summaryrefslogtreecommitdiff
path: root/libstdc++-v3/include/tr1/bessel_function.tcc
diff options
context:
space:
mode:
Diffstat (limited to 'libstdc++-v3/include/tr1/bessel_function.tcc')
-rw-r--r--libstdc++-v3/include/tr1/bessel_function.tcc10
1 files changed, 5 insertions, 5 deletions
diff --git a/libstdc++-v3/include/tr1/bessel_function.tcc b/libstdc++-v3/include/tr1/bessel_function.tcc
index eebafac41ce..19c9860d51c 100644
--- a/libstdc++-v3/include/tr1/bessel_function.tcc
+++ b/libstdc++-v3/include/tr1/bessel_function.tcc
@@ -131,7 +131,7 @@ namespace tr1
* @param __nu The order of the Bessel functions.
* @param __x The argument of the Bessel functions.
* @param __Jnu The output Bessel function of the first kind.
- * @param __Nnu The output Neumann function (Bessel fuction of the second kind).
+ * @param __Nnu The output Neumann function (Bessel function of the second kind).
* @param __Jpnu The output derivative of the Bessel function of the first kind.
* @param __Npnu The output derivative of the Neumann function.
*/
@@ -345,7 +345,7 @@ namespace tr1
/**
- * @brief This routine computes the asyptotic cylindrical Bessel
+ * @brief This routine computes the asymptotic cylindrical Bessel
* and Neumann functions of order nu: \f$ J_{\nu} \f$,
* \f$ N_{\nu} \f$.
*
@@ -358,7 +358,7 @@ namespace tr1
* @param __nu The order of the Bessel functions.
* @param __x The argument of the Bessel functions.
* @param __Jnu The output Bessel function of the first kind.
- * @param __Nnu The output Neumann function (Bessel fuction of the second kind).
+ * @param __Nnu The output Neumann function (Bessel function of the second kind).
*/
template <typename _Tp>
void
@@ -401,7 +401,7 @@ namespace tr1
* \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
* @f]
* where \f$ \sigma = +1 \f$ or\f$ -1 \f$ for
- * \f$ Z = I \f$ or \f$ J \f$ respecively.
+ * \f$ Z = I \f$ or \f$ J \f$ respectively.
*
* See Abramowitz & Stegun, 9.1.10
* Abramowitz & Stegun, 9.6.7
@@ -488,7 +488,7 @@ namespace tr1
/**
- * @brief Return the Neunamm function of order \f$ \nu \f$:
+ * @brief Return the Neumann function of order \f$ \nu \f$:
* \f$ N_{\nu}(x) \f$.
*
* The Neumann function is defined by: