summaryrefslogtreecommitdiff
path: root/libjava/classpath/java/lang/StrictMath.java
diff options
context:
space:
mode:
Diffstat (limited to 'libjava/classpath/java/lang/StrictMath.java')
-rw-r--r--libjava/classpath/java/lang/StrictMath.java226
1 files changed, 190 insertions, 36 deletions
diff --git a/libjava/classpath/java/lang/StrictMath.java b/libjava/classpath/java/lang/StrictMath.java
index 0f066216787..ec74ca4133b 100644
--- a/libjava/classpath/java/lang/StrictMath.java
+++ b/libjava/classpath/java/lang/StrictMath.java
@@ -633,6 +633,94 @@ public final strictfp class StrictMath
}
/**
+ * Returns the hyperbolic sine of <code>x</code> which is defined as
+ * (exp(x) - exp(-x)) / 2.
+ *
+ * Special cases:
+ * <ul>
+ * <li>If the argument is NaN, the result is NaN</li>
+ * <li>If the argument is positive infinity, the result is positive
+ * infinity.</li>
+ * <li>If the argument is negative infinity, the result is negative
+ * infinity.</li>
+ * <li>If the argument is zero, the result is zero.</li>
+ * </ul>
+ *
+ * @param x the argument to <em>sinh</em>
+ * @return the hyperbolic sine of <code>x</code>
+ *
+ * @since 1.5
+ */
+ public static double sinh(double x)
+ {
+ // Method :
+ // mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
+ // 1. Replace x by |x| (sinh(-x) = -sinh(x)).
+ // 2.
+ // E + E/(E+1)
+ // 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
+ // 2
+ //
+ // 22 <= x <= lnovft : sinh(x) := exp(x)/2
+ // lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
+ // ln2ovft < x : sinh(x) := +inf (overflow)
+
+ double t, w, h;
+
+ long bits;
+ long h_bits;
+ long l_bits;
+
+ // handle special cases
+ if (x != x)
+ return x;
+ if (x == Double.POSITIVE_INFINITY)
+ return Double.POSITIVE_INFINITY;
+ if (x == Double.NEGATIVE_INFINITY)
+ return Double.NEGATIVE_INFINITY;
+
+ if (x < 0)
+ h = - 0.5;
+ else
+ h = 0.5;
+
+ bits = Double.doubleToLongBits(x);
+ h_bits = getHighDWord(bits) & 0x7fffffffL; // ignore sign
+ l_bits = getLowDWord(bits);
+
+ // |x| in [0, 22], return sign(x) * 0.5 * (E+E/(E+1))
+ if (h_bits < 0x40360000L) // |x| < 22
+ {
+ if (h_bits < 0x3e300000L) // |x| < 2^-28
+ return x; // for tiny arguments return x
+
+ t = expm1(abs(x));
+
+ if (h_bits < 0x3ff00000L)
+ return h * (2.0 * t - t * t / (t + 1.0));
+
+ return h * (t + t / (t + 1.0));
+ }
+
+ // |x| in [22, log(Double.MAX_VALUE)], return 0.5 * exp(|x|)
+ if (h_bits < 0x40862e42L)
+ return h * exp(abs(x));
+
+ // |x| in [log(Double.MAX_VALUE), overflowthreshold]
+ if ((h_bits < 0x408633ceL)
+ || ((h_bits == 0x408633ceL) && (l_bits <= 0x8fb9f87dL)))
+ {
+ w = exp(0.5 * abs(x));
+ t = h * w;
+
+ return t * w;
+ }
+
+ // |x| > overflowthershold
+ return h * Double.POSITIVE_INFINITY;
+ }
+
+ /**
* Returns the hyperbolic cosine of <code>x</code>, which is defined as
* (exp(x) + exp(-x)) / 2.
*
@@ -670,36 +758,36 @@ public final strictfp class StrictMath
double t, w;
long bits;
- int hx;
- int lx;
+ long hx;
+ long lx;
// handle special cases
if (x != x)
- return Double.NaN;
+ return x;
if (x == Double.POSITIVE_INFINITY)
return Double.POSITIVE_INFINITY;
if (x == Double.NEGATIVE_INFINITY)
return Double.POSITIVE_INFINITY;
bits = Double.doubleToLongBits(x);
- hx = getHighDWord(bits) & 0x7fffffff; // ignore sign
+ hx = getHighDWord(bits) & 0x7fffffffL; // ignore sign
lx = getLowDWord(bits);
// |x| in [0, 0.5 * ln(2)], return 1 + expm1(|x|)^2 / (2 * exp(|x|))
- if (hx < 0x3fd62e43)
+ if (hx < 0x3fd62e43L)
{
t = expm1(abs(x));
w = 1.0 + t;
// for tiny arguments return 1.
- if (hx < 0x3c800000)
+ if (hx < 0x3c800000L)
return w;
return 1.0 + (t * t) / (w + w);
}
// |x| in [0.5 * ln(2), 22], return exp(|x|)/2 + 1 / (2 * exp(|x|))
- if (hx < 0x40360000)
+ if (hx < 0x40360000L)
{
t = exp(abs(x));
@@ -707,16 +795,13 @@ public final strictfp class StrictMath
}
// |x| in [22, log(Double.MAX_VALUE)], return 0.5 * exp(|x|)
- if (hx < 0x40862e42)
+ if (hx < 0x40862e42L)
return 0.5 * exp(abs(x));
// |x| in [log(Double.MAX_VALUE), overflowthreshold],
// return exp(x/2)/2 * exp(x/2)
-
- // we need to force an unsigned <= compare, thus can not use lx.
- if ((hx < 0x408633ce)
- || ((hx == 0x408633ce)
- && ((bits & 0x00000000ffffffffL) <= 0x8fb9f87dL)))
+ if ((hx < 0x408633ceL)
+ || ((hx == 0x408633ceL) && (lx <= 0x8fb9f87dL)))
{
w = exp(0.5 * abs(x));
t = 0.5 * w;
@@ -729,13 +814,82 @@ public final strictfp class StrictMath
}
/**
+ * Returns the hyperbolic tangent of <code>x</code>, which is defined as
+ * (exp(x) - exp(-x)) / (exp(x) + exp(-x)), i.e. sinh(x) / cosh(x).
+ *
+ Special cases:
+ * <ul>
+ * <li>If the argument is NaN, the result is NaN</li>
+ * <li>If the argument is positive infinity, the result is 1.</li>
+ * <li>If the argument is negative infinity, the result is -1.</li>
+ * <li>If the argument is zero, the result is zero.</li>
+ * </ul>
+ *
+ * @param x the argument to <em>tanh</em>
+ * @return the hyperbolic tagent of <code>x</code>
+ *
+ * @since 1.5
+ */
+ public static double tanh(double x)
+ {
+ // Method :
+ // 0. tanh(x) is defined to be (exp(x) - exp(-x)) / (exp(x) + exp(-x))
+ // 1. reduce x to non-negative by tanh(-x) = -tanh(x).
+ // 2. 0 <= x <= 2^-55 : tanh(x) := x * (1.0 + x)
+ // -t
+ // 2^-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x)
+ // t + 2
+ // 2
+ // 1 <= x <= 22.0 : tanh(x) := 1 - ----- ; t=expm1(2x)
+ // t + 2
+ // 22.0 < x <= INF : tanh(x) := 1.
+
+ double t, z;
+
+ long bits;
+ long h_bits;
+
+ // handle special cases
+ if (x != x)
+ return x;
+ if (x == Double.POSITIVE_INFINITY)
+ return 1.0;
+ if (x == Double.NEGATIVE_INFINITY)
+ return -1.0;
+
+ bits = Double.doubleToLongBits(x);
+ h_bits = getHighDWord(bits) & 0x7fffffffL; // ingnore sign
+
+ if (h_bits < 0x40360000L) // |x| < 22
+ {
+ if (h_bits < 0x3c800000L) // |x| < 2^-55
+ return x * (1.0 + x);
+
+ if (h_bits >= 0x3ff00000L) // |x| >= 1
+ {
+ t = expm1(2.0 * abs(x));
+ z = 1.0 - 2.0 / (t + 2.0);
+ }
+ else // |x| < 1
+ {
+ t = expm1(-2.0 * abs(x));
+ z = -t / (t + 2.0);
+ }
+ }
+ else // |x| >= 22
+ z = 1.0;
+
+ return (x >= 0) ? z : -z;
+ }
+
+ /**
* Returns the lower two words of a long. This is intended to be
* used like this:
* <code>getLowDWord(Double.doubleToLongBits(x))</code>.
*/
- private static int getLowDWord(long x)
+ private static long getLowDWord(long x)
{
- return (int) (x & 0x00000000ffffffffL);
+ return x & 0x00000000ffffffffL;
}
/**
@@ -743,19 +897,19 @@ public final strictfp class StrictMath
* used like this:
* <code>getHighDWord(Double.doubleToLongBits(x))</code>.
*/
- private static int getHighDWord(long x)
+ private static long getHighDWord(long x)
{
- return (int) ((x & 0xffffffff00000000L) >> 32);
+ return (x & 0xffffffff00000000L) >> 32;
}
/**
* Returns a double with the IEEE754 bit pattern given in the lower
* and higher two words <code>lowDWord</code> and <code>highDWord</code>.
*/
- private static double buildDouble(int lowDWord, int highDWord)
+ private static double buildDouble(long lowDWord, long highDWord)
{
- return Double.longBitsToDouble((((long) highDWord & 0xffffffffL) << 32)
- | ((long) lowDWord & 0xffffffffL));
+ return Double.longBitsToDouble(((highDWord & 0xffffffffL) << 32)
+ | (lowDWord & 0xffffffffL));
}
/**
@@ -788,12 +942,12 @@ public final strictfp class StrictMath
double w;
long bits;
- int l;
- int h;
+ long l;
+ long h;
// handle the special cases
if (x != x)
- return Double.NaN;
+ return x;
if (x == Double.POSITIVE_INFINITY)
return Double.POSITIVE_INFINITY;
if (x == Double.NEGATIVE_INFINITY)
@@ -847,7 +1001,7 @@ public final strictfp class StrictMath
s = t * t; // t * t is exact
r = x / s;
w = t + t;
- r = (r - t) / (w + r); // r - s is exact
+ r = (r - t) / (w + r); // r - t is exact
t = t + t * r;
return negative ? -t : t;
@@ -1008,8 +1162,8 @@ public final strictfp class StrictMath
int k;
long bits;
- int h_bits;
- int l_bits;
+ long h_bits;
+ long l_bits;
c = 0.0;
y = abs(x);
@@ -1019,14 +1173,14 @@ public final strictfp class StrictMath
l_bits = getLowDWord(bits);
// handle special cases and large arguments
- if (h_bits >= 0x4043687a) // if |x| >= 56 * ln(2)
+ if (h_bits >= 0x4043687aL) // if |x| >= 56 * ln(2)
{
- if (h_bits >= 0x40862e42) // if |x| >= EXP_LIMIT_H
+ if (h_bits >= 0x40862e42L) // if |x| >= EXP_LIMIT_H
{
- if (h_bits >= 0x7ff00000)
+ if (h_bits >= 0x7ff00000L)
{
- if (((h_bits & 0x000fffff) | (l_bits & 0xffffffff)) != 0)
- return Double.NaN; // exp(NaN) = NaN
+ if (((h_bits & 0x000fffffL) | (l_bits & 0xffffffffL)) != 0)
+ return x; // exp(NaN) = NaN
else
return negative ? -1.0 : x; // exp({+-inf}) = {+inf, -1}
}
@@ -1040,9 +1194,9 @@ public final strictfp class StrictMath
}
// argument reduction
- if (h_bits > 0x3fd62e42) // |x| > 0.5 * ln(2)
+ if (h_bits > 0x3fd62e42L) // |x| > 0.5 * ln(2)
{
- if (h_bits < 0x3ff0a2b2) // |x| < 1.5 * ln(2)
+ if (h_bits < 0x3ff0a2b2L) // |x| < 1.5 * ln(2)
{
if (negative)
{
@@ -1069,7 +1223,7 @@ public final strictfp class StrictMath
c = (hi - x) - lo;
}
- else if (h_bits < 0x3c900000) // |x| < 2^-54 return x
+ else if (h_bits < 0x3c900000L) // |x| < 2^-54 return x
return x;
else
k = 0;
@@ -1124,7 +1278,7 @@ public final strictfp class StrictMath
if (k < 20)
{
bits = Double.doubleToLongBits(t);
- h_bits = 0x3ff00000 - (0x00200000 >> k);
+ h_bits = 0x3ff00000L - (0x00200000L >> k);
l_bits = getLowDWord(bits);
t = buildDouble(l_bits, h_bits); // t = 1 - 2^(-k)
@@ -1141,7 +1295,7 @@ public final strictfp class StrictMath
else
{
bits = Double.doubleToLongBits(t);
- h_bits = (0x000003ff - k) << 20;
+ h_bits = (0x000003ffL - k) << 20;
l_bits = getLowDWord(bits);
t = buildDouble(l_bits, h_bits); // t = 2^(-k)