summaryrefslogtreecommitdiff
path: root/libgo/go/math/big/rat_test.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/math/big/rat_test.go')
-rw-r--r--libgo/go/math/big/rat_test.go424
1 files changed, 0 insertions, 424 deletions
diff --git a/libgo/go/math/big/rat_test.go b/libgo/go/math/big/rat_test.go
index 5dbbb3510f0..012d0c47ec4 100644
--- a/libgo/go/math/big/rat_test.go
+++ b/libgo/go/math/big/rat_test.go
@@ -9,10 +9,7 @@ import (
"encoding/gob"
"encoding/json"
"encoding/xml"
- "fmt"
"math"
- "strconv"
- "strings"
"testing"
)
@@ -56,112 +53,6 @@ func TestZeroRat(t *testing.T) {
z.Quo(&x, &y)
}
-var setStringTests = []struct {
- in, out string
- ok bool
-}{
- {"0", "0", true},
- {"-0", "0", true},
- {"1", "1", true},
- {"-1", "-1", true},
- {"1.", "1", true},
- {"1e0", "1", true},
- {"1.e1", "10", true},
- {in: "1e", ok: false},
- {in: "1.e", ok: false},
- {in: "1e+14e-5", ok: false},
- {in: "1e4.5", ok: false},
- {in: "r", ok: false},
- {in: "a/b", ok: false},
- {in: "a.b", ok: false},
- {"-0.1", "-1/10", true},
- {"-.1", "-1/10", true},
- {"2/4", "1/2", true},
- {".25", "1/4", true},
- {"-1/5", "-1/5", true},
- {"8129567.7690E14", "812956776900000000000", true},
- {"78189e+4", "781890000", true},
- {"553019.8935e+8", "55301989350000", true},
- {"98765432109876543210987654321e-10", "98765432109876543210987654321/10000000000", true},
- {"9877861857500000E-7", "3951144743/4", true},
- {"2169378.417e-3", "2169378417/1000000", true},
- {"884243222337379604041632732738665534", "884243222337379604041632732738665534", true},
- {"53/70893980658822810696", "53/70893980658822810696", true},
- {"106/141787961317645621392", "53/70893980658822810696", true},
- {"204211327800791583.81095", "4084226556015831676219/20000", true},
- {in: "1/0", ok: false},
-}
-
-func TestRatSetString(t *testing.T) {
- for i, test := range setStringTests {
- x, ok := new(Rat).SetString(test.in)
-
- if ok {
- if !test.ok {
- t.Errorf("#%d SetString(%q) expected failure", i, test.in)
- } else if x.RatString() != test.out {
- t.Errorf("#%d SetString(%q) got %s want %s", i, test.in, x.RatString(), test.out)
- }
- } else if x != nil {
- t.Errorf("#%d SetString(%q) got %p want nil", i, test.in, x)
- }
- }
-}
-
-func TestRatScan(t *testing.T) {
- var buf bytes.Buffer
- for i, test := range setStringTests {
- x := new(Rat)
- buf.Reset()
- buf.WriteString(test.in)
-
- _, err := fmt.Fscanf(&buf, "%v", x)
- if err == nil != test.ok {
- if test.ok {
- t.Errorf("#%d error: %s", i, err)
- } else {
- t.Errorf("#%d expected error", i)
- }
- continue
- }
- if err == nil && x.RatString() != test.out {
- t.Errorf("#%d got %s want %s", i, x.RatString(), test.out)
- }
- }
-}
-
-var floatStringTests = []struct {
- in string
- prec int
- out string
-}{
- {"0", 0, "0"},
- {"0", 4, "0.0000"},
- {"1", 0, "1"},
- {"1", 2, "1.00"},
- {"-1", 0, "-1"},
- {".25", 2, "0.25"},
- {".25", 1, "0.3"},
- {".25", 3, "0.250"},
- {"-1/3", 3, "-0.333"},
- {"-2/3", 4, "-0.6667"},
- {"0.96", 1, "1.0"},
- {"0.999", 2, "1.00"},
- {"0.9", 0, "1"},
- {".25", -1, "0"},
- {".55", -1, "1"},
-}
-
-func TestFloatString(t *testing.T) {
- for i, test := range floatStringTests {
- x, _ := new(Rat).SetString(test.in)
-
- if x.FloatString(test.prec) != test.out {
- t.Errorf("#%d got %s want %s", i, x.FloatString(test.prec), test.out)
- }
- }
-}
-
func TestRatSign(t *testing.T) {
zero := NewRat(0, 1)
for _, a := range setStringTests {
@@ -592,321 +483,6 @@ func TestIssue3521(t *testing.T) {
}
}
-// Test inputs to Rat.SetString. The prefix "long:" causes the test
-// to be skipped in --test.short mode. (The threshold is about 500us.)
-var float64inputs = []string{
- // Constants plundered from strconv/testfp.txt.
-
- // Table 1: Stress Inputs for Conversion to 53-bit Binary, < 1/2 ULP
- "5e+125",
- "69e+267",
- "999e-026",
- "7861e-034",
- "75569e-254",
- "928609e-261",
- "9210917e+080",
- "84863171e+114",
- "653777767e+273",
- "5232604057e-298",
- "27235667517e-109",
- "653532977297e-123",
- "3142213164987e-294",
- "46202199371337e-072",
- "231010996856685e-073",
- "9324754620109615e+212",
- "78459735791271921e+049",
- "272104041512242479e+200",
- "6802601037806061975e+198",
- "20505426358836677347e-221",
- "836168422905420598437e-234",
- "4891559871276714924261e+222",
-
- // Table 2: Stress Inputs for Conversion to 53-bit Binary, > 1/2 ULP
- "9e-265",
- "85e-037",
- "623e+100",
- "3571e+263",
- "81661e+153",
- "920657e-023",
- "4603285e-024",
- "87575437e-309",
- "245540327e+122",
- "6138508175e+120",
- "83356057653e+193",
- "619534293513e+124",
- "2335141086879e+218",
- "36167929443327e-159",
- "609610927149051e-255",
- "3743626360493413e-165",
- "94080055902682397e-242",
- "899810892172646163e+283",
- "7120190517612959703e+120",
- "25188282901709339043e-252",
- "308984926168550152811e-052",
- "6372891218502368041059e+064",
-
- // Table 14: Stress Inputs for Conversion to 24-bit Binary, <1/2 ULP
- "5e-20",
- "67e+14",
- "985e+15",
- "7693e-42",
- "55895e-16",
- "996622e-44",
- "7038531e-32",
- "60419369e-46",
- "702990899e-20",
- "6930161142e-48",
- "25933168707e+13",
- "596428896559e+20",
-
- // Table 15: Stress Inputs for Conversion to 24-bit Binary, >1/2 ULP
- "3e-23",
- "57e+18",
- "789e-35",
- "2539e-18",
- "76173e+28",
- "887745e-11",
- "5382571e-37",
- "82381273e-35",
- "750486563e-38",
- "3752432815e-39",
- "75224575729e-45",
- "459926601011e+15",
-
- // Constants plundered from strconv/atof_test.go.
-
- "0",
- "1",
- "+1",
- "1e23",
- "1E23",
- "100000000000000000000000",
- "1e-100",
- "123456700",
- "99999999999999974834176",
- "100000000000000000000001",
- "100000000000000008388608",
- "100000000000000016777215",
- "100000000000000016777216",
- "-1",
- "-0.1",
- "-0", // NB: exception made for this input
- "1e-20",
- "625e-3",
-
- // largest float64
- "1.7976931348623157e308",
- "-1.7976931348623157e308",
- // next float64 - too large
- "1.7976931348623159e308",
- "-1.7976931348623159e308",
- // the border is ...158079
- // borderline - okay
- "1.7976931348623158e308",
- "-1.7976931348623158e308",
- // borderline - too large
- "1.797693134862315808e308",
- "-1.797693134862315808e308",
-
- // a little too large
- "1e308",
- "2e308",
- "1e309",
-
- // way too large
- "1e310",
- "-1e310",
- "1e400",
- "-1e400",
- "long:1e400000",
- "long:-1e400000",
-
- // denormalized
- "1e-305",
- "1e-306",
- "1e-307",
- "1e-308",
- "1e-309",
- "1e-310",
- "1e-322",
- // smallest denormal
- "5e-324",
- "4e-324",
- "3e-324",
- // too small
- "2e-324",
- // way too small
- "1e-350",
- "long:1e-400000",
- // way too small, negative
- "-1e-350",
- "long:-1e-400000",
-
- // try to overflow exponent
- // [Disabled: too slow and memory-hungry with rationals.]
- // "1e-4294967296",
- // "1e+4294967296",
- // "1e-18446744073709551616",
- // "1e+18446744073709551616",
-
- // http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
- "2.2250738585072012e-308",
- // http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
- "2.2250738585072011e-308",
-
- // A very large number (initially wrongly parsed by the fast algorithm).
- "4.630813248087435e+307",
-
- // A different kind of very large number.
- "22.222222222222222",
- "long:2." + strings.Repeat("2", 4000) + "e+1",
-
- // Exactly halfway between 1 and math.Nextafter(1, 2).
- // Round to even (down).
- "1.00000000000000011102230246251565404236316680908203125",
- // Slightly lower; still round down.
- "1.00000000000000011102230246251565404236316680908203124",
- // Slightly higher; round up.
- "1.00000000000000011102230246251565404236316680908203126",
- // Slightly higher, but you have to read all the way to the end.
- "long:1.00000000000000011102230246251565404236316680908203125" + strings.Repeat("0", 10000) + "1",
-
- // Smallest denormal, 2^(-1022-52)
- "4.940656458412465441765687928682213723651e-324",
- // Half of smallest denormal, 2^(-1022-53)
- "2.470328229206232720882843964341106861825e-324",
- // A little more than the exact half of smallest denormal
- // 2^-1075 + 2^-1100. (Rounds to 1p-1074.)
- "2.470328302827751011111470718709768633275e-324",
- // The exact halfway between smallest normal and largest denormal:
- // 2^-1022 - 2^-1075. (Rounds to 2^-1022.)
- "2.225073858507201136057409796709131975935e-308",
-
- "1152921504606846975", // 1<<60 - 1
- "-1152921504606846975", // -(1<<60 - 1)
- "1152921504606846977", // 1<<60 + 1
- "-1152921504606846977", // -(1<<60 + 1)
-
- "1/3",
-}
-
-// isFinite reports whether f represents a finite rational value.
-// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0).
-func isFinite(f float64) bool {
- return math.Abs(f) <= math.MaxFloat64
-}
-
-func TestFloat32SpecialCases(t *testing.T) {
- for _, input := range float64inputs {
- if strings.HasPrefix(input, "long:") {
- if testing.Short() {
- continue
- }
- input = input[len("long:"):]
- }
-
- r, ok := new(Rat).SetString(input)
- if !ok {
- t.Errorf("Rat.SetString(%q) failed", input)
- continue
- }
- f, exact := r.Float32()
-
- // 1. Check string -> Rat -> float32 conversions are
- // consistent with strconv.ParseFloat.
- // Skip this check if the input uses "a/b" rational syntax.
- if !strings.Contains(input, "/") {
- e64, _ := strconv.ParseFloat(input, 32)
- e := float32(e64)
-
- // Careful: negative Rats too small for
- // float64 become -0, but Rat obviously cannot
- // preserve the sign from SetString("-0").
- switch {
- case math.Float32bits(e) == math.Float32bits(f):
- // Ok: bitwise equal.
- case f == 0 && r.Num().BitLen() == 0:
- // Ok: Rat(0) is equivalent to both +/- float64(0).
- default:
- t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e)
- }
- }
-
- if !isFinite(float64(f)) {
- continue
- }
-
- // 2. Check f is best approximation to r.
- if !checkIsBestApprox32(t, f, r) {
- // Append context information.
- t.Errorf("(input was %q)", input)
- }
-
- // 3. Check f->R->f roundtrip is non-lossy.
- checkNonLossyRoundtrip32(t, f)
-
- // 4. Check exactness using slow algorithm.
- if wasExact := new(Rat).SetFloat64(float64(f)).Cmp(r) == 0; wasExact != exact {
- t.Errorf("Rat.SetString(%q).Float32().exact = %t, want %t", input, exact, wasExact)
- }
- }
-}
-
-func TestFloat64SpecialCases(t *testing.T) {
- for _, input := range float64inputs {
- if strings.HasPrefix(input, "long:") {
- if testing.Short() {
- continue
- }
- input = input[len("long:"):]
- }
-
- r, ok := new(Rat).SetString(input)
- if !ok {
- t.Errorf("Rat.SetString(%q) failed", input)
- continue
- }
- f, exact := r.Float64()
-
- // 1. Check string -> Rat -> float64 conversions are
- // consistent with strconv.ParseFloat.
- // Skip this check if the input uses "a/b" rational syntax.
- if !strings.Contains(input, "/") {
- e, _ := strconv.ParseFloat(input, 64)
-
- // Careful: negative Rats too small for
- // float64 become -0, but Rat obviously cannot
- // preserve the sign from SetString("-0").
- switch {
- case math.Float64bits(e) == math.Float64bits(f):
- // Ok: bitwise equal.
- case f == 0 && r.Num().BitLen() == 0:
- // Ok: Rat(0) is equivalent to both +/- float64(0).
- default:
- t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e)
- }
- }
-
- if !isFinite(f) {
- continue
- }
-
- // 2. Check f is best approximation to r.
- if !checkIsBestApprox64(t, f, r) {
- // Append context information.
- t.Errorf("(input was %q)", input)
- }
-
- // 3. Check f->R->f roundtrip is non-lossy.
- checkNonLossyRoundtrip64(t, f)
-
- // 4. Check exactness using slow algorithm.
- if wasExact := new(Rat).SetFloat64(f).Cmp(r) == 0; wasExact != exact {
- t.Errorf("Rat.SetString(%q).Float64().exact = %t, want %t", input, exact, wasExact)
- }
- }
-}
-
func TestFloat32Distribution(t *testing.T) {
// Generate a distribution of (sign, mantissa, exp) values
// broader than the float32 range, and check Rat.Float32()