1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- A D A . N U M E R I C S . F L O A T _ R A N D O M --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Ada.Calendar;
package body Ada.Numerics.Float_Random is
-------------------------
-- Implementation Note --
-------------------------
-- The design of this spec is very awkward, as a result of Ada 95 not
-- permitting in-out parameters for function formals (most naturally
-- Generator values would be passed this way). In pure Ada 95, the only
-- solution is to use the heap and pointers, and, to avoid memory leaks,
-- controlled types.
-- This is awfully heavy, so what we do is to use Unrestricted_Access to
-- get a pointer to the state in the passed Generator. This works because
-- Generator is a limited type and will thus always be passed by reference.
type Pointer is access all State;
-----------------------
-- Local Subprograms --
-----------------------
procedure Euclid (P, Q : Int; X, Y : out Int; GCD : out Int);
function Euclid (P, Q : Int) return Int;
function Square_Mod_N (X, N : Int) return Int;
------------
-- Euclid --
------------
procedure Euclid (P, Q : Int; X, Y : out Int; GCD : out Int) is
XT : Int := 1;
YT : Int := 0;
procedure Recur
(P, Q : Int; -- a (i-1), a (i)
X, Y : Int; -- x (i), y (i)
XP, YP : in out Int; -- x (i-1), y (i-1)
GCD : out Int);
procedure Recur
(P, Q : Int;
X, Y : Int;
XP, YP : in out Int;
GCD : out Int)
is
Quo : Int := P / Q; -- q <-- |_ a (i-1) / a (i) _|
XT : Int := X; -- x (i)
YT : Int := Y; -- y (i)
begin
if P rem Q = 0 then -- while does not divide
GCD := Q;
XP := X;
YP := Y;
else
Recur (Q, P - Q * Quo, XP - Quo * X, YP - Quo * Y, XT, YT, Quo);
-- a (i) <== a (i)
-- a (i+1) <-- a (i-1) - q*a (i)
-- x (i+1) <-- x (i-1) - q*x (i)
-- y (i+1) <-- y (i-1) - q*y (i)
-- x (i) <== x (i)
-- y (i) <== y (i)
XP := XT;
YP := YT;
GCD := Quo;
end if;
end Recur;
-- Start of processing for Euclid
begin
Recur (P, Q, 0, 1, XT, YT, GCD);
X := XT;
Y := YT;
end Euclid;
function Euclid (P, Q : Int) return Int is
X, Y, GCD : Int;
pragma Unreferenced (Y, GCD);
begin
Euclid (P, Q, X, Y, GCD);
return X;
end Euclid;
-----------
-- Image --
-----------
function Image (Of_State : State) return String is
begin
return Int'Image (Of_State.X1) & ',' & Int'Image (Of_State.X2)
& ',' &
Int'Image (Of_State.P) & ',' & Int'Image (Of_State.Q);
end Image;
------------
-- Random --
------------
function Random (Gen : Generator) return Uniformly_Distributed is
Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
begin
Genp.X1 := Square_Mod_N (Genp.X1, Genp.P);
Genp.X2 := Square_Mod_N (Genp.X2, Genp.Q);
return
Float ((Flt (((Genp.X2 - Genp.X1) * Genp.X)
mod Genp.Q) * Flt (Genp.P)
+ Flt (Genp.X1)) * Genp.Scl);
end Random;
-----------
-- Reset --
-----------
-- Version that works from given initiator value
procedure Reset (Gen : Generator; Initiator : Integer) is
Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
X1, X2 : Int;
begin
X1 := 2 + Int (Initiator) mod (K1 - 3);
X2 := 2 + Int (Initiator) mod (K2 - 3);
-- Eliminate effects of small initiators
for J in 1 .. 5 loop
X1 := Square_Mod_N (X1, K1);
X2 := Square_Mod_N (X2, K2);
end loop;
Genp.all :=
(X1 => X1,
X2 => X2,
P => K1,
Q => K2,
X => 1,
Scl => Scal);
end Reset;
-- Version that works from specific saved state
procedure Reset (Gen : Generator; From_State : State) is
Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
begin
Genp.all := From_State;
end Reset;
-- Version that works from calendar
procedure Reset (Gen : Generator) is
Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
Now : constant Calendar.Time := Calendar.Clock;
X1, X2 : Int;
begin
X1 := Int (Calendar.Year (Now)) * 12 * 31 +
Int (Calendar.Month (Now)) * 31 +
Int (Calendar.Day (Now));
X2 := Int (Calendar.Seconds (Now) * Duration (1000.0));
X1 := 2 + X1 mod (K1 - 3);
X2 := 2 + X2 mod (K2 - 3);
-- Eliminate visible effects of same day starts
for J in 1 .. 5 loop
X1 := Square_Mod_N (X1, K1);
X2 := Square_Mod_N (X2, K2);
end loop;
Genp.all :=
(X1 => X1,
X2 => X2,
P => K1,
Q => K2,
X => 1,
Scl => Scal);
end Reset;
----------
-- Save --
----------
procedure Save (Gen : Generator; To_State : out State) is
begin
To_State := Gen.Gen_State;
end Save;
------------------
-- Square_Mod_N --
------------------
function Square_Mod_N (X, N : Int) return Int is
Temp : constant Flt := Flt (X) * Flt (X);
Div : Int;
begin
Div := Int (Temp / Flt (N));
Div := Int (Temp - Flt (Div) * Flt (N));
if Div < 0 then
return Div + N;
else
return Div;
end if;
end Square_Mod_N;
-----------
-- Value --
-----------
function Value (Coded_State : String) return State is
Last : constant Natural := Coded_State'Last;
Start : Positive := Coded_State'First;
Stop : Positive := Coded_State'First;
Outs : State;
begin
while Stop <= Last and then Coded_State (Stop) /= ',' loop
Stop := Stop + 1;
end loop;
if Stop > Last then
raise Constraint_Error;
end if;
Outs.X1 := Int'Value (Coded_State (Start .. Stop - 1));
Start := Stop + 1;
loop
Stop := Stop + 1;
exit when Stop > Last or else Coded_State (Stop) = ',';
end loop;
if Stop > Last then
raise Constraint_Error;
end if;
Outs.X2 := Int'Value (Coded_State (Start .. Stop - 1));
Start := Stop + 1;
loop
Stop := Stop + 1;
exit when Stop > Last or else Coded_State (Stop) = ',';
end loop;
if Stop > Last then
raise Constraint_Error;
end if;
Outs.P := Int'Value (Coded_State (Start .. Stop - 1));
Outs.Q := Int'Value (Coded_State (Stop + 1 .. Last));
Outs.X := Euclid (Outs.P, Outs.Q);
Outs.Scl := 1.0 / (Flt (Outs.P) * Flt (Outs.Q));
-- Now do *some* sanity checks
if Outs.Q < 31 or else Outs.P < 31
or else Outs.X1 not in 2 .. Outs.P - 1
or else Outs.X2 not in 2 .. Outs.Q - 1
then
raise Constraint_Error;
end if;
return Outs;
end Value;
end Ada.Numerics.Float_Random;
|