1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
|
------------------------------------------------------------------------------
-- --
-- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
-- --
-- B o d y --
-- --
-- $Revision: 1.92 $
-- --
-- Copyright (C) 1991-2001, Florida State University --
-- --
-- GNARL is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNARL; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. It is --
-- now maintained by Ada Core Technologies Inc. in cooperation with Florida --
-- State University (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
-- This is a Solaris (native) version of this package
-- This package contains all the GNULL primitives that interface directly
-- with the underlying OS.
pragma Polling (Off);
-- Turn off polling, we do not want ATC polling to take place during
-- tasking operations. It causes infinite loops and other problems.
with System.Tasking.Debug;
-- used for Known_Tasks
with Ada.Exceptions;
-- used for Raise_Exception
with GNAT.OS_Lib;
-- used for String_Access, Getenv
with Interfaces.C;
-- used for int
-- size_t
with System.Interrupt_Management;
-- used for Keep_Unmasked
-- Abort_Task_Interrupt
-- Interrupt_ID
with System.Interrupt_Management.Operations;
-- used for Set_Interrupt_Mask
-- All_Tasks_Mask
pragma Elaborate_All (System.Interrupt_Management.Operations);
with System.Parameters;
-- used for Size_Type
with System.Tasking;
-- used for Ada_Task_Control_Block
-- Task_ID
-- ATCB components and types
with System.Task_Info;
-- to initialize Task_Info for a C thread, in function Self
with System.Soft_Links;
-- used for Defer/Undefer_Abort
-- to initialize TSD for a C thread, in function Self
-- Note that we do not use System.Tasking.Initialization directly since
-- this is a higher level package that we shouldn't depend on. For example
-- when using the restricted run time, it is replaced by
-- System.Tasking.Restricted.Initialization
with System.OS_Primitives;
-- used for Delay_Modes
with Unchecked_Conversion;
with Unchecked_Deallocation;
package body System.Task_Primitives.Operations is
use System.Tasking.Debug;
use System.Tasking;
use Interfaces.C;
use System.OS_Interface;
use System.Parameters;
use Ada.Exceptions;
use System.OS_Primitives;
package SSL renames System.Soft_Links;
------------------
-- Local Data --
------------------
ATCB_Magic_Code : constant := 16#ADAADAAD#;
-- This is used to allow us to catch attempts to call Self
-- from outside an Ada task, with high probability.
-- For an Ada task, Task_Wrapper.Magic_Number = ATCB_Magic_Code.
-- The following are logically constants, but need to be initialized
-- at run time.
Environment_Task_ID : Task_ID;
-- A variable to hold Task_ID for the environment task.
-- If we use this variable to get the Task_ID, we need the following
-- ATCB_Key only for non-Ada threads.
Unblocked_Signal_Mask : aliased sigset_t;
-- The set of signals that should unblocked in all tasks
ATCB_Key : aliased thread_key_t;
-- Key used to find the Ada Task_ID associated with a thread,
-- at least for C threads unknown to the Ada run-time system.
All_Tasks_L : aliased System.Task_Primitives.RTS_Lock;
-- See comments on locking rules in System.Tasking (spec).
Next_Serial_Number : Task_Serial_Number := 100;
-- We start at 100, to reserve some special values for
-- using in error checking.
-- The following are internal configuration constants needed.
------------------------
-- Priority Support --
------------------------
Dynamic_Priority_Support : constant Boolean := True;
-- controls whether we poll for pending priority changes during sleeps
Priority_Ceiling_Emulation : constant Boolean := True;
-- controls whether we emulate priority ceiling locking
-- To get a scheduling close to annex D requirements, we use the real-time
-- class provided for LWP's and map each task/thread to a specific and
-- unique LWP (there is 1 thread per LWP, and 1 LWP per thread).
-- The real time class can only be set when the process has root
-- priviledges, so in the other cases, we use the normal thread scheduling
-- and priority handling.
Using_Real_Time_Class : Boolean := False;
-- indicates wether the real time class is being used (i.e the process
-- has root priviledges).
Prio_Param : aliased struct_pcparms;
-- Hold priority info (Real_Time) initialized during the package
-- elaboration.
-------------------------------------
-- External Configuration Values --
-------------------------------------
Time_Slice_Val : Interfaces.C.long;
pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
Locking_Policy : Character;
pragma Import (C, Locking_Policy, "__gl_locking_policy");
Dispatching_Policy : Character;
pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
--------------------------------
-- Foreign Threads Detection --
--------------------------------
-- The following are used to allow the Self function to
-- automatically generate ATCB's for C threads that happen to call
-- Ada procedure, which in turn happen to call the Ada run-time system.
type Fake_ATCB;
type Fake_ATCB_Ptr is access Fake_ATCB;
type Fake_ATCB is record
Stack_Base : Interfaces.C.unsigned := 0;
-- A value of zero indicates the node is not in use.
Next : Fake_ATCB_Ptr;
Real_ATCB : aliased Ada_Task_Control_Block (0);
end record;
Fake_ATCB_List : Fake_ATCB_Ptr;
-- A linear linked list.
-- The list is protected by All_Tasks_L;
-- Nodes are added to this list from the front.
-- Once a node is added to this list, it is never removed.
Fake_Task_Elaborated : aliased Boolean := True;
-- Used to identified fake tasks (i.e., non-Ada Threads).
Next_Fake_ATCB : Fake_ATCB_Ptr;
-- Used to allocate one Fake_ATCB in advance. See comment in New_Fake_ATCB
------------
-- Checks --
------------
Check_Count : Integer := 0;
Old_Owner : Task_ID;
Lock_Count : Integer := 0;
Unlock_Count : Integer := 0;
function To_Lock_Ptr is
new Unchecked_Conversion (RTS_Lock_Ptr, Lock_Ptr);
function To_Task_ID is
new Unchecked_Conversion (Owner_ID, Task_ID);
function To_Owner_ID is
new Unchecked_Conversion (Task_ID, Owner_ID);
-----------------------
-- Local Subprograms --
-----------------------
function sysconf (name : System.OS_Interface.int)
return processorid_t;
pragma Import (C, sysconf, "sysconf");
SC_NPROCESSORS_CONF : constant System.OS_Interface.int := 14;
function Num_Procs (name : System.OS_Interface.int := SC_NPROCESSORS_CONF)
return processorid_t renames sysconf;
procedure Abort_Handler
(Sig : Signal;
Code : access siginfo_t;
Context : access ucontext_t);
function To_thread_t is new Unchecked_Conversion
(Integer, System.OS_Interface.thread_t);
function To_Task_ID is new Unchecked_Conversion (System.Address, Task_ID);
function To_Address is new Unchecked_Conversion (Task_ID, System.Address);
type Ptr is access Task_ID;
function To_Ptr is new Unchecked_Conversion (Interfaces.C.unsigned, Ptr);
function To_Ptr is new Unchecked_Conversion (System.Address, Ptr);
type Iptr is access Interfaces.C.unsigned;
function To_Iptr is new Unchecked_Conversion (Interfaces.C.unsigned, Iptr);
function Thread_Body_Access is
new Unchecked_Conversion (System.Address, Thread_Body);
function New_Fake_ATCB (Stack_Base : Interfaces.C.unsigned) return Task_ID;
-- Allocate and Initialize a new ATCB. This code can safely be called from
-- a foreign thread, as it doesn't access implicitely or explicitely
-- "self" before having initialized the new ATCB.
------------
-- Checks --
------------
function Check_Initialize_Lock (L : Lock_Ptr; Level : Lock_Level)
return Boolean;
pragma Inline (Check_Initialize_Lock);
function Check_Lock (L : Lock_Ptr) return Boolean;
pragma Inline (Check_Lock);
function Record_Lock (L : Lock_Ptr) return Boolean;
pragma Inline (Record_Lock);
function Check_Sleep (Reason : Task_States) return Boolean;
pragma Inline (Check_Sleep);
function Record_Wakeup
(L : Lock_Ptr;
Reason : Task_States) return Boolean;
pragma Inline (Record_Wakeup);
function Check_Wakeup
(T : Task_ID;
Reason : Task_States) return Boolean;
pragma Inline (Check_Wakeup);
function Check_Unlock (L : Lock_Ptr) return Boolean;
pragma Inline (Check_Lock);
function Check_Finalize_Lock (L : Lock_Ptr) return Boolean;
pragma Inline (Check_Finalize_Lock);
-------------------
-- New_Fake_ATCB --
-------------------
function New_Fake_ATCB (Stack_Base : Interfaces.C.unsigned)
return Task_ID
is
Self_ID : Task_ID;
P, Q : Fake_ATCB_Ptr;
Succeeded : Boolean;
Result : Interfaces.C.int;
begin
-- This section is ticklish.
-- We dare not call anything that might require an ATCB, until
-- we have the new ATCB in place.
-- Note: we don't use "Write_Lock (All_Tasks_L'Access);" because
-- we don't yet have an ATCB, and so can't pass the safety check.
Result := mutex_lock (All_Tasks_L.L'Access);
Q := null;
P := Fake_ATCB_List;
while P /= null loop
if P.Stack_Base = 0 then
Q := P;
elsif thr_kill (P.Real_ATCB.Common.LL.Thread, 0) /= 0 then
-- ????
-- If a C thread that has dependent Ada tasks terminates
-- abruptly, e.g. as a result of cancellation, any dependent
-- tasks are likely to hang up in termination.
P.Stack_Base := 0;
Q := P;
end if;
P := P.Next;
end loop;
if Q = null then
-- Create a new ATCB with zero entries.
Self_ID := Next_Fake_ATCB.Real_ATCB'Access;
Next_Fake_ATCB.Stack_Base := Stack_Base;
Next_Fake_ATCB.Next := Fake_ATCB_List;
Fake_ATCB_List := Next_Fake_ATCB;
Next_Fake_ATCB := null;
else
-- Reuse an existing fake ATCB.
Self_ID := Q.Real_ATCB'Access;
Q.Stack_Base := Stack_Base;
end if;
-- Do the standard initializations
System.Tasking.Initialize_ATCB
(Self_ID, null, Null_Address, Null_Task, Fake_Task_Elaborated'Access,
System.Priority'First, Task_Info.Unspecified_Task_Info, 0, Self_ID,
Succeeded);
pragma Assert (Succeeded);
-- Record this as the Task_ID for the current thread.
Self_ID.Common.LL.Thread := thr_self;
Result := thr_setspecific (ATCB_Key, To_Address (Self_ID));
pragma Assert (Result = 0);
-- Finally, it is safe to use an allocator in this thread.
if Next_Fake_ATCB = null then
Next_Fake_ATCB := new Fake_ATCB;
end if;
Self_ID.Master_of_Task := 0;
Self_ID.Master_Within := Self_ID.Master_of_Task + 1;
for L in Self_ID.Entry_Calls'Range loop
Self_ID.Entry_Calls (L).Self := Self_ID;
Self_ID.Entry_Calls (L).Level := L;
end loop;
Self_ID.Common.State := Runnable;
Self_ID.Awake_Count := 1;
-- Since this is not an ordinary Ada task, we will start out undeferred
Self_ID.Deferral_Level := 0;
-- Give the task a unique serial number.
Self_ID.Serial_Number := Next_Serial_Number;
Next_Serial_Number := Next_Serial_Number + 1;
pragma Assert (Next_Serial_Number /= 0);
System.Soft_Links.Create_TSD (Self_ID.Common.Compiler_Data);
-- ????
-- The following call is commented out to avoid dependence on
-- the System.Tasking.Initialization package.
-- It seems that if we want Ada.Task_Attributes to work correctly
-- for C threads we will need to raise the visibility of this soft
-- link to System.Soft_Links.
-- We are putting that off until this new functionality is otherwise
-- stable.
-- System.Tasking.Initialization.Initialize_Attributes_Link.all (T);
-- Must not unlock until Next_ATCB is again allocated.
for J in Known_Tasks'Range loop
if Known_Tasks (J) = null then
Known_Tasks (J) := Self_ID;
Self_ID.Known_Tasks_Index := J;
exit;
end if;
end loop;
Result := mutex_unlock (All_Tasks_L.L'Access);
-- We cannot use "Unlock (All_Tasks_L'Access);" because
-- we did not use Write_Lock, and so would not pass the checks.
return Self_ID;
end New_Fake_ATCB;
-------------------
-- Abort_Handler --
-------------------
-- Target-dependent binding of inter-thread Abort signal to
-- the raising of the Abort_Signal exception.
-- The technical issues and alternatives here are essentially
-- the same as for raising exceptions in response to other
-- signals (e.g. Storage_Error). See code and comments in
-- the package body System.Interrupt_Management.
-- Some implementations may not allow an exception to be propagated
-- out of a handler, and others might leave the signal or
-- interrupt that invoked this handler masked after the exceptional
-- return to the application code.
-- GNAT exceptions are originally implemented using setjmp()/longjmp().
-- On most UNIX systems, this will allow transfer out of a signal handler,
-- which is usually the only mechanism available for implementing
-- asynchronous handlers of this kind. However, some
-- systems do not restore the signal mask on longjmp(), leaving the
-- abort signal masked.
-- Alternative solutions include:
-- 1. Change the PC saved in the system-dependent Context
-- parameter to point to code that raises the exception.
-- Normal return from this handler will then raise
-- the exception after the mask and other system state has
-- been restored (see example below).
-- 2. Use siglongjmp()/sigsetjmp() to implement exceptions.
-- 3. Unmask the signal in the Abortion_Signal exception handler
-- (in the RTS).
-- The following procedure would be needed if we can't longjmp out of
-- a signal handler. (See below.)
-- procedure Raise_Abort_Signal is
-- begin
-- raise Standard'Abort_Signal;
-- end if;
-- ???
-- The comments above need revising. They are partly obsolete.
procedure Abort_Handler
(Sig : Signal;
Code : access siginfo_t;
Context : access ucontext_t)
is
Self_ID : Task_ID := Self;
Result : Interfaces.C.int;
Old_Set : aliased sigset_t;
begin
-- Assuming it is safe to longjmp out of a signal handler, the
-- following code can be used:
if Self_ID.Deferral_Level = 0
and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
and then not Self_ID.Aborting
then
-- You can comment the following out,
-- to make all aborts synchronous, for debugging.
Self_ID.Aborting := True;
-- Make sure signals used for RTS internal purpose are unmasked
Result := thr_sigsetmask (SIG_UNBLOCK,
Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access);
pragma Assert (Result = 0);
raise Standard'Abort_Signal;
-- ?????
-- Must be certain that the implementation of "raise"
-- does not make any OS/thread calls, or at least that
-- if it makes any, they are safe for interruption by
-- async. signals.
end if;
-- Otherwise, something like this is required:
-- if not Abort_Is_Deferred.all then
-- -- Overwrite the return PC address with the address of the
-- -- special raise routine, and "return" to that routine's
-- -- starting address.
-- Context.PC := Raise_Abort_Signal'Address;
-- return;
-- end if;
end Abort_Handler;
-------------------
-- Stack_Guard --
-------------------
-- The underlying thread system sets a guard page at the
-- bottom of a thread stack, so nothing is needed.
procedure Stack_Guard (T : ST.Task_ID; On : Boolean) is
begin
null;
end Stack_Guard;
--------------------
-- Get_Thread_Id --
--------------------
function Get_Thread_Id (T : ST.Task_ID) return OSI.Thread_Id is
begin
return T.Common.LL.Thread;
end Get_Thread_Id;
-----------
-- Self --
-----------
function Self return Task_ID is separate;
---------------------
-- Initialize_Lock --
---------------------
-- Note: mutexes and cond_variables needed per-task basis are
-- initialized in Intialize_TCB and the Storage_Error is
-- handled. Other mutexes (such as All_Tasks_L, Memory_Lock...)
-- used in RTS is initialized before any status change of RTS.
-- Therefore rasing Storage_Error in the following routines
-- should be able to be handled safely.
procedure Initialize_Lock
(Prio : System.Any_Priority;
L : access Lock)
is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Initialize_Lock (Lock_Ptr (L), PO_Level));
if Priority_Ceiling_Emulation then
L.Ceiling := Prio;
end if;
Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result = ENOMEM then
Raise_Exception (Storage_Error'Identity, "Failed to allocate a lock");
end if;
end Initialize_Lock;
procedure Initialize_Lock
(L : access RTS_Lock;
Level : Lock_Level)
is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Initialize_Lock
(To_Lock_Ptr (RTS_Lock_Ptr (L)), Level));
Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result = ENOMEM then
Raise_Exception (Storage_Error'Identity, "Failed to allocate a lock");
end if;
end Initialize_Lock;
-------------------
-- Finalize_Lock --
-------------------
procedure Finalize_Lock (L : access Lock) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Finalize_Lock (Lock_Ptr (L)));
Result := mutex_destroy (L.L'Access);
pragma Assert (Result = 0);
end Finalize_Lock;
procedure Finalize_Lock (L : access RTS_Lock) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Finalize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
Result := mutex_destroy (L.L'Access);
pragma Assert (Result = 0);
end Finalize_Lock;
----------------
-- Write_Lock --
----------------
procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Lock (Lock_Ptr (L)));
if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
declare
Self_Id : constant Task_ID := Self;
Saved_Priority : System.Any_Priority;
begin
if Self_Id.Common.LL.Active_Priority > L.Ceiling then
Ceiling_Violation := True;
return;
end if;
Saved_Priority := Self_Id.Common.LL.Active_Priority;
if Self_Id.Common.LL.Active_Priority < L.Ceiling then
Set_Priority (Self_Id, L.Ceiling);
end if;
Result := mutex_lock (L.L'Access);
pragma Assert (Result = 0);
Ceiling_Violation := False;
L.Saved_Priority := Saved_Priority;
end;
else
Result := mutex_lock (L.L'Access);
pragma Assert (Result = 0);
Ceiling_Violation := False;
end if;
pragma Assert (Record_Lock (Lock_Ptr (L)));
end Write_Lock;
procedure Write_Lock (L : access RTS_Lock) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
Result := mutex_lock (L.L'Access);
pragma Assert (Result = 0);
pragma Assert (Record_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
end Write_Lock;
procedure Write_Lock (T : Task_ID) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
Result := mutex_lock (T.Common.LL.L.L'Access);
pragma Assert (Result = 0);
pragma Assert (Record_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
end Write_Lock;
---------------
-- Read_Lock --
---------------
procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
begin
Write_Lock (L, Ceiling_Violation);
end Read_Lock;
------------
-- Unlock --
------------
procedure Unlock (L : access Lock) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Unlock (Lock_Ptr (L)));
if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
declare
Self_Id : constant Task_ID := Self;
begin
Result := mutex_unlock (L.L'Access);
pragma Assert (Result = 0);
if Self_Id.Common.LL.Active_Priority > L.Saved_Priority then
Set_Priority (Self_Id, L.Saved_Priority);
end if;
end;
else
Result := mutex_unlock (L.L'Access);
pragma Assert (Result = 0);
end if;
end Unlock;
procedure Unlock (L : access RTS_Lock) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Unlock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
Result := mutex_unlock (L.L'Access);
pragma Assert (Result = 0);
end Unlock;
procedure Unlock (T : Task_ID) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Unlock (To_Lock_Ptr (T.Common.LL.L'Access)));
Result := mutex_unlock (T.Common.LL.L.L'Access);
pragma Assert (Result = 0);
end Unlock;
-- For the time delay implementation, we need to make sure we
-- achieve following criteria:
-- 1) We have to delay at least for the amount requested.
-- 2) We have to give up CPU even though the actual delay does not
-- result in blocking.
-- 3) Except for restricted run-time systems that do not support
-- ATC or task abort, the delay must be interrupted by the
-- abort_task operation.
-- 4) The implementation has to be efficient so that the delay overhead
-- is relatively cheap.
-- (1)-(3) are Ada requirements. Even though (2) is an Annex-D
-- requirement we still want to provide the effect in all cases.
-- The reason is that users may want to use short delays to implement
-- their own scheduling effect in the absence of language provided
-- scheduling policies.
---------------------
-- Monotonic_Clock --
---------------------
function Monotonic_Clock return Duration is
TS : aliased timespec;
Result : Interfaces.C.int;
begin
Result := clock_gettime (CLOCK_REALTIME, TS'Unchecked_Access);
pragma Assert (Result = 0);
return To_Duration (TS);
end Monotonic_Clock;
-------------------
-- RT_Resolution --
-------------------
function RT_Resolution return Duration is
begin
return 10#1.0#E-6;
end RT_Resolution;
-----------
-- Yield --
-----------
procedure Yield (Do_Yield : Boolean := True) is
begin
if Do_Yield then
System.OS_Interface.thr_yield;
end if;
end Yield;
------------------
-- Set_Priority --
------------------
procedure Set_Priority
(T : Task_ID;
Prio : System.Any_Priority;
Loss_Of_Inheritance : Boolean := False)
is
Result : Interfaces.C.int;
Param : aliased struct_pcparms;
use Task_Info;
begin
T.Common.Current_Priority := Prio;
if Priority_Ceiling_Emulation then
T.Common.LL.Active_Priority := Prio;
end if;
if Using_Real_Time_Class then
Param.pc_cid := Prio_Param.pc_cid;
Param.rt_pri := pri_t (Prio);
Param.rt_tqsecs := Prio_Param.rt_tqsecs;
Param.rt_tqnsecs := Prio_Param.rt_tqnsecs;
Result := Interfaces.C.int (
priocntl (PC_VERSION, P_LWPID, T.Common.LL.LWP, PC_SETPARMS,
Param'Address));
else
if T.Common.Task_Info /= null
and then not T.Common.Task_Info.Bound_To_LWP
then
-- The task is not bound to a LWP, so use thr_setprio
Result :=
thr_setprio (T.Common.LL.Thread, Interfaces.C.int (Prio));
else
-- The task is bound to a LWP, use priocntl
-- ??? TBD
null;
end if;
end if;
end Set_Priority;
------------------
-- Get_Priority --
------------------
function Get_Priority (T : Task_ID) return System.Any_Priority is
begin
return T.Common.Current_Priority;
end Get_Priority;
----------------
-- Enter_Task --
----------------
procedure Enter_Task (Self_ID : Task_ID) is
Result : Interfaces.C.int;
Proc : processorid_t; -- User processor #
Last_Proc : processorid_t; -- Last processor #
use System.Task_Info;
begin
Self_ID.Common.LL.Thread := thr_self;
Self_ID.Common.LL.LWP := lwp_self;
if Self_ID.Common.Task_Info /= null then
if Self_ID.Common.Task_Info.New_LWP
and then Self_ID.Common.Task_Info.CPU /= CPU_UNCHANGED
then
Last_Proc := Num_Procs - 1;
if Self_ID.Common.Task_Info.CPU = ANY_CPU then
Result := 0;
Proc := 0;
while Proc < Last_Proc loop
Result := p_online (Proc, PR_STATUS);
exit when Result = PR_ONLINE;
Proc := Proc + 1;
end loop;
Result := processor_bind (P_LWPID, P_MYID, Proc, null);
pragma Assert (Result = 0);
else
-- Use specified processor
if Self_ID.Common.Task_Info.CPU < 0
or else Self_ID.Common.Task_Info.CPU > Last_Proc
then
raise Invalid_CPU_Number;
end if;
Result := processor_bind
(P_LWPID, P_MYID, Self_ID.Common.Task_Info.CPU, null);
pragma Assert (Result = 0);
end if;
end if;
end if;
Result := thr_setspecific (ATCB_Key, To_Address (Self_ID));
pragma Assert (Result = 0);
-- We need the above code even if we do direct fetch of Task_ID in Self
-- for the main task on Sun, x86 Solaris and for gcc 2.7.2.
Lock_All_Tasks_List;
for I in Known_Tasks'Range loop
if Known_Tasks (I) = null then
Known_Tasks (I) := Self_ID;
Self_ID.Known_Tasks_Index := I;
exit;
end if;
end loop;
Unlock_All_Tasks_List;
end Enter_Task;
--------------
-- New_ATCB --
--------------
function New_ATCB (Entry_Num : Task_Entry_Index) return Task_ID is
begin
return new Ada_Task_Control_Block (Entry_Num);
end New_ATCB;
----------------------
-- Initialize_TCB --
----------------------
procedure Initialize_TCB (Self_ID : Task_ID; Succeeded : out Boolean) is
Result : Interfaces.C.int;
begin
-- Give the task a unique serial number.
Self_ID.Serial_Number := Next_Serial_Number;
Next_Serial_Number := Next_Serial_Number + 1;
pragma Assert (Next_Serial_Number /= 0);
Self_ID.Common.LL.Thread := To_thread_t (-1);
Result := mutex_init
(Self_ID.Common.LL.L.L'Access, USYNC_THREAD, System.Null_Address);
Self_ID.Common.LL.L.Level :=
Private_Task_Serial_Number (Self_ID.Serial_Number);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result = 0 then
Result := cond_init (Self_ID.Common.LL.CV'Access, USYNC_THREAD, 0);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result /= 0 then
Result := mutex_destroy (Self_ID.Common.LL.L.L'Access);
pragma Assert (Result = 0);
Succeeded := False;
else
Succeeded := True;
end if;
else
Succeeded := False;
end if;
end Initialize_TCB;
-----------------
-- Create_Task --
-----------------
procedure Create_Task
(T : Task_ID;
Wrapper : System.Address;
Stack_Size : System.Parameters.Size_Type;
Priority : System.Any_Priority;
Succeeded : out Boolean)
is
Result : Interfaces.C.int;
Adjusted_Stack_Size : Interfaces.C.size_t;
Opts : Interfaces.C.int := THR_DETACHED;
Page_Size : constant System.Parameters.Size_Type := 4096;
-- This constant is for reserving extra space at the
-- end of the stack, which can be used by the stack
-- checking as guard page. The idea is that we need
-- to have at least Stack_Size bytes available for
-- actual use.
use System.Task_Info;
begin
if Stack_Size = System.Parameters.Unspecified_Size then
Adjusted_Stack_Size :=
Interfaces.C.size_t (Default_Stack_Size + Page_Size);
elsif Stack_Size < Minimum_Stack_Size then
Adjusted_Stack_Size :=
Interfaces.C.size_t (Minimum_Stack_Size + Page_Size);
else
Adjusted_Stack_Size :=
Interfaces.C.size_t (Stack_Size + Page_Size);
end if;
-- Since the initial signal mask of a thread is inherited from the
-- creator, and the Environment task has all its signals masked, we
-- do not need to manipulate caller's signal mask at this point.
-- All tasks in RTS will have All_Tasks_Mask initially.
if T.Common.Task_Info /= null then
if T.Common.Task_Info.New_LWP then
Opts := Opts + THR_NEW_LWP;
end if;
if T.Common.Task_Info.Bound_To_LWP then
Opts := Opts + THR_BOUND;
end if;
else
Opts := THR_DETACHED + THR_BOUND;
end if;
Result := thr_create
(System.Null_Address,
Adjusted_Stack_Size,
Thread_Body_Access (Wrapper),
To_Address (T),
Opts,
T.Common.LL.Thread'Access);
Succeeded := Result = 0;
pragma Assert
(Result = 0
or else Result = ENOMEM
or else Result = EAGAIN);
end Create_Task;
------------------
-- Finalize_TCB --
------------------
procedure Finalize_TCB (T : Task_ID) is
Result : Interfaces.C.int;
Tmp : Task_ID := T;
procedure Free is new
Unchecked_Deallocation (Ada_Task_Control_Block, Task_ID);
begin
T.Common.LL.Thread := To_thread_t (0);
Result := mutex_destroy (T.Common.LL.L.L'Access);
pragma Assert (Result = 0);
Result := cond_destroy (T.Common.LL.CV'Access);
pragma Assert (Result = 0);
if T.Known_Tasks_Index /= -1 then
Known_Tasks (T.Known_Tasks_Index) := null;
end if;
Free (Tmp);
end Finalize_TCB;
---------------
-- Exit_Task --
---------------
-- This procedure must be called with abort deferred.
-- It can no longer call Self or access
-- the current task's ATCB, since the ATCB has been deallocated.
procedure Exit_Task is
begin
thr_exit (System.Null_Address);
end Exit_Task;
----------------
-- Abort_Task --
----------------
procedure Abort_Task (T : Task_ID) is
Result : Interfaces.C.int;
begin
pragma Assert (T /= Self);
Result := thr_kill (T.Common.LL.Thread,
Signal (System.Interrupt_Management.Abort_Task_Interrupt));
null;
pragma Assert (Result = 0);
end Abort_Task;
-------------
-- Sleep --
-------------
procedure Sleep
(Self_ID : Task_ID;
Reason : Task_States)
is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Sleep (Reason));
if Dynamic_Priority_Support
and then Self_ID.Pending_Priority_Change
then
Self_ID.Pending_Priority_Change := False;
Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
end if;
Result := cond_wait
(Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L.L'Access);
pragma Assert (Result = 0 or else Result = EINTR);
pragma Assert (Record_Wakeup
(To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
end Sleep;
-- Note that we are relying heaviliy here on the GNAT feature
-- that Calendar.Time, System.Real_Time.Time, Duration, and
-- System.Real_Time.Time_Span are all represented in the same
-- way, i.e., as a 64-bit count of nanoseconds.
-- This allows us to always pass the timeout value as a Duration.
-- ???
-- We are taking liberties here with the semantics of the delays.
-- That is, we make no distinction between delays on the Calendar clock
-- and delays on the Real_Time clock. That is technically incorrect, if
-- the Calendar clock happens to be reset or adjusted.
-- To solve this defect will require modification to the compiler
-- interface, so that it can pass through more information, to tell
-- us here which clock to use!
-- cond_timedwait will return if any of the following happens:
-- 1) some other task did cond_signal on this condition variable
-- In this case, the return value is 0
-- 2) the call just returned, for no good reason
-- This is called a "spurious wakeup".
-- In this case, the return value may also be 0.
-- 3) the time delay expires
-- In this case, the return value is ETIME
-- 4) this task received a signal, which was handled by some
-- handler procedure, and now the thread is resuming execution
-- UNIX calls this an "interrupted" system call.
-- In this case, the return value is EINTR
-- If the cond_timedwait returns 0 or EINTR, it is still
-- possible that the time has actually expired, and by chance
-- a signal or cond_signal occurred at around the same time.
-- We have also observed that on some OS's the value ETIME
-- will be returned, but the clock will show that the full delay
-- has not yet expired.
-- For these reasons, we need to check the clock after return
-- from cond_timedwait. If the time has expired, we will set
-- Timedout = True.
-- This check might be omitted for systems on which the
-- cond_timedwait() never returns early or wakes up spuriously.
-- Annex D requires that completion of a delay cause the task
-- to go to the end of its priority queue, regardless of whether
-- the task actually was suspended by the delay. Since
-- cond_timedwait does not do this on Solaris, we add a call
-- to thr_yield at the end. We might do this at the beginning,
-- instead, but then the round-robin effect would not be the
-- same; the delayed task would be ahead of other tasks of the
-- same priority that awoke while it was sleeping.
-- For Timed_Sleep, we are expecting possible cond_signals
-- to indicate other events (e.g., completion of a RV or
-- completion of the abortable part of an async. select),
-- we want to always return if interrupted. The caller will
-- be responsible for checking the task state to see whether
-- the wakeup was spurious, and to go back to sleep again
-- in that case. We don't need to check for pending abort
-- or priority change on the way in our out; that is the
-- caller's responsibility.
-- For Timed_Delay, we are not expecting any cond_signals or
-- other interruptions, except for priority changes and aborts.
-- Therefore, we don't want to return unless the delay has
-- actually expired, or the call has been aborted. In this
-- case, since we want to implement the entire delay statement
-- semantics, we do need to check for pending abort and priority
-- changes. We can quietly handle priority changes inside the
-- procedure, since there is no entry-queue reordering involved.
-----------------
-- Timed_Sleep --
-----------------
-- This is for use within the run-time system, so abort is
-- assumed to be already deferred, and the caller should be
-- holding its own ATCB lock.
-- Yielded should be False unles we know for certain that the
-- operation resulted in the calling task going to the end of
-- the dispatching queue for its priority.
-- ???
-- This version presumes the worst, so Yielded is always False.
-- On some targets, if cond_timedwait always yields, we could
-- set Yielded to True just before the cond_timedwait call.
procedure Timed_Sleep
(Self_ID : Task_ID;
Time : Duration;
Mode : ST.Delay_Modes;
Reason : System.Tasking.Task_States;
Timedout : out Boolean;
Yielded : out Boolean)
is
Check_Time : constant Duration := Monotonic_Clock;
Abs_Time : Duration;
Request : aliased timespec;
Result : Interfaces.C.int;
begin
pragma Assert (Check_Sleep (Reason));
Timedout := True;
Yielded := False;
if Mode = Relative then
Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
else
Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
end if;
if Abs_Time > Check_Time then
Request := To_Timespec (Abs_Time);
loop
exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
or else (Dynamic_Priority_Support and then
Self_ID.Pending_Priority_Change);
Result := cond_timedwait (Self_ID.Common.LL.CV'Access,
Self_ID.Common.LL.L.L'Access, Request'Access);
exit when Abs_Time <= Monotonic_Clock;
if Result = 0 or Result = EINTR then
-- somebody may have called Wakeup for us
Timedout := False;
exit;
end if;
pragma Assert (Result = ETIME);
end loop;
end if;
pragma Assert (Record_Wakeup
(To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
end Timed_Sleep;
-----------------
-- Timed_Delay --
-----------------
-- This is for use in implementing delay statements, so
-- we assume the caller is abort-deferred but is holding
-- no locks.
procedure Timed_Delay
(Self_ID : Task_ID;
Time : Duration;
Mode : ST.Delay_Modes)
is
Check_Time : constant Duration := Monotonic_Clock;
Abs_Time : Duration;
Request : aliased timespec;
Result : Interfaces.C.int;
begin
-- Only the little window between deferring abort and
-- locking Self_ID is the reason we need to
-- check for pending abort and priority change below!
SSL.Abort_Defer.all;
Write_Lock (Self_ID);
if Mode = Relative then
Abs_Time := Time + Check_Time;
else
Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
end if;
if Abs_Time > Check_Time then
Request := To_Timespec (Abs_Time);
Self_ID.Common.State := Delay_Sleep;
pragma Assert (Check_Sleep (Delay_Sleep));
loop
if Dynamic_Priority_Support and then
Self_ID.Pending_Priority_Change then
Self_ID.Pending_Priority_Change := False;
Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
end if;
exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
Result := cond_timedwait (Self_ID.Common.LL.CV'Access,
Self_ID.Common.LL.L.L'Access, Request'Access);
exit when Abs_Time <= Monotonic_Clock;
pragma Assert (Result = 0 or else
Result = ETIME or else
Result = EINTR);
end loop;
pragma Assert (Record_Wakeup
(To_Lock_Ptr (Self_ID.Common.LL.L'Access), Delay_Sleep));
Self_ID.Common.State := Runnable;
end if;
Unlock (Self_ID);
thr_yield;
SSL.Abort_Undefer.all;
end Timed_Delay;
------------
-- Wakeup --
------------
procedure Wakeup
(T : Task_ID;
Reason : Task_States)
is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Wakeup (T, Reason));
Result := cond_signal (T.Common.LL.CV'Access);
pragma Assert (Result = 0);
end Wakeup;
---------------------------
-- Check_Initialize_Lock --
---------------------------
-- The following code is intended to check some of the invariant
-- assertions related to lock usage, on which we depend.
function Check_Initialize_Lock
(L : Lock_Ptr;
Level : Lock_Level)
return Boolean
is
Self_ID : constant Task_ID := Self;
begin
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level <= 0 then
return False;
end if;
-- Check that the lock is not yet initialized
if L.Level /= 0 then
return False;
end if;
L.Level := Lock_Level'Pos (Level) + 1;
return True;
end Check_Initialize_Lock;
----------------
-- Check_Lock --
----------------
function Check_Lock (L : Lock_Ptr) return Boolean is
Self_ID : Task_ID := Self;
P : Lock_Ptr;
begin
-- Check that the argument is not null
if L = null then
return False;
end if;
-- Check that L is not frozen
if L.Frozen then
return False;
end if;
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level <= 0 then
return False;
end if;
-- Check that caller is not holding this lock already
if L.Owner = To_Owner_ID (Self_ID) then
return False;
end if;
-- Check that TCB lock order rules are satisfied
P := Self_ID.Common.LL.Locks;
if P /= null then
if P.Level >= L.Level
and then (P.Level > 2 or else L.Level > 2)
then
return False;
end if;
end if;
return True;
end Check_Lock;
-----------------
-- Record_Lock --
-----------------
function Record_Lock (L : Lock_Ptr) return Boolean is
Self_ID : Task_ID := Self;
P : Lock_Ptr;
begin
Lock_Count := Lock_Count + 1;
-- There should be no owner for this lock at this point
if L.Owner /= null then
return False;
end if;
-- Record new owner
L.Owner := To_Owner_ID (Self_ID);
-- Check that TCB lock order rules are satisfied
P := Self_ID.Common.LL.Locks;
if P /= null then
L.Next := P;
end if;
Self_ID.Common.LL.Locking := null;
Self_ID.Common.LL.Locks := L;
return True;
end Record_Lock;
-----------------
-- Check_Sleep --
-----------------
function Check_Sleep (Reason : Task_States) return Boolean is
Self_ID : Task_ID := Self;
P : Lock_Ptr;
begin
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level <= 0 then
return False;
end if;
-- Check that caller is holding own lock, on top of list
if Self_ID.Common.LL.Locks /=
To_Lock_Ptr (Self_ID.Common.LL.L'Access)
then
return False;
end if;
-- Check that TCB lock order rules are satisfied
if Self_ID.Common.LL.Locks.Next /= null then
return False;
end if;
Self_ID.Common.LL.L.Owner := null;
P := Self_ID.Common.LL.Locks;
Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
P.Next := null;
return True;
end Check_Sleep;
-------------------
-- Record_Wakeup --
-------------------
function Record_Wakeup
(L : Lock_Ptr;
Reason : Task_States)
return Boolean
is
Self_ID : Task_ID := Self;
P : Lock_Ptr;
begin
-- Record new owner
L.Owner := To_Owner_ID (Self_ID);
-- Check that TCB lock order rules are satisfied
P := Self_ID.Common.LL.Locks;
if P /= null then
L.Next := P;
end if;
Self_ID.Common.LL.Locking := null;
Self_ID.Common.LL.Locks := L;
return True;
end Record_Wakeup;
------------------
-- Check_Wakeup --
------------------
function Check_Wakeup
(T : Task_ID;
Reason : Task_States)
return Boolean
is
Self_ID : Task_ID := Self;
begin
-- Is caller holding T's lock?
if T.Common.LL.L.Owner /= To_Owner_ID (Self_ID) then
return False;
end if;
-- Are reasons for wakeup and sleep consistent?
if T.Common.State /= Reason then
return False;
end if;
return True;
end Check_Wakeup;
------------------
-- Check_Unlock --
------------------
function Check_Unlock (L : Lock_Ptr) return Boolean is
Self_ID : Task_ID := Self;
P : Lock_Ptr;
begin
Unlock_Count := Unlock_Count + 1;
if L = null then
return False;
end if;
if L.Buddy /= null then
return False;
end if;
if L.Level = 4 then
Check_Count := Unlock_Count;
end if;
if Unlock_Count - Check_Count > 1000 then
Check_Count := Unlock_Count;
Old_Owner := To_Task_ID (All_Tasks_L.Owner);
end if;
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level <= 0 then
return False;
end if;
-- Check that caller is holding this lock, on top of list
if Self_ID.Common.LL.Locks /= L then
return False;
end if;
-- Record there is no owner now
L.Owner := null;
P := Self_ID.Common.LL.Locks;
Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
P.Next := null;
return True;
end Check_Unlock;
--------------------
-- Check_Finalize --
--------------------
function Check_Finalize_Lock (L : Lock_Ptr) return Boolean is
Self_ID : Task_ID := Self;
begin
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level <= 0 then
return False;
end if;
-- Check that no one is holding this lock
if L.Owner /= null then
return False;
end if;
L.Frozen := True;
return True;
end Check_Finalize_Lock;
----------------
-- Check_Exit --
----------------
function Check_Exit (Self_ID : Task_ID) return Boolean is
begin
-- Check that caller is just holding Global_Task_Lock
-- and no other locks
if Self_ID.Common.LL.Locks = null then
return False;
end if;
-- 2 = Global_Task_Level
if Self_ID.Common.LL.Locks.Level /= 2 then
return False;
end if;
if Self_ID.Common.LL.Locks.Next /= null then
return False;
end if;
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level <= 0 then
return False;
end if;
return True;
end Check_Exit;
--------------------
-- Check_No_Locks --
--------------------
function Check_No_Locks (Self_ID : Task_ID) return Boolean is
begin
return Self_ID.Common.LL.Locks = null;
end Check_No_Locks;
----------------------
-- Environment_Task --
----------------------
function Environment_Task return Task_ID is
begin
return Environment_Task_ID;
end Environment_Task;
-------------------------
-- Lock_All_Tasks_List --
-------------------------
procedure Lock_All_Tasks_List is
begin
Write_Lock (All_Tasks_L'Access);
end Lock_All_Tasks_List;
---------------------------
-- Unlock_All_Tasks_List --
---------------------------
procedure Unlock_All_Tasks_List is
begin
Unlock (All_Tasks_L'Access);
end Unlock_All_Tasks_List;
------------------
-- Suspend_Task --
------------------
function Suspend_Task
(T : ST.Task_ID;
Thread_Self : Thread_Id) return Boolean is
begin
if T.Common.LL.Thread /= Thread_Self then
return thr_suspend (T.Common.LL.Thread) = 0;
else
return True;
end if;
end Suspend_Task;
-----------------
-- Resume_Task --
-----------------
function Resume_Task
(T : ST.Task_ID;
Thread_Self : Thread_Id) return Boolean is
begin
if T.Common.LL.Thread /= Thread_Self then
return thr_continue (T.Common.LL.Thread) = 0;
else
return True;
end if;
end Resume_Task;
----------------
-- Initialize --
----------------
procedure Initialize (Environment_Task : ST.Task_ID) is
act : aliased struct_sigaction;
old_act : aliased struct_sigaction;
Tmp_Set : aliased sigset_t;
Result : Interfaces.C.int;
procedure Configure_Processors;
-- Processors configuration
-- The user can specify a processor which the program should run
-- on to emulate a single-processor system. This can be easily
-- done by setting environment variable GNAT_PROCESSOR to one of
-- the following :
--
-- -2 : use the default configuration (run the program on all
-- available processors) - this is the same as having
-- GNAT_PROCESSOR unset
-- -1 : let the RTS choose one processor and run the program on
-- that processor
-- 0 .. Last_Proc : run the program on the specified processor
--
-- Last_Proc is equal to the value of the system variable
-- _SC_NPROCESSORS_CONF, minus one.
procedure Configure_Processors is
Proc_Acc : constant GNAT.OS_Lib.String_Access :=
GNAT.OS_Lib.Getenv ("GNAT_PROCESSOR");
begin
if Proc_Acc.all'Length /= 0 then
-- Environment variable is defined
declare
Proc : aliased processorid_t; -- User processor #
Last_Proc : processorid_t; -- Last processor #
begin
Last_Proc := Num_Procs - 1;
if Last_Proc = -1 then
-- Unable to read system variable _SC_NPROCESSORS_CONF
-- Ignore environment variable GNAT_PROCESSOR
null;
else
Proc := processorid_t'Value (Proc_Acc.all);
if Proc < -2 or Proc > Last_Proc then
raise Constraint_Error;
elsif Proc = -2 then
-- Use the default configuration
null;
elsif Proc = -1 then
-- Choose a processor
Result := 0;
while Proc < Last_Proc loop
Proc := Proc + 1;
Result := p_online (Proc, PR_STATUS);
exit when Result = PR_ONLINE;
end loop;
pragma Assert (Result = PR_ONLINE);
Result := processor_bind (P_PID, P_MYID, Proc, null);
pragma Assert (Result = 0);
else
-- Use user processor
Result := processor_bind (P_PID, P_MYID, Proc, null);
pragma Assert (Result = 0);
end if;
end if;
exception
when Constraint_Error =>
-- Illegal environment variable GNAT_PROCESSOR - ignored
null;
end;
end if;
end Configure_Processors;
-- Start of processing for Initialize
begin
Environment_Task_ID := Environment_Task;
-- This is done in Enter_Task, but this is too late for the
-- Environment Task, since we need to call Self in Check_Locks when
-- the run time is compiled with assertions on.
Result := thr_setspecific (ATCB_Key, To_Address (Environment_Task));
pragma Assert (Result = 0);
-- Initialize the lock used to synchronize chain of all ATCBs.
Initialize_Lock (All_Tasks_L'Access, All_Tasks_Level);
Enter_Task (Environment_Task);
-- Install the abort-signal handler
-- Set sa_flags to SA_NODEFER so that during the handler execution
-- we do not change the Signal_Mask to be masked for the Abort_Signal.
-- This is a temporary fix to the problem that the Signal_Mask is
-- not restored after the exception (longjmp) from the handler.
-- The right fix should be made in sigsetjmp so that we save
-- the Signal_Set and restore it after a longjmp.
-- In that case, this field should be changed back to 0. ???
act.sa_flags := 16;
act.sa_handler := Abort_Handler'Address;
Result := sigemptyset (Tmp_Set'Access);
pragma Assert (Result = 0);
act.sa_mask := Tmp_Set;
Result :=
sigaction (
Signal (System.Interrupt_Management.Abort_Task_Interrupt),
act'Unchecked_Access,
old_act'Unchecked_Access);
pragma Assert (Result = 0);
Configure_Processors;
-- Create a free ATCB for use on the Fake_ATCB_List.
Next_Fake_ATCB := new Fake_ATCB;
end Initialize;
-- Package elaboration
begin
declare
Result : Interfaces.C.int;
begin
-- Mask Environment task for all signals. The original mask of the
-- Environment task will be recovered by Interrupt_Server task
-- during the elaboration of s-interr.adb.
System.Interrupt_Management.Operations.Set_Interrupt_Mask
(System.Interrupt_Management.Operations.All_Tasks_Mask'Access);
-- Prepare the set of signals that should unblocked in all tasks
Result := sigemptyset (Unblocked_Signal_Mask'Access);
pragma Assert (Result = 0);
for J in Interrupt_Management.Interrupt_ID loop
if System.Interrupt_Management.Keep_Unmasked (J) then
Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
pragma Assert (Result = 0);
end if;
end loop;
-- We need the following code to support automatic creation of fake
-- ATCB's for C threads that call the Ada run-time system, even if
-- we use a faster way of getting Self for real Ada tasks.
Result := thr_keycreate (ATCB_Key'Access, System.Null_Address);
pragma Assert (Result = 0);
end;
if Dispatching_Policy = 'F' then
declare
Result : Interfaces.C.long;
Class_Info : aliased struct_pcinfo;
Secs, Nsecs : Interfaces.C.long;
begin
-- If a pragma Time_Slice is specified, takes the value in account.
if Time_Slice_Val > 0 then
-- Convert Time_Slice_Val (microseconds) into seconds and
-- nanoseconds
Secs := Time_Slice_Val / 1_000_000;
Nsecs := (Time_Slice_Val rem 1_000_000) * 1_000;
-- Otherwise, default to no time slicing (i.e run until blocked)
else
Secs := RT_TQINF;
Nsecs := RT_TQINF;
end if;
-- Get the real time class id.
Class_Info.pc_clname (1) := 'R';
Class_Info.pc_clname (2) := 'T';
Class_Info.pc_clname (3) := ASCII.Nul;
Result := priocntl (PC_VERSION, P_LWPID, P_MYID, PC_GETCID,
Class_Info'Address);
-- Request the real time class
Prio_Param.pc_cid := Class_Info.pc_cid;
Prio_Param.rt_pri := pri_t (Class_Info.rt_maxpri);
Prio_Param.rt_tqsecs := Secs;
Prio_Param.rt_tqnsecs := Nsecs;
Result := priocntl (PC_VERSION, P_LWPID, P_MYID, PC_SETPARMS,
Prio_Param'Address);
Using_Real_Time_Class := Result /= -1;
end;
end if;
end System.Task_Primitives.Operations;
|