory         FP reg.

      vector float             <=16        FP reg.        FP reg.
      vector float         16<s<=32        memory         FP reg.
      vector float              >32        memory         memory

      aggregate                <=16         reg.           reg.
      aggregate            16<s<=32        memory          reg.
      aggregate                 >32        memory         memory



Note #1: complex floating-point types follow the extended SPARC ABIs as
implemented by the Sun compiler.

Note #2: integer vector types follow the scalar floating-point types
conventions to match what is implemented by the Sun VIS SDK.

Note #3: floating-point vector types follow the aggregate types
conventions.  */


/* Maximum number of int regs for args.  */
#define SPARC_INT_ARG_MAX 6
/* Maximum number of fp regs for args.  */
#define SPARC_FP_ARG_MAX 16
/* Number of words (partially) occupied for a given size in units.  */
#define CEIL_NWORDS(SIZE) CEIL((SIZE), UNITS_PER_WORD)

/* Handle the INIT_CUMULATIVE_ARGS macro.
   Initialize a variable CUM of type CUMULATIVE_ARGS
   for a call to a function whose data type is FNTYPE.
   For a library call, FNTYPE is 0.  */

void
init_cumulative_args (struct sparc_args *cum, tree fntype, rtx, tree)
{
  cum->words = 0;
  cum->prototype_p = fntype && prototype_p (fntype);
  cum->libcall_p = !fntype;
}

/* Handle promotion of pointer and integer arguments.  */

static machine_mode
sparc_promote_function_mode (const_tree type, machine_mode mode,
			     int *punsignedp, const_tree, int)
{
  if (type && POINTER_TYPE_P (type))
    {
      *punsignedp = POINTERS_EXTEND_UNSIGNED;
      return Pmode;
    }

  /* Integral arguments are passed as full words, as per the ABI.  */
  if (GET_MODE_CLASS (mode) == MODE_INT
      && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
    return word_mode;

  return mode;
}

/* Handle the TARGET_STRICT_ARGUMENT_NAMING target hook.  */

static bool
sparc_strict_argument_naming (cumulative_args_t ca ATTRIBUTE_UNUSED)
{
  return TARGET_ARCH64 ? true : false;
}

/* Handle the TARGET_PASS_BY_REFERENCE target hook.
   Specify whether to pass the argument by reference.  */

static bool
sparc_pass_by_reference (cumulative_args_t, const function_arg_info &arg)
{
  tree type = arg.type;
  machine_mode mode = arg.mode;
  if (TARGET_ARCH32)
    /* Original SPARC 32-bit ABI says that structures and unions,
       and quad-precision floats are passed by reference.
       All other base types are passed in registers.

       Extended ABI (as implemented by the Sun compiler) says that all
       complex floats are passed by reference.  Pass complex integers
       in registers up to 8 bytes.  More generally, enforce the 2-word
       cap for passing arguments in registers.

       Vector ABI (as implemented by the Sun VIS SDK) says that integer
       vectors are passed like floats of the same size, that is in
       registers up to 8 bytes.  Pass all vector floats by reference
       like structure and unions.  */
    return ((type && (AGGREGATE_TYPE_P (type) || VECTOR_FLOAT_TYPE_P (type)))
	    || mode == SCmode
	    /* Catch CDImode, TFmode, DCmode and TCmode.  */
	    || GET_MODE_SIZE (mode) > 8
	    || (type
		&& VECTOR_TYPE_P (type)
		&& (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8));
  else
    /* Original SPARC 64-bit ABI says that structures and unions
       smaller than 16 bytes are passed in registers, as well as
       all other base types.

       Extended ABI (as implemented by the Sun compiler) says that
       complex floats are passed in registers up to 16 bytes.  Pass
       all complex integers in registers up to 16 bytes.  More generally,
       enforce the 2-word cap for passing arguments in registers.

       Vector ABI (as implemented by the Sun VIS SDK) says that integer
       vectors are passed like floats of the same size, that is in
       registers (up to 16 bytes).  Pass all vector floats like structure
       and unions.  */
    return ((type
	     && (AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type))
	     && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 16)
	    /* Catch CTImode and TCmode.  */
	    || GET_MODE_SIZE (mode) > 16);
}

/* Traverse the record TYPE recursively and call FUNC on its fields.
   NAMED is true if this is for a named parameter.  DATA is passed
   to FUNC for each field.  OFFSET is the starting position and
   PACKED is true if we are inside a packed record.  */

template <typename T, void Func (const_tree, int, bool, T*)>
static void
traverse_record_type (const_tree type, bool named, T *data,
		      int offset = 0, bool packed = false)
{
  /* The ABI obviously doesn't specify how packed structures are passed.
     These are passed in integer regs if possible, otherwise memory.  */
  if (!packed)
    for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
      if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field))
	{
	  packed = true;
	  break;
	}

  /* Walk the real fields, but skip those with no size or a zero size.
     ??? Fields with variable offset are handled as having zero offset.  */
  for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
    if (TREE_CODE (field) == FIELD_DECL)
      {
	if (!DECL_SIZE (field) || integer_zerop (DECL_SIZE (field)))
	  continue;

	int bitpos = offset;
	if (TREE_CODE (DECL_FIELD_OFFSET (field)) == INTEGER_CST)
	  bitpos += int_bit_position (field);

	tree field_type = TREE_TYPE (field);
	if (TREE_CODE (field_type) == RECORD_TYPE)
	  traverse_record_type<T, Func> (field_type, named, data, bitpos,
					 packed);
	else
	  {
	    const bool fp_type
	      = FLOAT_TYPE_P (field_type) || VECTOR_TYPE_P (field_type);
	    Func (field, bitpos, fp_type && named && !packed && TARGET_FPU,
		  data);
	  }
      }
}

/* Handle recursive register classifying for structure layout.  */

typedef struct
{
  bool fp_regs;		/* true if field eligible to FP registers.  */
  bool fp_regs_in_first_word;	/* true if such field in first word.  */
} classify_data_t;

/* A subroutine of function_arg_slotno.  Classify the field.  */

inline void
classify_registers (const_tree, int bitpos, bool fp, classify_data_t *data)
{
  if (fp)
    {
      data->fp_regs = true;
      if (bitpos < BITS_PER_WORD)
	data->fp_regs_in_first_word = true;
    }
}

/* Compute the slot number to pass an argument in.
   Return the slot number or -1 if passing on the stack.

   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).
   INCOMING is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG.
   *PREGNO records the register number to use if scalar type.
   *PPADDING records the amount of padding needed in words.  */

static int
function_arg_slotno (const struct sparc_args *cum, machine_mode mode,
		     const_tree type, bool named, bool incoming,
		     int *pregno, int *ppadding)
{
  const int regbase
    = incoming ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST;
  int slotno = cum->words, regno;
  enum mode_class mclass = GET_MODE_CLASS (mode);

  /* Silence warnings in the callers.  */
  *pregno = -1;
  *ppadding = -1;

  if (type && TREE_ADDRESSABLE (type))
    return -1;

  /* In 64-bit mode, objects requiring 16-byte alignment get it.  */
  if (TARGET_ARCH64
      && (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode)) >= 128
      && (slotno & 1) != 0)
    {
      slotno++;
      *ppadding = 1;
    }
  else
    *ppadding = 0;

  /* Vector types deserve special treatment because they are polymorphic wrt
     their mode, depending upon whether VIS instructions are enabled.  */
  if (type && VECTOR_TYPE_P (type))
    {
      if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
	{
	  /* The SPARC port defines no floating-point vector modes.  */
	  gcc_assert (mode == BLKmode);
	}
      else
	{
	  /* Integer vector types should either have a vector
	     mode or an integral mode, because we are guaranteed
	     by pass_by_reference that their size is not greater
	     than 16 bytes and TImode is 16-byte wide.  */
	  gcc_assert (mode != BLKmode);

	  /* Integer vectors are handled like floats as per
	     the Sun VIS SDK.  */
	  mclass = MODE_FLOAT;
	}
    }

  switch (mclass)
    {
    case MODE_FLOAT:
    case MODE_COMPLEX_FLOAT:
    case MODE_VECTOR_INT:
      if (TARGET_ARCH64 && TARGET_FPU && named)
	{
	  /* If all arg slots are filled, then must pass on stack.  */
	  if (slotno >= SPARC_FP_ARG_MAX)
	    return -1;

	  regno = SPARC_FP_ARG_FIRST + slotno * 2;
	  /* Arguments filling only one single FP register are
	     right-justified in the outer double FP register.  */
	  if (GET_MODE_SIZE (mode) <= 4)
	    regno++;
	  break;
	}
      /* fallthrough */

    case MODE_INT:
    case MODE_COMPLEX_INT:
      /* If all arg slots are filled, then must pass on stack.  */
      if (slotno >= SPARC_INT_ARG_MAX)
	return -1;

      regno = regbase + slotno;
      break;

    case MODE_RANDOM:
      /* MODE is VOIDmode when generating the actual call.  */
      if (mode == VOIDmode)
	return -1;

      if (TARGET_64BIT && TARGET_FPU && named
	  && type
	  && (TREE_CODE (type) == RECORD_TYPE || VECTOR_TYPE_P (type)))
	{
	  /* If all arg slots are filled, then must pass on stack.  */
	  if (slotno >= SPARC_FP_ARG_MAX)
	    return -1;

	  if (TREE_CODE (type) == RECORD_TYPE)
	    {
	      classify_data_t data = { false, false };
	      traverse_record_type<classify_data_t, classify_registers>
		(type, named, &data);

	      if (data.fp_regs)
		{
		  /* If all FP slots are filled except for the last one and
		     there is no FP field in the first word, then must pass
		     on stack.  */
		  if (slotno >= SPARC_FP_ARG_MAX - 1
		      && !data.fp_regs_in_first_word)
		    return -1;
		}
	      else
		{
		  /* If all int slots are filled, then must pass on stack.  */
		  if (slotno >= SPARC_INT_ARG_MAX)
		    return -1;
		}

	      /* PREGNO isn't set since both int and FP regs can be used.  */
	      return slotno;
	    }

	  regno = SPARC_FP_ARG_FIRST + slotno * 2;
	}
      else
	{
	  /* If all arg slots are filled, then must pass on stack.  */
	  if (slotno >= SPARC_INT_ARG_MAX)
	    return -1;

	  regno = regbase + slotno;
	}
      break;

    default :
      gcc_unreachable ();
    }

  *pregno = regno;
  return slotno;
}

/* Handle recursive register counting/assigning for structure layout.  */

typedef struct
{
  int slotno;		/* slot number of the argument.  */
  int regbase;		/* regno of the base register.  */
  int intoffset;	/* offset of the first pending integer field.  */
  int nregs;		/* number of words passed in registers.  */
  bool stack;		/* true if part of the argument is on the stack.  */
  rtx ret;		/* return expression being built.  */
} assign_data_t;

/* A subroutine of function_arg_record_value.  Compute the number of integer
   registers to be assigned between PARMS->intoffset and BITPOS.  Return
   true if at least one integer register is assigned or false otherwise.  */

static bool
compute_int_layout (int bitpos, assign_data_t *data, int *pnregs)
{
  if (data->intoffset < 0)
    return false;

  const int intoffset = data->intoffset;
  data->intoffset = -1;

  const int this_slotno = data->slotno + intoffset / BITS_PER_WORD;
  const unsigned int startbit = ROUND_DOWN (intoffset, BITS_PER_WORD);
  const unsigned int endbit = ROUND_UP (bitpos, BITS_PER_WORD);
  int nregs = (endbit - startbit) / BITS_PER_WORD;

  if (nregs > 0 && nregs > SPARC_INT_ARG_MAX - this_slotno)
    {
      nregs = SPARC_INT_ARG_MAX - this_slotno;

      /* We need to pass this field (partly) on the stack.  */
      data->stack = 1;
    }

  if (nregs <= 0)
    return false;

  *pnregs = nregs;
  return true;
}

/* A subroutine of function_arg_record_value.  Compute the number and the mode
   of the FP registers to be assigned for FIELD.  Return true if at least one
   FP register is assigned or false otherwise.  */

static bool
compute_fp_layout (const_tree field, int bitpos, assign_data_t *data,
		   int *pnregs, machine_mode *pmode)
{
  const int this_slotno = data->slotno + bitpos / BITS_PER_WORD;
  machine_mode mode = DECL_MODE (field);
  int nregs, nslots;

  /* Slots are counted as words while regs are counted as having the size of
     the (inner) mode.  */
  if (VECTOR_TYPE_P (TREE_TYPE (field)) && mode == BLKmode)
    {
      mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (field)));
      nregs = TYPE_VECTOR_SUBPARTS (TREE_TYPE (field));
    }
  else if (TREE_CODE (TREE_TYPE (field)) == COMPLEX_TYPE)
    {
      mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (field)));
      nregs = 2;
    }
  else
    nregs = 1;

  nslots = CEIL_NWORDS (nregs * GET_MODE_SIZE (mode));

  if (nslots > SPARC_FP_ARG_MAX - this_slotno)
    {
      nslots = SPARC_FP_ARG_MAX - this_slotno;
      nregs = (nslots * UNITS_PER_WORD) / GET_MODE_SIZE (mode);

      /* We need to pass this field (partly) on the stack.  */
      data->stack = 1;

      if (nregs <= 0)
	return false;
    }

  *pnregs = nregs;
  *pmode = mode;
  return true;
}

/* A subroutine of function_arg_record_value.  Count the number of registers
   to be assigned for FIELD and between PARMS->intoffset and BITPOS.  */

inline void
count_registers (const_tree field, int bitpos, bool fp, assign_data_t *data)
{
  if (fp)
    {
      int nregs;
      machine_mode mode;

      if (compute_int_layout (bitpos, data, &nregs))
	data->nregs += nregs;

      if (compute_fp_layout (field, bitpos, data, &nregs, &mode))
	data->nregs += nregs;
    }
  else
    {
      if (data->intoffset < 0)
	data->intoffset = bitpos;
    }
}

/* A subroutine of function_arg_record_value.  Assign the bits of the
   structure between PARMS->intoffset and BITPOS to integer registers.  */

static void
assign_int_registers (int bitpos, assign_data_t *data)
{
  int intoffset = data->intoffset;
  machine_mode mode;
  int nregs;

  if (!compute_int_layout (bitpos, data, &nregs))
    return;

  /* If this is the trailing part of a word, only load that much into
     the register.  Otherwise load the whole register.  Note that in
     the latter case we may pick up unwanted bits.  It's not a problem
     at the moment but may wish to revisit.  */
  if (intoffset % BITS_PER_WORD != 0)
    mode = smallest_int_mode_for_size (BITS_PER_WORD
				       - intoffset % BITS_PER_WORD);
  else
    mode = word_mode;

  const int this_slotno = data->slotno + intoffset / BITS_PER_WORD;
  unsigned int regno = data->regbase + this_slotno;
  intoffset /= BITS_PER_UNIT;

  do
    {
      rtx reg = gen_rtx_REG (mode, regno);
      XVECEXP (data->ret, 0, data->stack + data->nregs)
	= gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset));
      data->nregs += 1;
      mode = word_mode;
      regno += 1;
      intoffset = (intoffset | (UNITS_PER_WORD - 1)) + 1;
    }
  while (--nregs > 0);
}

/* A subroutine of function_arg_record_value.  Assign FIELD at position
   BITPOS to FP registers.  */

static void
assign_fp_registers (const_tree field, int bitpos, assign_data_t *data)
{
  int nregs;
  machine_mode mode;

  if (!compute_fp_layout (field, bitpos, data, &nregs, &mode))
    return;

  const int this_slotno = data->slotno + bitpos / BITS_PER_WORD;
  int regno = SPARC_FP_ARG_FIRST + this_slotno * 2;
  if (GET_MODE_SIZE (mode) <= 4 && (bitpos & 32) != 0)
    regno++;
  int pos = bitpos / BITS_PER_UNIT;

  do
    {
      rtx reg = gen_rtx_REG (mode, regno);
      XVECEXP (data->ret, 0, data->stack + data->nregs)
	= gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (pos));
      data->nregs += 1;
      regno += GET_MODE_SIZE (mode) / 4;
      pos += GET_MODE_SIZE (mode);
    }
  while (--nregs > 0);
}

/* A subroutine of function_arg_record_value.  Assign FIELD and the bits of
   the structure between PARMS->intoffset and BITPOS to registers.  */

inline void
assign_registers (const_tree field, int bitpos, bool fp, assign_data_t *data)
{
  if (fp)
    {
      assign_int_registers (bitpos, data);

      assign_fp_registers (field, bitpos, data);
    }
  else
    {
      if (data->intoffset < 0)
	data->intoffset = bitpos;
    }
}

/* Used by function_arg and function_value to implement the complex
   conventions of the 64-bit ABI for passing and returning structures.
   Return an expression valid as a return value for the FUNCTION_ARG
   and TARGET_FUNCTION_VALUE.

   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   MODE is the argument's machine mode.
   SLOTNO is the index number of the argument's slot in the parameter array.
   NAMED is true if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).
   REGBASE is the regno of the base register for the parameter array.  */

static rtx
function_arg_record_value (const_tree type, machine_mode mode,
			   int slotno, bool named, int regbase)
{
  const int size = int_size_in_bytes (type);
  assign_data_t data;
  int nregs;

  data.slotno = slotno;
  data.regbase = regbase;

  /* Count how many registers we need.  */
  data.nregs = 0;
  data.intoffset = 0;
  data.stack = false;
  traverse_record_type<assign_data_t, count_registers> (type, named, &data);

  /* Take into account pending integer fields.  */
  if (compute_int_layout (size * BITS_PER_UNIT, &data, &nregs))
    data.nregs += nregs;

  /* Allocate the vector and handle some annoying special cases.  */
  nregs = data.nregs;

  if (nregs == 0)
    {
      /* ??? Empty structure has no value?  Duh?  */
      if (size <= 0)
	{
	  /* Though there's nothing really to store, return a word register
	     anyway so the rest of gcc doesn't go nuts.  Returning a PARALLEL
	     leads to breakage due to the fact that there are zero bytes to
	     load.  */
	  return gen_rtx_REG (mode, regbase);
	}

      /* ??? C++ has structures with no fields, and yet a size.  Give up
	 for now and pass everything back in integer registers.  */
      nregs = CEIL_NWORDS (size);
      if (nregs + slotno > SPARC_INT_ARG_MAX)
	nregs = SPARC_INT_ARG_MAX - slotno;
    }

  gcc_assert (nregs > 0);

  data.ret = gen_rtx_PARALLEL (mode, rtvec_alloc (data.stack + nregs));

  /* If at least one field must be passed on the stack, generate
     (parallel [(expr_list (nil) ...) ...]) so that all fields will
     also be passed on the stack.  We can't do much better because the
     semantics of TARGET_ARG_PARTIAL_BYTES doesn't handle the case
     of structures for which the fields passed exclusively in registers
     are not at the beginning of the structure.  */
  if (data.stack)
    XVECEXP (data.ret, 0, 0)
      = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);

  /* Assign the registers.  */
  data.nregs = 0;
  data.intoffset = 0;
  traverse_record_type<assign_data_t, assign_registers> (type, named, &data);

  /* Assign pending integer fields.  */
  assign_int_registers (size * BITS_PER_UNIT, &data);

  gcc_assert (data.nregs == nregs);

  return data.ret;
}

/* Used by function_arg and function_value to implement the conventions
   of the 64-bit ABI for passing and returning unions.
   Return an expression valid as a return value for the FUNCTION_ARG
   and TARGET_FUNCTION_VALUE.

   SIZE is the size in bytes of the union.
   MODE is the argument's machine mode.
   SLOTNO is the index number of the argument's slot in the parameter array.
   REGNO is the hard register the union will be passed in.  */

static rtx
function_arg_union_value (int size, machine_mode mode, int slotno, int regno)
{
  unsigned int nwords;

  /* See comment in function_arg_record_value for empty structures.  */
  if (size <= 0)
    return gen_rtx_REG (mode, regno);

  if (slotno == SPARC_INT_ARG_MAX - 1)
    nwords = 1;
  else
    nwords = CEIL_NWORDS (size);

  rtx regs = gen_rtx_PARALLEL (mode, rtvec_alloc (nwords));

  /* Unions are passed left-justified.  */
  for (unsigned int i = 0; i < nwords; i++)
    XVECEXP (regs, 0, i)
    = gen_rtx_EXPR_LIST (VOIDmode,
			 gen_rtx_REG (word_mode, regno + i),
			 GEN_INT (UNITS_PER_WORD * i));

  return regs;
}

/* Used by function_arg and function_value to implement the conventions
   of the 64-bit ABI for passing and returning BLKmode vectors.
   Return an expression valid as a return value for the FUNCTION_ARG
   and TARGET_FUNCTION_VALUE.

   SIZE is the size in bytes of the vector.
   SLOTNO is the index number of the argument's slot in the parameter array.
   NAMED is true if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).
   REGNO is the hard register the vector will be passed in.  */

static rtx
function_arg_vector_value (int size, int slotno, bool named, int regno)
{
  const int mult = (named ? 2 : 1);
  unsigned int nwords;

  if (slotno == (named ? SPARC_FP_ARG_MAX : SPARC_INT_ARG_MAX) - 1)
    nwords = 1;
  else
    nwords = CEIL_NWORDS (size);

  rtx regs = gen_rtx_PARALLEL (BLKmode, rtvec_alloc (nwords));

  if (size < UNITS_PER_WORD)
    XVECEXP (regs, 0, 0)
      = gen_rtx_EXPR_LIST (VOIDmode,
			   gen_rtx_REG (SImode, regno),
			   const0_rtx);
  else
    for (unsigned int i = 0; i < nwords; i++)
      XVECEXP (regs, 0, i)
	= gen_rtx_EXPR_LIST (VOIDmode,
			     gen_rtx_REG (word_mode, regno + i * mult),
			     GEN_INT (i * UNITS_PER_WORD));

  return regs;
}

/* Determine where to put an argument to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   ARG is a description of the argument.
   INCOMING_P is false for TARGET_FUNCTION_ARG, true for
    TARGET_FUNCTION_INCOMING_ARG.  */

static rtx
sparc_function_arg_1 (cumulative_args_t cum_v, const function_arg_info &arg,
		      bool incoming)
{
  const CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  const int regbase
    = incoming ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST;
  int slotno, regno, padding;
  tree type = arg.type;
  machine_mode mode = arg.mode;
  enum mode_class mclass = GET_MODE_CLASS (mode);
  bool named = arg.named;

  slotno
    = function_arg_slotno (cum, mode, type, named, incoming, &regno, &padding);
  if (slotno == -1)
    return 0;

  /* Integer vectors are handled like floats as per the Sun VIS SDK.  */
  if (type && VECTOR_INTEGER_TYPE_P (type))
    mclass = MODE_FLOAT;

  if (TARGET_ARCH32)
    return gen_rtx_REG (mode, regno);

  /* Structures up to 16 bytes in size are passed in arg slots on the stack
     and are promoted to registers if possible.  */
  if (type && TREE_CODE (type) == RECORD_TYPE)
    {
      const int size = int_size_in_bytes (type);
      gcc_assert (size <= 16);

      return function_arg_record_value (type, mode, slotno, named, regbase);
    }

  /* Unions up to 16 bytes in size are passed in integer registers.  */
  else if (type && TREE_CODE (type) == UNION_TYPE)
    {
      const int size = int_size_in_bytes (type);
      gcc_assert (size <= 16);

      return function_arg_union_value (size, mode, slotno, regno);
    }

   /* Floating-point vectors up to 16 bytes are passed in registers.  */
  else if (type && VECTOR_TYPE_P (type) && mode == BLKmode)
    {
      const int size = int_size_in_bytes (type);
      gcc_assert (size <= 16);

      return function_arg_vector_value (size, slotno, named, regno);
    }

  /* v9 fp args in reg slots beyond the int reg slots get passed in regs
     but also have the slot allocated for them.
     If no prototype is in scope fp values in register slots get passed
     in two places, either fp regs and int regs or fp regs and memory.  */
  else if ((mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT)
	   && SPARC_FP_REG_P (regno))
    {
      rtx reg = gen_rtx_REG (mode, regno);
      if (cum->prototype_p || cum->libcall_p)
	return reg;
      else
	{
	  rtx v0, v1;

	  if ((regno - SPARC_FP_ARG_FIRST) < SPARC_INT_ARG_MAX * 2)
	    {
	      int intreg;

	      /* On incoming, we don't need to know that the value
		 is passed in %f0 and %i0, and it confuses other parts
		 causing needless spillage even on the simplest cases.  */
	      if (incoming)
		return reg;

	      intreg = (SPARC_OUTGOING_INT_ARG_FIRST
			+ (regno - SPARC_FP_ARG_FIRST) / 2);

	      v0 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx);
	      v1 = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode, intreg),
				      const0_rtx);
	      return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1));
	    }
	  else
	    {
	      v0 = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
	      v1 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx);
	      return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1));
	    }
	}
    }

  /* All other aggregate types are passed in an integer register in a mode
     corresponding to the size of the type.  */
  else if (type && AGGREGATE_TYPE_P (type))
    {
      const int size = int_size_in_bytes (type);
      gcc_assert (size <= 16);

      mode = int_mode_for_size (size * BITS_PER_UNIT, 0).else_blk ();
    }

  return gen_rtx_REG (mode, regno);
}

/* Handle the TARGET_FUNCTION_ARG target hook.  */

static rtx
sparc_function_arg (cumulative_args_t cum, const function_arg_info &arg)
{
  return sparc_function_arg_1 (cum, arg, false);
}

/* Handle the TARGET_FUNCTION_INCOMING_ARG target hook.  */

static rtx
sparc_function_incoming_arg (cumulative_args_t cum,
			     const function_arg_info &arg)
{
  return sparc_function_arg_1 (cum, arg, true);
}

/* For sparc64, objects requiring 16 byte alignment are passed that way.  */

static unsigned int
sparc_function_arg_boundary (machine_mode mode, const_tree type)
{
  return ((TARGET_ARCH64
	   && (GET_MODE_ALIGNMENT (mode) == 128
	       || (type && TYPE_ALIGN (type) == 128)))
	  ? 128
	  : PARM_BOUNDARY);
}

/* For an arg passed partly in registers and partly in memory,
   this is the number of bytes of registers used.
   For args passed entirely in registers or entirely in memory, zero.

   Any arg that starts in the first 6 regs but won't entirely fit in them
   needs partial registers on v8.  On v9, structures with integer
   values in arg slots 5,6 will be passed in %o5 and SP+176, and complex fp
   values that begin in the last fp reg [where "last fp reg" varies with the
   mode] will be split between that reg and memory.  */

static int
sparc_arg_partial_bytes (cumulative_args_t cum, const function_arg_info &arg)
{
  int slotno, regno, padding;

  /* We pass false for incoming here, it doesn't matter.  */
  slotno = function_arg_slotno (get_cumulative_args (cum), arg.mode, arg.type,
				arg.named, false, &regno, &padding);

  if (slotno == -1)
    return 0;

  if (TARGET_ARCH32)
    {
      /* We are guaranteed by pass_by_reference that the size of the
	 argument is not greater than 8 bytes, so we only need to return
	 one word if the argument is partially passed in registers.  */
      const int size = GET_MODE_SIZE (arg.mode);

      if (size > UNITS_PER_WORD && slotno == SPARC_INT_ARG_MAX - 1)
	return UNITS_PER_WORD;
    }
  else
    {
      /* We are guaranteed by pass_by_reference that the size of the
	 argument is not greater than 16 bytes, so we only need to return
	 one word if the argument is partially passed in registers.  */
      if (arg.aggregate_type_p ())
	{
	  const int size = int_size_in_bytes (arg.type);

	  if (size > UNITS_PER_WORD
	      && (slotno == SPARC_INT_ARG_MAX - 1
		  || slotno == SPARC_FP_ARG_MAX - 1))
	    return UNITS_PER_WORD;
	}
      else if (GET_MODE_CLASS (arg.mode) == MODE_COMPLEX_INT
	       || ((GET_MODE_CLASS (arg.mode) == MODE_COMPLEX_FLOAT
		    || (arg.type && VECTOR_TYPE_P (arg.type)))
		   && !(TARGET_FPU && arg.named)))
	{
	  const int size = (arg.type && VECTOR_FLOAT_TYPE_P (arg.type))
			   ? int_size_in_bytes (arg.type)
			   : GET_MODE_SIZE (arg.mode);

	  if (size > UNITS_PER_WORD && slotno == SPARC_INT_ARG_MAX - 1)
	    return UNITS_PER_WORD;
	}
      else if (GET_MODE_CLASS (arg.mode) == MODE_COMPLEX_FLOAT
	       || (arg.type && VECTOR_TYPE_P (arg.type)))
	{
	  const int size = (arg.type && VECTOR_FLOAT_TYPE_P (arg.type))
			   ? int_size_in_bytes (arg.type)
			   : GET_MODE_SIZE (arg.mode);

	  if (size > UNITS_PER_WORD && slotno == SPARC_FP_ARG_MAX - 1)
	    return UNITS_PER_WORD;
	}
    }

  return 0;
}

/* Handle the TARGET_FUNCTION_ARG_ADVANCE hook.
   Update the data in CUM to advance over argument ARG.  */

static void
sparc_function_arg_advance (cumulative_args_t cum_v,
			    const function_arg_info &arg)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  tree type = arg.type;
  machine_mode mode = arg.mode;
  int regno, padding;

  /* We pass false for incoming here, it doesn't matter.  */
  function_arg_slotno (cum, mode, type, arg.named, false, &regno, &padding);

  /* If argument requires leading padding, add it.  */
  cum->words += padding;

  if (TARGET_ARCH32)
    cum->words += CEIL_NWORDS (GET_MODE_SIZE (mode));
  else
    {
      /* For types that can have BLKmode, get the size from the type.  */
      if (type && (AGGREGATE_TYPE_P (type) || VECTOR_FLOAT_TYPE_P (type)))
	{
	  const int size = int_size_in_bytes (type);

	  /* See comment in function_arg_record_value for empty structures.  */
	  if (size <= 0)
	    cum->words++;
	  else
	    cum->words += CEIL_NWORDS (size);
	}
      else
	cum->words += CEIL_NWORDS (GET_MODE_SIZE (mode));
    }
}

/* Implement TARGET_FUNCTION_ARG_PADDING.  For the 64-bit ABI structs
   are always stored left shifted in their argument slot.  */

static pad_direction
sparc_function_arg_padding (machine_mode mode, const_tree type)
{
  if (TARGET_ARCH64 && type && AGGREGATE_TYPE_P (type))
    return PAD_UPWARD;

  /* Fall back to the default.  */
  return default_function_arg_padding (mode, type);
}

/* Handle the TARGET_RETURN_IN_MEMORY target hook.
   Specify whether to return the return value in memory.  */

static bool
sparc_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
  if (TARGET_ARCH32)
    /* Original SPARC 32-bit ABI says that structures and unions, and
       quad-precision floats are returned in memory.  But note that the
       first part is implemented through -fpcc-struct-return being the
       default, so here we only implement -freg-struct-return instead.
       All other base types are returned in registers.

       Extended ABI (as implemented by the Sun compiler) says that
       all complex floats are returned in registers (8 FP registers
       at most for '_Complex long double').  Return all complex integers
       in registers (4 at most for '_Complex long long').

       Vector ABI (as implemented by the Sun VIS SDK) says that vector
       integers are returned like floats of the same size, that is in
       registers up to 8 bytes and in memory otherwise.  Return all
       vector floats in memory like structure and unions; note that
       they always have BLKmode like the latter.  */
    return (TYPE_MODE (type) == BLKmode
	    || TYPE_MODE (type) == TFmode
	    || (TREE_CODE (type) == VECTOR_TYPE
		&& (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8));
  else
    /* Original SPARC 64-bit ABI says that structures and unions
       smaller than 32 bytes are returned in registers, as well as
       all other base types.

       Extended ABI (as implemented by the Sun compiler) says that all
       complex floats are returned in registers (8 FP registers at most
       for '_Complex long double').  Return all complex integers in
       registers (4 at most for '_Complex TItype').

       Vector ABI (as implemented by the Sun VIS SDK) says that vector
       integers are returned like floats of the same size, that is in
       registers.  Return all vector floats like structure and unions;
       note that they always have BLKmode like the latter.  */
    return (TYPE_MODE (type) == BLKmode
	    && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 32);
}

/* Handle the TARGET_STRUCT_VALUE target hook.
   Return where to find the structure return value address.  */

static rtx
sparc_struct_value_rtx (tree fndecl, int incoming)
{
  if (TARGET_ARCH64)
    return NULL_RTX;
  else
    {
      rtx mem;

      if (incoming)
	mem = gen_frame_mem (Pmode, plus_constant (Pmode, frame_pointer_rtx,
						   STRUCT_VALUE_OFFSET));
      else
	mem = gen_frame_mem (Pmode, plus_constant (Pmode, stack_pointer_rtx,
						   STRUCT_VALUE_OFFSET));

      /* Only follow the SPARC ABI for fixed-size structure returns.
         Variable size structure returns are handled per the normal
         procedures in GCC. This is enabled by -mstd-struct-return */
      if (incoming == 2
	  && sparc_std_struct_return
	  && TYPE_SIZE_UNIT (TREE_TYPE (fndecl))
	  && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (fndecl))) == INTEGER_CST)
	{
	  /* We must check and adjust the return address, as it is optional
	     as to whether the return object is really provided.  */
	  rtx ret_reg = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
	  rtx scratch = gen_reg_rtx (SImode);
	  rtx_code_label *endlab = gen_label_rtx ();

	  /* Calculate the return object size.  */
	  tree size = TYPE_SIZE_UNIT (TREE_TYPE (fndecl));
	  rtx size_rtx = GEN_INT (TREE_INT_CST_LOW (size) & 0xfff);
	  /* Construct a temporary return value.  */
	  rtx temp_val
	    = assign_stack_local (Pmode, TREE_INT_CST_LOW (size), 0);

	  /* Implement SPARC 32-bit psABI callee return struct checking:

	     Fetch the instruction where we will return to and see if
	     it's an unimp instruction (the most significant 10 bits
	     will be zero).  */
	  emit_move_insn (scratch, gen_rtx_MEM (SImode,
						plus_constant (Pmode,
							       ret_reg, 8)));
	  /* Assume the size is valid and pre-adjust.  */
	  emit_insn (gen_add3_insn (ret_reg, ret_reg, GEN_INT (4)));
	  emit_cmp_and_jump_insns (scratch, size_rtx, EQ, const0_rtx, SImode,
				   0, endlab);
	  emit_insn (gen_sub3_insn (ret_reg, ret_reg, GEN_INT (4)));
	  /* Write the address of the memory pointed to by temp_val into
	     the memory pointed to by mem.  */
	  emit_move_insn (mem, XEXP (temp_val, 0));
	  emit_label (endlab);
	}

      return mem;
    }
}

/* Handle TARGET_FUNCTION_VALUE, and TARGET_LIBCALL_VALUE target hook.
   For v9, function return values are subject to the same rules as arguments,
   except that up to 32 bytes may be returned in registers.  */

static rtx
sparc_function_value_1 (const_tree type, machine_mode mode, bool outgoing)
{
  /* Beware that the two values are swapped here wrt function_arg.  */
  const int regbase
    = outgoing ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST;
  enum mode_class mclass = GET_MODE_CLASS (mode);
  int regno;

  /* Integer vectors are handled like floats as per the Sun VIS SDK.
     Note that integer vectors larger than 16 bytes have BLKmode so
     they need to be handled like floating-point vectors below.  */
  if (type && VECTOR_INTEGER_TYPE_P (type) && mode != BLKmode)
    mclass = MODE_FLOAT;

  if (TARGET_ARCH64 && type)
    {
      /* Structures up to 32 bytes in size are returned in registers.  */
      if (TREE_CODE (type) == RECORD_TYPE)
	{
	  const int size = int_size_in_bytes (type);
	  gcc_assert (size <= 32);

	  return function_arg_record_value (type, mode, 0, true, regbase);
	}

      /* Unions up to 32 bytes in size are returned in integer registers.  */
      else if (TREE_CODE (type) == UNION_TYPE)
	{
	  const int size = int_size_in_bytes (type);
	  gcc_assert (size <= 32);

	  return function_arg_union_value (size, mode, 0, regbase);
	}

      /* Vectors up to 32 bytes are returned in FP registers.  */
      else if (VECTOR_TYPE_P (type) && mode == BLKmode)
	{
	  const int size = int_size_in_bytes (type);
	  gcc_assert (size <= 32);

	  return function_arg_vector_value (size, 0, true, SPARC_FP_ARG_FIRST);
	}

      /* Objects that require it are returned in FP registers.  */
      else if (mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT)
	;

      /* All other aggregate types are returned in an integer register in a
	 mode corresponding to the size of the type.  */
      else if (AGGREGATE_TYPE_P (type))
	{
	  /* All other aggregate types are passed in an integer register
	     in a mode corresponding to the size of the type.  */
	  const int size = int_size_in_bytes (type);
	  gcc_assert (size <= 32);

	  mode = int_mode_for_size (size * BITS_PER_UNIT, 0).else_blk ();

	  /* ??? We probably should have made the same ABI change in
	     3.4.0 as the one we made for unions.   The latter was
	     required by the SCD though, while the former is not
	     specified, so we favored compatibility and efficiency.

	     Now we're stuck for aggregates larger than 16 bytes,
	     because OImode vanished in the meantime.  Let's not
	     try to be unduly clever, and simply follow the ABI
	     for unions in that case.  */
	  if (mode == BLKmode)
	    return function_arg_union_value (size, mode, 0, regbase);
	  else
	    mclass = MODE_INT;
	}

      /* We should only have pointer and integer types at this point.  This
	 must match sparc_promote_function_mode.  */
      else if (mclass == MODE_INT && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	mode = word_mode;
    }

  /* We should only have pointer and integer types at this point, except with
     -freg-struct-return.  This must match sparc_promote_function_mode.  */
  else if (TARGET_ARCH32
	   && !(type && AGGREGATE_TYPE_P (type))
	   && mclass == MODE_INT
	   && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
    mode = word_mode;

  if ((mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT) && TARGET_FPU)
    regno = SPARC_FP_ARG_FIRST;
  else
    regno = regbase;

  return gen_rtx_REG (mode, regno);
}

/* Handle TARGET_FUNCTION_VALUE.
   On the SPARC, the value is found in the first "output" register, but the
   called function leaves it in the first "input" register.  */

static rtx
sparc_function_value (const_tree valtype,
		      const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
		      bool outgoing)
{
  return sparc_function_value_1 (valtype, TYPE_MODE (valtype), outgoing);
}

/* Handle TARGET_LIBCALL_VALUE.  */

static rtx
sparc_libcall_value (machine_mode mode,
		     const_rtx fun ATTRIBUTE_UNUSED)
{
  return sparc_function_value_1 (NULL_TREE, mode, false);
}

/* Handle FUNCTION_VALUE_REGNO_P.
   On the SPARC, the first "output" reg is used for integer values, and the
   first floating point register is used for floating point values.  */

static bool
sparc_function_value_regno_p (const unsigned int regno)
{
  return (regno == 8 || (TARGET_FPU && regno == 32));
}

/* Do what is necessary for `va_start'.  We look at the current function
   to determine if stdarg or varargs is used and return the address of
   the first unnamed parameter.  */

static rtx
sparc_builtin_saveregs (void)
{
  int first_reg = crtl->args.info.words;
  rtx address;
  int regno;

  for (regno = first_reg; regno < SPARC_INT_ARG_MAX; regno++)
    emit_move_insn (gen_rtx_MEM (word_mode,
				 gen_rtx_PLUS (Pmode,
					       frame_pointer_rtx,
					       GEN_INT (FIRST_PARM_OFFSET (0)
							+ (UNITS_PER_WORD
							   * regno)))),
		    gen_rtx_REG (word_mode,
				 SPARC_INCOMING_INT_ARG_FIRST + regno));

  address = gen_rtx_PLUS (Pmode,
			  frame_pointer_rtx,
			  GEN_INT (FIRST_PARM_OFFSET (0)
				   + UNITS_PER_WORD * first_reg));

  return address;
}

/* Implement `va_start' for stdarg.  */

static void
sparc_va_start (tree valist, rtx nextarg)
{
  nextarg = expand_builtin_saveregs ();
  std_expand_builtin_va_start (valist, nextarg);
}

/* Implement `va_arg' for stdarg.  */

static tree
sparc_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
		       gimple_seq *post_p)
{
  HOST_WIDE_INT size, rsize, align;
  tree addr, incr;
  bool indirect;
  tree ptrtype = build_pointer_type (type);

  if (pass_va_arg_by_reference (type))
    {
      indirect = true;
      size = rsize = UNITS_PER_WORD;
      align = 0;
    }
  else
    {
      indirect = false;
      size = int_size_in_bytes (type);
      rsize = ROUND_UP (size, UNITS_PER_WORD);
      align = 0;

      if (TARGET_ARCH64)
	{
	  /* For SPARC64, objects requiring 16-byte alignment get it.  */
	  if (TYPE_ALIGN (type) >= 2 * (unsigned) BITS_PER_WORD)
	    align = 2 * UNITS_PER_WORD;

	  /* SPARC-V9 ABI states that structures up to 16 bytes in size
	     are left-justified in their slots.  */
	  if (AGGREGATE_TYPE_P (type))
	    {
	      if (size == 0)
		size = rsize = UNITS_PER_WORD;
	      else
		size = rsize;
	    }
	}
    }

  incr = valist;
  if (align)
    {
      incr = fold_build_pointer_plus_hwi (incr, align - 1);
      incr = fold_convert (sizetype, incr);
      incr = fold_build2 (BIT_AND_EXPR, sizetype, incr,
			  size_int (-align));
      incr = fold_convert (ptr_type_node, incr);
    }

  gimplify_expr (&incr, pre_p, post_p, is_gimple_val, fb_rvalue);
  addr = incr;

  if (BYTES_BIG_ENDIAN && size < rsize)
    addr = fold_build_pointer_plus_hwi (incr, rsize - size);

  if (indirect)
    {
      addr = fold_convert (build_pointer_type (ptrtype), addr);
      addr = build_va_arg_indirect_ref (addr);
    }

  /* If the address isn't aligned properly for the type, we need a temporary.
     FIXME: This is inefficient, usually we can do this in registers.  */
  else if (align == 0 && TYPE_ALIGN (type) > BITS_PER_WORD)
    {
      tree tmp = create_tmp_var (type, "va_arg_tmp");
      tree dest_addr = build_fold_addr_expr (tmp);
      tree copy = build_call_expr (builtin_decl_implicit (BUILT_IN_MEMCPY),
				   3, dest_addr, addr, size_int (rsize));
      TREE_ADDRESSABLE (tmp) = 1;
      gimplify_and_add (copy, pre_p);
      addr = dest_addr;
    }

  else
    addr = fold_convert (ptrtype, addr);

  incr = fold_build_pointer_plus_hwi (incr, rsize);
  gimplify_assign (valist, incr, post_p);

  return build_va_arg_indirect_ref (addr);
}

/* Implement the TARGET_VECTOR_MODE_SUPPORTED_P target hook.
   Specify whether the vector mode is supported by the hardware.  */

static bool
sparc_vector_mode_supported_p (machine_mode mode)
{
  return TARGET_VIS && VECTOR_MODE_P (mode) ? true : false;
}

/* Implement the TARGET_VECTORIZE_PREFERRED_SIMD_MODE target hook.  */

static machine_mode
sparc_preferred_simd_mode (scalar_mode mode)
{
  if (TARGET_VIS)
    switch (mode)
      {
      case E_SImode:
	return V2SImode;
      case E_HImode:
	return V4HImode;
      case E_QImode:
	return V8QImode;

      default:;
      }

  return word_mode;
}

/* Implement TARGET_CAN_FOLLOW_JUMP.  */

static bool
sparc_can_follow_jump (const rtx_insn *follower, const rtx_insn *followee)
{
  /* Do not fold unconditional jumps that have been created for crossing
     partition boundaries.  */
  if (CROSSING_JUMP_P (followee) && !CROSSING_JUMP_P (follower))
    return false;

  return true;
}

/* Return the string to output an unconditional branch to LABEL, which is
   the operand number of the label.

   DEST is the destination insn (i.e. the label), INSN is the source.  */

const char *
output_ubranch (rtx dest, rtx_insn *insn)
{
  static char string[64];
  bool v9_form = false;
  int delta;
  char *p;

  /* Even if we are trying to use cbcond for this, evaluate
     whether we can use V9 branches as our backup plan.  */
  delta = 5000000;
  if (!CROSSING_JUMP_P (insn) && INSN_ADDRESSES_SET_P ())
    delta = (INSN_ADDRESSES (INSN_UID (dest))
	     - INSN_ADDRESSES (INSN_UID (insn)));

  /* Leave some instructions for "slop".  */
  if (TARGET_V9 && delta >= -260000 && delta < 260000)
    v9_form = true;

  if (TARGET_CBCOND)
    {
      bool emit_nop = emit_cbcond_nop (insn);
      bool far = false;
      const char *rval;

      if (delta < -500 || delta > 500)
	far = true;

      if (far)
	{
	  if (v9_form)
	    rval = "ba,a,pt\t%%xcc, %l0";
	  else
	    rval = "b,a\t%l0";
	}
      else
	{
	  if (emit_nop)
	    rval = "cwbe\t%%g0, %%g0, %l0\n\tnop";
	  else
	    rval = "cwbe\t%%g0, %%g0, %l0";
	}
      return rval;
    }

  if (v9_form)
    strcpy (string, "ba%*,pt\t%%xcc, ");
  else
    strcpy (string, "b%*\t");

  p = strchr (string, '\0');
  *p++ = '%';
  *p++ = 'l';
  *p++ = '0';
  *p++ = '%';
  *p++ = '(';
  *p = '\0';

  return string;
}

/* Return the string to output a conditional branch to LABEL, which is
   the operand number of the label.  OP is the conditional expression.
   XEXP (OP, 0) is assumed to be a condition code register (integer or
   floating point) and its mode specifies what kind of comparison we made.

   DEST is the destination insn (i.e. the label), INSN is the source.

   REVERSED is nonzero if we should reverse the sense of the comparison.

   ANNUL is nonzero if we should generate an annulling branch.  */

const char *
output_cbranch (rtx op, rtx dest, int label, int reversed, int annul,
		rtx_insn *insn)
{
  static char string[64];
  enum rtx_code code = GET_CODE (op);
  rtx cc_reg = XEXP (op, 0);
  machine_mode mode = GET_MODE (cc_reg);
  const char *labelno, *branch;
  int spaces = 8, far;
  char *p;

  /* v9 branches are limited to +-1MB.  If it is too far away,
     change

     bne,pt %xcc, .LC30

     to

     be,pn %xcc, .+12
      nop
     ba .LC30

     and

     fbne,a,pn %fcc2, .LC29

     to

     fbe,pt %fcc2, .+16
      nop
     ba .LC29  */

  far = TARGET_V9 && (get_attr_length (insn) >= 3);
  if (reversed ^ far)
    {
      /* Reversal of FP compares takes care -- an ordered compare
	 becomes an unordered compare and vice versa.  */
      if (mode == CCFPmode || mode == CCFPEmode)
	code = reverse_condition_maybe_unordered (code);
      else
	code = reverse_condition (code);
    }

  /* Start by writing the branch condition.  */
  if (mode == CCFPmode || mode == CCFPEmode)
    {
      switch (code)
	{
	case NE:
	  branch = "fbne";
	  break;
	case EQ:
	  branch = "fbe";
	  break;
	case GE:
	  branch = "fbge";
	  break;
	case GT:
	  branch = "fbg";
	  break;
	case LE:
	  branch = "fble";
	  break;
	case LT:
	  branch = "fbl";
	  break;
	case UNORDERED:
	  branch = "fbu";
	  break;
	case ORDERED:
	  branch = "fbo";
	  break;
	case UNGT:
	  branch = "fbug";
	  break;
	case UNLT:
	  branch = "fbul";
	  break;
	case UNEQ:
	  branch = "fbue";
	  break;
	case UNGE:
	  branch = "fbuge";
	  break;
	case UNLE:
	  branch = "fbule";
	  break;
	case LTGT:
	  branch = "fblg";
	  break;
	default:
	  gcc_unreachable ();
	}

      /* ??? !v9: FP branches cannot be preceded by another floating point
	 insn.  Because there is currently no concept of pre-delay slots,
	 we can fix this only by always emitting a nop before a floating
	 point branch.  */

      string[0] = '\0';
      if (! TARGET_V9)
	strcpy (string, "nop\n\t");
      strcat (string, branch);
    }
  else
    {
      switch (code)
	{
	case NE:
	  if (mode == CCVmode || mode == CCXVmode)
	    branch = "bvs";
	  else
	    branch = "bne";
	  break;
	case EQ:
	  if (mode == CCVmode || mode == CCXVmode)
	    branch = "bvc";
	  else
	    branch = "be";
	  break;
	case GE:
	  if (mode == CCNZmode || mode == CCXNZmode)
	    branch = "bpos";
	  else
	    branch = "bge";
	  break;
	case GT:
	  branch = "bg";
	  break;
	case LE:
	  branch = "ble";
	  break;
	case LT:
	  if (mode == CCNZmode || mode == CCXNZmode)
	    branch = "bneg";
	  else
	    branch = "bl";
	  break;
	case GEU:
	  branch = "bgeu";
	  break;
	case GTU:
	  branch = "bgu";
	  break;
	case LEU:
	  branch = "bleu";
	  break;
	case LTU:
	  branch = "blu";
	  break;
	default:
	  gcc_unreachable ();
	}
      strcpy (string, branch);
    }
  spaces -= strlen (branch);
  p = strchr (string, '\0');

  /* Now add the annulling, the label, and a possible noop.  */
  if (annul && ! far)
    {
      strcpy (p, ",a");
      p += 2;
      spaces -= 2;
    }

  if (TARGET_V9)
    {
      rtx note;
      int v8 = 0;

      if (! far && insn && INSN_ADDRESSES_SET_P ())
	{
	  int delta = (INSN_ADDRESSES (INSN_UID (dest))
		       - INSN_ADDRESSES (INSN_UID (insn)));
	  /* Leave some instructions for "slop".  */
	  if (delta < -260000 || delta >= 260000)
	    v8 = 1;
	}

      switch (mode)
	{
	case E_CCmode:
	case E_CCNZmode:
	case E_CCCmode:
	case E_CCVmode:
	  labelno = "%%icc, ";
	  if (v8)
	    labelno = "";
	  break;
	case E_CCXmode:
	case E_CCXNZmode:
	case E_CCXCmode:
	case E_CCXVmode:
	  labelno = "%%xcc, ";
	  gcc_assert (!v8);
	  break;
	case E_CCFPmode:
	case E_CCFPEmode:
	  {
	    static char v9_fcc_labelno[] = "%%fccX, ";
	    /* Set the char indicating the number of the fcc reg to use.  */
	    v9_fcc_labelno[5] = REGNO (cc_reg) - SPARC_FIRST_V9_FCC_REG + '0';
	    labelno = v9_fcc_labelno;
	    if (v8)
	      {
		gcc_assert (REGNO (cc_reg) == SPARC_FCC_REG);
		labelno = "";
	      }
	  }
	  break;
	default:
	  gcc_unreachable ();
	}

      if (*labelno && insn && (note = find_reg_note (insn, REG_BR_PROB, NULL_RTX)))
	{
	  strcpy (p,
		  ((profile_probability::from_reg_br_prob_note (XINT (note, 0))
		   >= profile_probability::even ()) ^ far)
		  ? ",pt" : ",pn");
	  p += 3;
	  spaces -= 3;
	}
    }
  else
    labelno = "";

  if (spaces > 0)
    *p++ = '\t';
  else
    *p++ = ' ';
  strcpy (p, labelno);
  p = strchr (p, '\0');
  if (far)
    {
      strcpy (p, ".+12\n\t nop\n\tb\t");
      /* Skip the next insn if requested or
	 if we know that it will be a nop.  */
      if (annul || ! final_sequence)
        p[3] = '6';
      p += 14;
    }
  *p++ = '%';
  *p++ = 'l';
  *p++ = label + '0';
  *p++ = '%';
  *p++ = '#';
  *p = '\0';

  return string;
}

/* Emit a library call comparison between floating point X and Y.
   COMPARISON is the operator to compare with (EQ, NE, GT, etc).
   Return the new operator to be used in the comparison sequence.

   TARGET_ARCH64 uses _Qp_* functions, which use pointers to TFmode
   values as arguments instead of the TFmode registers themselves,
   that's why we cannot call emit_float_lib_cmp.  */

rtx
sparc_emit_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison)
{
  const char *qpfunc;
  rtx slot0, slot1, result, tem, tem2, libfunc;
  machine_mode mode;
  enum rtx_code new_comparison;

  switch (comparison)
    {
    case EQ:
      qpfunc = (TARGET_ARCH64 ? "_Qp_feq" : "_Q_feq");
      break;

    case NE:
      qpfunc = (TARGET_ARCH64 ? "_Qp_fne" : "_Q_fne");
      break;

    case GT:
      qpfunc = (TARGET_ARCH64 ? "_Qp_fgt" : "_Q_fgt");
      break;

    case GE:
      qpfunc = (TARGET_ARCH64 ? "_Qp_fge" : "_Q_fge");
      break;

    case LT:
      qpfunc = (TARGET_ARCH64 ? "_Qp_flt" : "_Q_flt");
      break;

    case LE:
      qpfunc = (TARGET_ARCH64 ? "_Qp_fle" : "_Q_fle");
      break;

    case ORDERED:
    case UNORDERED:
    case UNGT:
    case UNLT:
    case UNEQ:
    case UNGE:
    case UNLE:
    case LTGT:
      qpfunc = (TARGET_ARCH64 ? "_Qp_cmp" : "_Q_cmp");
      break;

    default:
      gcc_unreachable ();
    }

  if (TARGET_ARCH64)
    {
      if (MEM_P (x))
	{
	  tree expr = MEM_EXPR (x);
	  if (expr)
	    mark_addressable (expr);
	  slot0 = x;
	}
      else
	{
	  slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode));
	  emit_move_insn (slot0, x);
	}

      if (MEM_P (y))
	{
	  tree expr = MEM_EXPR (y);
	  if (expr)
	    mark_addressable (expr);
	  slot1 = y;
	}
      else
	{
	  slot1 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode));
	  emit_move_insn (slot1, y);
	}

      libfunc = gen_rtx_SYMBOL_REF (Pmode, qpfunc);
      emit_library_call (libfunc, LCT_NORMAL,
			 DImode,
			 XEXP (slot0, 0), Pmode,
			 XEXP (slot1, 0), Pmode);
      mode = DImode;
    }
  else
    {
      libfunc = gen_rtx_SYMBOL_REF (Pmode, qpfunc);
      emit_library_call (libfunc, LCT_NORMAL,
			 SImode,
			 x, TFmode, y, TFmode);
      mode = SImode;
    }


  /* Immediately move the result of the libcall into a pseudo
     register so reload doesn't clobber the value if it needs
     the return register for a spill reg.  */
  result = gen_reg_rtx (mode);
  emit_move_insn (result, hard_libcall_value (mode, libfunc));

  switch (comparison)
    {
    default:
      return gen_rtx_NE (VOIDmode, result, const0_rtx);
    case ORDERED:
    case UNORDERED:
      new_comparison = (comparison == UNORDERED ? EQ : NE);
      return gen_rtx_fmt_ee (new_comparison, VOIDmode, result, GEN_INT(3));
    case UNGT:
    case UNGE:
      new_comparison = (comparison == UNGT ? GT : NE);
      return gen_rtx_fmt_ee (new_comparison, VOIDmode, result, const1_rtx);
    case UNLE:
      return gen_rtx_NE (VOIDmode, result, const2_rtx);
    case UNLT:
      tem = gen_reg_rtx (mode);
      if (TARGET_ARCH32)
	emit_insn (gen_andsi3 (tem, result, const1_rtx));
      else
	emit_insn (gen_anddi3 (tem, result, const1_rtx));
      return gen_rtx_NE (VOIDmode, tem, const0_rtx);
    case UNEQ:
    case LTGT:
      tem = gen_reg_rtx (mode);
      if (TARGET_ARCH32)
	emit_insn (gen_addsi3 (tem, result, const1_rtx));
      else
	emit_insn (gen_adddi3 (tem, result, const1_rtx));
      tem2 = gen_reg_rtx (mode);
      if (TARGET_ARCH32)
	emit_insn (gen_andsi3 (tem2, tem, const2_rtx));
      else
	emit_insn (gen_anddi3 (tem2, tem, const2_rtx));
      new_comparison = (comparison == UNEQ ? EQ : NE);
      return gen_rtx_fmt_ee (new_comparison, VOIDmode, tem2, const0_rtx);
    }

  gcc_unreachable ();
}

/* Generate an unsigned DImode to FP conversion.  This is the same code
   optabs would emit if we didn't have TFmode patterns.  */

void
sparc_emit_floatunsdi (rtx *operands, machine_mode mode)
{
  rtx i0, i1, f0, in, out;

  out = operands[0];
  in = force_reg (DImode, operands[1]);
  rtx_code_label *neglab = gen_label_rtx ();
  rtx_code_label *donelab = gen_label_rtx ();
  i0 = gen_reg_rtx (DImode);
  i1 = gen_reg_rtx (DImode);
  f0 = gen_reg_rtx (mode);

  emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, DImode, 0, neglab);

  emit_insn (gen_rtx_SET (out, gen_rtx_FLOAT (mode, in)));
  emit_jump_insn (gen_jump (donelab));
  emit_barrier ();

  emit_label (neglab);

  emit_insn (gen_lshrdi3 (i0, in, const1_rtx));
  emit_insn (gen_anddi3 (i1, in, const1_rtx));
  emit_insn (gen_iordi3 (i0, i0, i1));
  emit_insn (gen_rtx_SET (f0, gen_rtx_FLOAT (mode, i0)));
  emit_insn (gen_rtx_SET (out, gen_rtx_PLUS (mode, f0, f0)));

  emit_label (donelab);
}

/* Generate an FP to unsigned DImode conversion.  This is the same code
   optabs would emit if we didn't have TFmode patterns.  */

void
sparc_emit_fixunsdi (rtx *operands, machine_mode mode)
{
  rtx i0, i1, f0, in, out, limit;

  out = operands[0];
  in = force_reg (mode, operands[1]);
  rtx_code_label *neglab = gen_label_rtx ();
  rtx_code_label *donelab = gen_label_rtx ();
  i0 = gen_reg_rtx (DImode);
  i1 = gen_reg_rtx (DImode);
  limit = gen_reg_rtx (mode);
  f0 = gen_reg_rtx (mode);

  emit_move_insn (limit,
		  const_double_from_real_value (
		    REAL_VALUE_ATOF ("9223372036854775808.0", mode), mode));
  emit_cmp_and_jump_insns (in, limit, GE, NULL_RTX, mode, 0, neglab);

  emit_insn (gen_rtx_SET (out,
			  gen_rtx_FIX (DImode, gen_rtx_FIX (mode, in))));
  emit_jump_insn (gen_jump (donelab));
  emit_barrier ();

  emit_label (neglab);

  emit_insn (gen_rtx_SET (f0, gen_rtx_MINUS (mode, in, limit)));
  emit_insn (gen_rtx_SET (i0,
			  gen_rtx_FIX (DImode, gen_rtx_FIX (mode, f0))));
  emit_insn (gen_movdi (i1, const1_rtx));
  emit_insn (gen_ashldi3 (i1, i1, GEN_INT (63)));
  emit_insn (gen_xordi3 (out, i0, i1));

  emit_label (donelab);
}

/* Return the string to output a compare and branch instruction to DEST.
   DEST is the destination insn (i.e. the label), INSN is the source,
   and OP is the conditional expression.  */

const char *
output_cbcond (rtx op, rtx dest, rtx_insn *insn)
{
  machine_mode mode = GET_MODE (XEXP (op, 0));
  enum rtx_code code = GET_CODE (op);
  const char *cond_str, *tmpl;
  int far, emit_nop, len;
  static char string[64];
  char size_char;

  /* Compare and Branch is limited to +-2KB.  If it is too far away,
     change

     cxbne X, Y, .LC30

     to

     cxbe X, Y, .+16
     nop
     ba,pt xcc, .LC30
      nop  */

  len = get_attr_length (insn);

  far = len == 4;
  emit_nop = len == 2;

  if (far)
    code = reverse_condition (code);

  size_char = ((mode == SImode) ? 'w' : 'x');

  switch (code)
    {
    case NE:
      cond_str = "ne";
      break;

    case EQ:
      cond_str = "e";
      break;

    case GE:
      cond_str = "ge";
      break;

    case GT:
      cond_str = "g";
      break;

    case LE:
      cond_str = "le";
      break;

    case LT:
      cond_str = "l";
      break;

    case GEU:
      cond_str = "cc";
      break;

    case GTU:
      cond_str = "gu";
      break;

    case LEU:
      cond_str = "leu";
      break;

    case LTU:
      cond_str = "cs";
      break;

    default:
      gcc_unreachable ();
    }

  if (far)
    {
      int veryfar = 1, delta;

      if (INSN_ADDRESSES_SET_P ())
	{
	  delta = (INSN_ADDRESSES (INSN_UID (dest))
		   - INSN_ADDRESSES (INSN_UID (insn)));
	  /* Leave some instructions for "slop".  */
	  if (delta >= -260000 && delta < 260000)
	    veryfar = 0;
	}

      if (veryfar)
	tmpl = "c%cb%s\t%%1, %%2, .+16\n\tnop\n\tb\t%%3\n\tnop";
      else
	tmpl = "c%cb%s\t%%1, %%2, .+16\n\tnop\n\tba,pt\t%%%%xcc, %%3\n\tnop";
    }
  else
    {
      if (emit_nop)
	tmpl = "c%cb%s\t%%1, %%2, %%3\n\tnop";
      else
	tmpl = "c%cb%s\t%%1, %%2, %%3";
    }

  snprintf (string, sizeof(string), tmpl, size_char, cond_str);

  return string;
}

/* Return the string to output a conditional branch to LABEL, testing
   register REG.  LABEL is the operand number of the label; REG is the
   operand number of the reg.  OP is the conditional expression.  The mode
   of REG says what kind of comparison we made.

   DEST is the destination insn (i.e. the label), INSN is the source.

   REVERSED is nonzero if we should reverse the sense of the comparison.

   ANNUL is nonzero if we should generate an annulling branch.  */

const char *
output_v9branch (rtx op, rtx dest, int reg, int label, int reversed,
		 int annul, rtx_insn *insn)
{
  static char string[64];
  enum rtx_code code = GET_CODE (op);
  machine_mode mode = GET_MODE (XEXP (op, 0));
  rtx note;
  int far;
  char *p;

  /* branch on register are limited to +-128KB.  If it is too far away,
     change

     brnz,pt %g1, .LC30

     to

     brz,pn %g1, .+12
      nop
     ba,pt %xcc, .LC30

     and

     brgez,a,pn %o1, .LC29

     to

     brlz,pt %o1, .+16
      nop
     ba,pt %xcc, .LC29  */

  far = get_attr_length (insn) >= 3;

  /* If not floating-point or if EQ or NE, we can just reverse the code.  */
  if (reversed ^ far)
    code = reverse_condition (code);

  /* Only 64-bit versions of these instructions exist.  */
  gcc_assert (mode == DImode);

  /* Start by writing the branch condition.  */

  switch (code)
    {
    case NE:
      strcpy (string, "brnz");
      break;

    case EQ:
      strcpy (string, "brz");
      break;

    case GE:
      strcpy (string, "brgez");
      break;

    case LT:
      strcpy (string, "brlz");
      break;

    case LE:
      strcpy (string, "brlez");
      break;

    case GT:
      strcpy (string, "brgz");
      break;

    default:
      gcc_unreachable ();
    }

  p = strchr (string, '\0');

  /* Now add the annulling, reg, label, and nop.  */
  if (annul && ! far)
    {
      strcpy (p, ",a");
      p += 2;
    }

  if (insn && (note = find_reg_note (insn, REG_BR_PROB, NULL_RTX)))
    {
      strcpy (p,
	      ((profile_probability::from_reg_br_prob_note (XINT (note, 0))
	       >= profile_probability::even ()) ^ far)
	      ? ",pt" : ",pn");
      p += 3;
    }

  *p = p < string + 8 ? '\t' : ' ';
  p++;
  *p++ = '%';
  *p++ = '0' + reg;
  *p++ = ',';
  *p++ = ' ';
  if (far)
    {
      int veryfar = 1, delta;

      if (INSN_ADDRESSES_SET_P ())
	{
	  delta = (INSN_ADDRESSES (INSN_UID (dest))
		   - INSN_ADDRESSES (INSN_UID (insn)));
	  /* Leave some instructions for "slop".  */
	  if (delta >= -260000 && delta < 260000)
	    veryfar = 0;
	}

      strcpy (p, ".+12\n\t nop\n\t");
      /* Skip the next insn if requested or
	 if we know that it will be a nop.  */
      if (annul || ! final_sequence)
        p[3] = '6';
      p += 12;
      if (veryfar)
	{
	  strcpy (p, "b\t");
	  p += 2;
	}
      else
	{
	  strcpy (p, "ba,pt\t%%xcc, ");
	  p += 13;
	}
    }
  *p++ = '%';
  *p++ = 'l';
  *p++ = '0' + label;
  *p++ = '%';
  *p++ = '#';
  *p = '\0';

  return string;
}

/* Return 1, if any of the registers of the instruction are %l[0-7] or %o[0-7].
   Such instructions cannot be used in the delay slot of return insn on v9.
   If TEST is 0, also rename all %i[0-7] registers to their %o[0-7] counterparts.
 */

static int
epilogue_renumber (register rtx *where, int test)
{
  register const char *fmt;
  register int i;
  register enum rtx_code code;

  if (*where == 0)
    return 0;

  code = GET_CODE (*where);

  switch (code)
    {
    case REG:
      if (REGNO (*where) >= 8 && REGNO (*where) < 24)      /* oX or lX */
	return 1;
      if (! test && REGNO (*where) >= 24 && REGNO (*where) < 32)
	*where = gen_rtx_REG (GET_MODE (*where), OUTGOING_REGNO (REGNO(*where)));
      /* fallthrough */
    case SCRATCH:
    case CC0:
    case PC:
    case CONST_INT:
    case CONST_WIDE_INT:
    case CONST_DOUBLE:
      return 0;

      /* Do not replace the frame pointer with the stack pointer because
	 it can cause the delayed instruction to load below the stack.
	 This occurs when instructions like:

	 (set (reg/i:SI 24 %i0)
	     (mem/f:SI (plus:SI (reg/f:SI 30 %fp)
                       (const_int -20 [0xffffffec])) 0))

	 are in the return delayed slot.  */
    case PLUS:
      if (GET_CODE (XEXP (*where, 0)) == REG
	  && REGNO (XEXP (*where, 0)) == HARD_FRAME_POINTER_REGNUM
	  && (GET_CODE (XEXP (*where, 1)) != CONST_INT
	      || INTVAL (XEXP (*where, 1)) < SPARC_STACK_BIAS))
	return 1;
      break;

    case MEM:
      if (SPARC_STACK_BIAS
	  && GET_CODE (XEXP (*where, 0)) == REG
	  && REGNO (XEXP (*where, 0)) == HARD_FRAME_POINTER_REGNUM)
	return 1;
      break;

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);

  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
	    if (epilogue_renumber (&(XVECEXP (*where, i, j)), test))
	      return 1;
	}
      else if (fmt[i] == 'e'
	       && epilogue_renumber (&(XEXP (*where, i)), test))
	return 1;
    }
  return 0;
}

/* Leaf functions and non-leaf functions have different needs.  */

static const int
reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER;

static const int
reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER;

static const int *const reg_alloc_orders[] = {
  reg_leaf_alloc_order,
  reg_nonleaf_alloc_order};

void
order_regs_for_local_alloc (void)
{
  static int last_order_nonleaf = 1;

  if (df_regs_ever_live_p (15) != last_order_nonleaf)
    {
      last_order_nonleaf = !last_order_nonleaf;
      memcpy ((char *) reg_alloc_order,
	      (const char *) reg_alloc_orders[last_order_nonleaf],
	      FIRST_PSEUDO_REGISTER * sizeof (int));
    }
}

/* Return 1 if REG and MEM are legitimate enough to allow the various
   MEM<-->REG splits to be run.  */

int
sparc_split_reg_mem_legitimate (rtx reg, rtx mem)
{
  /* Punt if we are here by mistake.  */
  gcc_assert (reload_completed);

  /* We must have an offsettable memory reference.  */
  if (!offsettable_memref_p (mem))
    return 0;

  /* If we have legitimate args for ldd/std, we do not want
     the split to happen.  */
  if ((REGNO (reg) % 2) == 0 && mem_min_alignment (mem, 8))
    return 0;

  /* Success.  */
  return 1;
}

/* Split a REG <-- MEM move into a pair of moves in MODE.  */

void
sparc_split_reg_mem (rtx dest, rtx src, machine_mode mode)
{
  rtx high_part = gen_highpart (mode, dest);
  rtx low_part = gen_lowpart (mode, dest);
  rtx word0 = adjust_address (src, mode, 0);
  rtx word1 = adjust_address (src, mode, 4);

  if (reg_overlap_mentioned_p (high_part, word1))
    {
      emit_move_insn_1 (low_part, word1);
      emit_move_insn_1 (high_part, word0);
    }
  else
    {
      emit_move_insn_1 (high_part, word0);
      emit_move_insn_1 (low_part, word1);
    }
}

/* Split a MEM <-- REG move into a pair of moves in MODE.  */

void
sparc_split_mem_reg (rtx dest, rtx src, machine_mode mode)
{
  rtx word0 = adjust_address (dest, mode, 0);
  rtx word1 = adjust_address (dest, mode, 4);
  rtx high_part = gen_highpart (mode, src);
  rtx low_part = gen_lowpart (mode, src);

  emit_move_insn_1 (word0, high_part);
  emit_move_insn_1 (word1, low_part);
}

/* Like sparc_split_reg_mem_legitimate but for REG <--> REG moves.  */

int
sparc_split_reg_reg_legitimate (rtx reg1, rtx reg2)
{
  /* Punt if we are here by mistake.  */
  gcc_assert (reload_completed);

  if (GET_CODE (reg1) == SUBREG)
    reg1 = SUBREG_REG (reg1);
  if (GET_CODE (reg1) != REG)
    return 0;
  const int regno1 = REGNO (reg1);

  if (GET_CODE (reg2) == SUBREG)
    reg2 = SUBREG_REG (reg2);
  if (GET_CODE (reg2) != REG)
    return 0;
  const int regno2 = REGNO (reg2);

  if (SPARC_INT_REG_P (regno1) && SPARC_INT_REG_P (regno2))
    return 1;

  if (TARGET_VIS3)
    {
      if ((SPARC_INT_REG_P (regno1) && SPARC_FP_REG_P (regno2))
	  || (SPARC_FP_REG_P (regno1) && SPARC_INT_REG_P (regno2)))
	return 1;
    }

  return 0;
}

/* Split a REG <--> REG move into a pair of moves in MODE.  */

void
sparc_split_reg_reg (rtx dest, rtx src, machine_mode mode)
{
  rtx dest1 = gen_highpart (mode, dest);
  rtx dest2 = gen_lowpart (mode, dest);
  rtx src1 = gen_highpart (mode, src);
  rtx src2 = gen_lowpart (mode, src);

  /* Now emit using the real source and destination we found, swapping
     the order if we detect overlap.  */
  if (reg_overlap_mentioned_p (dest1, src2))
    {
      emit_move_insn_1 (dest2, src2);
      emit_move_insn_1 (dest1, src1);
    }
  else
    {
      emit_move_insn_1 (dest1, src1);
      emit_move_insn_1 (dest2, src2);
    }
}

/* Return 1 if REGNO (reg1) is even and REGNO (reg1) == REGNO (reg2) - 1.
   This makes them candidates for using ldd and std insns.

   Note reg1 and reg2 *must* be hard registers.  */

int
registers_ok_for_ldd_peep (rtx reg1, rtx reg2)
{
  /* We might have been passed a SUBREG.  */
  if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG)
    return 0;

  if (REGNO (reg1) % 2 != 0)
    return 0;

  /* Integer ldd is deprecated in SPARC V9 */
  if (TARGET_V9 && SPARC_INT_REG_P (REGNO (reg1)))
    return 0;

  return (REGNO (reg1) == REGNO (reg2) - 1);
}

/* Return 1 if the addresses in mem1 and mem2 are suitable for use in
   an ldd or std insn.

   This can only happen when addr1 and addr2, the addresses in mem1
   and mem2, are consecutive memory locations (addr1 + 4 == addr2).
   addr1 must also be aligned on a 64-bit boundary.

   Also iff dependent_reg_rtx is not null it should not be used to
   compute the address for mem1, i.e. we cannot optimize a sequence
   like:
   	ld [%o0], %o0
	ld [%o0 + 4], %o1
   to
   	ldd [%o0], %o0
   nor:
	ld [%g3 + 4], %g3
	ld [%g3], %g2
   to
        ldd [%g3], %g2

   But, note that the transformation from:
	ld [%g2 + 4], %g3
        ld [%g2], %g2
   to
	ldd [%g2], %g2
   is perfectly fine.  Thus, the peephole2 patterns always pass us
   the destination register of the first load, never the second one.

   For stores we don't have a similar problem, so dependent_reg_rtx is
   NULL_RTX.  */

int
mems_ok_for_ldd_peep (rtx mem1, rtx mem2, rtx dependent_reg_rtx)
{
  rtx addr1, addr2;
  unsigned int reg1;
  HOST_WIDE_INT offset1;

  /* The mems cannot be volatile.  */
  if (MEM_VOLATILE_P (mem1) || MEM_VOLATILE_P (mem2))
    return 0;

  /* MEM1 should be aligned on a 64-bit boundary.  */
  if (MEM_ALIGN (mem1) < 64)
    return 0;

  addr1 = XEXP (mem1, 0);
  addr2 = XEXP (mem2, 0);

  /* Extract a register number and offset (if used) from the first addr.  */
  if (GET_CODE (addr1) == PLUS)
    {
      /* If not a REG, return zero.  */
      if (GET_CODE (XEXP (addr1, 0)) != REG)
	return 0;
      else
	{
          reg1 = REGNO (XEXP (addr1, 0));
	  /* The offset must be constant!  */
	  if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
            return 0;
          offset1 = INTVAL (XEXP (addr1, 1));
	}
    }
  else if (GET_CODE (addr1) != REG)
    return 0;
  else
    {
      reg1 = REGNO (addr1);
      /* This was a simple (mem (reg)) expression.  Offset is 0.  */
      offset1 = 0;
    }

  /* Make sure the second address is a (mem (plus (reg) (const_int).  */
  if (GET_CODE (addr2) != PLUS)
    return 0;

  if (GET_CODE (XEXP (addr2, 0)) != REG
      || GET_CODE (XEXP (addr2, 1)) != CONST_INT)
    return 0;

  if (reg1 != REGNO (XEXP (addr2, 0)))
    return 0;

  if (dependent_reg_rtx != NULL_RTX && reg1 == REGNO (dependent_reg_rtx))
    return 0;

  /* The first offset must be evenly divisible by 8 to ensure the
     address is 64-bit aligned.  */
  if (offset1 % 8 != 0)
    return 0;

  /* The offset for the second addr must be 4 more than the first addr.  */
  if (INTVAL (XEXP (addr2, 1)) != offset1 + 4)
    return 0;

  /* All the tests passed.  addr1 and addr2 are valid for ldd and std
     instructions.  */
  return 1;
}

/* Return the widened memory access made of MEM1 and MEM2 in MODE.  */

rtx
widen_mem_for_ldd_peep (rtx mem1, rtx mem2, machine_mode mode)
{
  rtx x = widen_memory_access (mem1, mode, 0);
  MEM_NOTRAP_P (x) = MEM_NOTRAP_P (mem1) && MEM_NOTRAP_P (mem2);
  return x;
}

/* Return 1 if reg is a pseudo, or is the first register in
   a hard register pair.  This makes it suitable for use in
   ldd and std insns.  */

int
register_ok_for_ldd (rtx reg)
{
  /* We might have been passed a SUBREG.  */
  if (!REG_P (reg))
    return 0;

  if (REGNO (reg) < FIRST_PSEUDO_REGISTER)
    return (REGNO (reg) % 2 == 0);

  return 1;
}

/* Return 1 if OP, a MEM, has an address which is known to be
   aligned to an 8-byte boundary.  */

int
memory_ok_for_ldd (rtx op)
{
  /* In 64-bit mode, we assume that the address is word-aligned.  */
  if (TARGET_ARCH32 && !mem_min_alignment (op, 8))
    return 0;

  if (! can_create_pseudo_p ()
      && !strict_memory_address_p (Pmode, XEXP (op, 0)))
    return 0;

  return 1;
}

/* Implement TARGET_PRINT_OPERAND_PUNCT_VALID_P.  */

static bool
sparc_print_operand_punct_valid_p (unsigned char code)
{
  if (code == '#'
      || code == '*'
      || code == '('
      || code == ')'
      || code == '_'
      || code == '&')
    return true;

  return false;
}

/* Implement TARGET_PRINT_OPERAND.
   Print operand X (an rtx) in assembler syntax to file FILE.
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */

static void
sparc_print_operand (FILE *file, rtx x, int code)
{
  const char *s;

  switch (code)
    {
    case '#':
      /* Output an insn in a delay slot.  */
      if (final_sequence)
        sparc_indent_opcode = 1;
      else
	fputs ("\n\t nop", file);
      return;
    case '*':
      /* Output an annul flag if there's nothing for the delay slot and we
	 are optimizing.  This is always used with '(' below.
         Sun OS 4.1.1 dbx can't handle an annulled unconditional branch;
	 this is a dbx bug.  So, we only do this when optimizing.
         On UltraSPARC, a branch in a delay slot causes a pipeline flush.
	 Always emit a nop in case the next instruction is a branch.  */
      if (! final_sequence && (optimize && (int)sparc_cpu < PROCESSOR_V9))
	fputs (",a", file);
      return;
    case '(':
      /* Output a 'nop' if there's nothing for the delay slot and we are
	 not optimizing.  This is always used with '*' above.  */
      if (! final_sequence && ! (optimize && (int)sparc_cpu < PROCESSOR_V9))
	fputs ("\n\t nop", file);
      else if (final_sequence)
        sparc_indent_opcode = 1;
      return;
    case ')':
      /* Output the right displacement from the saved PC on function return.
	 The caller may have placed an "unimp" insn immediately after the call
	 so we have to account for it.  This insn is used in the 32-bit ABI
	 when calling a function that returns a non zero-sized structure.  The
	 64-bit ABI doesn't have it.  Be careful to have this test be the same
	 as that for the call.  The exception is when sparc_std_struct_return
	 is enabled, the psABI is followed exactly and the adjustment is made
	 by the code in sparc_struct_value_rtx.  The call emitted is the same
	 when sparc_std_struct_return is enabled. */
     if (!TARGET_ARCH64
	 && cfun->returns_struct
	 && !sparc_std_struct_return
	 && DECL_SIZE (DECL_RESULT (current_function_decl))
	 && TREE_CODE (DECL_SIZE (DECL_RESULT (current_function_decl)))
	     == INTEGER_CST
	 && !integer_zerop (DECL_SIZE (DECL_RESULT (current_function_decl))))
	fputs ("12", file);
      else
        fputc ('8', file);
      return;
    case '_':
      /* Output the Embedded Medium/Anywhere code model base register.  */
      fputs (EMBMEDANY_BASE_REG, file);
      return;
    case '&':
      /* Print some local dynamic TLS name.  */
      if (const char *name = get_some_local_dynamic_name ())
	assemble_name (file, name);
      else
	output_operand_lossage ("'%%&' used without any "
				"local dynamic TLS references");
      return;

    case 'Y':
      /* Adjust the operand to take into account a RESTORE operation.  */
      if (GET_CODE (x) == CONST_INT)
	break;
      else if (GET_CODE (x) != REG)
	output_operand_lossage ("invalid %%Y operand");
      else if (REGNO (x) < 8)
	fputs (reg_names[REGNO (x)], file);
      else if (REGNO (x) >= 24 && REGNO (x) < 32)
	fputs (reg_names[REGNO (x)-16], file);
      else
	output_operand_lossage ("invalid %%Y operand");
      return;
    case 'L':
      /* Print out the low order register name of a register pair.  */
      if (WORDS_BIG_ENDIAN)
	fputs (reg_names[REGNO (x)+1], file);
      else
	fputs (reg_names[REGNO (x)], file);
      return;
    case 'H':
      /* Print out the high order register name of a register pair.  */
      if (WORDS_BIG_ENDIAN)
	fputs (reg_names[REGNO (x)], file);
      else
	fputs (reg_names[REGNO (x)+1], file);
      return;
    case 'R':
      /* Print out the second register name of a register pair or quad.
	 I.e., R (%o0) => %o1.  */
      fputs (reg_names[REGNO (x)+1], file);
      return;
    case 'S':
      /* Print out the third register name of a register quad.
	 I.e., S (%o0) => %o2.  */
      fputs (reg_names[REGNO (x)+2], file);
      return;
    case 'T':
      /* Print out the fourth register name of a register quad.
	 I.e., T (%o0) => %o3.  */
      fputs (reg_names[REGNO (x)+3], file);
      return;
    case 'x':
      /* Print a condition code register.  */
      if (REGNO (x) == SPARC_ICC_REG)
	{
	  switch (GET_MODE (x))
	    {
	    case E_CCmode:
	    case E_CCNZmode:
	    case E_CCCmode:
	    case E_CCVmode:
	      s = "%icc";
	      break;
	    case E_CCXmode:
	    case E_CCXNZmode:
	    case E_CCXCmode:
	    case E_CCXVmode:
	      s = "%xcc";
	      break;
	    default:
	      gcc_unreachable ();
	    }
	  fputs (s, file);
	}
      else
	/* %fccN register */
	fputs (reg_names[REGNO (x)], file);
      return;
    case 'm':
      /* Print the operand's address only.  */
      output_address (GET_MODE (x), XEXP (x, 0));
      return;
    case 'r':
      /* In this case we need a register.  Use %g0 if the
	 operand is const0_rtx.  */
      if (x == const0_rtx
	  || (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x))))
	{
	  fputs ("%g0", file);
	  return;
	}
      else
	break;

    case 'A':
      switch (GET_CODE (x))
	{
	case IOR:
	  s = "or";
	  break;
	case AND:
	  s = "and";
	  break;
	case XOR:
	  s = "xor";
	  break;
	default:
	  output_operand_lossage ("invalid %%A operand");
	  s = "";
	  break;
	}
      fputs (s, file);
      return;

    case 'B':
      switch (GET_CODE (x))
	{
	case IOR:
	  s = "orn";
	  break;
	case AND:
	  s = "andn";
	  break;
	case XOR:
	  s = "xnor";
	  break;
	default:
	  output_operand_lossage ("invalid %%B operand");
	  s = "";
	  break;
	}
      fputs (s, file);
      return;

      /* This is used by the conditional move instructions.  */
    case 'C':
      {
	machine_mode mode = GET_MODE (XEXP (x, 0));
	switch (GET_CODE (x))
	  {
	  case NE:
	    if (mode == CCVmode || mode == CCXVmode)
	      s = "vs";
	    else
	      s = "ne";
	    break;
	  case EQ:
	    if (mode == CCVmode || mode == CCXVmode)
	      s = "vc";
	    else
	      s = "e";
	    break;
	  case GE:
	    if (mode == CCNZmode || mode == CCXNZmode)
	      s = "pos";
	    else
	      s = "ge";
	    break;
	  case GT:
	    s = "g";
	    break;
	  case LE:
	    s = "le";
	    break;
	  case LT:
	    if (mode == CCNZmode || mode == CCXNZmode)
	      s = "neg";
	    else
	      s = "l";
	    break;
	  case GEU:
	    s = "geu";
	    break;
	  case GTU:
	    s = "gu";
	    break;
	  case LEU:
	    s = "leu";
	    break;
	  case LTU:
	    s = "lu";
	    break;
	  case LTGT:
	    s = "lg";
	    break;
	  case UNORDERED:
	    s = "u";
	    break;
	  case ORDERED:
	    s = "o";
	    break;
	  case UNLT:
	    s = "ul";
	    break;
	  case UNLE:
	    s = "ule";
	    break;
	  case UNGT:
	    s = "ug";
	    break;
	  case UNGE:
	    s = "uge"
	    ; break;
	  case UNEQ:
	    s = "ue";
	    break;
	  default:
	    output_operand_lossage ("invalid %%C operand");
	    s = "";
	    break;
	  }
	fputs (s, file);
	return;
      }

      /* This are used by the movr instruction pattern.  */
    case 'D':
      {
	switch (GET_CODE (x))
	  {
	  case NE:
	    s = "ne";
	    break;
	  case EQ:
	    s = "e";
	    break;
	  case GE:
	    s = "gez";
	    break;
	  case LT:
	    s = "lz";
	    break;
	  case LE:
	    s = "lez";
	    break;
	  case GT:
	    s = "gz";
	    break;
	  default:
	    output_operand_lossage ("invalid %%D operand");
	    s = "";
	    break;
	  }
	fputs (s, file);
	return;
      }

    case 'b':
      {
	/* Print a sign-extended character.  */
	int i = trunc_int_for_mode (INTVAL (x), QImode);
	fprintf (file, "%d", i);
	return;
      }

    case 'f':
      /* Operand must be a MEM; write its address.  */
      if (GET_CODE (x) != MEM)
	output_operand_lossage ("invalid %%f operand");
      output_address (GET_MODE (x), XEXP (x, 0));
      return;

    case 's':
      {
	/* Print a sign-extended 32-bit value.  */
	HOST_WIDE_INT i;
	if (GET_CODE(x) == CONST_INT)
	  i = INTVAL (x);
	else
	  {
	    output_operand_lossage ("invalid %%s operand");
	    return;
	  }
	i = trunc_int_for_mode (i, SImode);
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, i);
	return;
      }

    case 0:
      /* Do nothing special.  */
      break;

    default:
      /* Undocumented flag.  */
      output_operand_lossage ("invalid operand output code");
    }

  if (GET_CODE (x) == REG)
    fputs (reg_names[REGNO (x)], file);
  else if (GET_CODE (x) == MEM)
    {
      fputc ('[', file);
	/* Poor Sun assembler doesn't understand absolute addressing.  */
      if (CONSTANT_P (XEXP (x, 0)))
	fputs ("%g0+", file);
      output_address (GET_MODE (x), XEXP (x, 0));
      fputc (']', file);
    }
  else if (GET_CODE (x) == HIGH)
    {
      fputs ("%hi(", file);
      output_addr_const (file, XEXP (x, 0));
      fputc (')', file);
    }
  else if (GET_CODE (x) == LO_SUM)
    {
      sparc_print_operand (file, XEXP (x, 0), 0);
      if (TARGET_CM_MEDMID)
	fputs ("+%l44(", file);
      else
	fputs ("+%lo(", file);
      output_addr_const (file, XEXP (x, 1));
      fputc (')', file);
    }
  else if (GET_CODE (x) == CONST_DOUBLE)
    output_operand_lossage ("floating-point constant not a valid immediate operand");
  else
    output_addr_const (file, x);
}

/* Implement TARGET_PRINT_OPERAND_ADDRESS.  */

static void
sparc_print_operand_address (FILE *file, machine_mode /*mode*/, rtx x)
{
  register rtx base, index = 0;
  int offset = 0;
  register rtx addr = x;

  if (REG_P (addr))
    fputs (reg_names[REGNO (addr)], file);
  else if (GET_CODE (addr) == PLUS)
    {
      if (CONST_INT_P (XEXP (addr, 0)))
	offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);
      else if (CONST_INT_P (XEXP (addr, 1)))
	offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);
      else
	base = XEXP (addr, 0), index = XEXP (addr, 1);
      if (GET_CODE (base) == LO_SUM)
	{
	  gcc_assert (USE_AS_OFFSETABLE_LO10
		      && TARGET_ARCH64
		      && ! TARGET_CM_MEDMID);
	  output_operand (XEXP (base, 0), 0);
	  fputs ("+%lo(", file);
	  output_address (VOIDmode, XEXP (base, 1));
	  fprintf (file, ")+%d", offset);
	}
      else
	{
	  fputs (reg_names[REGNO (base)], file);
	  if (index == 0)
	    fprintf (file, "%+d", offset);
	  else if (REG_P (index))
	    fprintf (file, "+%s", reg_names[REGNO (index)]);
	  else if (GET_CODE (index) == SYMBOL_REF
		   || GET_CODE (index) == LABEL_REF
		   || GET_CODE (index) == CONST)
	    fputc ('+', file), output_addr_const (file, index);
	  else gcc_unreachable ();
	}
    }
  else if (GET_CODE (addr) == MINUS
	   && GET_CODE (XEXP (addr, 1)) == LABEL_REF)
    {
      output_addr_const (file, XEXP (addr, 0));
      fputs ("-(", file);
      output_addr_const (file, XEXP (addr, 1));
      fputs ("-.)", file);
    }
  else if (GET_CODE (addr) == LO_SUM)
    {
      output_operand (XEXP (addr, 0), 0);
      if (TARGET_CM_MEDMID)
        fputs ("+%l44(", file);
      else
        fputs ("+%lo(", file);
      output_address (VOIDmode, XEXP (addr, 1));
      fputc (')', file);
    }
  else if (flag_pic
	   && GET_CODE (addr) == CONST
	   && GET_CODE (XEXP (addr, 0)) == MINUS
	   && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST
	   && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS
	   && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx)
    {
      addr = XEXP (addr, 0);
      output_addr_const (file, XEXP (addr, 0));
      /* Group the args of the second CONST in parenthesis.  */
      fputs ("-(", file);
      /* Skip past the second CONST--it does nothing for us.  */
      output_addr_const (file, XEXP (XEXP (addr, 1), 0));
      /* Close the parenthesis.  */
      fputc (')', file);
    }
  else
    {
      output_addr_const (file, addr);
    }
}

/* Target hook for assembling integer objects.  The sparc version has
   special handling for aligned DI-mode objects.  */

static bool
sparc_assemble_integer (rtx x, unsigned int size, int aligned_p)
{
  /* ??? We only output .xword's for symbols and only then in environments
     where the assembler can handle them.  */
  if (aligned_p && size == 8 && GET_CODE (x) != CONST_INT)
    {
      if (TARGET_V9)
	{
	  assemble_integer_with_op ("\t.xword\t", x);
	  return true;
	}
      else
	{
	  assemble_aligned_integer (4, const0_rtx);
	  assemble_aligned_integer (4, x);
	  return true;
	}
    }
  return default_assemble_integer (x, size, aligned_p);
}

/* Return the value of a code used in the .proc pseudo-op that says
   what kind of result this function returns.  For non-C types, we pick
   the closest C type.  */

#ifndef SHORT_TYPE_SIZE
#define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
#endif

#ifndef INT_TYPE_SIZE
#define INT_TYPE_SIZE BITS_PER_WORD
#endif

#ifndef LONG_TYPE_SIZE
#define LONG_TYPE_SIZE BITS_PER_WORD
#endif

#ifndef LONG_LONG_TYPE_SIZE
#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
#endif

#ifndef FLOAT_TYPE_SIZE
#define FLOAT_TYPE_SIZE BITS_PER_WORD
#endif

#ifndef DOUBLE_TYPE_SIZE
#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
#endif

#ifndef LONG_DOUBLE_TYPE_SIZE
#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
#endif

unsigned long
sparc_type_code (register tree type)
{
  register unsigned long qualifiers = 0;
  register unsigned shift;

  /* Only the first 30 bits of the qualifier are valid.  We must refrain from
     setting more, since some assemblers will give an error for this.  Also,
     we must be careful to avoid shifts of 32 bits or more to avoid getting
     unpredictable results.  */

  for (shift = 6; shift < 30; shift += 2, type = TREE_TYPE (type))
    {
      switch (TREE_CODE (type))
	{
	case ERROR_MARK:
	  return qualifiers;

	case ARRAY_TYPE:
	  qualifiers |= (3 << shift);
	  break;

	case FUNCTION_TYPE:
	case METHOD_TYPE:
	  qualifiers |= (2 << shift);
	  break;

	case POINTER_TYPE:
	case REFERENCE_TYPE:
	case OFFSET_TYPE:
	  qualifiers |= (1 << shift);
	  break;

	case RECORD_TYPE:
	  return (qualifiers | 8);

	case UNION_TYPE:
	case QUAL_UNION_TYPE:
	  return (qualifiers | 9);

	case ENUMERAL_TYPE:
	  return (qualifiers | 10);

	case VOID_TYPE:
	  return (qualifiers | 16);

	case INTEGER_TYPE:
	  /* If this is a range type, consider it to be the underlying
	     type.  */
	  if (TREE_TYPE (type) != 0)
	    break;

	  /* Carefully distinguish all the standard types of C,
	     without messing up if the language is not C.  We do this by
	     testing TYPE_PRECISION and TYPE_UNSIGNED.  The old code used to
	     look at both the names and the above fields, but that's redundant.
	     Any type whose size is between two C types will be considered
	     to be the wider of the two types.  Also, we do not have a
	     special code to use for "long long", so anything wider than
	     long is treated the same.  Note that we can't distinguish
	     between "int" and "long" in this code if they are the same
	     size, but that's fine, since neither can the assembler.  */

	  if (TYPE_PRECISION (type) <= CHAR_TYPE_SIZE)
	    return (qualifiers | (TYPE_UNSIGNED (type) ? 12 : 2));

	  else if (TYPE_PRECISION (type) <= SHORT_TYPE_SIZE)
	    return (qualifiers | (TYPE_UNSIGNED (type) ? 13 : 3));

	  else if (TYPE_PRECISION (type) <= INT_TYPE_SIZE)
	    return (qualifiers | (TYPE_UNSIGNED (type) ? 14 : 4));

	  else
	    return (qualifiers | (TYPE_UNSIGNED (type) ? 15 : 5));

	case REAL_TYPE:
	  /* If this is a range type, consider it to be the underlying
	     type.  */
	  if (TREE_TYPE (type) != 0)
	    break;

	  /* Carefully distinguish all the standard types of C,
	     without messing up if the language is not C.  */

	  if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
	    return (qualifiers | 6);

	  else
	    return (qualifiers | 7);

	case COMPLEX_TYPE:	/* GNU Fortran COMPLEX type.  */
	  /* ??? We need to distinguish between double and float complex types,
	     but I don't know how yet because I can't reach this code from
	     existing front-ends.  */
	  return (qualifiers | 7);	/* Who knows? */

	case VECTOR_TYPE:
	case BOOLEAN_TYPE:	/* Boolean truth value type.  */
	case LANG_TYPE:
	case NULLPTR_TYPE:
	  return qualifiers;

	default:
	  gcc_unreachable ();		/* Not a type! */
        }
    }

  return qualifiers;
}

/* Nested function support.  */

/* Emit RTL insns to initialize the variable parts of a trampoline.
   FNADDR is an RTX for the address of the function's pure code.
   CXT is an RTX for the static chain value for the function.

   This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
   (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
   (to store insns).  This is a bit excessive.  Perhaps a different
   mechanism would be better here.

   Emit enough FLUSH insns to synchronize the data and instruction caches.  */

static void
sparc32_initialize_trampoline (rtx m_tramp, rtx fnaddr, rtx cxt)
{
  /* SPARC 32-bit trampoline:

 	sethi	%hi(fn), %g1
 	sethi	%hi(static), %g2
 	jmp	%g1+%lo(fn)
 	or	%g2, %lo(static), %g2

    SETHI i,r  = 00rr rrr1 00ii iiii iiii iiii iiii iiii
    JMPL r+i,d = 10dd ddd1 1100 0rrr rr1i iiii iiii iiii
   */

  emit_move_insn
    (adjust_address (m_tramp, SImode, 0),
     expand_binop (SImode, ior_optab,
		   expand_shift (RSHIFT_EXPR, SImode, fnaddr, 10, 0, 1),
		   GEN_INT (trunc_int_for_mode (0x03000000, SImode)),
		   NULL_RTX, 1, OPTAB_DIRECT));

  emit_move_insn
    (adjust_address (m_tramp, SImode, 4),
     expand_binop (SImode, ior_optab,
		   expand_shift (RSHIFT_EXPR, SImode, cxt, 10, 0, 1),
		   GEN_INT (trunc_int_for_mode (0x05000000, SImode)),
		   NULL_RTX, 1, OPTAB_DIRECT));

  emit_move_insn
    (adjust_address (m_tramp, SImode, 8),
     expand_binop (SImode, ior_optab,
		   expand_and (SImode, fnaddr, GEN_INT (0x3ff), NULL_RTX),
		   GEN_INT (trunc_int_for_mode (0x81c06000, SImode)),
		   NULL_RTX, 1, OPTAB_DIRECT));

  emit_move_insn
    (adjust_address (m_tramp, SImode, 12),
     expand_binop (SImode, ior_optab,
		   expand_and (SImode, cxt, GEN_INT (0x3ff), NULL_RTX),
		   GEN_INT (trunc_int_for_mode (0x8410a000, SImode)),
		   NULL_RTX, 1, OPTAB_DIRECT));

  /* On UltraSPARC a flush flushes an entire cache line.  The trampoline is
     aligned on a 16 byte boundary so one flush clears it all.  */
  emit_insn (gen_flushsi (validize_mem (adjust_address (m_tramp, SImode, 0))));
  if (sparc_cpu != PROCESSOR_ULTRASPARC
      && sparc_cpu != PROCESSOR_ULTRASPARC3
      && sparc_cpu != PROCESSOR_NIAGARA
      && sparc_cpu != PROCESSOR_NIAGARA2
      && sparc_cpu != PROCESSOR_NIAGARA3
      && sparc_cpu != PROCESSOR_NIAGARA4
      && sparc_cpu != PROCESSOR_NIAGARA7
      && sparc_cpu != PROCESSOR_M8)
    emit_insn (gen_flushsi (validize_mem (adjust_address (m_tramp, SImode, 8))));

  /* Call __enable_execute_stack after writing onto the stack to make sure
     the stack address is accessible.  */
#ifdef HAVE_ENABLE_EXECUTE_STACK
  emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"),
                     LCT_NORMAL, VOIDmode, XEXP (m_tramp, 0), Pmode);
#endif

}

/* The 64-bit version is simpler because it makes more sense to load the
   values as "immediate" data out of the trampoline.  It's also easier since
   we can read the PC without clobbering a register.  */

static void
sparc64_initialize_trampoline (rtx m_tramp, rtx fnaddr, rtx cxt)
{
  /* SPARC 64-bit trampoline:

	rd	%pc, %g1
	ldx	[%g1+24], %g5
	jmp	%g5
	ldx	[%g1+16], %g5
	+16 bytes data
   */

  emit_move_insn (adjust_address (m_tramp, SImode, 0),
		  GEN_INT (trunc_int_for_mode (0x83414000, SImode)));
  emit_move_insn (adjust_address (m_tramp, SImode, 4),
		  GEN_INT (trunc_int_for_mode (0xca586018, SImode)));
  emit_move_insn (adjust_address (m_tramp, SImode, 8),
		  GEN_INT (trunc_int_for_mode (0x81c14000, SImode)));
  emit_move_insn (adjust_address (m_tramp, SImode, 12),
		  GEN_INT (trunc_int_for_mode (0xca586010, SImode)));
  emit_move_insn (adjust_address (m_tramp, DImode, 16), cxt);
  emit_move_insn (adjust_address (m_tramp, DImode, 24), fnaddr);
  emit_insn (gen_flushdi (validize_mem (adjust_address (m_tramp, DImode, 0))));

  if (sparc_cpu != PROCESSOR_ULTRASPARC
      && sparc_cpu != PROCESSOR_ULTRASPARC3
      && sparc_cpu != PROCESSOR_NIAGARA
      && sparc_cpu != PROCESSOR_NIAGARA2
      && sparc_cpu != PROCESSOR_NIAGARA3
      && sparc_cpu != PROCESSOR_NIAGARA4
      && sparc_cpu != PROCESSOR_NIAGARA7
      && sparc_cpu != PROCESSOR_M8)
    emit_insn (gen_flushdi (validize_mem (adjust_address (m_tramp, DImode, 8))));

  /* Call __enable_execute_stack after writing onto the stack to make sure
     the stack address is accessible.  */
#ifdef HAVE_ENABLE_EXECUTE_STACK
  emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"),
                     LCT_NORMAL, VOIDmode, XEXP (m_tramp, 0), Pmode);
#endif
}

/* Worker for TARGET_TRAMPOLINE_INIT.  */

static void
sparc_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
{
  rtx fnaddr = force_reg (Pmode, XEXP (DECL_RTL (fndecl), 0));
  cxt = force_reg (Pmode, cxt);
  if (TARGET_ARCH64)
    sparc64_initialize_trampoline (m_tramp, fnaddr, cxt);
  else
    sparc32_initialize_trampoline (m_tramp, fnaddr, cxt);
}

/* Adjust the cost of a scheduling dependency.  Return the new cost of
   a dependency LINK or INSN on DEP_INSN.  COST is the current cost.  */

static int
supersparc_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn,
			int cost)
{
  enum attr_type insn_type;

  if (recog_memoized (insn) < 0)
    return cost;

  insn_type = get_attr_type (insn);

  if (dep_type == 0)
    {
      /* Data dependency; DEP_INSN writes a register that INSN reads some
	 cycles later.  */

      /* if a load, then the dependence must be on the memory address;
	 add an extra "cycle".  Note that the cost could be two cycles
	 if the reg was written late in an instruction group; we ca not tell
	 here.  */
      if (insn_type == TYPE_LOAD || insn_type == TYPE_FPLOAD)
	return cost + 3;

      /* Get the delay only if the address of the store is the dependence.  */
      if (insn_type == TYPE_STORE || insn_type == TYPE_FPSTORE)
	{
	  rtx pat = PATTERN(insn);
	  rtx dep_pat = PATTERN (dep_insn);

	  if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
	    return cost;  /* This should not happen!  */

	  /* The dependency between the two instructions was on the data that
	     is being stored.  Assume that this implies that the address of the
	     store is not dependent.  */
	  if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat)))
	    return cost;

	  return cost + 3;  /* An approximation.  */
	}

      /* A shift instruction cannot receive its data from an instruction
	 in the same cycle; add a one cycle penalty.  */
      if (insn_type == TYPE_SHIFT)
	return cost + 3;   /* Split before cascade into shift.  */
    }
  else
    {
      /* Anti- or output- dependency; DEP_INSN reads/writes a register that
	 INSN writes some cycles later.  */

      /* These are only significant for the fpu unit; writing a fp reg before
         the fpu has finished with it stalls the processor.  */

      /* Reusing an integer register causes no problems.  */
      if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT)
	return 0;
    }
	
  return cost;
}

static int
hypersparc_adjust_cost (rtx_insn *insn, int dtype, rtx_insn *dep_insn,
			int cost)
{
  enum attr_type insn_type, dep_type;
  rtx pat = PATTERN(insn);
  rtx dep_pat = PATTERN (dep_insn);

  if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
    return cost;

  insn_type = get_attr_type (insn);
  dep_type = get_attr_type (dep_insn);

  switch (dtype)
    {
    case 0:
      /* Data dependency; DEP_INSN writes a register that INSN reads some
	 cycles later.  */

      switch (insn_type)
	{
	case TYPE_STORE:
	case TYPE_FPSTORE:
	  /* Get the delay iff the address of the store is the dependence.  */
	  if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
	    return cost;

	  if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat)))
	    return cost;
	  return cost + 3;

	case TYPE_LOAD:
	case TYPE_SLOAD:
	case TYPE_FPLOAD:
	  /* If a load, then the dependence must be on the memory address.  If
	     the addresses aren't equal, then it might be a false dependency */
	  if (dep_type == TYPE_STORE || dep_type == TYPE_FPSTORE)
	    {
	      if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET
		  || GET_CODE (SET_DEST (dep_pat)) != MEM
		  || GET_CODE (SET_SRC (pat)) != MEM
		  || ! rtx_equal_p (XEXP (SET_DEST (dep_pat), 0),
				    XEXP (SET_SRC (pat), 0)))
		return cost + 2;

	      return cost + 8;
	    }
	  break;

	case TYPE_BRANCH:
	  /* Compare to branch latency is 0.  There is no benefit from
	     separating compare and branch.  */
	  if (dep_type == TYPE_COMPARE)
	    return 0;
	  /* Floating point compare to branch latency is less than
	     compare to conditional move.  */
	  if (dep_type == TYPE_FPCMP)
	    return cost - 1;
	  break;
	default:
	  break;
	}
	break;

    case REG_DEP_ANTI:
      /* Anti-dependencies only penalize the fpu unit.  */
      if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT)
        return 0;
      break;

    default:
      break;
    }

  return cost;
}

static int
sparc_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep, int cost,
		   unsigned int)
{
  switch (sparc_cpu)
    {
    case PROCESSOR_SUPERSPARC:
      cost = supersparc_adjust_cost (insn, dep_type, dep, cost);
      break;
    case PROCESSOR_HYPERSPARC:
    case PROCESSOR_SPARCLITE86X:
      cost = hypersparc_adjust_cost (insn, dep_type, dep, cost);
      break;
    default:
      break;
    }
  return cost;
}

static void
sparc_sched_init (FILE *dump ATTRIBUTE_UNUSED,
		  int sched_verbose ATTRIBUTE_UNUSED,
		  int max_ready ATTRIBUTE_UNUSED)
{}

static int
sparc_use_sched_lookahead (void)
{
  switch (sparc_cpu)
    {
    case PROCESSOR_ULTRASPARC:
    case PROCESSOR_ULTRASPARC3:
      return 4;
    case PROCESSOR_SUPERSPARC:
    case PROCESSOR_HYPERSPARC:
    case PROCESSOR_SPARCLITE86X:
      return 3;
    case PROCESSOR_NIAGARA4:
    case PROCESSOR_NIAGARA7:
    case PROCESSOR_M8:
      return 2;
    case PROCESSOR_NIAGARA:
    case PROCESSOR_NIAGARA2:
    case PROCESSOR_NIAGARA3:
    default:
      return 0;
    }
}

static int
sparc_issue_rate (void)
{
  switch (sparc_cpu)
    {
    case PROCESSOR_ULTRASPARC:
    case PROCESSOR_ULTRASPARC3:
    case PROCESSOR_M8:
      return 4;
    case PROCESSOR_SUPERSPARC:
      return 3;
    case PROCESSOR_HYPERSPARC:
    case PROCESSOR_SPARCLITE86X:
    case PROCESSOR_V9:
      /* Assume V9 processors are capable of at least dual-issue.  */
    case PROCESSOR_NIAGARA4:
    case PROCESSOR_NIAGARA7:
      return 2;
    case PROCESSOR_NIAGARA:
    case PROCESSOR_NIAGARA2:
    case PROCESSOR_NIAGARA3:
    default:
      return 1;
    }
}

int
sparc_branch_cost (bool speed_p, bool predictable_p)
{
  if (!speed_p)
    return 2;

  /* For pre-V9 processors we use a single value (usually 3) to take into
     account the potential annulling of the delay slot (which ends up being
     a bubble in the pipeline slot) plus a cycle to take into consideration
     the instruction cache effects.

     On V9 and later processors, which have branch prediction facilities,
     we take into account whether the branch is (easily) predictable.  */
  const int cost = sparc_costs->branch_cost;

  switch (sparc_cpu)
    {
    case PROCESSOR_V9:
    case PROCESSOR_ULTRASPARC:
    case PROCESSOR_ULTRASPARC3:
    case PROCESSOR_NIAGARA:
    case PROCESSOR_NIAGARA2:
    case PROCESSOR_NIAGARA3:
    case PROCESSOR_NIAGARA4:
    case PROCESSOR_NIAGARA7:
    case PROCESSOR_M8:
      return cost + (predictable_p ? 0 : 2);

    default:
      return cost;
    }
}
      
static int
set_extends (rtx_insn *insn)
{
  register rtx pat = PATTERN (insn);

  switch (GET_CODE (SET_SRC (pat)))
    {
      /* Load and some shift instructions zero extend.  */
    case MEM:
    case ZERO_EXTEND:
      /* sethi clears the high bits */
    case HIGH:
      /* LO_SUM is used with sethi.  sethi cleared the high
	 bits and the values used with lo_sum are positive */
    case LO_SUM:
      /* Store flag stores 0 or 1 */
    case LT: case LTU:
    case GT: case GTU:
    case LE: case LEU:
    case GE: case GEU:
    case EQ:
    case NE:
      return 1;
    case AND:
      {
	rtx op0 = XEXP (SET_SRC (pat), 0);
	rtx op1 = XEXP (SET_SRC (pat), 1);
	if (GET_CODE (op1) == CONST_INT)
	  return INTVAL (op1) >= 0;
	if (GET_CODE (op0) != REG)
	  return 0;
	if (sparc_check_64 (op0, insn) == 1)
	  return 1;
	return (GET_CODE (op1) == REG && sparc_check_64 (op1, insn) == 1);
      }
    case IOR:
    case XOR:
      {
	rtx op0 = XEXP (SET_SRC (pat), 0);
	rtx op1 = XEXP (SET_SRC (pat), 1);
	if (GET_CODE (op0) != REG || sparc_check_64 (op0, insn) <= 0)
	  return 0;
	if (GET_CODE (op1) == CONST_INT)
	  return INTVAL (op1) >= 0;
	return (GET_CODE (op1) == REG && sparc_check_64 (op1, insn) == 1);
      }
    case LSHIFTRT:
      return GET_MODE (SET_SRC (pat)) == SImode;
      /* Positive integers leave the high bits zero.  */
    case CONST_INT:
      return !(INTVAL (SET_SRC (pat)) & 0x80000000);
    case ASHIFTRT:
    case SIGN_EXTEND:
      return - (GET_MODE (SET_SRC (pat)) == SImode);
    case REG:
      return sparc_check_64 (SET_SRC (pat), insn);
    default:
      return 0;
    }
}

/* We _ought_ to have only one kind per function, but...  */
static GTY(()) rtx sparc_addr_diff_list;
static GTY(()) rtx sparc_addr_list;

void
sparc_defer_case_vector (rtx lab, rtx vec, int diff)
{
  vec = gen_rtx_EXPR_LIST (VOIDmode, lab, vec);
  if (diff)
    sparc_addr_diff_list
      = gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_diff_list);
  else
    sparc_addr_list = gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_list);
}

static void
sparc_output_addr_vec (rtx vec)
{
  rtx lab = XEXP (vec, 0), body = XEXP (vec, 1);
  int idx, vlen = XVECLEN (body, 0);

#ifdef ASM_OUTPUT_ADDR_VEC_START
  ASM_OUTPUT_ADDR_VEC_START (asm_out_file);
#endif

#ifdef ASM_OUTPUT_CASE_LABEL
  ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab),
			 NEXT_INSN (lab));
#else
  (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (lab));
#endif

  for (idx = 0; idx < vlen; idx++)
    {
      ASM_OUTPUT_ADDR_VEC_ELT
	(asm_out_file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
    }

#ifdef ASM_OUTPUT_ADDR_VEC_END
  ASM_OUTPUT_ADDR_VEC_END (asm_out_file);
#endif
}

static void
sparc_output_addr_diff_vec (rtx vec)
{
  rtx lab = XEXP (vec, 0), body = XEXP (vec, 1);
  rtx base = XEXP (XEXP (body, 0), 0);
  int idx, vlen = XVECLEN (body, 1);

#ifdef ASM_OUTPUT_ADDR_VEC_START
  ASM_OUTPUT_ADDR_VEC_START (asm_out_file);
#endif

#ifdef ASM_OUTPUT_CASE_LABEL
  ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab),
			 NEXT_INSN (lab));
#else
  (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (lab));
#endif

  for (idx = 0; idx < vlen; idx++)
    {
      ASM_OUTPUT_ADDR_DIFF_ELT
        (asm_out_file,
         body,
         CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
         CODE_LABEL_NUMBER (base));
    }

#ifdef ASM_OUTPUT_ADDR_VEC_END
  ASM_OUTPUT_ADDR_VEC_END (asm_out_file);
#endif
}

static void
sparc_output_deferred_case_vectors (void)
{
  rtx t;
  int align;

  if (sparc_addr_list == NULL_RTX
      && sparc_addr_diff_list == NULL_RTX)
    return;

  /* Align to cache line in the function's code section.  */
  switch_to_section (current_function_section ());

  align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT);
  if (align > 0)
    ASM_OUTPUT_ALIGN (asm_out_file, align);

  for (t = sparc_addr_list; t ; t = XEXP (t, 1))
    sparc_output_addr_vec (XEXP (t, 0));
  for (t = sparc_addr_diff_list; t ; t = XEXP (t, 1))
    sparc_output_addr_diff_vec (XEXP (t, 0));

  sparc_addr_list = sparc_addr_diff_list = NULL_RTX;
}

/* Return 0 if the high 32 bits of X (the low word of X, if DImode) are
   unknown.  Return 1 if the high bits are zero, -1 if the register is
   sign extended.  */
int
sparc_check_64 (rtx x, rtx_insn *insn)
{
  /* If a register is set only once it is safe to ignore insns this
     code does not know how to handle.  The loop will either recognize
     the single set and return the correct value or fail to recognize
     it and return 0.  */
  int set_once = 0;
  rtx y = x;

  gcc_assert (GET_CODE (x) == REG);

  if (GET_MODE (x) == DImode)
    y = gen_rtx_REG (SImode, REGNO (x) + WORDS_BIG_ENDIAN);

  if (flag_expensive_optimizations
      && df && DF_REG_DEF_COUNT (REGNO (y)) == 1)
    set_once = 1;

  if (insn == 0)
    {
      if (set_once)
	insn = get_last_insn_anywhere ();
      else
	return 0;
    }

  while ((insn = PREV_INSN (insn)))
    {
      switch (GET_CODE (insn))
	{
	case JUMP_INSN:
	case NOTE:
	  break;
	case CODE_LABEL:
	case CALL_INSN:
	default:
	  if (! set_once)
	    return 0;
	  break;
	case INSN:
	  {
	    rtx pat = PATTERN (insn);
	    if (GET_CODE (pat) != SET)
	      return 0;
	    if (rtx_equal_p (x, SET_DEST (pat)))
	      return set_extends (insn);
	    if (y && rtx_equal_p (y, SET_DEST (pat)))
	      return set_extends (insn);
	    if (reg_overlap_mentioned_p (SET_DEST (pat), y))
	      return 0;
	  }
	}
    }
  return 0;
}

/* Output a wide shift instruction in V8+ mode.  INSN is the instruction,
   OPERANDS are its operands and OPCODE is the mnemonic to be used.  */

const char *
output_v8plus_shift (rtx_insn *insn, rtx *operands, const char *opcode)
{
  static char asm_code[60];

  /* The scratch register is only required when the destination
     register is not a 64-bit global or out register.  */
  if (which_alternative != 2)
    operands[3] = operands[0];

  /* We can only shift by constants <= 63. */
  if (GET_CODE (operands[2]) == CONST_INT)
    operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);

  if (GET_CODE (operands[1]) == CONST_INT)
    {
      output_asm_insn ("mov\t%1, %3", operands);
    }
  else
    {
      output_asm_insn ("sllx\t%H1, 32, %3", operands);
      if (sparc_check_64 (operands[1], insn) <= 0)
	output_asm_insn ("srl\t%L1, 0, %L1", operands);
      output_asm_insn ("or\t%L1, %3, %3", operands);
    }

  strcpy (asm_code, opcode);

  if (which_alternative != 2)
    return strcat (asm_code, "\t%0, %2, %L0\n\tsrlx\t%L0, 32, %H0");
  else
    return
      strcat (asm_code, "\t%3, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0");
}

/* Output rtl to increment the profiler label LABELNO
   for profiling a function entry.  */

void
sparc_profile_hook (int labelno)
{
  char buf[32];
  rtx lab, fun;

  fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_FUNCTION);
  if (NO_PROFILE_COUNTERS)
    {
      emit_library_call (fun, LCT_NORMAL, VOIDmode);
    }
  else
    {
      ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
      lab = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
      emit_library_call (fun, LCT_NORMAL, VOIDmode, lab, Pmode);
    }
}

#ifdef TARGET_SOLARIS
/* Solaris implementation of TARGET_ASM_NAMED_SECTION.  */

static void
sparc_solaris_elf_asm_named_section (const char *name, unsigned int flags,
				     tree decl ATTRIBUTE_UNUSED)
{
  if (HAVE_COMDAT_GROUP && flags & SECTION_LINKONCE)
    {
      solaris_elf_asm_comdat_section (name, flags, decl);
      return;
    }

  fprintf (asm_out_file, "\t.section\t\"%s\"", name);

  if (!(flags & SECTION_DEBUG))
    fputs (",#alloc", asm_out_file);
#if HAVE_GAS_SECTION_EXCLUDE
  if (flags & SECTION_EXCLUDE)
    fputs (",#exclude", asm_out_file);
#endif
  if (flags & SECTION_WRITE)
    fputs (",#write", asm_out_file);
  if (flags & SECTION_TLS)
    fputs (",#tls", asm_out_file);
  if (flags & SECTION_CODE)
    fputs (",#execinstr", asm_out_file);

  if (flags & SECTION_NOTYPE)
    ;
  else if (flags & SECTION_BSS)
    fputs (",#nobits", asm_out_file);
  else
    fputs (",#progbits", asm_out_file);

  fputc ('\n', asm_out_file);
}
#endif /* TARGET_SOLARIS */

/* We do not allow indirect calls to be optimized into sibling calls.

   We cannot use sibling calls when delayed branches are disabled
   because they will likely require the call delay slot to be filled.

   Also, on SPARC 32-bit we cannot emit a sibling call when the
   current function returns a structure.  This is because the "unimp
   after call" convention would cause the callee to return to the
   wrong place.  The generic code already disallows cases where the
   function being called returns a structure.

   It may seem strange how this last case could occur.  Usually there
   is code after the call which jumps to epilogue code which dumps the
   return value into the struct return area.  That ought to invalidate
   the sibling call right?  Well, in the C++ case we can end up passing
   the pointer to the struct return area to a constructor (which returns
   void) and then nothing else happens.  Such a sibling call would look
   valid without the added check here.

   VxWorks PIC PLT entries require the global pointer to be initialized
   on entry.  We therefore can't emit sibling calls to them.  */
static bool
sparc_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
{
  return (decl
	  && flag_delayed_branch
	  && (TARGET_ARCH64 || ! cfun->returns_struct)
	  && !(TARGET_VXWORKS_RTP
	       && flag_pic
	       && !targetm.binds_local_p (decl)));
}

/* libfunc renaming.  */

static void
sparc_init_libfuncs (void)
{
  if (TARGET_ARCH32)
    {
      /* Use the subroutines that Sun's library provides for integer
	 multiply and divide.  The `*' prevents an underscore from
	 being prepended by the compiler. .umul is a little faster
	 than .mul.  */
      set_optab_libfunc (smul_optab, SImode, "*.umul");
      set_optab_libfunc (sdiv_optab, SImode, "*.div");
      set_optab_libfunc (udiv_optab, SImode, "*.udiv");
      set_optab_libfunc (smod_optab, SImode, "*.rem");
      set_optab_libfunc (umod_optab, SImode, "*.urem");

      /* TFmode arithmetic.  These names are part of the SPARC 32bit ABI.  */
      set_optab_libfunc (add_optab, TFmode, "_Q_add");
      set_optab_libfunc (sub_optab, TFmode, "_Q_sub");
      set_optab_libfunc (neg_optab, TFmode, "_Q_neg");
      set_optab_libfunc (smul_optab, TFmode, "_Q_mul");
      set_optab_libfunc (sdiv_optab, TFmode, "_Q_div");

      /* We can define the TFmode sqrt optab only if TARGET_FPU.  This
	 is because with soft-float, the SFmode and DFmode sqrt
	 instructions will be absent, and the compiler will notice and
	 try to use the TFmode sqrt instruction for calls to the
	 builtin function sqrt, but this fails.  */
      if (TARGET_FPU)
	set_optab_libfunc (sqrt_optab, TFmode, "_Q_sqrt");

      set_optab_libfunc (eq_optab, TFmode, "_Q_feq");
      set_optab_libfunc (ne_optab, TFmode, "_Q_fne");
      set_optab_libfunc (gt_optab, TFmode, "_Q_fgt");
      set_optab_libfunc (ge_optab, TFmode, "_Q_fge");
      set_optab_libfunc (lt_optab, TFmode, "_Q_flt");
      set_optab_libfunc (le_optab, TFmode, "_Q_fle");

      set_conv_libfunc (sext_optab,   TFmode, SFmode, "_Q_stoq");
      set_conv_libfunc (sext_optab,   TFmode, DFmode, "_Q_dtoq");
      set_conv_libfunc (trunc_optab,  SFmode, TFmode, "_Q_qtos");
      set_conv_libfunc (trunc_optab,  DFmode, TFmode, "_Q_qtod");

      set_conv_libfunc (sfix_optab,   SImode, TFmode, "_Q_qtoi");
      set_conv_libfunc (ufix_optab,   SImode, TFmode, "_Q_qtou");
      set_conv_libfunc (sfloat_optab, TFmode, SImode, "_Q_itoq");
      set_conv_libfunc (ufloat_optab, TFmode, SImode, "_Q_utoq");

      if (DITF_CONVERSION_LIBFUNCS)
	{
	  set_conv_libfunc (sfix_optab,   DImode, TFmode, "_Q_qtoll");
	  set_conv_libfunc (ufix_optab,   DImode, TFmode, "_Q_qtoull");
	  set_conv_libfunc (sfloat_optab, TFmode, DImode, "_Q_lltoq");
	  set_conv_libfunc (ufloat_optab, TFmode, DImode, "_Q_ulltoq");
	}

      if (SUN_CONVERSION_LIBFUNCS)
	{
	  set_conv_libfunc (sfix_optab, DImode, SFmode, "__ftoll");
	  set_conv_libfunc (ufix_optab, DImode, SFmode, "__ftoull");
	  set_conv_libfunc (sfix_optab, DImode, DFmode, "__dtoll");
	  set_conv_libfunc (ufix_optab, DImode, DFmode, "__dtoull");
	}
    }
  if (TARGET_ARCH64)
    {
      /* In the SPARC 64bit ABI, SImode multiply and divide functions
	 do not exist in the library.  Make sure the compiler does not
	 emit calls to them by accident.  (It should always use the
         hardware instructions.)  */
      set_optab_libfunc (smul_optab, SImode, 0);
      set_optab_libfunc (sdiv_optab, SImode, 0);
      set_optab_libfunc (udiv_optab, SImode, 0);
      set_optab_libfunc (smod_optab, SImode, 0);
      set_optab_libfunc (umod_optab, SImode, 0);

      if (SUN_INTEGER_MULTIPLY_64)
	{
	  set_optab_libfunc (smul_optab, DImode, "__mul64");
	  set_optab_libfunc (sdiv_optab, DImode, "__div64");
	  set_optab_libfunc (udiv_optab, DImode, "__udiv64");
	  set_optab_libfunc (smod_optab, DImode, "__rem64");
	  set_optab_libfunc (umod_optab, DImode, "__urem64");
	}

      if (SUN_CONVERSION_LIBFUNCS)
	{
	  set_conv_libfunc (sfix_optab, DImode, SFmode, "__ftol");
	  set_conv_libfunc (ufix_optab, DImode, SFmode, "__ftoul");
	  set_conv_libfunc (sfix_optab, DImode, DFmode, "__dtol");
	  set_conv_libfunc (ufix_optab, DImode, DFmode, "__dtoul");
	}
    }
}

/* SPARC builtins.  */
enum sparc_builtins
{
  /* FPU builtins.  */
  SPARC_BUILTIN_LDFSR,
  SPARC_BUILTIN_STFSR,

  /* VIS 1.0 builtins.  */
  SPARC_BUILTIN_FPACK16,
  SPARC_BUILTIN_FPACK32,
  SPARC_BUILTIN_FPACKFIX,
  SPARC_BUILTIN_FEXPAND,
  SPARC_BUILTIN_FPMERGE,
  SPARC_BUILTIN_FMUL8X16,
  SPARC_BUILTIN_FMUL8X16AU,
  SPARC_BUILTIN_FMUL8X16AL,
  SPARC_BUILTIN_FMUL8SUX16,
  SPARC_BUILTIN_FMUL8ULX16,
  SPARC_BUILTIN_FMULD8SUX16,
  SPARC_BUILTIN_FMULD8ULX16,
  SPARC_BUILTIN_FALIGNDATAV4HI,
  SPARC_BUILTIN_FALIGNDATAV8QI,
  SPARC_BUILTIN_FALIGNDATAV2SI,
  SPARC_BUILTIN_FALIGNDATADI,
  SPARC_BUILTIN_WRGSR,
  SPARC_BUILTIN_RDGSR,
  SPARC_BUILTIN_ALIGNADDR,
  SPARC_BUILTIN_ALIGNADDRL,
  SPARC_BUILTIN_PDIST,
  SPARC_BUILTIN_EDGE8,
  SPARC_BUILTIN_EDGE8L,
  SPARC_BUILTIN_EDGE16,
  SPARC_BUILTIN_EDGE16L,
  SPARC_BUILTIN_EDGE32,
  SPARC_BUILTIN_EDGE32L,
  SPARC_BUILTIN_FCMPLE16,
  SPARC_BUILTIN_FCMPLE32,
  SPARC_BUILTIN_FCMPNE16,
  SPARC_BUILTIN_FCMPNE32,
  SPARC_BUILTIN_FCMPGT16,
  SPARC_BUILTIN_FCMPGT32,
  SPARC_BUILTIN_FCMPEQ16,
  SPARC_BUILTIN_FCMPEQ32,
  SPARC_BUILTIN_FPADD16,
  SPARC_BUILTIN_FPADD16S,
  SPARC_BUILTIN_FPADD32,
  SPARC_BUILTIN_FPADD32S,
  SPARC_BUILTIN_FPSUB16,
  SPARC_BUILTIN_FPSUB16S,
  SPARC_BUILTIN_FPSUB32,
  SPARC_BUILTIN_FPSUB32S,
  SPARC_BUILTIN_ARRAY8,
  SPARC_BUILTIN_ARRAY16,
  SPARC_BUILTIN_ARRAY32,

  /* VIS 2.0 builtins.  */
  SPARC_BUILTIN_EDGE8N,
  SPARC_BUILTIN_EDGE8LN,
  SPARC_BUILTIN_EDGE16N,
  SPARC_BUILTIN_EDGE16LN,
  SPARC_BUILTIN_EDGE32N,
  SPARC_BUILTIN_EDGE32LN,
  SPARC_BUILTIN_BMASK,
  SPARC_BUILTIN_BSHUFFLEV4HI,
  SPARC_BUILTIN_BSHUFFLEV8QI,
  SPARC_BUILTIN_BSHUFFLEV2SI,
  SPARC_BUILTIN_BSHUFFLEDI,

  /* VIS 3.0 builtins.  */
  SPARC_BUILTIN_CMASK8,
  SPARC_BUILTIN_CMASK16,
  SPARC_BUILTIN_CMASK32,
  SPARC_BUILTIN_FCHKSM16,
  SPARC_BUILTIN_FSLL16,
  SPARC_BUILTIN_FSLAS16,
  SPARC_BUILTIN_FSRL16,
  SPARC_BUILTIN_FSRA16,
  SPARC_BUILTIN_FSLL32,
  SPARC_BUILTIN_FSLAS32,
  SPARC_BUILTIN_FSRL32,
  SPARC_BUILTIN_FSRA32,
  SPARC_BUILTIN_PDISTN,
  SPARC_BUILTIN_FMEAN16,
  SPARC_BUILTIN_FPADD64,
  SPARC_BUILTIN_FPSUB64,
  SPARC_BUILTIN_FPADDS16,
  SPARC_BUILTIN_FPADDS16S,
  SPARC_BUILTIN_FPSUBS16,
  SPARC_BUILTIN_FPSUBS16S,
  SPARC_BUILTIN_FPADDS32,
  SPARC_BUILTIN_FPADDS32S,
  SPARC_BUILTIN_FPSUBS32,
  SPARC_BUILTIN_FPSUBS32S,
  SPARC_BUILTIN_FUCMPLE8,
  SPARC_BUILTIN_FUCMPNE8,
  SPARC_BUILTIN_FUCMPGT8,
  SPARC_BUILTIN_FUCMPEQ8,
  SPARC_BUILTIN_FHADDS,
  SPARC_BUILTIN_FHADDD,
  SPARC_BUILTIN_FHSUBS,
  SPARC_BUILTIN_FHSUBD,
  SPARC_BUILTIN_FNHADDS,
  SPARC_BUILTIN_FNHADDD,
  SPARC_BUILTIN_UMULXHI,
  SPARC_BUILTIN_XMULX,
  SPARC_BUILTIN_XMULXHI,

  /* VIS 4.0 builtins.  */
  SPARC_BUILTIN_FPADD8,
  SPARC_BUILTIN_FPADDS8,
  SPARC_BUILTIN_FPADDUS8,
  SPARC_BUILTIN_FPADDUS16,
  SPARC_BUILTIN_FPCMPLE8,
  SPARC_BUILTIN_FPCMPGT8,
  SPARC_BUILTIN_FPCMPULE16,
  SPARC_BUILTIN_FPCMPUGT16,
  SPARC_BUILTIN_FPCMPULE32,
  SPARC_BUILTIN_FPCMPUGT32,
  SPARC_BUILTIN_FPMAX8,
  SPARC_BUILTIN_FPMAX16,
  SPARC_BUILTIN_FPMAX32,
  SPARC_BUILTIN_FPMAXU8,
  SPARC_BUILTIN_FPMAXU16,
  SPARC_BUILTIN_FPMAXU32,
  SPARC_BUILTIN_FPMIN8,
  SPARC_BUILTIN_FPMIN16,
  SPARC_BUILTIN_FPMIN32,
  SPARC_BUILTIN_FPMINU8,
  SPARC_BUILTIN_FPMINU16,
  SPARC_BUILTIN_FPMINU32,
  SPARC_BUILTIN_FPSUB8,
  SPARC_BUILTIN_FPSUBS8,
  SPARC_BUILTIN_FPSUBUS8,
  SPARC_BUILTIN_FPSUBUS16,

  /* VIS 4.0B builtins.  */

  /* Note that all the DICTUNPACK* entries should be kept
     contiguous.  */
  SPARC_BUILTIN_FIRST_DICTUNPACK,
  SPARC_BUILTIN_DICTUNPACK8 = SPARC_BUILTIN_FIRST_DICTUNPACK,
  SPARC_BUILTIN_DICTUNPACK16,
  SPARC_BUILTIN_DICTUNPACK32,
  SPARC_BUILTIN_LAST_DICTUNPACK = SPARC_BUILTIN_DICTUNPACK32,

  /* Note that all the FPCMP*SHL entries should be kept
     contiguous.  */
  SPARC_BUILTIN_FIRST_FPCMPSHL,
  SPARC_BUILTIN_FPCMPLE8SHL = SPARC_BUILTIN_FIRST_FPCMPSHL,
  SPARC_BUILTIN_FPCMPGT8SHL,
  SPARC_BUILTIN_FPCMPEQ8SHL,
  SPARC_BUILTIN_FPCMPNE8SHL,
  SPARC_BUILTIN_FPCMPLE16SHL,
  SPARC_BUILTIN_FPCMPGT16SHL,
  SPARC_BUILTIN_FPCMPEQ16SHL,
  SPARC_BUILTIN_FPCMPNE16SHL,
  SPARC_BUILTIN_FPCMPLE32SHL,
  SPARC_BUILTIN_FPCMPGT32SHL,
  SPARC_BUILTIN_FPCMPEQ32SHL,
  SPARC_BUILTIN_FPCMPNE32SHL,
  SPARC_BUILTIN_FPCMPULE8SHL,
  SPARC_BUILTIN_FPCMPUGT8SHL,
  SPARC_BUILTIN_FPCMPULE16SHL,
  SPARC_BUILTIN_FPCMPUGT16SHL,
  SPARC_BUILTIN_FPCMPULE32SHL,
  SPARC_BUILTIN_FPCMPUGT32SHL,
  SPARC_BUILTIN_FPCMPDE8SHL,
  SPARC_BUILTIN_FPCMPDE16SHL,
  SPARC_BUILTIN_FPCMPDE32SHL,
  SPARC_BUILTIN_FPCMPUR8SHL,
  SPARC_BUILTIN_FPCMPUR16SHL,
  SPARC_BUILTIN_FPCMPUR32SHL,
  SPARC_BUILTIN_LAST_FPCMPSHL = SPARC_BUILTIN_FPCMPUR32SHL,
  
  SPARC_BUILTIN_MAX
};

static GTY (()) tree sparc_builtins[(int) SPARC_BUILTIN_MAX];
static enum insn_code sparc_builtins_icode[(int) SPARC_BUILTIN_MAX];

/* Return true if OPVAL can be used for operand OPNUM of instruction ICODE.
   The instruction should require a constant operand of some sort.  The
   function prints an error if OPVAL is not valid.  */

static int
check_constant_argument (enum insn_code icode, int opnum, rtx opval)
{
  if (GET_CODE (opval) != CONST_INT)
    {
      error ("%qs expects a constant argument", insn_data[icode].name);
      return false;
    }

  if (!(*insn_data[icode].operand[opnum].predicate) (opval, VOIDmode))
    {
      error ("constant argument out of range for %qs", insn_data[icode].name);
      return false;
    }
  return true;
}

/* Add a SPARC builtin function with NAME, ICODE, CODE and TYPE.  Return the
   function decl or NULL_TREE if the builtin was not added.  */

static tree
def_builtin (const char *name, enum insn_code icode, enum sparc_builtins code,
	     tree type)
{
  tree t
    = add_builtin_function (name, type, code, BUILT_IN_MD, NULL, NULL_TREE);

  if (t)
    {
      sparc_builtins[code] = t;
      sparc_builtins_icode[code] = icode;
    }

  return t;
}

/* Likewise, but also marks the function as "const".  */

static tree
def_builtin_const (const char *name, enum insn_code icode,
		   enum sparc_builtins code, tree type)
{
  tree t = def_builtin (name, icode, code, type);

  if (t)
    TREE_READONLY (t) = 1;

  return t;
}

/* Implement the TARGET_INIT_BUILTINS target hook.
   Create builtin functions for special SPARC instructions.  */

static void
sparc_init_builtins (void)
{
  if (TARGET_FPU)
    sparc_fpu_init_builtins ();

  if (TARGET_VIS)
    sparc_vis_init_builtins ();
}

/* Create builtin functions for FPU instructions.  */

static void
sparc_fpu_init_builtins (void)
{
  tree ftype
    = build_function_type_list (void_type_node,
				build_pointer_type (unsigned_type_node), 0);
  def_builtin ("__builtin_load_fsr", CODE_FOR_ldfsr,
	       SPARC_BUILTIN_LDFSR, ftype);
  def_builtin ("__builtin_store_fsr", CODE_FOR_stfsr,
	       SPARC_BUILTIN_STFSR, ftype);
}

/* Create builtin functions for VIS instructions.  */

static void
sparc_vis_init_builtins (void)
{
  tree v4qi = build_vector_type (unsigned_intQI_type_node, 4);
  tree v8qi = build_vector_type (unsigned_intQI_type_node, 8);
  tree v4hi = build_vector_type (intHI_type_node, 4);
  tree v2hi = build_vector_type (intHI_type_node, 2);
  tree v2si = build_vector_type (intSI_type_node, 2);
  tree v1si = build_vector_type (intSI_type_node, 1);

  tree v4qi_ftype_v4hi = build_function_type_list (v4qi, v4hi, 0);
  tree v8qi_ftype_v2si_v8qi = build_function_type_list (v8qi, v2si, v8qi, 0);
  tree v2hi_ftype_v2si = build_function_type_list (v2hi, v2si, 0);
  tree v4hi_ftype_v4qi = build_function_type_list (v4hi, v4qi, 0);
  tree v8qi_ftype_v4qi_v4qi = build_function_type_list (v8qi, v4qi, v4qi, 0);
  tree v4hi_ftype_v4qi_v4hi = build_function_type_list (v4hi, v4qi, v4hi, 0);
  tree v4hi_ftype_v4qi_v2hi = build_function_type_list (v4hi, v4qi, v2hi, 0);
  tree v2si_ftype_v4qi_v2hi = build_function_type_list (v2si, v4qi, v2hi, 0);
  tree v4hi_ftype_v8qi_v4hi = build_function_type_list (v4hi, v8qi, v4hi, 0);
  tree v4hi_ftype_v4hi_v4hi = build_function_type_list (v4hi, v4hi, v4hi, 0);
  tree v2si_ftype_v2si_v2si = build_function_type_list (v2si, v2si, v2si, 0);
  tree v8qi_ftype_v8qi_v8qi = build_function_type_list (v8qi, v8qi, v8qi, 0);
  tree v2hi_ftype_v2hi_v2hi = build_function_type_list (v2hi, v2hi, v2hi, 0);
  tree v1si_ftype_v1si_v1si = build_function_type_list (v1si, v1si, v1si, 0);
  tree di_ftype_v8qi_v8qi_di = build_function_type_list (intDI_type_node,
							 v8qi, v8qi,
							 intDI_type_node, 0);
  tree di_ftype_v8qi_v8qi = build_function_type_list (intDI_type_node,
						      v8qi, v8qi, 0);
  tree si_ftype_v8qi_v8qi = build_function_type_list (intSI_type_node,
						      v8qi, v8qi, 0);
  tree v8qi_ftype_df_si = build_function_type_list (v8qi, double_type_node,
						    intSI_type_node, 0);
  tree v4hi_ftype_df_si = build_function_type_list (v4hi, double_type_node,
						    intSI_type_node, 0);
  tree v2si_ftype_df_si = build_function_type_list (v2si, double_type_node,
						    intDI_type_node, 0);
  tree di_ftype_di_di = build_function_type_list (intDI_type_node,
						  intDI_type_node,
						  intDI_type_node, 0);
  tree si_ftype_si_si = build_function_type_list (intSI_type_node,
						  intSI_type_node,
						  intSI_type_node, 0);
  tree ptr_ftype_ptr_si = build_function_type_list (ptr_type_node,
		        			    ptr_type_node,
					            intSI_type_node, 0);
  tree ptr_ftype_ptr_di = build_function_type_list (ptr_type_node,
		        			    ptr_type_node,
					            intDI_type_node, 0);
  tree si_ftype_ptr_ptr = build_function_type_list (intSI_type_node,
		        			    ptr_type_node,
					            ptr_type_node, 0);
  tree di_ftype_ptr_ptr = build_function_type_list (intDI_type_node,
		        			    ptr_type_node,
					            ptr_type_node, 0);
  tree si_ftype_v4hi_v4hi = build_function_type_list (intSI_type_node,
						      v4hi, v4hi, 0);
  tree si_ftype_v2si_v2si = build_function_type_list (intSI_type_node,
						      v2si, v2si, 0);
  tree di_ftype_v4hi_v4hi = build_function_type_list (intDI_type_node,
						      v4hi, v4hi, 0);
  tree di_ftype_v2si_v2si = build_function_type_list (intDI_type_node,
						      v2si, v2si, 0);
  tree void_ftype_di = build_function_type_list (void_type_node,
						 intDI_type_node, 0);
  tree di_ftype_void = build_function_type_list (intDI_type_node,
						 void_type_node, 0);
  tree void_ftype_si = build_function_type_list (void_type_node,
						 intSI_type_node, 0);
  tree sf_ftype_sf_sf = build_function_type_list (float_type_node,
						  float_type_node,
						  float_type_node, 0);
  tree df_ftype_df_df = build_function_type_list (double_type_node,
						  double_type_node,
						  double_type_node, 0);

  /* Packing and expanding vectors.  */
  def_builtin ("__builtin_vis_fpack16", CODE_FOR_fpack16_vis,
	       SPARC_BUILTIN_FPACK16, v4qi_ftype_v4hi);
  def_builtin ("__builtin_vis_fpack32", CODE_FOR_fpack32_vis,
	       SPARC_BUILTIN_FPACK32, v8qi_ftype_v2si_v8qi);
  def_builtin ("__builtin_vis_fpackfix", CODE_FOR_fpackfix_vis,
	       SPARC_BUILTIN_FPACKFIX, v2hi_ftype_v2si);
  def_builtin_const ("__builtin_vis_fexpand", CODE_FOR_fexpand_vis,
		     SPARC_BUILTIN_FEXPAND, v4hi_ftype_v4qi);
  def_builtin_const ("__builtin_vis_fpmerge", CODE_FOR_fpmerge_vis,
		     SPARC_BUILTIN_FPMERGE, v8qi_ftype_v4qi_v4qi);

  /* Multiplications.  */
  def_builtin_const ("__builtin_vis_fmul8x16", CODE_FOR_fmul8x16_vis,
		     SPARC_BUILTIN_FMUL8X16, v4hi_ftype_v4qi_v4hi);
  def_builtin_const ("__builtin_vis_fmul8x16au", CODE_FOR_fmul8x16au_vis,
		     SPARC_BUILTIN_FMUL8X16AU, v4hi_ftype_v4qi_v2hi);
  def_builtin_const ("__builtin_vis_fmul8x16al", CODE_FOR_fmul8x16al_vis,
		     SPARC_BUILTIN_FMUL8X16AL, v4hi_ftype_v4qi_v2hi);
  def_builtin_const ("__builtin_vis_fmul8sux16", CODE_FOR_fmul8sux16_vis,
		     SPARC_BUILTIN_FMUL8SUX16, v4hi_ftype_v8qi_v4hi);
  def_builtin_const ("__builtin_vis_fmul8ulx16", CODE_FOR_fmul8ulx16_vis,
		     SPARC_BUILTIN_FMUL8ULX16, v4hi_ftype_v8qi_v4hi);
  def_builtin_const ("__builtin_vis_fmuld8sux16", CODE_FOR_fmuld8sux16_vis,
		     SPARC_BUILTIN_FMULD8SUX16, v2si_ftype_v4qi_v2hi);
  def_builtin_const ("__builtin_vis_fmuld8ulx16", CODE_FOR_fmuld8ulx16_vis,
		     SPARC_BUILTIN_FMULD8ULX16, v2si_ftype_v4qi_v2hi);

  /* Data aligning.  */
  def_builtin ("__builtin_vis_faligndatav4hi", CODE_FOR_faligndatav4hi_vis,
	       SPARC_BUILTIN_FALIGNDATAV4HI, v4hi_ftype_v4hi_v4hi);
  def_builtin ("__builtin_vis_faligndatav8qi", CODE_FOR_faligndatav8qi_vis,
	       SPARC_BUILTIN_FALIGNDATAV8QI, v8qi_ftype_v8qi_v8qi);
  def_builtin ("__builtin_vis_faligndatav2si", CODE_FOR_faligndatav2si_vis,
	       SPARC_BUILTIN_FALIGNDATAV2SI, v2si_ftype_v2si_v2si);
  def_builtin ("__builtin_vis_faligndatadi", CODE_FOR_faligndatav1di_vis,
	       SPARC_BUILTIN_FALIGNDATADI, di_ftype_di_di);

  def_builtin ("__builtin_vis_write_gsr", CODE_FOR_wrgsr_vis,
	       SPARC_BUILTIN_WRGSR, void_ftype_di);
  def_builtin ("__builtin_vis_read_gsr", CODE_FOR_rdgsr_vis,
	       SPARC_BUILTIN_RDGSR, di_ftype_void);

  if (TARGET_ARCH64)
    {
      def_builtin ("__builtin_vis_alignaddr", CODE_FOR_alignaddrdi_vis,
		   SPARC_BUILTIN_ALIGNADDR, ptr_ftype_ptr_di);
      def_builtin ("__builtin_vis_alignaddrl", CODE_FOR_alignaddrldi_vis,
		   SPARC_BUILTIN_ALIGNADDRL, ptr_ftype_ptr_di);
    }
  else
    {
      def_builtin ("__builtin_vis_alignaddr", CODE_FOR_alignaddrsi_vis,
		   SPARC_BUILTIN_ALIGNADDR, ptr_ftype_ptr_si);
      def_builtin ("__builtin_vis_alignaddrl", CODE_FOR_alignaddrlsi_vis,
		   SPARC_BUILTIN_ALIGNADDRL, ptr_ftype_ptr_si);
    }

  /* Pixel distance.  */
  def_builtin_const ("__builtin_vis_pdist", CODE_FOR_pdist_vis,
		     SPARC_BUILTIN_PDIST, di_ftype_v8qi_v8qi_di);

  /* Edge handling.  */
  if (TARGET_ARCH64)
    {
      def_builtin_const ("__builtin_vis_edge8", CODE_FOR_edge8di_vis,
			 SPARC_BUILTIN_EDGE8, di_ftype_ptr_ptr);
      def_builtin_const ("__builtin_vis_edge8l", CODE_FOR_edge8ldi_vis,
			 SPARC_BUILTIN_EDGE8L, di_ftype_ptr_ptr);
      def_builtin_const ("__builtin_vis_edge16", CODE_FOR_edge16di_vis,
			 SPARC_BUILTIN_EDGE16, di_ftype_ptr_ptr);
      def_builtin_const ("__builtin_vis_edge16l", CODE_FOR_edge16ldi_vis,
			 SPARC_BUILTIN_EDGE16L, di_ftype_ptr_ptr);
      def_builtin_const ("__builtin_vis_edge32", CODE_FOR_edge32di_vis,
			 SPARC_BUILTIN_EDGE32, di_ftype_ptr_ptr);
      def_builtin_const ("__builtin_vis_edge32l", CODE_FOR_edge32ldi_vis,
			 SPARC_BUILTIN_EDGE32L, di_ftype_ptr_ptr);
    }
  else
    {
      def_builtin_const ("__builtin_vis_edge8", CODE_FOR_edge8si_vis,
			 SPARC_BUILTIN_EDGE8, si_ftype_ptr_ptr);
      def_builtin_const ("__builtin_vis_edge8l", CODE_FOR_edge8lsi_vis,
			 SPARC_BUILTIN_EDGE8L, si_ftype_ptr_ptr);
      def_builtin_const ("__builtin_vis_edge16", CODE_FOR_edge16si_vis,
			 SPARC_BUILTIN_EDGE16, si_ftype_ptr_ptr);
      def_builtin_const ("__builtin_vis_edge16l", CODE_FOR_edge16lsi_vis,
			 SPARC_BUILTIN_EDGE16L, si_ftype_ptr_ptr);
      def_builtin_const ("__builtin_vis_edge32", CODE_FOR_edge32si_vis,
			 SPARC_BUILTIN_EDGE32, si_ftype_ptr_ptr);
      def_builtin_const ("__builtin_vis_edge32l", CODE_FOR_edge32lsi_vis,
			 SPARC_BUILTIN_EDGE32L, si_ftype_ptr_ptr);
    }

  /* Pixel compare.  */
  if (TARGET_ARCH64)
    {
      def_builtin_const ("__builtin_vis_fcmple16", CODE_FOR_fcmple16di_vis,
			 SPARC_BUILTIN_FCMPLE16, di_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fcmple32", CODE_FOR_fcmple32di_vis,
			 SPARC_BUILTIN_FCMPLE32, di_ftype_v2si_v2si);
      def_builtin_const ("__builtin_vis_fcmpne16", CODE_FOR_fcmpne16di_vis,
			 SPARC_BUILTIN_FCMPNE16, di_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fcmpne32", CODE_FOR_fcmpne32di_vis,
			 SPARC_BUILTIN_FCMPNE32, di_ftype_v2si_v2si);
      def_builtin_const ("__builtin_vis_fcmpgt16", CODE_FOR_fcmpgt16di_vis,
			 SPARC_BUILTIN_FCMPGT16, di_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fcmpgt32", CODE_FOR_fcmpgt32di_vis,
			 SPARC_BUILTIN_FCMPGT32, di_ftype_v2si_v2si);
      def_builtin_const ("__builtin_vis_fcmpeq16", CODE_FOR_fcmpeq16di_vis,
			 SPARC_BUILTIN_FCMPEQ16, di_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fcmpeq32", CODE_FOR_fcmpeq32di_vis,
			 SPARC_BUILTIN_FCMPEQ32, di_ftype_v2si_v2si);
    }
  else
    {
      def_builtin_const ("__builtin_vis_fcmple16", CODE_FOR_fcmple16si_vis,
			 SPARC_BUILTIN_FCMPLE16, si_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fcmple32", CODE_FOR_fcmple32si_vis,
			 SPARC_BUILTIN_FCMPLE32, si_ftype_v2si_v2si);
      def_builtin_const ("__builtin_vis_fcmpne16", CODE_FOR_fcmpne16si_vis,
			 SPARC_BUILTIN_FCMPNE16, si_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fcmpne32", CODE_FOR_fcmpne32si_vis,
			 SPARC_BUILTIN_FCMPNE32, si_ftype_v2si_v2si);
      def_builtin_const ("__builtin_vis_fcmpgt16", CODE_FOR_fcmpgt16si_vis,
			 SPARC_BUILTIN_FCMPGT16, si_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fcmpgt32", CODE_FOR_fcmpgt32si_vis,
			 SPARC_BUILTIN_FCMPGT32, si_ftype_v2si_v2si);
      def_builtin_const ("__builtin_vis_fcmpeq16", CODE_FOR_fcmpeq16si_vis,
			 SPARC_BUILTIN_FCMPEQ16, si_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fcmpeq32", CODE_FOR_fcmpeq32si_vis,
			 SPARC_BUILTIN_FCMPEQ32, si_ftype_v2si_v2si);
    }

  /* Addition and subtraction.  */
  def_builtin_const ("__builtin_vis_fpadd16", CODE_FOR_addv4hi3,
		     SPARC_BUILTIN_FPADD16, v4hi_ftype_v4hi_v4hi);
  def_builtin_const ("__builtin_vis_fpadd16s", CODE_FOR_addv2hi3,
		     SPARC_BUILTIN_FPADD16S, v2hi_ftype_v2hi_v2hi);
  def_builtin_const ("__builtin_vis_fpadd32", CODE_FOR_addv2si3,
		     SPARC_BUILTIN_FPADD32, v2si_ftype_v2si_v2si);
  def_builtin_const ("__builtin_vis_fpadd32s", CODE_FOR_addv1si3,
		     SPARC_BUILTIN_FPADD32S, v1si_ftype_v1si_v1si);
  def_builtin_const ("__builtin_vis_fpsub16", CODE_FOR_subv4hi3,
		     SPARC_BUILTIN_FPSUB16, v4hi_ftype_v4hi_v4hi);
  def_builtin_const ("__builtin_vis_fpsub16s", CODE_FOR_subv2hi3,
		     SPARC_BUILTIN_FPSUB16S, v2hi_ftype_v2hi_v2hi);
  def_builtin_const ("__builtin_vis_fpsub32", CODE_FOR_subv2si3,
		     SPARC_BUILTIN_FPSUB32, v2si_ftype_v2si_v2si);
  def_builtin_const ("__builtin_vis_fpsub32s", CODE_FOR_subv1si3,
		     SPARC_BUILTIN_FPSUB32S, v1si_ftype_v1si_v1si);

  /* Three-dimensional array addressing.  */
  if (TARGET_ARCH64)
    {
      def_builtin_const ("__builtin_vis_array8", CODE_FOR_array8di_vis,
			 SPARC_BUILTIN_ARRAY8, di_ftype_di_di);
      def_builtin_const ("__builtin_vis_array16", CODE_FOR_array16di_vis,
			 SPARC_BUILTIN_ARRAY16, di_ftype_di_di);
      def_builtin_const ("__builtin_vis_array32", CODE_FOR_array32di_vis,
			 SPARC_BUILTIN_ARRAY32, di_ftype_di_di);
    }
  else
    {
      def_builtin_const ("__builtin_vis_array8", CODE_FOR_array8si_vis,
			 SPARC_BUILTIN_ARRAY8, si_ftype_si_si);
      def_builtin_const ("__builtin_vis_array16", CODE_FOR_array16si_vis,
			 SPARC_BUILTIN_ARRAY16, si_ftype_si_si);
      def_builtin_const ("__builtin_vis_array32", CODE_FOR_array32si_vis,
			 SPARC_BUILTIN_ARRAY32, si_ftype_si_si);
    }

  if (TARGET_VIS2)
    {
      /* Edge handling.  */
      if (TARGET_ARCH64)
	{
	  def_builtin_const ("__builtin_vis_edge8n", CODE_FOR_edge8ndi_vis,
			     SPARC_BUILTIN_EDGE8N, di_ftype_ptr_ptr);
	  def_builtin_const ("__builtin_vis_edge8ln", CODE_FOR_edge8lndi_vis,
			     SPARC_BUILTIN_EDGE8LN, di_ftype_ptr_ptr);
	  def_builtin_const ("__builtin_vis_edge16n", CODE_FOR_edge16ndi_vis,
			     SPARC_BUILTIN_EDGE16N, di_ftype_ptr_ptr);
	  def_builtin_const ("__builtin_vis_edge16ln", CODE_FOR_edge16lndi_vis,
			     SPARC_BUILTIN_EDGE16LN, di_ftype_ptr_ptr);
	  def_builtin_const ("__builtin_vis_edge32n", CODE_FOR_edge32ndi_vis,
			     SPARC_BUILTIN_EDGE32N, di_ftype_ptr_ptr);
	  def_builtin_const ("__builtin_vis_edge32ln", CODE_FOR_edge32lndi_vis,
			     SPARC_BUILTIN_EDGE32LN, di_ftype_ptr_ptr);
	}
      else
	{
	  def_builtin_const ("__builtin_vis_edge8n", CODE_FOR_edge8nsi_vis,
			     SPARC_BUILTIN_EDGE8N, si_ftype_ptr_ptr);
	  def_builtin_const ("__builtin_vis_edge8ln", CODE_FOR_edge8lnsi_vis,
			     SPARC_BUILTIN_EDGE8LN, si_ftype_ptr_ptr);
	  def_builtin_const ("__builtin_vis_edge16n", CODE_FOR_edge16nsi_vis,
			     SPARC_BUILTIN_EDGE16N, si_ftype_ptr_ptr);
	  def_builtin_const ("__builtin_vis_edge16ln", CODE_FOR_edge16lnsi_vis,
			     SPARC_BUILTIN_EDGE16LN, si_ftype_ptr_ptr);
	  def_builtin_const ("__builtin_vis_edge32n", CODE_FOR_edge32nsi_vis,
			     SPARC_BUILTIN_EDGE32N, si_ftype_ptr_ptr);
	  def_builtin_const ("__builtin_vis_edge32ln", CODE_FOR_edge32lnsi_vis,
			     SPARC_BUILTIN_EDGE32LN, si_ftype_ptr_ptr);
	}

      /* Byte mask and shuffle.  */
      if (TARGET_ARCH64)
	def_builtin ("__builtin_vis_bmask", CODE_FOR_bmaskdi_vis,
		     SPARC_BUILTIN_BMASK, di_ftype_di_di);
      else
	def_builtin ("__builtin_vis_bmask", CODE_FOR_bmasksi_vis,
		     SPARC_BUILTIN_BMASK, si_ftype_si_si);
      def_builtin ("__builtin_vis_bshufflev4hi", CODE_FOR_bshufflev4hi_vis,
		   SPARC_BUILTIN_BSHUFFLEV4HI, v4hi_ftype_v4hi_v4hi);
      def_builtin ("__builtin_vis_bshufflev8qi", CODE_FOR_bshufflev8qi_vis,
		   SPARC_BUILTIN_BSHUFFLEV8QI, v8qi_ftype_v8qi_v8qi);
      def_builtin ("__builtin_vis_bshufflev2si", CODE_FOR_bshufflev2si_vis,
		   SPARC_BUILTIN_BSHUFFLEV2SI, v2si_ftype_v2si_v2si);
      def_builtin ("__builtin_vis_bshuffledi", CODE_FOR_bshufflev1di_vis,
		   SPARC_BUILTIN_BSHUFFLEDI, di_ftype_di_di);
    }

  if (TARGET_VIS3)
    {
      if (TARGET_ARCH64)
	{
	  def_builtin ("__builtin_vis_cmask8", CODE_FOR_cmask8di_vis,
		       SPARC_BUILTIN_CMASK8, void_ftype_di);
	  def_builtin ("__builtin_vis_cmask16", CODE_FOR_cmask16di_vis,
		       SPARC_BUILTIN_CMASK16, void_ftype_di);
	  def_builtin ("__builtin_vis_cmask32", CODE_FOR_cmask32di_vis,
		       SPARC_BUILTIN_CMASK32, void_ftype_di);
	}
      else
	{
	  def_builtin ("__builtin_vis_cmask8", CODE_FOR_cmask8si_vis,
		       SPARC_BUILTIN_CMASK8, void_ftype_si);
	  def_builtin ("__builtin_vis_cmask16", CODE_FOR_cmask16si_vis,
		       SPARC_BUILTIN_CMASK16, void_ftype_si);
	  def_builtin ("__builtin_vis_cmask32", CODE_FOR_cmask32si_vis,
		       SPARC_BUILTIN_CMASK32, void_ftype_si);
	}

      def_builtin_const ("__builtin_vis_fchksm16", CODE_FOR_fchksm16_vis,
			 SPARC_BUILTIN_FCHKSM16, v4hi_ftype_v4hi_v4hi);

      def_builtin_const ("__builtin_vis_fsll16", CODE_FOR_vashlv4hi3,
			 SPARC_BUILTIN_FSLL16, v4hi_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fslas16", CODE_FOR_vssashlv4hi3,
			 SPARC_BUILTIN_FSLAS16, v4hi_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fsrl16", CODE_FOR_vlshrv4hi3,
			 SPARC_BUILTIN_FSRL16, v4hi_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fsra16", CODE_FOR_vashrv4hi3,
			 SPARC_BUILTIN_FSRA16, v4hi_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fsll32", CODE_FOR_vashlv2si3,
			 SPARC_BUILTIN_FSLL32, v2si_ftype_v2si_v2si);
      def_builtin_const ("__builtin_vis_fslas32", CODE_FOR_vssashlv2si3,
			 SPARC_BUILTIN_FSLAS32, v2si_ftype_v2si_v2si);
      def_builtin_const ("__builtin_vis_fsrl32", CODE_FOR_vlshrv2si3,
			 SPARC_BUILTIN_FSRL32, v2si_ftype_v2si_v2si);
      def_builtin_const ("__builtin_vis_fsra32", CODE_FOR_vashrv2si3,
			 SPARC_BUILTIN_FSRA32, v2si_ftype_v2si_v2si);

      if (TARGET_ARCH64)
	def_builtin_const ("__builtin_vis_pdistn", CODE_FOR_pdistndi_vis,
			   SPARC_BUILTIN_PDISTN, di_ftype_v8qi_v8qi);
      else
	def_builtin_const ("__builtin_vis_pdistn", CODE_FOR_pdistnsi_vis,
			   SPARC_BUILTIN_PDISTN, si_ftype_v8qi_v8qi);

      def_builtin_const ("__builtin_vis_fmean16", CODE_FOR_fmean16_vis,
			 SPARC_BUILTIN_FMEAN16, v4hi_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fpadd64", CODE_FOR_fpadd64_vis,
			 SPARC_BUILTIN_FPADD64, di_ftype_di_di);
      def_builtin_const ("__builtin_vis_fpsub64", CODE_FOR_fpsub64_vis,
			 SPARC_BUILTIN_FPSUB64, di_ftype_di_di);

      def_builtin_const ("__builtin_vis_fpadds16", CODE_FOR_ssaddv4hi3,
			 SPARC_BUILTIN_FPADDS16, v4hi_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fpadds16s", CODE_FOR_ssaddv2hi3,
			 SPARC_BUILTIN_FPADDS16S, v2hi_ftype_v2hi_v2hi);
      def_builtin_const ("__builtin_vis_fpsubs16", CODE_FOR_sssubv4hi3,
			 SPARC_BUILTIN_FPSUBS16, v4hi_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fpsubs16s", CODE_FOR_sssubv2hi3,
			 SPARC_BUILTIN_FPSUBS16S, v2hi_ftype_v2hi_v2hi);
      def_builtin_const ("__builtin_vis_fpadds32", CODE_FOR_ssaddv2si3,
			 SPARC_BUILTIN_FPADDS32, v2si_ftype_v2si_v2si);
      def_builtin_const ("__builtin_vis_fpadds32s", CODE_FOR_ssaddv1si3,
			 SPARC_BUILTIN_FPADDS32S, v1si_ftype_v1si_v1si);
      def_builtin_const ("__builtin_vis_fpsubs32", CODE_FOR_sssubv2si3,
			 SPARC_BUILTIN_FPSUBS32, v2si_ftype_v2si_v2si);
      def_builtin_const ("__builtin_vis_fpsubs32s", CODE_FOR_sssubv1si3,
			 SPARC_BUILTIN_FPSUBS32S, v1si_ftype_v1si_v1si);

      if (TARGET_ARCH64)
	{
	  def_builtin_const ("__builtin_vis_fucmple8", CODE_FOR_fucmple8di_vis,
			     SPARC_BUILTIN_FUCMPLE8, di_ftype_v8qi_v8qi);
	  def_builtin_const ("__builtin_vis_fucmpne8", CODE_FOR_fucmpne8di_vis,
			     SPARC_BUILTIN_FUCMPNE8, di_ftype_v8qi_v8qi);
	  def_builtin_const ("__builtin_vis_fucmpgt8", CODE_FOR_fucmpgt8di_vis,
			     SPARC_BUILTIN_FUCMPGT8, di_ftype_v8qi_v8qi);
	  def_builtin_const ("__builtin_vis_fucmpeq8", CODE_FOR_fucmpeq8di_vis,
			     SPARC_BUILTIN_FUCMPEQ8, di_ftype_v8qi_v8qi);
	}
      else
	{
	  def_builtin_const ("__builtin_vis_fucmple8", CODE_FOR_fucmple8si_vis,
			     SPARC_BUILTIN_FUCMPLE8, si_ftype_v8qi_v8qi);
	  def_builtin_const ("__builtin_vis_fucmpne8", CODE_FOR_fucmpne8si_vis,
			     SPARC_BUILTIN_FUCMPNE8, si_ftype_v8qi_v8qi);
	  def_builtin_const ("__builtin_vis_fucmpgt8", CODE_FOR_fucmpgt8si_vis,
			     SPARC_BUILTIN_FUCMPGT8, si_ftype_v8qi_v8qi);
	  def_builtin_const ("__builtin_vis_fucmpeq8", CODE_FOR_fucmpeq8si_vis,
			     SPARC_BUILTIN_FUCMPEQ8, si_ftype_v8qi_v8qi);
	}

      def_builtin_const ("__builtin_vis_fhadds", CODE_FOR_fhaddsf_vis,
			 SPARC_BUILTIN_FHADDS, sf_ftype_sf_sf);
      def_builtin_const ("__builtin_vis_fhaddd", CODE_FOR_fhadddf_vis,
			 SPARC_BUILTIN_FHADDD, df_ftype_df_df);
      def_builtin_const ("__builtin_vis_fhsubs", CODE_FOR_fhsubsf_vis,
			 SPARC_BUILTIN_FHSUBS, sf_ftype_sf_sf);
      def_builtin_const ("__builtin_vis_fhsubd", CODE_FOR_fhsubdf_vis,
			 SPARC_BUILTIN_FHSUBD, df_ftype_df_df);
      def_builtin_const ("__builtin_vis_fnhadds", CODE_FOR_fnhaddsf_vis,
			 SPARC_BUILTIN_FNHADDS, sf_ftype_sf_sf);
      def_builtin_const ("__builtin_vis_fnhaddd", CODE_FOR_fnhadddf_vis,
			 SPARC_BUILTIN_FNHADDD, df_ftype_df_df);

      def_builtin_const ("__builtin_vis_umulxhi", CODE_FOR_umulxhi_vis,
			 SPARC_BUILTIN_UMULXHI, di_ftype_di_di);
      def_builtin_const ("__builtin_vis_xmulx", CODE_FOR_xmulx_vis,
			 SPARC_BUILTIN_XMULX, di_ftype_di_di);
      def_builtin_const ("__builtin_vis_xmulxhi", CODE_FOR_xmulxhi_vis,
			 SPARC_BUILTIN_XMULXHI, di_ftype_di_di);
    }

  if (TARGET_VIS4)
    {
      def_builtin_const ("__builtin_vis_fpadd8", CODE_FOR_addv8qi3,
			 SPARC_BUILTIN_FPADD8, v8qi_ftype_v8qi_v8qi);
      def_builtin_const ("__builtin_vis_fpadds8", CODE_FOR_ssaddv8qi3,
			 SPARC_BUILTIN_FPADDS8, v8qi_ftype_v8qi_v8qi);
      def_builtin_const ("__builtin_vis_fpaddus8", CODE_FOR_usaddv8qi3,
			 SPARC_BUILTIN_FPADDUS8, v8qi_ftype_v8qi_v8qi);
      def_builtin_const ("__builtin_vis_fpaddus16", CODE_FOR_usaddv4hi3,
			 SPARC_BUILTIN_FPADDUS16, v4hi_ftype_v4hi_v4hi);


      if (TARGET_ARCH64)
	{
	  def_builtin_const ("__builtin_vis_fpcmple8", CODE_FOR_fpcmple8di_vis,
			     SPARC_BUILTIN_FPCMPLE8, di_ftype_v8qi_v8qi);
	  def_builtin_const ("__builtin_vis_fpcmpgt8", CODE_FOR_fpcmpgt8di_vis,
			     SPARC_BUILTIN_FPCMPGT8, di_ftype_v8qi_v8qi);
	  def_builtin_const ("__builtin_vis_fpcmpule16", CODE_FOR_fpcmpule16di_vis,
			     SPARC_BUILTIN_FPCMPULE16, di_ftype_v4hi_v4hi);
	  def_builtin_const ("__builtin_vis_fpcmpugt16", CODE_FOR_fpcmpugt16di_vis,
			     SPARC_BUILTIN_FPCMPUGT16, di_ftype_v4hi_v4hi);
	  def_builtin_const ("__builtin_vis_fpcmpule32", CODE_FOR_fpcmpule32di_vis,
			     SPARC_BUILTIN_FPCMPULE32, di_ftype_v2si_v2si);
	  def_builtin_const ("__builtin_vis_fpcmpugt32", CODE_FOR_fpcmpugt32di_vis,
			     SPARC_BUILTIN_FPCMPUGT32, di_ftype_v2si_v2si);
	}
      else
	{
	  def_builtin_const ("__builtin_vis_fpcmple8", CODE_FOR_fpcmple8si_vis,
			     SPARC_BUILTIN_FPCMPLE8, si_ftype_v8qi_v8qi);
	  def_builtin_const ("__builtin_vis_fpcmpgt8", CODE_FOR_fpcmpgt8si_vis,
			     SPARC_BUILTIN_FPCMPGT8, si_ftype_v8qi_v8qi);
	  def_builtin_const ("__builtin_vis_fpcmpule16", CODE_FOR_fpcmpule16si_vis,
			     SPARC_BUILTIN_FPCMPULE16, si_ftype_v4hi_v4hi);
	  def_builtin_const ("__builtin_vis_fpcmpugt16", CODE_FOR_fpcmpugt16si_vis,
			     SPARC_BUILTIN_FPCMPUGT16, si_ftype_v4hi_v4hi);
	  def_builtin_const ("__builtin_vis_fpcmpule32", CODE_FOR_fpcmpule32si_vis,
			     SPARC_BUILTIN_FPCMPULE32, di_ftype_v2si_v2si);
	  def_builtin_const ("__builtin_vis_fpcmpugt32", CODE_FOR_fpcmpugt32si_vis,
			     SPARC_BUILTIN_FPCMPUGT32, di_ftype_v2si_v2si);
	}
      
      def_builtin_const ("__builtin_vis_fpmax8", CODE_FOR_maxv8qi3,
			 SPARC_BUILTIN_FPMAX8, v8qi_ftype_v8qi_v8qi);
      def_builtin_const ("__builtin_vis_fpmax16", CODE_FOR_maxv4hi3,
			 SPARC_BUILTIN_FPMAX16, v4hi_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fpmax32", CODE_FOR_maxv2si3,
			 SPARC_BUILTIN_FPMAX32, v2si_ftype_v2si_v2si);
      def_builtin_const ("__builtin_vis_fpmaxu8", CODE_FOR_maxuv8qi3,
			 SPARC_BUILTIN_FPMAXU8, v8qi_ftype_v8qi_v8qi);
      def_builtin_const ("__builtin_vis_fpmaxu16", CODE_FOR_maxuv4hi3,
			 SPARC_BUILTIN_FPMAXU16, v4hi_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fpmaxu32", CODE_FOR_maxuv2si3,
			 SPARC_BUILTIN_FPMAXU32, v2si_ftype_v2si_v2si);
      def_builtin_const ("__builtin_vis_fpmin8", CODE_FOR_minv8qi3,
			 SPARC_BUILTIN_FPMIN8, v8qi_ftype_v8qi_v8qi);
      def_builtin_const ("__builtin_vis_fpmin16", CODE_FOR_minv4hi3,
			 SPARC_BUILTIN_FPMIN16, v4hi_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fpmin32", CODE_FOR_minv2si3,
			 SPARC_BUILTIN_FPMIN32, v2si_ftype_v2si_v2si);
      def_builtin_const ("__builtin_vis_fpminu8", CODE_FOR_minuv8qi3,
			 SPARC_BUILTIN_FPMINU8, v8qi_ftype_v8qi_v8qi);
      def_builtin_const ("__builtin_vis_fpminu16", CODE_FOR_minuv4hi3,
			 SPARC_BUILTIN_FPMINU16, v4hi_ftype_v4hi_v4hi);
      def_builtin_const ("__builtin_vis_fpminu32", CODE_FOR_minuv2si3,
			 SPARC_BUILTIN_FPMINU32, v2si_ftype_v2si_v2si);
      def_builtin_const ("__builtin_vis_fpsub8", CODE_FOR_subv8qi3,
			 SPARC_BUILTIN_FPSUB8, v8qi_ftype_v8qi_v8qi);
      def_builtin_const ("__builtin_vis_fpsubs8", CODE_FOR_sssubv8qi3,
			 SPARC_BUILTIN_FPSUBS8, v8qi_ftype_v8qi_v8qi);
      def_builtin_const ("__builtin_vis_fpsubus8", CODE_FOR_ussubv8qi3,
			 SPARC_BUILTIN_FPSUBUS8, v8qi_ftype_v8qi_v8qi);
      def_builtin_const ("__builtin_vis_fpsubus16", CODE_FOR_ussubv4hi3,
			 SPARC_BUILTIN_FPSUBUS16, v4hi_ftype_v4hi_v4hi);
    }

  if (TARGET_VIS4B)
    {
      def_builtin_const ("__builtin_vis_dictunpack8", CODE_FOR_dictunpack8,
			 SPARC_BUILTIN_DICTUNPACK8, v8qi_ftype_df_si);
      def_builtin_const ("__builtin_vis_dictunpack16", CODE_FOR_dictunpack16,
			 SPARC_BUILTIN_DICTUNPACK16, v4hi_ftype_df_si);
      def_builtin_const ("__builtin_vis_dictunpack32", CODE_FOR_dictunpack32,
			 SPARC_BUILTIN_DICTUNPACK32, v2si_ftype_df_si);

      if (TARGET_ARCH64)
	{
	  tree di_ftype_v8qi_v8qi_si = build_function_type_list (intDI_type_node,
								 v8qi, v8qi,
								 intSI_type_node, 0);
	  tree di_ftype_v4hi_v4hi_si = build_function_type_list (intDI_type_node,
								 v4hi, v4hi,
								 intSI_type_node, 0);
	  tree di_ftype_v2si_v2si_si = build_function_type_list (intDI_type_node,
								 v2si, v2si,
								 intSI_type_node, 0);
	  
	  def_builtin_const ("__builtin_vis_fpcmple8shl", CODE_FOR_fpcmple8dishl,
			     SPARC_BUILTIN_FPCMPLE8SHL, di_ftype_v8qi_v8qi_si);
	  def_builtin_const ("__builtin_vis_fpcmpgt8shl", CODE_FOR_fpcmpgt8dishl,
			     SPARC_BUILTIN_FPCMPGT8SHL, di_ftype_v8qi_v8qi_si);
	  def_builtin_const ("__builtin_vis_fpcmpeq8shl", CODE_FOR_fpcmpeq8dishl,
			     SPARC_BUILTIN_FPCMPEQ8SHL, di_ftype_v8qi_v8qi_si);
	  def_builtin_const ("__builtin_vis_fpcmpne8shl", CODE_FOR_fpcmpne8dishl,
			     SPARC_BUILTIN_FPCMPNE8SHL, di_ftype_v8qi_v8qi_si);

	  def_builtin_const ("__builtin_vis_fpcmple16shl", CODE_FOR_fpcmple16dishl,
			     SPARC_BUILTIN_FPCMPLE16SHL, di_ftype_v4hi_v4hi_si);
	  def_builtin_const ("__builtin_vis_fpcmpgt16shl", CODE_FOR_fpcmpgt16dishl,
			     SPARC_BUILTIN_FPCMPGT16SHL, di_ftype_v4hi_v4hi_si);
	  def_builtin_const ("__builtin_vis_fpcmpeq16shl", CODE_FOR_fpcmpeq16dishl,
			     SPARC_BUILTIN_FPCMPEQ16SHL, di_ftype_v4hi_v4hi_si);
	  def_builtin_const ("__builtin_vis_fpcmpne16shl", CODE_FOR_fpcmpne16dishl,
			     SPARC_BUILTIN_FPCMPNE16SHL, di_ftype_v4hi_v4hi_si);

	  def_builtin_const ("__builtin_vis_fpcmple32shl", CODE_FOR_fpcmple32dishl,
			     SPARC_BUILTIN_FPCMPLE32SHL, di_ftype_v2si_v2si_si);
	  def_builtin_const ("__builtin_vis_fpcmpgt32shl", CODE_FOR_fpcmpgt32dishl,
			     SPARC_BUILTIN_FPCMPGT32SHL, di_ftype_v2si_v2si_si);
	  def_builtin_const ("__builtin_vis_fpcmpeq32shl", CODE_FOR_fpcmpeq32dishl,
			     SPARC_BUILTIN_FPCMPEQ32SHL, di_ftype_v2si_v2si_si);
	  def_builtin_const ("__builtin_vis_fpcmpne32shl", CODE_FOR_fpcmpne32dishl,
			     SPARC_BUILTIN_FPCMPNE32SHL, di_ftype_v2si_v2si_si);


	  def_builtin_const ("__builtin_vis_fpcmpule8shl", CODE_FOR_fpcmpule8dishl,
			     SPARC_BUILTIN_FPCMPULE8SHL, di_ftype_v8qi_v8qi_si);
	  def_builtin_const ("__builtin_vis_fpcmpugt8shl", CODE_FOR_fpcmpugt8dishl,
			     SPARC_BUILTIN_FPCMPUGT8SHL, di_ftype_v8qi_v8qi_si);

	  def_builtin_const ("__builtin_vis_fpcmpule16shl", CODE_FOR_fpcmpule16dishl,
			     SPARC_BUILTIN_FPCMPULE16SHL, di_ftype_v4hi_v4hi_si);
	  def_builtin_const ("__builtin_vis_fpcmpugt16shl", CODE_FOR_fpcmpugt16dishl,
			     SPARC_BUILTIN_FPCMPUGT16SHL, di_ftype_v4hi_v4hi_si);

	  def_builtin_const ("__builtin_vis_fpcmpule32shl", CODE_FOR_fpcmpule32dishl,
			     SPARC_BUILTIN_FPCMPULE32SHL, di_ftype_v2si_v2si_si);
	  def_builtin_const ("__builtin_vis_fpcmpugt32shl", CODE_FOR_fpcmpugt32dishl,
			     SPARC_BUILTIN_FPCMPUGT32SHL, di_ftype_v2si_v2si_si);

	  def_builtin_const ("__builtin_vis_fpcmpde8shl", CODE_FOR_fpcmpde8dishl,
			     SPARC_BUILTIN_FPCMPDE8SHL, di_ftype_v8qi_v8qi_si);
	  def_builtin_const ("__builtin_vis_fpcmpde16shl", CODE_FOR_fpcmpde16dishl,
			     SPARC_BUILTIN_FPCMPDE16SHL, di_ftype_v4hi_v4hi_si);
	  def_builtin_const ("__builtin_vis_fpcmpde32shl", CODE_FOR_fpcmpde32dishl,
			     SPARC_BUILTIN_FPCMPDE32SHL, di_ftype_v2si_v2si_si);

	  def_builtin_const ("__builtin_vis_fpcmpur8shl", CODE_FOR_fpcmpur8dishl,
			     SPARC_BUILTIN_FPCMPUR8SHL, di_ftype_v8qi_v8qi_si);
	  def_builtin_const ("__builtin_vis_fpcmpur16shl", CODE_FOR_fpcmpur16dishl,
			     SPARC_BUILTIN_FPCMPUR16SHL, di_ftype_v4hi_v4hi_si);
	  def_builtin_const ("__builtin_vis_fpcmpur32shl", CODE_FOR_fpcmpur32dishl,
			     SPARC_BUILTIN_FPCMPUR32SHL, di_ftype_v2si_v2si_si);

	}
      else
	{
	  tree si_ftype_v8qi_v8qi_si = build_function_type_list (intSI_type_node,
								 v8qi, v8qi,
								 intSI_type_node, 0);
	  tree si_ftype_v4hi_v4hi_si = build_function_type_list (intSI_type_node,
								 v4hi, v4hi,
								 intSI_type_node, 0);
	  tree si_ftype_v2si_v2si_si = build_function_type_list (intSI_type_node,
								 v2si, v2si,
								 intSI_type_node, 0);
	  
	  def_builtin_const ("__builtin_vis_fpcmple8shl", CODE_FOR_fpcmple8sishl,
			     SPARC_BUILTIN_FPCMPLE8SHL, si_ftype_v8qi_v8qi_si);
	  def_builtin_const ("__builtin_vis_fpcmpgt8shl", CODE_FOR_fpcmpgt8sishl,
			     SPARC_BUILTIN_FPCMPGT8SHL, si_ftype_v8qi_v8qi_si);
	  def_builtin_const ("__builtin_vis_fpcmpeq8shl", CODE_FOR_fpcmpeq8sishl,
			     SPARC_BUILTIN_FPCMPEQ8SHL, si_ftype_v8qi_v8qi_si);
	  def_builtin_const ("__builtin_vis_fpcmpne8shl", CODE_FOR_fpcmpne8sishl,
			     SPARC_BUILTIN_FPCMPNE8SHL, si_ftype_v8qi_v8qi_si);

	  def_builtin_const ("__builtin_vis_fpcmple16shl", CODE_FOR_fpcmple16sishl,
			     SPARC_BUILTIN_FPCMPLE16SHL, si_ftype_v4hi_v4hi_si);
	  def_builtin_const ("__builtin_vis_fpcmpgt16shl", CODE_FOR_fpcmpgt16sishl,
			     SPARC_BUILTIN_FPCMPGT16SHL, si_ftype_v4hi_v4hi_si);
	  def_builtin_const ("__builtin_vis_fpcmpeq16shl", CODE_FOR_fpcmpeq16sishl,
			     SPARC_BUILTIN_FPCMPEQ16SHL, si_ftype_v4hi_v4hi_si);
	  def_builtin_const ("__builtin_vis_fpcmpne16shl", CODE_FOR_fpcmpne16sishl,
			     SPARC_BUILTIN_FPCMPNE16SHL, si_ftype_v4hi_v4hi_si);

	  def_builtin_const ("__builtin_vis_fpcmple32shl", CODE_FOR_fpcmple32sishl,
			     SPARC_BUILTIN_FPCMPLE32SHL, si_ftype_v2si_v2si_si);
	  def_builtin_const ("__builtin_vis_fpcmpgt32shl", CODE_FOR_fpcmpgt32sishl,
			     SPARC_BUILTIN_FPCMPGT32SHL, si_ftype_v2si_v2si_si);
	  def_builtin_const ("__builtin_vis_fpcmpeq32shl", CODE_FOR_fpcmpeq32sishl,
			     SPARC_BUILTIN_FPCMPEQ32SHL, si_ftype_v2si_v2si_si);
	  def_builtin_const ("__builtin_vis_fpcmpne32shl", CODE_FOR_fpcmpne32sishl,
			     SPARC_BUILTIN_FPCMPNE32SHL, si_ftype_v2si_v2si_si);


	  def_builtin_const ("__builtin_vis_fpcmpule8shl", CODE_FOR_fpcmpule8sishl,
			     SPARC_BUILTIN_FPCMPULE8SHL, si_ftype_v8qi_v8qi_si);
	  def_builtin_const ("__builtin_vis_fpcmpugt8shl", CODE_FOR_fpcmpugt8sishl,
			     SPARC_BUILTIN_FPCMPUGT8SHL, si_ftype_v8qi_v8qi_si);

	  def_builtin_const ("__builtin_vis_fpcmpule16shl", CODE_FOR_fpcmpule16sishl,
			     SPARC_BUILTIN_FPCMPULE16SHL, si_ftype_v4hi_v4hi_si);
	  def_builtin_const ("__builtin_vis_fpcmpugt16shl", CODE_FOR_fpcmpugt16sishl,
			     SPARC_BUILTIN_FPCMPUGT16SHL, si_ftype_v4hi_v4hi_si);

	  def_builtin_const ("__builtin_vis_fpcmpule32shl", CODE_FOR_fpcmpule32sishl,
			     SPARC_BUILTIN_FPCMPULE32SHL, si_ftype_v2si_v2si_si);
	  def_builtin_const ("__builtin_vis_fpcmpugt32shl", CODE_FOR_fpcmpugt32sishl,
			     SPARC_BUILTIN_FPCMPUGT32SHL, si_ftype_v2si_v2si_si);

	  def_builtin_const ("__builtin_vis_fpcmpde8shl", CODE_FOR_fpcmpde8sishl,
			     SPARC_BUILTIN_FPCMPDE8SHL, si_ftype_v8qi_v8qi_si);
	  def_builtin_const ("__builtin_vis_fpcmpde16shl", CODE_FOR_fpcmpde16sishl,
			     SPARC_BUILTIN_FPCMPDE16SHL, si_ftype_v4hi_v4hi_si);
	  def_builtin_const ("__builtin_vis_fpcmpde32shl", CODE_FOR_fpcmpde32sishl,
			     SPARC_BUILTIN_FPCMPDE32SHL, si_ftype_v2si_v2si_si);

	  def_builtin_const ("__builtin_vis_fpcmpur8shl", CODE_FOR_fpcmpur8sishl,
			     SPARC_BUILTIN_FPCMPUR8SHL, si_ftype_v8qi_v8qi_si);
	  def_builtin_const ("__builtin_vis_fpcmpur16shl", CODE_FOR_fpcmpur16sishl,
			     SPARC_BUILTIN_FPCMPUR16SHL, si_ftype_v4hi_v4hi_si);
	  def_builtin_const ("__builtin_vis_fpcmpur32shl", CODE_FOR_fpcmpur32sishl,
			     SPARC_BUILTIN_FPCMPUR32SHL, si_ftype_v2si_v2si_si);
	}
    }
}

/* Implement TARGET_BUILTIN_DECL hook.  */

static tree
sparc_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
{
  if (code >= SPARC_BUILTIN_MAX)
    return error_mark_node;

  return sparc_builtins[code];
}

/* Implemented TARGET_EXPAND_BUILTIN hook.  */

static rtx
sparc_expand_builtin (tree exp, rtx target,
		      rtx subtarget ATTRIBUTE_UNUSED,
		      machine_mode tmode ATTRIBUTE_UNUSED,
		      int ignore ATTRIBUTE_UNUSED)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  enum sparc_builtins code
    = (enum sparc_builtins) DECL_MD_FUNCTION_CODE (fndecl);
  enum insn_code icode = sparc_builtins_icode[code];
  bool nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;
  call_expr_arg_iterator iter;
  int arg_count = 0;
  rtx pat, op[4];
  tree arg;

  if (nonvoid)
    {
      machine_mode tmode = insn_data[icode].operand[0].mode;
      if (!target
	  || GET_MODE (target) != tmode
	  || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
	op[0] = gen_reg_rtx (tmode);
      else
	op[0] = target;
    }
  else
    op[0] = NULL_RTX;

  FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
    {
      const struct insn_operand_data *insn_op;
      int idx;

      if (arg == error_mark_node)
	return NULL_RTX;

      arg_count++;
      idx = arg_count - !nonvoid;
      insn_op = &insn_data[icode].operand[idx];
      op[arg_count] = expand_normal (arg);

      /* Some of the builtins require constant arguments.  We check
	 for this here.  */
      if ((code >= SPARC_BUILTIN_FIRST_FPCMPSHL
	   && code <= SPARC_BUILTIN_LAST_FPCMPSHL
	   && arg_count == 3)
	  || (code >= SPARC_BUILTIN_FIRST_DICTUNPACK
	      && code <= SPARC_BUILTIN_LAST_DICTUNPACK
	      && arg_count == 2))
	{
	  if (!check_constant_argument (icode, idx, op[arg_count]))
	    return const0_rtx;
	}

      if (code == SPARC_BUILTIN_LDFSR || code == SPARC_BUILTIN_STFSR)
	{
	  if (!address_operand (op[arg_count], SImode))
	    {
	      op[arg_count] = convert_memory_address (Pmode, op[arg_count]);
	      op[arg_count] = copy_addr_to_reg (op[arg_count]);
	    }
	  op[arg_count] = gen_rtx_MEM (SImode, op[arg_count]);
	}

      else if (insn_op->mode == V1DImode
	       && GET_MODE (op[arg_count]) == DImode)
	op[arg_count] = gen_lowpart (V1DImode, op[arg_count]);

      else if (insn_op->mode == V1SImode
	       && GET_MODE (op[arg_count]) == SImode)
	op[arg_count] = gen_lowpart (V1SImode, op[arg_count]);

      if (! (*insn_data[icode].operand[idx].predicate) (op[arg_count],
							insn_op->mode))
	op[arg_count] = copy_to_mode_reg (insn_op->mode, op[arg_count]);
    }

  switch (arg_count)
    {
    case 0:
      pat = GEN_FCN (icode) (op[0]);
      break;
    case 1:
      if (nonvoid)
	pat = GEN_FCN (icode) (op[0], op[1]);
      else
	pat = GEN_FCN (icode) (op[1]);
      break;
    case 2:
      pat = GEN_FCN (icode) (op[0], op[1], op[2]);
      break;
    case 3:
      pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]);
      break;
    default:
      gcc_unreachable ();
    }

  if (!pat)
    return NULL_RTX;

  emit_insn (pat);

  return (nonvoid ? op[0] : const0_rtx);
}

/* Return the upper 16 bits of the 8x16 multiplication.  */

static int
sparc_vis_mul8x16 (int e8, int e16)
{
  return (e8 * e16 + 128) / 256;
}

/* Multiply the VECTOR_CSTs CST0 and CST1 as specified by FNCODE and put
   the result into the array N_ELTS, whose elements are of INNER_TYPE.  */

static void
sparc_handle_vis_mul8x16 (vec<tree> *n_elts, enum sparc_builtins fncode,
			  tree inner_type, tree cst0, tree cst1)
{
  unsigned i, num = VECTOR_CST_NELTS (cst0);
  int scale;

  switch (fncode)
    {
    case SPARC_BUILTIN_FMUL8X16:
      for (i = 0; i < num; ++i)
	{
	  int val
	    = sparc_vis_mul8x16 (TREE_INT_CST_LOW (VECTOR_CST_ELT (cst0, i)),
				 TREE_INT_CST_LOW (VECTOR_CST_ELT (cst1, i)));
	  n_elts->quick_push (build_int_cst (inner_type, val));
	}
      break;

    case SPARC_BUILTIN_FMUL8X16AU:
      scale = TREE_INT_CST_LOW (VECTOR_CST_ELT (cst1, 0));

      for (i = 0; i < num; ++i)
	{
	  int val
	    = sparc_vis_mul8x16 (TREE_INT_CST_LOW (VECTOR_CST_ELT (cst0, i)),
				 scale);
	  n_elts->quick_push (build_int_cst (inner_type, val));
	}
      break;

    case SPARC_BUILTIN_FMUL8X16AL:
      scale = TREE_INT_CST_LOW (VECTOR_CST_ELT (cst1, 1));

      for (i = 0; i < num; ++i)
	{
	  int val
	    = sparc_vis_mul8x16 (TREE_INT_CST_LOW (VECTOR_CST_ELT (cst0, i)),
				 scale);
	  n_elts->quick_push (build_int_cst (inner_type, val));
	}
      break;

    default:
      gcc_unreachable ();
    }
}

/* Implement TARGET_FOLD_BUILTIN hook.

   Fold builtin functions for SPARC intrinsics.  If IGNORE is true the
   result of the function call is ignored.  NULL_TREE is returned if the
   function could not be folded.  */

static tree
sparc_fold_builtin (tree fndecl, int n_args ATTRIBUTE_UNUSED,
		    tree *args, bool ignore)
{
  enum sparc_builtins code
    = (enum sparc_builtins) DECL_MD_FUNCTION_CODE (fndecl);
  tree rtype = TREE_TYPE (TREE_TYPE (fndecl));
  tree arg0, arg1, arg2;

  if (ignore)
    switch (code)
      {
      case SPARC_BUILTIN_LDFSR:
      case SPARC_BUILTIN_STFSR:
      case SPARC_BUILTIN_ALIGNADDR:
      case SPARC_BUILTIN_WRGSR:
      case SPARC_BUILTIN_BMASK:
      case SPARC_BUILTIN_CMASK8:
      case SPARC_BUILTIN_CMASK16:
      case SPARC_BUILTIN_CMASK32:
	break;

      default:
	return build_zero_cst (rtype);
      }

  switch (code)
    {
    case SPARC_BUILTIN_FEXPAND:
      arg0 = args[0];
      STRIP_NOPS (arg0);

      if (TREE_CODE (arg0) == VECTOR_CST)
	{
	  tree inner_type = TREE_TYPE (rtype);
	  unsigned i;

	  tree_vector_builder n_elts (rtype, VECTOR_CST_NELTS (arg0), 1);
	  for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
	    {
	      unsigned HOST_WIDE_INT val
		= TREE_INT_CST_LOW (VECTOR_CST_ELT (arg0, i));
	      n_elts.quick_push (build_int_cst (inner_type, val << 4));
	    }
	  return n_elts.build ();
	}
      break;

    case SPARC_BUILTIN_FMUL8X16:
    case SPARC_BUILTIN_FMUL8X16AU:
    case SPARC_BUILTIN_FMUL8X16AL:
      arg0 = args[0];
      arg1 = args[1];
      STRIP_NOPS (arg0);
      STRIP_NOPS (arg1);

      if (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST)
	{
	  tree inner_type = TREE_TYPE (rtype);
	  tree_vector_builder n_elts (rtype, VECTOR_CST_NELTS (arg0), 1);
	  sparc_handle_vis_mul8x16 (&n_elts, code, inner_type, arg0, arg1);
	  return n_elts.build ();
	}
      break;

    case SPARC_BUILTIN_FPMERGE:
      arg0 = args[0];
      arg1 = args[1];
      STRIP_NOPS (arg0);
      STRIP_NOPS (arg1);

      if (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST)
	{
	  tree_vector_builder n_elts (rtype, 2 * VECTOR_CST_NELTS (arg0), 1);
	  unsigned i;
	  for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
	    {
	      n_elts.quick_push (VECTOR_CST_ELT (arg0, i));
	      n_elts.quick_push (VECTOR_CST_ELT (arg1, i));
	    }

	  return n_elts.build ();
	}
      break;

    case SPARC_BUILTIN_PDIST:
    case SPARC_BUILTIN_PDISTN:
      arg0 = args[0];
      arg1 = args[1];
      STRIP_NOPS (arg0);
      STRIP_NOPS (arg1);
      if (code == SPARC_BUILTIN_PDIST)
	{
	  arg2 = args[2];
	  STRIP_NOPS (arg2);
	}
      else
	arg2 = integer_zero_node;

      if (TREE_CODE (arg0) == VECTOR_CST
	  && TREE_CODE (arg1) == VECTOR_CST
	  && TREE_CODE (arg2) == INTEGER_CST)
	{
	  bool overflow = false;
	  widest_int result = wi::to_widest (arg2);
	  widest_int tmp;
	  unsigned i;

	  for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
	    {
	      tree e0 = VECTOR_CST_ELT (arg0, i);
	      tree e1 = VECTOR_CST_ELT (arg1, i);

	      wi::overflow_type neg1_ovf, neg2_ovf, add1_ovf, add2_ovf;

	      tmp = wi::neg (wi::to_widest (e1), &neg1_ovf);
	      tmp = wi::add (wi::to_widest (e0), tmp, SIGNED, &add1_ovf);
	      if (wi::neg_p (tmp))
		tmp = wi::neg (tmp, &neg2_ovf);
	      else
		neg2_ovf = wi::OVF_NONE;
	      result = wi::add (result, tmp, SIGNED, &add2_ovf);
	      overflow |= ((neg1_ovf != wi::OVF_NONE)
			   | (neg2_ovf != wi::OVF_NONE)
			   | (add1_ovf != wi::OVF_NONE)
			   | (add2_ovf != wi::OVF_NONE));
	    }

	  gcc_assert (!overflow);

	  return wide_int_to_tree (rtype, result);
	}

    default:
      break;
    }

  return NULL_TREE;
}

/* ??? This duplicates information provided to the compiler by the
   ??? scheduler description.  Some day, teach genautomata to output
   ??? the latencies and then CSE will just use that.  */

static bool
sparc_rtx_costs (rtx x, machine_mode mode, int outer_code,
		 int opno ATTRIBUTE_UNUSED,
		 int *total, bool speed ATTRIBUTE_UNUSED)
{
  int code = GET_CODE (x);
  bool float_mode_p = FLOAT_MODE_P (mode);

  switch (code)
    {
    case CONST_INT:
      if (SMALL_INT (x))
	*total = 0;
      else
	*total = 2;
      return true;

    case CONST_WIDE_INT:
      *total = 0;
      if (!SPARC_SIMM13_P (CONST_WIDE_INT_ELT (x, 0)))
	*total += 2;
      if (!SPARC_SIMM13_P (CONST_WIDE_INT_ELT (x, 1)))
	*total += 2;
      return true;

    case HIGH:
      *total = 2;
      return true;

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      *total = 4;
      return true;

    case CONST_DOUBLE:
      *total = 8;
      return true;

    case MEM:
      /* If outer-code was a sign or zero extension, a cost
	 of COSTS_N_INSNS (1) was already added in.  This is
	 why we are subtracting it back out.  */
      if (outer_code == ZERO_EXTEND)
	{
	  *total = sparc_costs->int_zload - COSTS_N_INSNS (1);
	}
      else if (outer_code == SIGN_EXTEND)
	{
	  *total = sparc_costs->int_sload - COSTS_N_INSNS (1);
	}
      else if (float_mode_p)
	{
	  *total = sparc_costs->float_load;
	}
      else
	{
	  *total = sparc_costs->int_load;
	}

      return true;

    case PLUS:
    case MINUS:
      if (float_mode_p)
	*total = sparc_costs->float_plusminus;
      else
	*total = COSTS_N_INSNS (1);
      return false;

    case FMA:
      {
	rtx sub;

	gcc_assert (float_mode_p);
	*total = sparc_costs->float_mul;

	sub = XEXP (x, 0);
	if (GET_CODE (sub) == NEG)
	  sub = XEXP (sub, 0);
	*total += rtx_cost (sub, mode, FMA, 0, speed);

	sub = XEXP (x, 2);
	if (GET_CODE (sub) == NEG)
	  sub = XEXP (sub, 0);
	*total += rtx_cost (sub, mode, FMA, 2, speed);
	return true;
      }

    case MULT:
      if (float_mode_p)
	*total = sparc_costs->float_mul;
      else if (TARGET_ARCH32 && !TARGET_HARD_MUL)
	*total = COSTS_N_INSNS (25);
      else
	{
	  int bit_cost;

	  bit_cost = 0;
	  if (sparc_costs->int_mul_bit_factor)
	    {
	      int nbits;

	      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
		{
		  unsigned HOST_WIDE_INT value = INTVAL (XEXP (x, 1));
		  for (nbits = 0; value != 0; value &= value - 1)
		    nbits++;
		}
	      else
		nbits = 7;

	      if (nbits < 3)
		nbits = 3;
	      bit_cost = (nbits - 3) / sparc_costs->int_mul_bit_factor;
	      bit_cost = COSTS_N_INSNS (bit_cost);
	    }

	  if (mode == DImode || !TARGET_HARD_MUL)
	    *total = sparc_costs->int_mulX + bit_cost;
	  else
	    *total = sparc_costs->int_mul + bit_cost;
	}
      return false;

    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
      *total = COSTS_N_INSNS (1) + sparc_costs->shift_penalty;
      return false;

    case DIV:
    case UDIV:
    case MOD:
    case UMOD:
      if (float_mode_p)
	{
	  if (mode == DFmode)
	    *total = sparc_costs->float_div_df;
	  else
	    *total = sparc_costs->float_div_sf;
	}
      else
	{
	  if (mode == DImode)
	    *total = sparc_costs->int_divX;
	  else
	    *total = sparc_costs->int_div;
	}
      return false;

    case NEG:
      if (! float_mode_p)
	{
	  *total = COSTS_N_INSNS (1);
	  return false;
	}
      /* FALLTHRU */

    case ABS:
    case FLOAT:
    case UNSIGNED_FLOAT:
    case FIX:
    case UNSIGNED_FIX:
    case FLOAT_EXTEND:
    case FLOAT_TRUNCATE:
      *total = sparc_costs->float_move;
      return false;

    case SQRT:
      if (mode == DFmode)
	*total = sparc_costs->float_sqrt_df;
      else
	*total = sparc_costs->float_sqrt_sf;
      return false;

    case COMPARE:
      if (float_mode_p)
	*total = sparc_costs->float_cmp;
      else
	*total = COSTS_N_INSNS (1);
      return false;

    case IF_THEN_ELSE:
      if (float_mode_p)
	*total = sparc_costs->float_cmove;
      else
	*total = sparc_costs->int_cmove;
      return false;

    case IOR:
      /* Handle the NAND vector patterns.  */
      if (sparc_vector_mode_supported_p (mode)
	  && GET_CODE (XEXP (x, 0)) == NOT
	  && GET_CODE (XEXP (x, 1)) == NOT)
	{
	  *total = COSTS_N_INSNS (1);
	  return true;
	}
      else
        return false;

    default:
      return false;
    }
}

/* Return true if CLASS is either GENERAL_REGS or I64_REGS.  */

static inline bool
general_or_i64_p (reg_class_t rclass)
{
  return (rclass == GENERAL_REGS || rclass == I64_REGS);
}

/* Implement TARGET_REGISTER_MOVE_COST.  */

static int
sparc_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
			  reg_class_t from, reg_class_t to)
{
  bool need_memory = false;

  /* This helps postreload CSE to eliminate redundant comparisons.  */
  if (from == NO_REGS || to == NO_REGS)
    return 100;

  if (from == FPCC_REGS || to == FPCC_REGS)
    need_memory = true;
  else if ((FP_REG_CLASS_P (from) && general_or_i64_p (to))
	   || (general_or_i64_p (from) && FP_REG_CLASS_P (to)))
    {
      if (TARGET_VIS3)
	{
	  int size = GET_MODE_SIZE (mode);
	  if (size == 8 || size == 4)
	    {
	      if (! TARGET_ARCH32 || size == 4)
		return 4;
	      else
		return 6;
	    }
	}
      need_memory = true;
    }

  if (need_memory)
    {
      if (sparc_cpu == PROCESSOR_ULTRASPARC
	  || sparc_cpu == PROCESSOR_ULTRASPARC3
	  || sparc_cpu == PROCESSOR_NIAGARA
	  || sparc_cpu == PROCESSOR_NIAGARA2
	  || sparc_cpu == PROCESSOR_NIAGARA3
	  || sparc_cpu == PROCESSOR_NIAGARA4
	  || sparc_cpu == PROCESSOR_NIAGARA7
	  || sparc_cpu == PROCESSOR_M8)
	return 12;

      return 6;
    }

  return 2;
}

/* Emit the sequence of insns SEQ while preserving the registers REG and REG2.
   This is achieved by means of a manual dynamic stack space allocation in
   the current frame.  We make the assumption that SEQ doesn't contain any
   function calls, with the possible exception of calls to the GOT helper.  */

static void
emit_and_preserve (rtx seq, rtx reg, rtx reg2)
{
  /* We must preserve the lowest 16 words for the register save area.  */
  HOST_WIDE_INT offset = 16*UNITS_PER_WORD;
  /* We really need only 2 words of fresh stack space.  */
  HOST_WIDE_INT size = SPARC_STACK_ALIGN (offset + 2*UNITS_PER_WORD);

  rtx slot
    = gen_rtx_MEM (word_mode, plus_constant (Pmode, stack_pointer_rtx,
					     SPARC_STACK_BIAS + offset));

  emit_insn (gen_stack_pointer_inc (GEN_INT (-size)));
  emit_insn (gen_rtx_SET (slot, reg));
  if (reg2)
    emit_insn (gen_rtx_SET (adjust_address (slot, word_mode, UNITS_PER_WORD),
			    reg2));
  emit_insn (seq);
  if (reg2)
    emit_insn (gen_rtx_SET (reg2,
			    adjust_address (slot, word_mode, UNITS_PER_WORD)));
  emit_insn (gen_rtx_SET (reg, slot));
  emit_insn (gen_stack_pointer_inc (GEN_INT (size)));
}

/* Output the assembler code for a thunk function.  THUNK_DECL is the
   declaration for the thunk function itself, FUNCTION is the decl for
   the target function.  DELTA is an immediate constant offset to be
   added to THIS.  If VCALL_OFFSET is nonzero, the word at address
   (*THIS + VCALL_OFFSET) should be additionally added to THIS.  */

static void
sparc_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
		       HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
		       tree function)
{
  const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk_fndecl));
  rtx this_rtx, funexp;
  rtx_insn *insn;
  unsigned int int_arg_first;

  reload_completed = 1;
  epilogue_completed = 1;

  emit_note (NOTE_INSN_PROLOGUE_END);

  if (TARGET_FLAT)
    {
      sparc_leaf_function_p = 1;

      int_arg_first = SPARC_OUTGOING_INT_ARG_FIRST;
    }
  else if (flag_delayed_branch)
    {
      /* We will emit a regular sibcall below, so we need to instruct
	 output_sibcall that we are in a leaf function.  */
      sparc_leaf_function_p = crtl->uses_only_leaf_regs = 1;

      /* This will cause final.c to invoke leaf_renumber_regs so we
	 must behave as if we were in a not-yet-leafified function.  */
      int_arg_first = SPARC_INCOMING_INT_ARG_FIRST;
    }
  else
    {
      /* We will emit the sibcall manually below, so we will need to
	 manually spill non-leaf registers.  */
      sparc_leaf_function_p = crtl->uses_only_leaf_regs = 0;

      /* We really are in a leaf function.  */
      int_arg_first = SPARC_OUTGOING_INT_ARG_FIRST;
    }

  /* Find the "this" pointer.  Normally in %o0, but in ARCH64 if the function
     returns a structure, the structure return pointer is there instead.  */
  if (TARGET_ARCH64
      && aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
    this_rtx = gen_rtx_REG (Pmode, int_arg_first + 1);
  else
    this_rtx = gen_rtx_REG (Pmode, int_arg_first);

  /* Add DELTA.  When possible use a plain add, otherwise load it into
     a register first.  */
  if (delta)
    {
      rtx delta_rtx = GEN_INT (delta);

      if (! SPARC_SIMM13_P (delta))
	{
	  rtx scratch = gen_rtx_REG (Pmode, 1);
	  emit_move_insn (scratch, delta_rtx);
	  delta_rtx = scratch;
	}

      /* THIS_RTX += DELTA.  */
      emit_insn (gen_add2_insn (this_rtx, delta_rtx));
    }

  /* Add the word at address (*THIS_RTX + VCALL_OFFSET).  */
  if (vcall_offset)
    {
      rtx vcall_offset_rtx = GEN_INT (vcall_offset);
      rtx scratch = gen_rtx_REG (Pmode, 1);

      gcc_assert (vcall_offset < 0);

      /* SCRATCH = *THIS_RTX.  */
      emit_move_insn (scratch, gen_rtx_MEM (Pmode, this_rtx));

      /* Prepare for adding VCALL_OFFSET.  The difficulty is that we
	 may not have any available scratch register at this point.  */
      if (SPARC_SIMM13_P (vcall_offset))
	;
      /* This is the case if ARCH64 (unless -ffixed-g5 is passed).  */
      else if (! fixed_regs[5]
	       /* The below sequence is made up of at least 2 insns,
		  while the default method may need only one.  */
	       && vcall_offset < -8192)
	{
	  rtx scratch2 = gen_rtx_REG (Pmode, 5);
	  emit_move_insn (scratch2, vcall_offset_rtx);
	  vcall_offset_rtx = scratch2;
	}
      else
	{
	  rtx increment = GEN_INT (-4096);

	  /* VCALL_OFFSET is a negative number whose typical range can be
	     estimated as -32768..0 in 32-bit mode.  In almost all cases
	     it is therefore cheaper to emit multiple add insns than
	     spilling and loading the constant into a register (at least
	     6 insns).  */
	  while (! SPARC_SIMM13_P (vcall_offset))
	    {
	      emit_insn (gen_add2_insn (scratch, increment));
	      vcall_offset += 4096;
	    }
	  vcall_offset_rtx = GEN_INT (vcall_offset); /* cannot be 0 */
	}

      /* SCRATCH = *(*THIS_RTX + VCALL_OFFSET).  */
      emit_move_insn (scratch, gen_rtx_MEM (Pmode,
					    gen_rtx_PLUS (Pmode,
							  scratch,
							  vcall_offset_rtx)));

      /* THIS_RTX += *(*THIS_RTX + VCALL_OFFSET).  */
      emit_insn (gen_add2_insn (this_rtx, scratch));
    }

  /* Generate a tail call to the target function.  */
  if (! TREE_USED (function))
    {
      assemble_external (function);
      TREE_USED (function) = 1;
    }
  funexp = XEXP (DECL_RTL (function), 0);

  if (flag_delayed_branch)
    {
      funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
      insn = emit_call_insn (gen_sibcall (funexp));
      SIBLING_CALL_P (insn) = 1;
    }
  else
    {
      /* The hoops we have to jump through in order to generate a sibcall
	 without using delay slots...  */
      rtx spill_reg, seq, scratch = gen_rtx_REG (Pmode, 1);

      if (flag_pic)
        {
	  spill_reg = gen_rtx_REG (word_mode, 15);  /* %o7 */
	  start_sequence ();
	  load_got_register ();  /* clobbers %o7 */
	  if (!TARGET_VXWORKS_RTP)
	    pic_offset_table_rtx = got_register_rtx;
	  scratch = sparc_legitimize_pic_address (funexp, scratch);
	  seq = get_insns ();
	  end_sequence ();
	  emit_and_preserve (seq, spill_reg, pic_offset_table_rtx);
	}
      else if (TARGET_ARCH32)
	{
	  emit_insn (gen_rtx_SET (scratch,
				  gen_rtx_HIGH (SImode, funexp)));
	  emit_insn (gen_rtx_SET (scratch,
				  gen_rtx_LO_SUM (SImode, scratch, funexp)));
	}
      else  /* TARGET_ARCH64 */
        {
	  switch (sparc_code_model)
	    {
	    case CM_MEDLOW:
	    case CM_MEDMID:
	      /* The destination can serve as a temporary.  */
	      sparc_emit_set_symbolic_const64 (scratch, funexp, scratch);
	      break;

	    case CM_MEDANY:
	    case CM_EMBMEDANY:
	      /* The destination cannot serve as a temporary.  */
	      spill_reg = gen_rtx_REG (DImode, 15);  /* %o7 */
	      start_sequence ();
	      sparc_emit_set_symbolic_const64 (scratch, funexp, spill_reg);
	      seq = get_insns ();
	      end_sequence ();
	      emit_and_preserve (seq, spill_reg, 0);
	      break;

	    default:
	      gcc_unreachable ();
	    }
	}

      emit_jump_insn (gen_indirect_jump (scratch));
    }

  emit_barrier ();

  /* Run just enough of rest_of_compilation to get the insns emitted.
     There's not really enough bulk here to make other passes such as
     instruction scheduling worth while.  */
  insn = get_insns ();
  shorten_branches (insn);
  assemble_start_function (thunk_fndecl, fnname);
  final_start_function (insn, file, 1);
  final (insn, file, 1);
  final_end_function ();
  assemble_end_function (thunk_fndecl, fnname);

  reload_completed = 0;
  epilogue_completed = 0;
}

/* Return true if sparc_output_mi_thunk would be able to output the
   assembler code for the thunk function specified by the arguments
   it is passed, and false otherwise.  */
static bool
sparc_can_output_mi_thunk (const_tree thunk_fndecl ATTRIBUTE_UNUSED,
			   HOST_WIDE_INT delta ATTRIBUTE_UNUSED,
			   HOST_WIDE_INT vcall_offset,
			   const_tree function ATTRIBUTE_UNUSED)
{
  /* Bound the loop used in the default method above.  */
  return (vcall_offset >= -32768 || ! fixed_regs[5]);
}

/* How to allocate a 'struct machine_function'.  */

static struct machine_function *
sparc_init_machine_status (void)
{
  return ggc_cleared_alloc<machine_function> ();
}

/* Implement the TARGET_ASAN_SHADOW_OFFSET hook.  */

static unsigned HOST_WIDE_INT
sparc_asan_shadow_offset (void)
{
  return TARGET_ARCH64 ? (HOST_WIDE_INT_1 << 43) : (HOST_WIDE_INT_1 << 29);
}

/* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
   We need to emit DTP-relative relocations.  */

static void
sparc_output_dwarf_dtprel (FILE *file, int size, rtx x)
{
  switch (size)
    {
    case 4:
      fputs ("\t.word\t%r_tls_dtpoff32(", file);
      break;
    case 8:
      fputs ("\t.xword\t%r_tls_dtpoff64(", file);
      break;
    default:
      gcc_unreachable ();
    }
  output_addr_const (file, x);
  fputs (")", file);
}

/* Do whatever processing is required at the end of a file.  */

static void
sparc_file_end (void)
{
  /* If we need to emit the special GOT helper function, do so now.  */
  if (got_helper_needed)
    {
      const char *name = XSTR (got_helper_rtx, 0);
#ifdef DWARF2_UNWIND_INFO
      bool do_cfi;
#endif

      if (USE_HIDDEN_LINKONCE)
	{
	  tree decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
				  get_identifier (name),
				  build_function_type_list (void_type_node,
                                                            NULL_TREE));
	  DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL,
					   NULL_TREE, void_type_node);
	  TREE_PUBLIC (decl) = 1;
	  TREE_STATIC (decl) = 1;
	  make_decl_one_only (decl, DECL_ASSEMBLER_NAME (decl));
	  DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
	  DECL_VISIBILITY_SPECIFIED (decl) = 1;
	  resolve_unique_section (decl, 0, flag_function_sections);
	  allocate_struct_function (decl, true);
	  cfun->is_thunk = 1;
	  current_function_decl = decl;
	  init_varasm_status ();
	  assemble_start_function (decl, name);
	}
      else
	{
	  const int align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT);
          switch_to_section (text_section);
	  if (align > 0)
	    ASM_OUTPUT_ALIGN (asm_out_file, align);
	  ASM_OUTPUT_LABEL (asm_out_file, name);
	}

#ifdef DWARF2_UNWIND_INFO
      do_cfi = dwarf2out_do_cfi_asm ();
      if (do_cfi)
	output_asm_insn (".cfi_startproc", NULL);
#endif
      if (flag_delayed_branch)
	{
	  output_asm_insn ("jmp\t%%o7+8", NULL);
	  output_asm_insn (" add\t%%o7, %0, %0", &got_register_rtx);
	}
      else
	{
	  output_asm_insn ("add\t%%o7, %0, %0", &got_register_rtx);
	  output_asm_insn ("jmp\t%%o7+8", NULL);
	  output_asm_insn (" nop", NULL);
	}
#ifdef DWARF2_UNWIND_INFO
      if (do_cfi)
	output_asm_insn (".cfi_endproc", NULL);
#endif
    }

  if (NEED_INDICATE_EXEC_STACK)
    file_end_indicate_exec_stack ();

#ifdef TARGET_SOLARIS
  solaris_file_end ();
#endif
}

#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
/* Implement TARGET_MANGLE_TYPE.  */

static const char *
sparc_mangle_type (const_tree type)
{
  if (TARGET_ARCH32
      && TYPE_MAIN_VARIANT (type) == long_double_type_node
      && TARGET_LONG_DOUBLE_128)
    return "g";

  /* For all other types, use normal C++ mangling.  */
  return NULL;
}
#endif

/* Expand a membar instruction for various use cases.  Both the LOAD_STORE
   and BEFORE_AFTER arguments of the form X_Y.  They are two-bit masks where
   bit 0 indicates that X is true, and bit 1 indicates Y is true.  */

void
sparc_emit_membar_for_model (enum memmodel model,
			     int load_store, int before_after)
{
  /* Bits for the MEMBAR mmask field.  */
  const int LoadLoad = 1;
  const int StoreLoad = 2;
  const int LoadStore = 4;
  const int StoreStore = 8;

  int mm = 0, implied = 0;

  switch (sparc_memory_model)
    {
    case SMM_SC:
      /* Sequential Consistency.  All memory transactions are immediately
	 visible in sequential execution order.  No barriers needed.  */
      implied = LoadLoad | StoreLoad | LoadStore | StoreStore;
      break;

    case SMM_TSO:
      /* Total Store Ordering: all memory transactions with store semantics
	 are followed by an implied StoreStore.  */
      implied |= StoreStore;

      /* If we're not looking for a raw barrer (before+after), then atomic
	 operations get the benefit of being both load and store.  */
      if (load_store == 3 && before_after == 1)
	implied |= StoreLoad;
      /* FALLTHRU */

    case SMM_PSO:
      /* Partial Store Ordering: all memory transactions with load semantics
	 are followed by an implied LoadLoad | LoadStore.  */
      implied |= LoadLoad | LoadStore;

      /* If we're not looking for a raw barrer (before+after), then atomic
	 operations get the benefit of being both load and store.  */
      if (load_store == 3 && before_after == 2)
	implied |= StoreLoad | StoreStore;
      /* FALLTHRU */

    case SMM_RMO:
      /* Relaxed Memory Ordering: no implicit bits.  */
      break;

    default:
      gcc_unreachable ();
    }

  if (before_after & 1)
    {
      if (is_mm_release (model) || is_mm_acq_rel (model)
	  || is_mm_seq_cst (model))
	{
	  if (load_store & 1)
	    mm |= LoadLoad | StoreLoad;
	  if (load_store & 2)
	    mm |= LoadStore | StoreStore;
	}
    }
  if (before_after & 2)
    {
      if (is_mm_acquire (model) || is_mm_acq_rel (model)
	  || is_mm_seq_cst (model))
	{
	  if (load_store & 1)
	    mm |= LoadLoad | LoadStore;
	  if (load_store & 2)
	    mm |= StoreLoad | StoreStore;
	}
    }

  /* Remove the bits implied by the system memory model.  */
  mm &= ~implied;

  /* For raw barriers (before+after), always emit a barrier.
     This will become a compile-time barrier if needed.  */
  if (mm || before_after == 3)
    emit_insn (gen_membar (GEN_INT (mm)));
}

/* Expand code to perform a 8 or 16-bit compare and swap by doing 32-bit
   compare and swap on the word containing the byte or half-word.  */

static void
sparc_expand_compare_and_swap_12 (rtx bool_result, rtx result, rtx mem,
				  rtx oldval, rtx newval)
{
  rtx addr1 = force_reg (Pmode, XEXP (mem, 0));
  rtx addr = gen_reg_rtx (Pmode);
  rtx off = gen_reg_rtx (SImode);
  rtx oldv = gen_reg_rtx (SImode);
  rtx newv = gen_reg_rtx (SImode);
  rtx oldvalue = gen_reg_rtx (SImode);
  rtx newvalue = gen_reg_rtx (SImode);
  rtx res = gen_reg_rtx (SImode);
  rtx resv = gen_reg_rtx (SImode);
  rtx memsi, val, mask, cc;

  emit_insn (gen_rtx_SET (addr, gen_rtx_AND (Pmode, addr1, GEN_INT (-4))));

  if (Pmode != SImode)
    addr1 = gen_lowpart (SImode, addr1);
  emit_insn (gen_rtx_SET (off, gen_rtx_AND (SImode, addr1, GEN_INT (3))));

  memsi = gen_rtx_MEM (SImode, addr);
  set_mem_alias_set (memsi, ALIAS_SET_MEMORY_BARRIER);
  MEM_VOLATILE_P (memsi) = MEM_VOLATILE_P (mem);

  val = copy_to_reg (memsi);

  emit_insn (gen_rtx_SET (off,
			  gen_rtx_XOR (SImode, off,
				       GEN_INT (GET_MODE (mem) == QImode
						? 3 : 2))));

  emit_insn (gen_rtx_SET (off, gen_rtx_ASHIFT (SImode, off, GEN_INT (3))));

  if (GET_MODE (mem) == QImode)
    mask = force_reg (SImode, GEN_INT (0xff));
  else
    mask = force_reg (SImode, GEN_INT (0xffff));

  emit_insn (gen_rtx_SET (mask, gen_rtx_ASHIFT (SImode, mask, off)));

  emit_insn (gen_rtx_SET (val,
			  gen_rtx_AND (SImode, gen_rtx_NOT (SImode, mask),
				       val)));

  oldval = gen_lowpart (SImode, oldval);
  emit_insn (gen_rtx_SET (oldv, gen_rtx_ASHIFT (SImode, oldval, off)));

  newval = gen_lowpart_common (SImode, newval);
  emit_insn (gen_rtx_SET (newv, gen_rtx_ASHIFT (SImode, newval, off)));

  emit_insn (gen_rtx_SET (oldv, gen_rtx_AND (SImode, oldv, mask)));

  emit_insn (gen_rtx_SET (newv, gen_rtx_AND (SImode, newv, mask)));

  rtx_code_label *end_label = gen_label_rtx ();
  rtx_code_label *loop_label = gen_label_rtx ();
  emit_label (loop_label);

  emit_insn (gen_rtx_SET (oldvalue, gen_rtx_IOR (SImode, oldv, val)));

  emit_insn (gen_rtx_SET (newvalue, gen_rtx_IOR (SImode, newv, val)));

  emit_move_insn (bool_result, const1_rtx);

  emit_insn (gen_atomic_compare_and_swapsi_1 (res, memsi, oldvalue, newvalue));

  emit_cmp_and_jump_insns (res, oldvalue, EQ, NULL, SImode, 0, end_label);

  emit_insn (gen_rtx_SET (resv,
			  gen_rtx_AND (SImode, gen_rtx_NOT (SImode, mask),
				       res)));

  emit_move_insn (bool_result, const0_rtx);

  cc = gen_compare_reg_1 (NE, resv, val);
  emit_insn (gen_rtx_SET (val, resv));

  /* Use cbranchcc4 to separate the compare and branch!  */
  emit_jump_insn (gen_cbranchcc4 (gen_rtx_NE (VOIDmode, cc, const0_rtx),
				  cc, const0_rtx, loop_label));

  emit_label (end_label);

  emit_insn (gen_rtx_SET (res, gen_rtx_AND (SImode, res, mask)));

  emit_insn (gen_rtx_SET (res, gen_rtx_LSHIFTRT (SImode, res, off)));

  emit_move_insn (result, gen_lowpart (GET_MODE (result), res));
}

/* Expand code to perform a compare-and-swap.  */

void
sparc_expand_compare_and_swap (rtx operands[])
{
  rtx bval, retval, mem, oldval, newval;
  machine_mode mode;
  enum memmodel model;

  bval = operands[0];
  retval = operands[1];
  mem = operands[2];
  oldval = operands[3];
  newval = operands[4];
  model = (enum memmodel) INTVAL (operands[6]);
  mode = GET_MODE (mem);

  sparc_emit_membar_for_model (model, 3, 1);

  if (reg_overlap_mentioned_p (retval, oldval))
    oldval = copy_to_reg (oldval);

  if (mode == QImode || mode == HImode)
    sparc_expand_compare_and_swap_12 (bval, retval, mem, oldval, newval);
  else
    {
      rtx (*gen) (rtx, rtx, rtx, rtx);
      rtx x;

      if (mode == SImode)
	gen = gen_atomic_compare_and_swapsi_1;
      else
	gen = gen_atomic_compare_and_swapdi_1;
      emit_insn (gen (retval, mem, oldval, newval));

      x = emit_store_flag (bval, EQ, retval, oldval, mode, 1, 1);
      if (x != bval)
	convert_move (bval, x, 1);
    }

  sparc_emit_membar_for_model (model, 3, 2);
}

void
sparc_expand_vec_perm_bmask (machine_mode vmode, rtx sel)
{
  rtx t_1, t_2, t_3;

  sel = gen_lowpart (DImode, sel);
  switch (vmode)
    {
    case E_V2SImode:
      /* inp = xxxxxxxAxxxxxxxB */
      t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (16),
				 NULL_RTX, 1, OPTAB_DIRECT);
      /* t_1 = ....xxxxxxxAxxx. */
      sel = expand_simple_binop (SImode, AND, gen_lowpart (SImode, sel),
				 GEN_INT (3), NULL_RTX, 1, OPTAB_DIRECT);
      t_1 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_1),
				 GEN_INT (0x30000), NULL_RTX, 1, OPTAB_DIRECT);
      /* sel = .......B */
      /* t_1 = ...A.... */
      sel = expand_simple_binop (SImode, IOR, sel, t_1, sel, 1, OPTAB_DIRECT);
      /* sel = ...A...B */
      sel = expand_mult (SImode, sel, GEN_INT (0x4444), sel, 1);
      /* sel = AAAABBBB * 4 */
      t_1 = force_reg (SImode, GEN_INT (0x01230123));
      /* sel = { A*4, A*4+1, A*4+2, ... } */
      break;

    case E_V4HImode:
      /* inp = xxxAxxxBxxxCxxxD */
      t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (8),
				 NULL_RTX, 1, OPTAB_DIRECT);
      t_2 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (16),
				 NULL_RTX, 1, OPTAB_DIRECT);
      t_3 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (24),
				 NULL_RTX, 1, OPTAB_DIRECT);
      /* t_1 = ..xxxAxxxBxxxCxx */
      /* t_2 = ....xxxAxxxBxxxC */
      /* t_3 = ......xxxAxxxBxx */
      sel = expand_simple_binop (SImode, AND, gen_lowpart (SImode, sel),
				 GEN_INT (0x07),
				 NULL_RTX, 1, OPTAB_DIRECT);
      t_1 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_1),
				 GEN_INT (0x0700),
				 NULL_RTX, 1, OPTAB_DIRECT);
      t_2 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_2),
				 GEN_INT (0x070000),
				 NULL_RTX, 1, OPTAB_DIRECT);
      t_3 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_3),
				 GEN_INT (0x07000000),
				 NULL_RTX, 1, OPTAB_DIRECT);
      /* sel = .......D */
      /* t_1 = .....C.. */
      /* t_2 = ...B.... */
      /* t_3 = .A...... */
      sel = expand_simple_binop (SImode, IOR, sel, t_1, sel, 1, OPTAB_DIRECT);
      t_2 = expand_simple_binop (SImode, IOR, t_2, t_3, t_2, 1, OPTAB_DIRECT);
      sel = expand_simple_binop (SImode, IOR, sel, t_2, sel, 1, OPTAB_DIRECT);
      /* sel = .A.B.C.D */
      sel = expand_mult (SImode, sel, GEN_INT (0x22), sel, 1);
      /* sel = AABBCCDD * 2 */
      t_1 = force_reg (SImode, GEN_INT (0x01010101));
      /* sel = { A*2, A*2+1, B*2, B*2+1, ... } */
      break;
  
    case E_V8QImode:
      /* input = xAxBxCxDxExFxGxH */
      sel = expand_simple_binop (DImode, AND, sel,
				 GEN_INT ((HOST_WIDE_INT)0x0f0f0f0f << 32
					  | 0x0f0f0f0f),
				 NULL_RTX, 1, OPTAB_DIRECT);
      /* sel = .A.B.C.D.E.F.G.H */
      t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (4),
				 NULL_RTX, 1, OPTAB_DIRECT);
      /* t_1 = ..A.B.C.D.E.F.G. */
      sel = expand_simple_binop (DImode, IOR, sel, t_1,
				 NULL_RTX, 1, OPTAB_DIRECT);
      /* sel = .AABBCCDDEEFFGGH */
      sel = expand_simple_binop (DImode, AND, sel,
				 GEN_INT ((HOST_WIDE_INT)0xff00ff << 32
					  | 0xff00ff),
				 NULL_RTX, 1, OPTAB_DIRECT);
      /* sel = ..AB..CD..EF..GH */
      t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (8),
				 NULL_RTX, 1, OPTAB_DIRECT);
      /* t_1 = ....AB..CD..EF.. */
      sel = expand_simple_binop (DImode, IOR, sel, t_1,
				 NULL_RTX, 1, OPTAB_DIRECT);
      /* sel = ..ABABCDCDEFEFGH */
      sel = expand_simple_binop (DImode, AND, sel,
				 GEN_INT ((HOST_WIDE_INT)0xffff << 32 | 0xffff),
				 NULL_RTX, 1, OPTAB_DIRECT);
      /* sel = ....ABCD....EFGH */
      t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (16),
				 NULL_RTX, 1, OPTAB_DIRECT);
      /* t_1 = ........ABCD.... */
      sel = gen_lowpart (SImode, sel);
      t_1 = gen_lowpart (SImode, t_1);
      break;

    default:
      gcc_unreachable ();
    }

  /* Always perform the final addition/merge within the bmask insn.  */
  emit_insn (gen_bmasksi_vis (gen_reg_rtx (SImode), sel, t_1));
}

/* Implement TARGET_VEC_PERM_CONST.  */

static bool
sparc_vectorize_vec_perm_const (machine_mode vmode, rtx target, rtx op0,
				rtx op1, const vec_perm_indices &sel)
{
  if (!TARGET_VIS2)
    return false;

  /* All permutes are supported.  */
  if (!target)
    return true;

  /* Force target-independent code to convert constant permutations on other
     modes down to V8QI.  Rely on this to avoid the complexity of the byte
     order of the permutation.  */
  if (vmode != V8QImode)
    return false;

  unsigned int i, mask;
  for (i = mask = 0; i < 8; ++i)
    mask |= (sel[i] & 0xf) << (28 - i*4);
  rtx mask_rtx = force_reg (SImode, gen_int_mode (mask, SImode));

  emit_insn (gen_bmasksi_vis (gen_reg_rtx (SImode), mask_rtx, const0_rtx));
  emit_insn (gen_bshufflev8qi_vis (target, op0, op1));
  return true;
}

/* Implement TARGET_FRAME_POINTER_REQUIRED.  */

static bool
sparc_frame_pointer_required (void)
{
  /* If the stack pointer is dynamically modified in the function, it cannot
     serve as the frame pointer.  */
  if (cfun->calls_alloca)
    return true;

  /* If the function receives nonlocal gotos, it needs to save the frame
     pointer in the nonlocal_goto_save_area object.  */
  if (cfun->has_nonlocal_label)
    return true;

  /* In flat mode, that's it.  */
  if (TARGET_FLAT)
    return false;

  /* Otherwise, the frame pointer is required if the function isn't leaf, but
     we cannot use sparc_leaf_function_p since it hasn't been computed yet.  */
  return !(optimize > 0 && crtl->is_leaf && only_leaf_regs_used ());
}

/* The way this is structured, we can't eliminate SFP in favor of SP
   if the frame pointer is required: we want to use the SFP->HFP elimination
   in that case.  But the test in update_eliminables doesn't know we are
   assuming below that we only do the former elimination.  */

static bool
sparc_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
  return to == HARD_FRAME_POINTER_REGNUM || !sparc_frame_pointer_required ();
}

/* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
   they won't be allocated.  */

static void
sparc_conditional_register_usage (void)
{
  if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
    fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
  /* If the user has passed -f{fixed,call-{used,saved}}-g5 */
  /* then honor it.  */
  if (TARGET_ARCH32 && fixed_regs[5])
    fixed_regs[5] = 1;
  else if (TARGET_ARCH64 && fixed_regs[5] == 2)
    fixed_regs[5] = 0;
  if (! TARGET_V9)
    {
      int regno;
      for (regno = SPARC_FIRST_V9_FP_REG;
	   regno <= SPARC_LAST_V9_FP_REG;
	   regno++)
	fixed_regs[regno] = 1;
      /* %fcc0 is used by v8 and v9.  */
      for (regno = SPARC_FIRST_V9_FCC_REG + 1;
	   regno <= SPARC_LAST_V9_FCC_REG;
	   regno++)
	fixed_regs[regno] = 1;
    }
  if (! TARGET_FPU)
    {
      int regno;
      for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++)
	fixed_regs[regno] = 1;
    }
  /* If the user has passed -f{fixed,call-{used,saved}}-g2 */
  /* then honor it.  Likewise with g3 and g4.  */
  if (fixed_regs[2] == 2)
    fixed_regs[2] = ! TARGET_APP_REGS;
  if (fixed_regs[3] == 2)
    fixed_regs[3] = ! TARGET_APP_REGS;
  if (TARGET_ARCH32 && fixed_regs[4] == 2)
    fixed_regs[4] = ! TARGET_APP_REGS;
  else if (TARGET_CM_EMBMEDANY)
    fixed_regs[4] = 1;
  else if (fixed_regs[4] == 2)
    fixed_regs[4] = 0;
  if (TARGET_FLAT)
    {
      int regno;
      /* Disable leaf functions.  */
      memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER);
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
	leaf_reg_remap [regno] = regno;
    }
  if (TARGET_VIS)
    global_regs[SPARC_GSR_REG] = 1;
}

/* Implement TARGET_USE_PSEUDO_PIC_REG.  */

static bool
sparc_use_pseudo_pic_reg (void)
{
  return !TARGET_VXWORKS_RTP && flag_pic;
}

/* Implement TARGET_INIT_PIC_REG.  */

static void
sparc_init_pic_reg (void)
{
  edge entry_edge;
  rtx_insn *seq;

  /* In PIC mode, we need to always initialize the PIC register if optimization
     is enabled, because we are called from IRA and LRA may later force things
     to the constant pool for optimization purposes.  */
  if (!flag_pic || (!crtl->uses_pic_offset_table && !optimize))
    return;

  start_sequence ();
  load_got_register ();
  if (!TARGET_VXWORKS_RTP)
    emit_move_insn (pic_offset_table_rtx, got_register_rtx);
  seq = get_insns ();
  end_sequence ();

  entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
  insert_insn_on_edge (seq, entry_edge);
  commit_one_edge_insertion (entry_edge);
}

/* Implement TARGET_PREFERRED_RELOAD_CLASS:

   - We can't load constants into FP registers.
   - We can't load FP constants into integer registers when soft-float,
     because there is no soft-float pattern with a r/F constraint.
   - We can't load FP constants into integer registers for TFmode unless
     it is 0.0L, because there is no movtf pattern with a r/F constraint.
   - Try and reload integer constants (symbolic or otherwise) back into
     registers directly, rather than having them dumped to memory.  */

static reg_class_t
sparc_preferred_reload_class (rtx x, reg_class_t rclass)
{
  machine_mode mode = GET_MODE (x);
  if (CONSTANT_P (x))
    {
      if (FP_REG_CLASS_P (rclass)
	  || rclass == GENERAL_OR_FP_REGS
	  || rclass == GENERAL_OR_EXTRA_FP_REGS
	  || (GET_MODE_CLASS (mode) == MODE_FLOAT && ! TARGET_FPU)
	  || (mode == TFmode && ! const_zero_operand (x, mode)))
	return NO_REGS;

      if (GET_MODE_CLASS (mode) == MODE_INT)
	return GENERAL_REGS;

      if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
	{
	  if (! FP_REG_CLASS_P (rclass)
	      || !(const_zero_operand (x, mode)
		   || const_all_ones_operand (x, mode)))
	    return NO_REGS;
	}
    }

  if (TARGET_VIS3
      && ! TARGET_ARCH64
      && (rclass == EXTRA_FP_REGS
	  || rclass == GENERAL_OR_EXTRA_FP_REGS))
    {
      int regno = true_regnum (x);

      if (SPARC_INT_REG_P (regno))
	return (rclass == EXTRA_FP_REGS
		? FP_REGS : GENERAL_OR_FP_REGS);
    }

  return rclass;
}

/* Return true if we use LRA instead of reload pass.  */

static bool
sparc_lra_p (void)
{
  return TARGET_LRA;
}

/* Output a wide multiply instruction in V8+ mode.  INSN is the instruction,
   OPERANDS are its operands and OPCODE is the mnemonic to be used.  */

const char *
output_v8plus_mult (rtx_insn *insn, rtx *operands, const char *opcode)
{
  char mulstr[32];

  gcc_assert (! TARGET_ARCH64);

  if (sparc_check_64 (operands[1], insn) <= 0)
    output_asm_insn ("srl\t%L1, 0, %L1", operands);
  if (which_alternative == 1)
    output_asm_insn ("sllx\t%H1, 32, %H1", operands);
  if (GET_CODE (operands[2]) == CONST_INT)
    {
      if (which_alternative == 1)
	{
	  output_asm_insn ("or\t%L1, %H1, %H1", operands);
	  sprintf (mulstr, "%s\t%%H1, %%2, %%L0", opcode);
	  output_asm_insn (mulstr, operands);
	  return "srlx\t%L0, 32, %H0";
	}
      else
	{
	  output_asm_insn ("sllx\t%H1, 32, %3", operands);
          output_asm_insn ("or\t%L1, %3, %3", operands);
          sprintf (mulstr, "%s\t%%3, %%2, %%3", opcode);
	  output_asm_insn (mulstr, operands);
	  output_asm_insn ("srlx\t%3, 32, %H0", operands);
          return "mov\t%3, %L0";
	}
    }
  else if (rtx_equal_p (operands[1], operands[2]))
    {
      if (which_alternative == 1)
	{
	  output_asm_insn ("or\t%L1, %H1, %H1", operands);
          sprintf (mulstr, "%s\t%%H1, %%H1, %%L0", opcode);
	  output_asm_insn (mulstr, operands);
	  return "srlx\t%L0, 32, %H0";
	}
      else
	{
	  output_asm_insn ("sllx\t%H1, 32, %3", operands);
          output_asm_insn ("or\t%L1, %3, %3", operands);
	  sprintf (mulstr, "%s\t%%3, %%3, %%3", opcode);
	  output_asm_insn (mulstr, operands);
	  output_asm_insn ("srlx\t%3, 32, %H0", operands);
          return "mov\t%3, %L0";
	}
    }
  if (sparc_check_64 (operands[2], insn) <= 0)
    output_asm_insn ("srl\t%L2, 0, %L2", operands);
  if (which_alternative == 1)
    {
      output_asm_insn ("or\t%L1, %H1, %H1", operands);
      output_asm_insn ("sllx\t%H2, 32, %L1", operands);
      output_asm_insn ("or\t%L2, %L1, %L1", operands);
      sprintf (mulstr, "%s\t%%H1, %%L1, %%L0", opcode);
      output_asm_insn (mulstr, operands);
      return "srlx\t%L0, 32, %H0";
    }
  else
    {
      output_asm_insn ("sllx\t%H1, 32, %3", operands);
      output_asm_insn ("sllx\t%H2, 32, %4", operands);
      output_asm_insn ("or\t%L1, %3, %3", operands);
      output_asm_insn ("or\t%L2, %4, %4", operands);
      sprintf (mulstr, "%s\t%%3, %%4, %%3", opcode);
      output_asm_insn (mulstr, operands);
      output_asm_insn ("srlx\t%3, 32, %H0", operands);
      return "mov\t%3, %L0";
    }
}

/* Subroutine of sparc_expand_vector_init.  Emit code to initialize
   all fields of TARGET to ELT by means of VIS2 BSHUFFLE insn.  MODE
   and INNER_MODE are the modes describing TARGET.  */

static void
vector_init_bshuffle (rtx target, rtx elt, machine_mode mode,
		      machine_mode inner_mode)
{
  rtx t1, final_insn, sel;
  int bmask;

  t1 = gen_reg_rtx (mode);

  elt = convert_modes (SImode, inner_mode, elt, true);
  emit_move_insn (gen_lowpart(SImode, t1), elt);

  switch (mode)
    {
    case E_V2SImode:
      final_insn = gen_bshufflev2si_vis (target, t1, t1);
      bmask = 0x45674567;
      break;
    case E_V4HImode:
      final_insn = gen_bshufflev4hi_vis (target, t1, t1);
      bmask = 0x67676767;
      break;
    case E_V8QImode:
      final_insn = gen_bshufflev8qi_vis (target, t1, t1);
      bmask = 0x77777777;
      break;
    default:
      gcc_unreachable ();
    }

  sel = force_reg (SImode, GEN_INT (bmask));
  emit_insn (gen_bmasksi_vis (gen_reg_rtx (SImode), sel, const0_rtx));
  emit_insn (final_insn);
}

/* Subroutine of sparc_expand_vector_init.  Emit code to initialize
   all fields of TARGET to ELT in V8QI by means of VIS FPMERGE insn.  */

static void
vector_init_fpmerge (rtx target, rtx elt)
{
  rtx t1, t2, t2_low, t3, t3_low;

  t1 = gen_reg_rtx (V4QImode);
  elt = convert_modes (SImode, QImode, elt, true);
  emit_move_insn (gen_lowpart (SImode, t1), elt);

  t2 = gen_reg_rtx (V8QImode);
  t2_low = gen_lowpart (V4QImode, t2);
  emit_insn (gen_fpmerge_vis (t2, t1, t1));

  t3 = gen_reg_rtx (V8QImode);
  t3_low = gen_lowpart (V4QImode, t3);
  emit_insn (gen_fpmerge_vis (t3, t2_low, t2_low));

  emit_insn (gen_fpmerge_vis (target, t3_low, t3_low));
}

/* Subroutine of sparc_expand_vector_init.  Emit code to initialize
   all fields of TARGET to ELT in V4HI by means of VIS FALIGNDATA insn.  */

static void
vector_init_faligndata (rtx target, rtx elt)
{
  rtx t1 = gen_reg_rtx (V4HImode);
  int i;

  elt = convert_modes (SImode, HImode, elt, true);
  emit_move_insn (gen_lowpart (SImode, t1), elt);

  emit_insn (gen_alignaddrsi_vis (gen_reg_rtx (SImode),
				  force_reg (SImode, GEN_INT (6)),
				  const0_rtx));

  for (i = 0; i < 4; i++)
    emit_insn (gen_faligndatav4hi_vis (target, t1, target));
}

/* Emit code to initialize TARGET to values for individual fields VALS.  */

void
sparc_expand_vector_init (rtx target, rtx vals)
{
  const machine_mode mode = GET_MODE (target);
  const machine_mode inner_mode = GET_MODE_INNER (mode);
  const int n_elts = GET_MODE_NUNITS (mode);
  int i, n_var = 0;
  bool all_same = true;
  rtx mem;

  for (i = 0; i < n_elts; i++)
    {
      rtx x = XVECEXP (vals, 0, i);
      if (!(CONST_SCALAR_INT_P (x) || CONST_DOUBLE_P (x) || CONST_FIXED_P (x)))
	n_var++;

      if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
	all_same = false;
    }

  if (n_var == 0)
    {
      emit_move_insn (target, gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0)));
      return;
    }

  if (GET_MODE_SIZE (inner_mode) == GET_MODE_SIZE (mode))
    {
      if (GET_MODE_SIZE (inner_mode) == 4)
	{
	  emit_move_insn (gen_lowpart (SImode, target),
			  gen_lowpart (SImode, XVECEXP (vals, 0, 0)));
	  return;
	}
      else if (GET_MODE_SIZE (inner_mode) == 8)
	{
	  emit_move_insn (gen_lowpart (DImode, target),
			  gen_lowpart (DImode, XVECEXP (vals, 0, 0)));
	  return;
	}
    }
  else if (GET_MODE_SIZE (inner_mode) == GET_MODE_SIZE (word_mode)
	   && GET_MODE_SIZE (mode) == 2 * GET_MODE_SIZE (word_mode))
    {
      emit_move_insn (gen_highpart (word_mode, target),
		      gen_lowpart (word_mode, XVECEXP (vals, 0, 0)));
      emit_move_insn (gen_lowpart (word_mode, target),
		      gen_lowpart (word_mode, XVECEXP (vals, 0, 1)));
      return;
    }

  if (all_same && GET_MODE_SIZE (mode) == 8)
    {
      if (TARGET_VIS2)
	{
	  vector_init_bshuffle (target, XVECEXP (vals, 0, 0), mode, inner_mode);
	  return;
	}
      if (mode == V8QImode)
	{
	  vector_init_fpmerge (target, XVECEXP (vals, 0, 0));
	  return;
	}
      if (mode == V4HImode)
	{
	  vector_init_faligndata (target, XVECEXP (vals, 0, 0));
	  return;
	}
    }

  mem = assign_stack_temp (mode, GET_MODE_SIZE (mode));
  for (i = 0; i < n_elts; i++)
    emit_move_insn (adjust_address_nv (mem, inner_mode,
				       i * GET_MODE_SIZE (inner_mode)),
		    XVECEXP (vals, 0, i));
  emit_move_insn (target, mem);
}

/* Implement TARGET_SECONDARY_RELOAD.  */

static reg_class_t
sparc_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i,
			machine_mode mode, secondary_reload_info *sri)
{
  enum reg_class rclass = (enum reg_class) rclass_i;

  sri->icode = CODE_FOR_nothing;
  sri->extra_cost = 0;

  /* We need a temporary when loading/storing a HImode/QImode value
     between memory and the FPU registers.  This can happen when combine puts
     a paradoxical subreg in a float/fix conversion insn.  */
  if (FP_REG_CLASS_P (rclass)
      && (mode == HImode || mode == QImode)
      && (GET_CODE (x) == MEM
	  || ((GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
	      && true_regnum (x) == -1)))
    return GENERAL_REGS;

  /* On 32-bit we need a temporary when loading/storing a DFmode value
     between unaligned memory and the upper FPU registers.  */
  if (TARGET_ARCH32
      && rclass == EXTRA_FP_REGS
      && mode == DFmode
      && GET_CODE (x) == MEM
      && ! mem_min_alignment (x, 8))
    return FP_REGS;

  if (((TARGET_CM_MEDANY
	&& symbolic_operand (x, mode))
       || (TARGET_CM_EMBMEDANY
	   && text_segment_operand (x, mode)))
      && ! flag_pic)
    {
      if (in_p)
	sri->icode = direct_optab_handler (reload_in_optab, mode);
      else
	sri->icode = direct_optab_handler (reload_out_optab, mode);
      return NO_REGS;
    }

  if (TARGET_VIS3 && TARGET_ARCH32)
    {
      int regno = true_regnum (x);

      /* When using VIS3 fp<-->int register moves, on 32-bit we have
	 to move 8-byte values in 4-byte pieces.  This only works via
	 FP_REGS, and not via EXTRA_FP_REGS.  Therefore if we try to
	 move between EXTRA_FP_REGS and GENERAL_REGS, we will need
	 an FP_REGS intermediate move.  */
      if ((rclass == EXTRA_FP_REGS && SPARC_INT_REG_P (regno))
	  || ((general_or_i64_p (rclass)
	       || rclass == GENERAL_OR_FP_REGS)
	      && SPARC_FP_REG_P (regno)))
	{
	  sri->extra_cost = 2;
	  return FP_REGS;
	}
    }

  return NO_REGS;
}

/* Implement TARGET_SECONDARY_MEMORY_NEEDED.

   On SPARC when not VIS3 it is not possible to directly move data
   between GENERAL_REGS and FP_REGS.  */

static bool
sparc_secondary_memory_needed (machine_mode mode, reg_class_t class1,
			       reg_class_t class2)
{
  return ((FP_REG_CLASS_P (class1) != FP_REG_CLASS_P (class2))
	  && (! TARGET_VIS3
	      || GET_MODE_SIZE (mode) > 8
	      || GET_MODE_SIZE (mode) < 4));
}

/* Implement TARGET_SECONDARY_MEMORY_NEEDED_MODE.

   get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
   because the movsi and movsf patterns don't handle r/f moves.
   For v8 we copy the default definition.  */

static machine_mode
sparc_secondary_memory_needed_mode (machine_mode mode)
{
  if (TARGET_ARCH64)
    {
      if (GET_MODE_BITSIZE (mode) < 32)
	return mode_for_size (32, GET_MODE_CLASS (mode), 0).require ();
      return mode;
    }
  else
    {
      if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
	return mode_for_size (BITS_PER_WORD,
			      GET_MODE_CLASS (mode), 0).require ();
      return mode;
    }
}

/* Emit code to conditionally move either OPERANDS[2] or OPERANDS[3] into
   OPERANDS[0] in MODE.  OPERANDS[1] is the operator of the condition.  */

bool
sparc_expand_conditional_move (machine_mode mode, rtx *operands)
{
  enum rtx_code rc = GET_CODE (operands[1]);
  machine_mode cmp_mode;
  rtx cc_reg, dst, cmp;

  cmp = operands[1];
  if (GET_MODE (XEXP (cmp, 0)) == DImode && !TARGET_ARCH64)
    return false;

  if (GET_MODE (XEXP (cmp, 0)) == TFmode && !TARGET_HARD_QUAD)
    cmp = sparc_emit_float_lib_cmp (XEXP (cmp, 0), XEXP (cmp, 1), rc);

  cmp_mode = GET_MODE (XEXP (cmp, 0));
  rc = GET_CODE (cmp);

  dst = operands[0];
  if (! rtx_equal_p (operands[2], dst)
      && ! rtx_equal_p (operands[3], dst))
    {
      if (reg_overlap_mentioned_p (dst, cmp))
	dst = gen_reg_rtx (mode);

      emit_move_insn (dst, operands[3]);
    }
  else if (operands[2] == dst)
    {
      operands[2] = operands[3];

      if (GET_MODE_CLASS (cmp_mode) == MODE_FLOAT)
        rc = reverse_condition_maybe_unordered (rc);
      else
        rc = reverse_condition (rc);
    }

  if (XEXP (cmp, 1) == const0_rtx
      && GET_CODE (XEXP (cmp, 0)) == REG
      && cmp_mode == DImode
      && v9_regcmp_p (rc))
    cc_reg = XEXP (cmp, 0);
  else
    cc_reg = gen_compare_reg_1 (rc, XEXP (cmp, 0), XEXP (cmp, 1));

  cmp = gen_rtx_fmt_ee (rc, GET_MODE (cc_reg), cc_reg, const0_rtx);

  emit_insn (gen_rtx_SET (dst,
			  gen_rtx_IF_THEN_ELSE (mode, cmp, operands[2], dst)));

  if (dst != operands[0])
    emit_move_insn (operands[0], dst);

  return true;
}

/* Emit code to conditionally move a combination of OPERANDS[1] and OPERANDS[2]
   into OPERANDS[0] in MODE, depending on the outcome of the comparison of
   OPERANDS[4] and OPERANDS[5].  OPERANDS[3] is the operator of the condition.
   FCODE is the machine code to be used for OPERANDS[3] and CCODE the machine
   code to be used for the condition mask.  */

void
sparc_expand_vcond (machine_mode mode, rtx *operands, int ccode, int fcode)
{
  rtx mask, cop0, cop1, fcmp, cmask, bshuf, gsr;
  enum rtx_code code = GET_CODE (operands[3]);

  mask = gen_reg_rtx (Pmode);
  cop0 = operands[4];
  cop1 = operands[5];
  if (code == LT || code == GE)
    {
      rtx t;

      code = swap_condition (code);
      t = cop0; cop0 = cop1; cop1 = t;
    }

  gsr = gen_rtx_REG (DImode, SPARC_GSR_REG);

  fcmp = gen_rtx_UNSPEC (Pmode,
			 gen_rtvec (1, gen_rtx_fmt_ee (code, mode, cop0, cop1)),
			 fcode);

  cmask = gen_rtx_UNSPEC (DImode,
			  gen_rtvec (2, mask, gsr),
			  ccode);

  bshuf = gen_rtx_UNSPEC (mode,
			  gen_rtvec (3, operands[1], operands[2], gsr),
			  UNSPEC_BSHUFFLE);

  emit_insn (gen_rtx_SET (mask, fcmp));
  emit_insn (gen_rtx_SET (gsr, cmask));

  emit_insn (gen_rtx_SET (operands[0], bshuf));
}

/* On sparc, any mode which naturally allocates into the float
   registers should return 4 here.  */

unsigned int
sparc_regmode_natural_size (machine_mode mode)
{
  int size = UNITS_PER_WORD;

  if (TARGET_ARCH64)
    {
      enum mode_class mclass = GET_MODE_CLASS (mode);

      if (mclass == MODE_FLOAT || mclass == MODE_VECTOR_INT)
	size = 4;
    }

  return size;
}

/* Implement TARGET_HARD_REGNO_NREGS.

   On SPARC, ordinary registers hold 32 bits worth; this means both
   integer and floating point registers.  On v9, integer regs hold 64
   bits worth; floating point regs hold 32 bits worth (this includes the
   new fp regs as even the odd ones are included in the hard register
   count).  */

static unsigned int
sparc_hard_regno_nregs (unsigned int regno, machine_mode mode)
{
  if (regno == SPARC_GSR_REG)
    return 1;
  if (TARGET_ARCH64)
    {
      if (SPARC_INT_REG_P (regno) || regno == FRAME_POINTER_REGNUM)
	return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD);
      return CEIL (GET_MODE_SIZE (mode), 4);
    }
  return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD);
}

/* Implement TARGET_HARD_REGNO_MODE_OK.

   ??? Because of the funny way we pass parameters we should allow certain
   ??? types of float/complex values to be in integer registers during
   ??? RTL generation.  This only matters on arch32.  */

static bool
sparc_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
{
  return (hard_regno_mode_classes[regno] & sparc_mode_class[mode]) != 0;
}

/* Implement TARGET_MODES_TIEABLE_P.

   For V9 we have to deal with the fact that only the lower 32 floating
   point registers are 32-bit addressable.  */

static bool
sparc_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
  enum mode_class mclass1, mclass2;
  unsigned short size1, size2;

  if (mode1 == mode2)
    return true;

  mclass1 = GET_MODE_CLASS (mode1);
  mclass2 = GET_MODE_CLASS (mode2);
  if (mclass1 != mclass2)
    return false;

  if (! TARGET_V9)
    return true;

  /* Classes are the same and we are V9 so we have to deal with upper
     vs. lower floating point registers.  If one of the modes is a
     4-byte mode, and the other is not, we have to mark them as not
     tieable because only the lower 32 floating point register are
     addressable 32-bits at a time.

     We can't just test explicitly for SFmode, otherwise we won't
     cover the vector mode cases properly.  */

  if (mclass1 != MODE_FLOAT && mclass1 != MODE_VECTOR_INT)
    return true;

  size1 = GET_MODE_SIZE (mode1);
  size2 = GET_MODE_SIZE (mode2);
  if ((size1 > 4 && size2 == 4)
      || (size2 > 4 && size1 == 4))
    return false;

  return true;
}

/* Implement TARGET_CSTORE_MODE.  */

static scalar_int_mode
sparc_cstore_mode (enum insn_code icode ATTRIBUTE_UNUSED)
{
  return (TARGET_ARCH64 ? DImode : SImode);
}

/* Return the compound expression made of T1 and T2.  */

static inline tree
compound_expr (tree t1, tree t2)
{
  return build2 (COMPOUND_EXPR, void_type_node, t1, t2);
}

/* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV hook.  */

static void
sparc_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
{
  if (!TARGET_FPU)
    return;

  const unsigned HOST_WIDE_INT accrued_exception_mask = 0x1f << 5;
  const unsigned HOST_WIDE_INT trap_enable_mask = 0x1f << 23;

  /* We generate the equivalent of feholdexcept (&fenv_var):

       unsigned int fenv_var;
       __builtin_store_fsr (&fenv_var);

       unsigned int tmp1_var;
       tmp1_var = fenv_var & ~(accrued_exception_mask | trap_enable_mask);

       __builtin_load_fsr (&tmp1_var);  */

  tree fenv_var = create_tmp_var_raw (unsigned_type_node);
  TREE_ADDRESSABLE (fenv_var) = 1;
  tree fenv_addr = build_fold_addr_expr (fenv_var);
  tree stfsr = sparc_builtins[SPARC_BUILTIN_STFSR];
  tree hold_stfsr
    = build4 (TARGET_EXPR, unsigned_type_node, fenv_var,
	      build_call_expr (stfsr, 1, fenv_addr), NULL_TREE, NULL_TREE);

  tree tmp1_var = create_tmp_var_raw (unsigned_type_node);
  TREE_ADDRESSABLE (tmp1_var) = 1;
  tree masked_fenv_var
    = build2 (BIT_AND_EXPR, unsigned_type_node, fenv_var,
	      build_int_cst (unsigned_type_node,
			     ~(accrued_exception_mask | trap_enable_mask)));
  tree hold_mask
    = build4 (TARGET_EXPR, unsigned_type_node, tmp1_var, masked_fenv_var,
	      NULL_TREE, NULL_TREE);

  tree tmp1_addr = build_fold_addr_expr (tmp1_var);
  tree ldfsr = sparc_builtins[SPARC_BUILTIN_LDFSR];
  tree hold_ldfsr = build_call_expr (ldfsr, 1, tmp1_addr);

  *hold = compound_expr (compound_expr (hold_stfsr, hold_mask), hold_ldfsr);

  /* We reload the value of tmp1_var to clear the exceptions:

       __builtin_load_fsr (&tmp1_var);  */

  *clear = build_call_expr (ldfsr, 1, tmp1_addr);

  /* We generate the equivalent of feupdateenv (&fenv_var):

       unsigned int tmp2_var;
       __builtin_store_fsr (&tmp2_var);

       __builtin_load_fsr (&fenv_var);

       if (SPARC_LOW_FE_EXCEPT_VALUES)
         tmp2_var >>= 5;
       __atomic_feraiseexcept ((int) tmp2_var);  */

  tree tmp2_var = create_tmp_var_raw (unsigned_type_node);
  TREE_ADDRESSABLE (tmp2_var) = 1;
  tree tmp2_addr = build_fold_addr_expr (tmp2_var);
  tree update_stfsr
    = build4 (TARGET_EXPR, unsigned_type_node, tmp2_var,
	      build_call_expr (stfsr, 1, tmp2_addr), NULL_TREE, NULL_TREE);

  tree update_ldfsr = build_call_expr (ldfsr, 1, fenv_addr);

  tree atomic_feraiseexcept
    = builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT);
  tree update_call
    = build_call_expr (atomic_feraiseexcept, 1,
		       fold_convert (integer_type_node, tmp2_var));

  if (SPARC_LOW_FE_EXCEPT_VALUES)
    {
      tree shifted_tmp2_var
	= build2 (RSHIFT_EXPR, unsigned_type_node, tmp2_var,
		  build_int_cst (unsigned_type_node, 5));
      tree update_shift
	= build2 (MODIFY_EXPR, void_type_node, tmp2_var, shifted_tmp2_var);
      update_call = compound_expr (update_shift, update_call);
    }

  *update
    = compound_expr (compound_expr (update_stfsr, update_ldfsr), update_call);
}

/* Implement TARGET_CAN_CHANGE_MODE_CLASS.  Borrowed from the PA port.

   SImode loads to floating-point registers are not zero-extended.
   The definition for LOAD_EXTEND_OP specifies that integer loads
   narrower than BITS_PER_WORD will be zero-extended.  As a result,
   we inhibit changes from SImode unless they are to a mode that is
   identical in size.

   Likewise for SFmode, since word-mode paradoxical subregs are
   problematic on big-endian architectures.  */

static bool
sparc_can_change_mode_class (machine_mode from, machine_mode to,
			     reg_class_t rclass)
{
  if (TARGET_ARCH64
      && GET_MODE_SIZE (from) == 4
      && GET_MODE_SIZE (to) != 4)
    return !reg_classes_intersect_p (rclass, FP_REGS);
  return true;
}

/* Implement TARGET_CONSTANT_ALIGNMENT.  */

static HOST_WIDE_INT
sparc_constant_alignment (const_tree exp, HOST_WIDE_INT align)
{
  if (TREE_CODE (exp) == STRING_CST)
    return MAX (align, FASTEST_ALIGNMENT);
  return align;
}

#include "gt-sparc.h"