summaryrefslogtreecommitdiff
path: root/libjava/classpath/gnu/java/awt/java2d/AbstractGraphics2D.java
diff options
context:
space:
mode:
authorMark Wielaard <mark@gcc.gnu.org>2006-05-18 17:29:21 +0000
committerMark Wielaard <mark@gcc.gnu.org>2006-05-18 17:29:21 +0000
commit4f9533c7722fa07511a94d005227961f4a4dec23 (patch)
tree9f9c470de62ee62fba1331a396450d728d2b1fad /libjava/classpath/gnu/java/awt/java2d/AbstractGraphics2D.java
parenteaec4980e139903ae9b274d1abcf3a13946603a8 (diff)
downloadgcc-4f9533c7722fa07511a94d005227961f4a4dec23.tar.gz
Imported GNU Classpath 0.90
Imported GNU Classpath 0.90 * scripts/makemake.tcl: LocaleData.java moved to gnu/java/locale. * sources.am: Regenerated. * gcj/javaprims.h: Regenerated. * Makefile.in: Regenerated. * gcj/Makefile.in: Regenerated. * include/Makefile.in: Regenerated. * testsuite/Makefile.in: Regenerated. * gnu/java/lang/VMInstrumentationImpl.java: New override. * gnu/java/net/local/LocalSocketImpl.java: Likewise. * gnu/classpath/jdwp/VMMethod.java: Likewise. * gnu/classpath/jdwp/VMVirtualMachine.java: Update to latest interface. * java/lang/Thread.java: Add UncaughtExceptionHandler. * java/lang/reflect/Method.java: Implements GenericDeclaration and isSynthetic(), * java/lang/reflect/Field.java: Likewise. * java/lang/reflect/Constructor.java * java/lang/Class.java: Implements Type, GenericDeclaration, getSimpleName() and getEnclosing*() methods. * java/lang/Class.h: Add new public methods. * java/lang/Math.java: Add signum(), ulp() and log10(). * java/lang/natMath.cc (log10): New function. * java/security/VMSecureRandom.java: New override. * java/util/logging/Logger.java: Updated to latest classpath version. * java/util/logging/LogManager.java: New override. From-SVN: r113887
Diffstat (limited to 'libjava/classpath/gnu/java/awt/java2d/AbstractGraphics2D.java')
-rw-r--r--libjava/classpath/gnu/java/awt/java2d/AbstractGraphics2D.java1951
1 files changed, 1951 insertions, 0 deletions
diff --git a/libjava/classpath/gnu/java/awt/java2d/AbstractGraphics2D.java b/libjava/classpath/gnu/java/awt/java2d/AbstractGraphics2D.java
new file mode 100644
index 00000000000..e93c43e08af
--- /dev/null
+++ b/libjava/classpath/gnu/java/awt/java2d/AbstractGraphics2D.java
@@ -0,0 +1,1951 @@
+/* AbstractGraphics2D.java -- Abstract Graphics2D implementation
+ Copyright (C) 2006 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package gnu.java.awt.java2d;
+
+import java.awt.AWTError;
+import java.awt.AlphaComposite;
+import java.awt.BasicStroke;
+import java.awt.Color;
+import java.awt.Composite;
+import java.awt.CompositeContext;
+import java.awt.Font;
+import java.awt.FontMetrics;
+import java.awt.Graphics;
+import java.awt.Graphics2D;
+import java.awt.Image;
+import java.awt.Paint;
+import java.awt.PaintContext;
+import java.awt.Polygon;
+import java.awt.Rectangle;
+import java.awt.RenderingHints;
+import java.awt.Shape;
+import java.awt.Stroke;
+import java.awt.Toolkit;
+import java.awt.RenderingHints.Key;
+import java.awt.font.FontRenderContext;
+import java.awt.font.GlyphVector;
+import java.awt.geom.AffineTransform;
+import java.awt.geom.Arc2D;
+import java.awt.geom.Area;
+import java.awt.geom.Ellipse2D;
+import java.awt.geom.GeneralPath;
+import java.awt.geom.Line2D;
+import java.awt.geom.NoninvertibleTransformException;
+import java.awt.geom.PathIterator;
+import java.awt.geom.Rectangle2D;
+import java.awt.geom.RoundRectangle2D;
+import java.awt.image.BufferedImage;
+import java.awt.image.BufferedImageOp;
+import java.awt.image.ColorModel;
+import java.awt.image.ImageObserver;
+import java.awt.image.Raster;
+import java.awt.image.RenderedImage;
+import java.awt.image.WritableRaster;
+import java.awt.image.renderable.RenderableImage;
+import java.text.AttributedCharacterIterator;
+import java.util.ArrayList;
+import java.util.HashMap;
+import java.util.Iterator;
+import java.util.Map;
+
+/**
+ * Implements general and shared behaviour for Graphics2D implementation.
+ *
+ * @author Roman Kennke (kennke@aicas.com)
+ */
+public abstract class AbstractGraphics2D
+ extends Graphics2D
+ implements Cloneable
+{
+
+ /**
+ * Accuracy of the sampling in the anti-aliasing shape filler.
+ * Lower values give more speed, while higher values give more quality.
+ * It is advisable to choose powers of two.
+ */
+ private static final int AA_SAMPLING = 8;
+
+ /**
+ * The transformation for this Graphics2D instance
+ */
+ private AffineTransform transform;
+
+ /**
+ * The foreground.
+ */
+ private Paint paint;
+
+ /**
+ * The background.
+ */
+ private Color background;
+
+ /**
+ * The current font.
+ */
+ private Font font;
+
+ /**
+ * The current composite setting.
+ */
+ private Composite composite;
+
+ /**
+ * The current stroke setting.
+ */
+ private Stroke stroke;
+
+ /**
+ * The current clip. This clip is in user coordinate space.
+ */
+ private Shape clip;
+
+ /**
+ * The rendering hints.
+ */
+ private RenderingHints renderingHints;
+
+ /**
+ * The paint raster.
+ */
+ private Raster paintRaster;
+
+ /**
+ * A cached pixel array.
+ */
+ private int[] pixel;
+
+ /**
+ * The raster of the destination surface. This is where the painting is
+ * performed.
+ */
+ private WritableRaster destinationRaster;
+
+ /**
+ * Stores the alpha values for a scanline in the anti-aliasing shape
+ * renderer.
+ */
+ private transient int[] alpha;
+
+ /**
+ * The edge table for the scanline conversion algorithms.
+ */
+ private transient ArrayList[] edgeTable;
+
+ /**
+ * Indicates if cerain graphics primitives can be rendered in an optimized
+ * fashion. This will be the case if the following conditions are met:
+ * - The transform may only be a translation, no rotation, shearing or
+ * scaling.
+ * - The paint must be a solid color.
+ * - The composite must be an AlphaComposite.SrcOver.
+ * - The clip must be a Rectangle.
+ * - The stroke must be a plain BasicStroke().
+ *
+ * These conditions represent the standard settings of a new
+ * AbstractGraphics2D object and will be the most commonly used setting
+ * in Swing rendering and should therefore be optimized as much as possible.
+ */
+ private boolean isOptimized;
+
+ /**
+ * Creates a new AbstractGraphics2D instance.
+ */
+ protected AbstractGraphics2D()
+ {
+ transform = new AffineTransform();
+ background = Color.WHITE;
+ composite = AlphaComposite.SrcOver;
+ stroke = new BasicStroke();
+ HashMap hints = new HashMap();
+ hints.put(RenderingHints.KEY_TEXT_ANTIALIASING,
+ RenderingHints.VALUE_TEXT_ANTIALIAS_DEFAULT);
+ hints.put(RenderingHints.KEY_ANTIALIASING,
+ RenderingHints.VALUE_ANTIALIAS_DEFAULT);
+ renderingHints = new RenderingHints(hints);
+
+ pixel = new int[4];
+ }
+
+ /**
+ * Draws the specified shape. The shape is passed through the current stroke
+ * and is then forwarded to {@link #fillShape}.
+ *
+ * @param shape the shape to draw
+ */
+ public void draw(Shape shape)
+ {
+ // Stroke the shape.
+ Shape strokedShape = stroke.createStrokedShape(shape);
+
+ // Clip the stroked shape.
+// Shape clipped = clipShape(strokedShape);
+// if (clipped != null)
+// {
+// // Fill the shape.
+// fillShape(clipped, false);
+// }
+ // FIXME: Clipping doesn't seem to work.
+ fillShape(strokedShape, false);
+ }
+
+ public boolean drawImage(Image image, AffineTransform xform, ImageObserver obs)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ public void drawImage(BufferedImage image, BufferedImageOp op, int x, int y)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ public void drawRenderedImage(RenderedImage image, AffineTransform xform)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ public void drawRenderableImage(RenderableImage image, AffineTransform xform)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ /**
+ * Draws the specified string at the specified location.
+ *
+ * @param text the string to draw
+ * @param x the x location, relative to the bounding rectangle of the text
+ * @param y the y location, relative to the bounding rectangle of the text
+ */
+ public void drawString(String text, int x, int y)
+ {
+ FontRenderContext ctx = getFontRenderContext();
+ GlyphVector gv = font.createGlyphVector(ctx, text.toCharArray());
+ drawGlyphVector(gv, x, y);
+ }
+
+ /**
+ * Draws the specified string at the specified location.
+ *
+ * @param text the string to draw
+ * @param x the x location, relative to the bounding rectangle of the text
+ * @param y the y location, relative to the bounding rectangle of the text
+ */
+ public void drawString(String text, float x, float y)
+ {
+ FontRenderContext ctx = getFontRenderContext();
+ GlyphVector gv = font.createGlyphVector(ctx, text.toCharArray());
+ drawGlyphVector(gv, x, y);
+ }
+
+ /**
+ * Draws the specified string (as AttributedCharacterIterator) at the
+ * specified location.
+ *
+ * @param iterator the string to draw
+ * @param x the x location, relative to the bounding rectangle of the text
+ * @param y the y location, relative to the bounding rectangle of the text
+ */
+ public void drawString(AttributedCharacterIterator iterator, int x, int y)
+ {
+ FontRenderContext ctx = getFontRenderContext();
+ GlyphVector gv = font.createGlyphVector(ctx, iterator);
+ drawGlyphVector(gv, x, y);
+ }
+
+ /**
+ * Draws the specified string (as AttributedCharacterIterator) at the
+ * specified location.
+ *
+ * @param iterator the string to draw
+ * @param x the x location, relative to the bounding rectangle of the text
+ * @param y the y location, relative to the bounding rectangle of the text
+ */
+ public void drawString(AttributedCharacterIterator iterator, float x, float y)
+ {
+ FontRenderContext ctx = getFontRenderContext();
+ GlyphVector gv = font.createGlyphVector(ctx, iterator);
+ drawGlyphVector(gv, x, y);
+ }
+
+ /**
+ * Fills the specified shape with the current foreground.
+ *
+ * @param shape the shape to fill
+ */
+ public void fill(Shape shape)
+ {
+// Shape clipped = clipShape(shape);
+// if (clipped != null)
+// fillShape(clipped, false);
+ fillShape(shape, false);
+ }
+
+ public boolean hit(Rectangle rect, Shape text, boolean onStroke)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ /**
+ * Sets the composite.
+ *
+ * @param comp the composite to set
+ */
+ public void setComposite(Composite comp)
+ {
+ composite = comp;
+ if (! (comp.equals(AlphaComposite.SrcOver)))
+ isOptimized = false;
+ else
+ updateOptimization();
+ }
+
+ /**
+ * Sets the current foreground.
+ *
+ * @param p the foreground to set.
+ */
+ public void setPaint(Paint p)
+ {
+ if (p != null)
+ {
+ paint = p;
+
+ if (! (paint instanceof Color))
+ isOptimized = false;
+ else
+ {
+ updateOptimization();
+ rawSetForeground((Color) paint);
+ }
+ }
+ }
+
+ /**
+ * Sets the stroke for this graphics object.
+ *
+ * @param s the stroke to set
+ */
+ public void setStroke(Stroke s)
+ {
+ stroke = s;
+ if (! stroke.equals(new BasicStroke()))
+ isOptimized = false;
+ else
+ updateOptimization();
+ }
+
+ /**
+ * Sets the specified rendering hint.
+ *
+ * @param hintKey the key of the rendering hint
+ * @param hintValue the value
+ */
+ public void setRenderingHint(Key hintKey, Object hintValue)
+ {
+ renderingHints.put(hintKey, hintValue);
+ }
+
+ /**
+ * Returns the rendering hint for the specified key.
+ *
+ * @param hintKey the rendering hint key
+ *
+ * @return the rendering hint for the specified key
+ */
+ public Object getRenderingHint(Key hintKey)
+ {
+ return renderingHints.get(hintKey);
+ }
+
+ /**
+ * Sets the specified rendering hints.
+ *
+ * @param hints the rendering hints to set
+ */
+ public void setRenderingHints(Map hints)
+ {
+ renderingHints.clear();
+ renderingHints.putAll(hints);
+ }
+
+ /**
+ * Adds the specified rendering hints.
+ *
+ * @param hints the rendering hints to add
+ */
+ public void addRenderingHints(Map hints)
+ {
+ renderingHints.putAll(hints);
+ }
+
+ /**
+ * Returns the current rendering hints.
+ *
+ * @return the current rendering hints
+ */
+ public RenderingHints getRenderingHints()
+ {
+ return (RenderingHints) renderingHints.clone();
+ }
+
+ /**
+ * Translates the coordinate system by (x, y).
+ *
+ * @param x the translation X coordinate
+ * @param y the translation Y coordinate
+ */
+ public void translate(int x, int y)
+ {
+ transform.translate(x, y);
+
+ // Update the clip. We special-case rectangular clips here, because they
+ // are so common (e.g. in Swing).
+ if (clip != null)
+ {
+ if (clip instanceof Rectangle)
+ {
+ Rectangle r = (Rectangle) clip;
+ r.x -= x;
+ r.y -= y;
+ setClip(r);
+ }
+ else
+ {
+ AffineTransform clipTransform = new AffineTransform();
+ clipTransform.translate(-x, -y);
+ updateClip(clipTransform);
+ }
+ }
+ }
+
+ /**
+ * Translates the coordinate system by (tx, ty).
+ *
+ * @param tx the translation X coordinate
+ * @param ty the translation Y coordinate
+ */
+ public void translate(double tx, double ty)
+ {
+ transform.translate(tx, ty);
+
+ // Update the clip. We special-case rectangular clips here, because they
+ // are so common (e.g. in Swing).
+ if (clip != null)
+ {
+ if (clip instanceof Rectangle)
+ {
+ Rectangle r = (Rectangle) clip;
+ r.x -= tx;
+ r.y -= ty;
+ }
+ else
+ {
+ AffineTransform clipTransform = new AffineTransform();
+ clipTransform.translate(-tx, -ty);
+ updateClip(clipTransform);
+ }
+ }
+ }
+
+ /**
+ * Rotates the coordinate system by <code>theta</code> degrees.
+ *
+ * @param theta the angle be which to rotate the coordinate system
+ */
+ public void rotate(double theta)
+ {
+ transform.rotate(theta);
+ if (clip != null)
+ {
+ AffineTransform clipTransform = new AffineTransform();
+ clipTransform.rotate(-theta);
+ updateClip(clipTransform);
+ }
+ updateOptimization();
+ }
+
+ /**
+ * Rotates the coordinate system by <code>theta</code> around the point
+ * (x, y).
+ *
+ * @param theta the angle by which to rotate the coordinate system
+ * @param x the point around which to rotate, X coordinate
+ * @param y the point around which to rotate, Y coordinate
+ */
+ public void rotate(double theta, double x, double y)
+ {
+ transform.rotate(theta, x, y);
+ if (clip != null)
+ {
+ AffineTransform clipTransform = new AffineTransform();
+ clipTransform.rotate(-theta, x, y);
+ updateClip(clipTransform);
+ }
+ updateOptimization();
+ }
+
+ /**
+ * Scales the coordinate system by the factors <code>scaleX</code> and
+ * <code>scaleY</code>.
+ *
+ * @param scaleX the factor by which to scale the X axis
+ * @param scaleY the factor by which to scale the Y axis
+ */
+ public void scale(double scaleX, double scaleY)
+ {
+ transform.scale(scaleX, scaleY);
+ if (clip != null)
+ {
+ AffineTransform clipTransform = new AffineTransform();
+ clipTransform.scale(-scaleX, -scaleY);
+ updateClip(clipTransform);
+ }
+ updateOptimization();
+ }
+
+ /**
+ * Shears the coordinate system by <code>shearX</code> and
+ * <code>shearY</code>.
+ *
+ * @param shearX the X shearing
+ * @param shearY the Y shearing
+ */
+ public void shear(double shearX, double shearY)
+ {
+ transform.shear(shearX, shearY);
+ if (clip != null)
+ {
+ AffineTransform clipTransform = new AffineTransform();
+ clipTransform.shear(-shearX, -shearY);
+ updateClip(clipTransform);
+ }
+ updateOptimization();
+ }
+
+ /**
+ * Transforms the coordinate system using the specified transform
+ * <code>t</code>.
+ *
+ * @param t the transform
+ */
+ public void transform(AffineTransform t)
+ {
+ transform.concatenate(t);
+ try
+ {
+ AffineTransform clipTransform = t.createInverse();
+ updateClip(clipTransform);
+ }
+ catch (NoninvertibleTransformException ex)
+ {
+ // TODO: How can we deal properly with this?
+ ex.printStackTrace();
+ }
+ updateOptimization();
+ }
+
+ /**
+ * Sets the transformation for this Graphics object.
+ *
+ * @param t the transformation to set
+ */
+ public void setTransform(AffineTransform t)
+ {
+ // Transform clip into target space using the old transform.
+ updateClip(transform);
+ transform.setTransform(t);
+ // Transform the clip back into user space using the inverse new transform.
+ try
+ {
+ updateClip(transform.createInverse());
+ }
+ catch (NoninvertibleTransformException ex)
+ {
+ // TODO: How can we deal properly with this?
+ ex.printStackTrace();
+ }
+ updateOptimization();
+ }
+
+ /**
+ * Returns the transformation of this coordinate system.
+ *
+ * @return the transformation of this coordinate system
+ */
+ public AffineTransform getTransform()
+ {
+ return (AffineTransform) transform.clone();
+ }
+
+ /**
+ * Returns the current foreground.
+ *
+ * @return the current foreground
+ */
+ public Paint getPaint()
+ {
+ return paint;
+ }
+
+
+ /**
+ * Returns the current composite.
+ *
+ * @return the current composite
+ */
+ public Composite getComposite()
+ {
+ return composite;
+ }
+
+ /**
+ * Sets the current background.
+ *
+ * @param color the background to set.
+ */
+ public void setBackground(Color color)
+ {
+ background = color;
+ }
+
+ /**
+ * Returns the current background.
+ *
+ * @return the current background
+ */
+ public Color getBackground()
+ {
+ return background;
+ }
+
+ /**
+ * Returns the current stroke.
+ *
+ * @return the current stroke
+ */
+ public Stroke getStroke()
+ {
+ return stroke;
+ }
+
+ /**
+ * Intersects the clip of this graphics object with the specified clip.
+ *
+ * @param s the clip with which the current clip should be intersected
+ */
+ public void clip(Shape s)
+ {
+ // Initialize clip if not already present.
+ if (clip == null)
+ clip = s;
+
+ // This is so common, let's optimize this.
+ else if (clip instanceof Rectangle && s instanceof Rectangle)
+ {
+ Rectangle clipRect = (Rectangle) clip;
+ Rectangle r = (Rectangle) s;
+ computeIntersection(r.x, r.y, r.width, r.height, clipRect);
+ // Call setClip so that subclasses get notified.
+ setClip(clipRect);
+ }
+ else
+ {
+ Area current;
+ if (clip instanceof Area)
+ current = (Area) clip;
+ else
+ current = new Area(clip);
+
+ Area intersect;
+ if (s instanceof Area)
+ intersect = (Area) s;
+ else
+ intersect = new Area(s);
+
+ current.intersect(intersect);
+ clip = current;
+ isOptimized = false;
+ // Call setClip so that subclasses get notified.
+ setClip(clip);
+ }
+ }
+
+ public FontRenderContext getFontRenderContext()
+ {
+ //return new FontRenderContext(transform, false, false);
+ return new FontRenderContext(new AffineTransform(), false, false);
+ }
+
+ /**
+ * Draws the specified glyph vector at the specified location.
+ *
+ * @param gv the glyph vector to draw
+ * @param x the location, x coordinate
+ * @param y the location, y coordinate
+ */
+ public void drawGlyphVector(GlyphVector gv, float x, float y)
+ {
+ int numGlyphs = gv.getNumGlyphs();
+ AffineTransform t = new AffineTransform();
+ t.translate(x, y);
+
+// // TODO: We could use fill(gv.getOutline()), but that seems to be
+ // slightly more inefficient.
+ for (int i = 0; i < numGlyphs; i++)
+ {
+ //fill(gv.getGlyphVisualBounds(i));
+ GeneralPath p = new GeneralPath(gv.getGlyphOutline(i));
+ p.transform(t);
+ //Shape clipped = clipShape(p);
+ //if (clipped != null)
+ // fillShape(clipped, true);
+ // FIXME: Clipping doesn't seem to work correctly.
+ fillShape(p, true);
+ }
+ }
+
+ /**
+ * Creates a copy of this graphics object.
+ *
+ * @return a copy of this graphics object
+ */
+ public Graphics create()
+ {
+ AbstractGraphics2D copy = (AbstractGraphics2D) clone();
+ return copy;
+ }
+
+ /**
+ * Creates and returns a copy of this Graphics object. This should
+ * be overridden by subclasses if additional state must be handled when
+ * cloning. This is called by {@link #create()}.
+ *
+ * @return a copy of this Graphics object
+ */
+ protected Object clone()
+ {
+ try
+ {
+ AbstractGraphics2D copy = (AbstractGraphics2D) super.clone();
+ // Copy the clip. If it's a Rectangle, preserve that for optimization.
+ if (clip instanceof Rectangle)
+ copy.clip = new Rectangle((Rectangle) clip);
+ else
+ copy.clip = new GeneralPath(clip);
+
+ copy.renderingHints = new RenderingHints(renderingHints);
+ copy.transform = new AffineTransform(transform);
+ // The remaining state is inmmutable and doesn't need to be copied.
+ return copy;
+ }
+ catch (CloneNotSupportedException ex)
+ {
+ AWTError err = new AWTError("Unexpected exception while cloning");
+ err.initCause(ex);
+ throw err;
+ }
+ }
+
+ /**
+ * Returns the current foreground.
+ */
+ public Color getColor()
+ {
+ Color c = null;
+ if (paint instanceof Color)
+ c = (Color) paint;
+ return c;
+ }
+
+ /**
+ * Sets the current foreground.
+ *
+ * @param color the foreground to set
+ */
+ public void setColor(Color color)
+ {
+ setPaint(color);
+ }
+
+ public void setPaintMode()
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ public void setXORMode(Color color)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ /**
+ * Returns the current font.
+ *
+ * @return the current font
+ */
+ public Font getFont()
+ {
+ return font;
+ }
+
+ /**
+ * Sets the font on this graphics object. When <code>f == null</code>, the
+ * current setting is not changed.
+ *
+ * @param f the font to set
+ */
+ public void setFont(Font f)
+ {
+ if (f != null)
+ font = f;
+ }
+
+ /**
+ * Returns the font metrics for the specified font.
+ *
+ * @param font the font for which to fetch the font metrics
+ *
+ * @return the font metrics for the specified font
+ */
+ public FontMetrics getFontMetrics(Font font)
+ {
+ return Toolkit.getDefaultToolkit().getFontMetrics(font);
+ }
+
+ /**
+ * Returns the bounds of the current clip.
+ *
+ * @return the bounds of the current clip
+ */
+ public Rectangle getClipBounds()
+ {
+ Rectangle b = null;
+ if (clip != null)
+ b = clip.getBounds();
+ return b;
+ }
+
+ /**
+ * Intersects the current clipping region with the specified rectangle.
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param width the width of the rectangle
+ * @param height the height of the rectangle
+ */
+ public void clipRect(int x, int y, int width, int height)
+ {
+ clip(new Rectangle(x, y, width, height));
+ }
+
+ /**
+ * Sets the clip to the specified rectangle.
+ *
+ * @param x the x coordinate of the clip rectangle
+ * @param y the y coordinate of the clip rectangle
+ * @param width the width of the clip rectangle
+ * @param height the height of the clip rectangle
+ */
+ public void setClip(int x, int y, int width, int height)
+ {
+ setClip(new Rectangle(x, y, width, height));
+ }
+
+ /**
+ * Returns the current clip.
+ *
+ * @return the current clip
+ */
+ public Shape getClip()
+ {
+ return clip;
+ }
+
+ /**
+ * Sets the current clipping area to <code>clip</code>.
+ *
+ * @param c the clip to set
+ */
+ public void setClip(Shape c)
+ {
+ clip = c;
+ if (! (clip instanceof Rectangle))
+ isOptimized = false;
+ else
+ updateOptimization();
+ }
+
+ public void copyArea(int x, int y, int width, int height, int dx, int dy)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ /**
+ * Draws a line from (x1, y1) to (x2, y2).
+ *
+ * This implementation transforms the coordinates and forwards the call to
+ * {@link #rawDrawLine}.
+ */
+ public void drawLine(int x1, int y1, int x2, int y2)
+ {
+ if (isOptimized)
+ {
+ int tx = (int) transform.getTranslateX();
+ int ty = (int) transform.getTranslateY();
+ rawDrawLine(x1 + tx, y1 + ty, x2 + tx, y2 + ty);
+ }
+ else
+ {
+ Line2D line = new Line2D.Double(x1, y1, x2, y2);
+ draw(line);
+ }
+ }
+
+ /**
+ * Fills a rectangle with the current paint.
+ *
+ * @param x the upper left corner, X coordinate
+ * @param y the upper left corner, Y coordinate
+ * @param width the width of the rectangle
+ * @param height the height of the rectangle
+ */
+ public void fillRect(int x, int y, int width, int height)
+ {
+ if (isOptimized)
+ {
+ int tx = (int) transform.getTranslateX();
+ int ty = (int) transform.getTranslateY();
+ rawFillRect(x + tx, y + ty, width, height);
+ }
+ else
+ {
+ fill(new Rectangle(x, y, width, height));
+ }
+ }
+
+ /**
+ * Fills a rectangle with the current background color.
+ *
+ * This implementation temporarily sets the foreground color to the
+ * background and forwards the call to {@link #fillRect(int, int, int, int)}.
+ *
+ * @param x the upper left corner, X coordinate
+ * @param y the upper left corner, Y coordinate
+ * @param width the width of the rectangle
+ * @param height the height of the rectangle
+ */
+ public void clearRect(int x, int y, int width, int height)
+ {
+ Paint savedForeground = getPaint();
+ setPaint(getBackground());
+ //System.err.println("clearRect transform type: " + transform.getType());
+ fillRect(x, y, width, height);
+ setPaint(savedForeground);
+ }
+
+ /**
+ * Draws a rounded rectangle.
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param width the width of the rectangle
+ * @param height the height of the rectangle
+ * @param arcWidth the width of the arcs
+ * @param arcHeight the height of the arcs
+ */
+ public void drawRoundRect(int x, int y, int width, int height, int arcWidth,
+ int arcHeight)
+ {
+ draw(new RoundRectangle2D.Double(x, y, width, height, arcWidth,
+ arcHeight));
+ }
+
+ /**
+ * Fills a rounded rectangle.
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param width the width of the rectangle
+ * @param height the height of the rectangle
+ * @param arcWidth the width of the arcs
+ * @param arcHeight the height of the arcs
+ */
+ public void fillRoundRect(int x, int y, int width, int height, int arcWidth,
+ int arcHeight)
+ {
+ fill(new RoundRectangle2D.Double(x, y, width, height, arcWidth,
+ arcHeight));
+ }
+
+ /**
+ * Draws the outline of an oval.
+ *
+ * @param x the upper left corner of the bounding rectangle of the ellipse
+ * @param y the upper left corner of the bounding rectangle of the ellipse
+ * @param width the width of the ellipse
+ * @param height the height of the ellipse
+ */
+ public void drawOval(int x, int y, int width, int height)
+ {
+ draw(new Ellipse2D.Double(x, y, width, height));
+ }
+
+ /**
+ * Fills an oval.
+ *
+ * @param x the upper left corner of the bounding rectangle of the ellipse
+ * @param y the upper left corner of the bounding rectangle of the ellipse
+ * @param width the width of the ellipse
+ * @param height the height of the ellipse
+ */
+ public void fillOval(int x, int y, int width, int height)
+ {
+ fill(new Ellipse2D.Double(x, y, width, height));
+ }
+
+ /**
+ * Draws an arc.
+ */
+ public void drawArc(int x, int y, int width, int height, int arcStart,
+ int arcAngle)
+ {
+ draw(new Arc2D.Double(x, y, width, height, arcStart, arcAngle,
+ Arc2D.OPEN));
+ }
+
+ /**
+ * Fills an arc.
+ */
+ public void fillArc(int x, int y, int width, int height, int arcStart,
+ int arcAngle)
+ {
+ fill(new Arc2D.Double(x, y, width, height, arcStart, arcAngle,
+ Arc2D.OPEN));
+ }
+
+ public void drawPolyline(int[] xPoints, int[] yPoints, int npoints)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ /**
+ * Draws the outline of a polygon.
+ */
+ public void drawPolygon(int[] xPoints, int[] yPoints, int npoints)
+ {
+ draw(new Polygon(xPoints, yPoints, npoints));
+ }
+
+ /**
+ * Fills the outline of a polygon.
+ */
+ public void fillPolygon(int[] xPoints, int[] yPoints, int npoints)
+ {
+ fill(new Polygon(xPoints, yPoints, npoints));
+ }
+
+ public boolean drawImage(Image image, int x, int y, ImageObserver observer)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ public boolean drawImage(Image image, int x, int y, int width, int height,
+ ImageObserver observer)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ public boolean drawImage(Image image, int x, int y, Color bgcolor,
+ ImageObserver observer)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ public boolean drawImage(Image image, int x, int y, int width, int height,
+ Color bgcolor, ImageObserver observer)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ public boolean drawImage(Image image, int dx1, int dy1, int dx2, int dy2,
+ int sx1, int sy1, int sx2, int sy2,
+ ImageObserver observer)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ public boolean drawImage(Image image, int dx1, int dy1, int dx2, int dy2,
+ int sx1, int sy1, int sx2, int sy2, Color bgcolor,
+ ImageObserver observer)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ /**
+ * Disposes this graphics object.
+ */
+ public void dispose()
+ {
+ // Nothing special to do here.
+ }
+
+ /**
+ * Fills the specified shape. The shape has already been clipped against the
+ * current clip.
+ *
+ * @param s the shape to fill
+ * @param isFont <code>true</code> if the shape is a font outline
+ */
+ protected void fillShape(Shape s, boolean isFont)
+ {
+ // Determine if we need to antialias stuff.
+ boolean antialias = false;
+ if (isFont)
+ {
+ Object v = renderingHints.get(RenderingHints.KEY_TEXT_ANTIALIASING);
+ // We default to antialiasing on for text as long as we have no
+ // good hinting implemented.
+ antialias = (v == RenderingHints.VALUE_TEXT_ANTIALIAS_ON
+ || v == RenderingHints.VALUE_TEXT_ANTIALIAS_DEFAULT);
+ }
+ else
+ {
+ Object v = renderingHints.get(RenderingHints.KEY_ANTIALIASING);
+ antialias = (v == RenderingHints.VALUE_ANTIALIAS_ON);
+ }
+
+ Rectangle2D userBounds = s.getBounds2D();
+
+ // Flatten the path. TODO: Determine the best flattening factor
+ // wrt to speed and quality.
+ PathIterator path = s.getPathIterator(getTransform(), 1.0);
+
+ // Build up polygons and let the native backend render this using
+ // rawFillShape() which would provide a default implementation for
+ // drawPixel using a PolyScan algorithm.
+ double[] seg = new double[6];
+
+ // TODO: Use ArrayList<PolyEdge> here when availble.
+ ArrayList segs = new ArrayList();
+ double segX = 0.; // The start point of the current edge.
+ double segY = 0.;
+ double polyX = 0.; // The start point of the current polygon.
+ double polyY = 0.;
+
+ double minX = Integer.MAX_VALUE;
+ double maxX = Integer.MIN_VALUE;
+ double minY = Integer.MAX_VALUE;
+ double maxY = Integer.MIN_VALUE;
+
+ //System.err.println("fill polygon");
+ while (! path.isDone())
+ {
+ int segType = path.currentSegment(seg);
+ minX = Math.min(minX, seg[0]);
+ maxX = Math.max(maxX, seg[0]);
+ minY = Math.min(minY, seg[1]);
+ maxY = Math.max(maxY, seg[1]);
+
+ //System.err.println("segment: " + segType + ", " + seg[0] + ", " + seg[1]);
+ if (segType == PathIterator.SEG_MOVETO)
+ {
+ segX = seg[0];
+ segY = seg[1];
+ polyX = seg[0];
+ polyY = seg[1];
+ }
+ else if (segType == PathIterator.SEG_CLOSE)
+ {
+ // Close the polyline.
+ PolyEdge edge = new PolyEdge(segX, segY, polyX, polyY);
+ segs.add(edge);
+ }
+ else if (segType == PathIterator.SEG_LINETO)
+ {
+ PolyEdge edge = new PolyEdge(segX, segY, seg[0], seg[1]);
+ segs.add(edge);
+ segX = seg[0];
+ segY = seg[1];
+ }
+ path.next();
+ }
+ if (segs.size() > 0)
+ {
+ if (antialias)
+ fillShapeAntialias(segs, minX, minY, maxX, maxY, userBounds);
+ else
+ rawFillShape(segs, minX, minY, maxX, maxY, userBounds);
+ }
+ }
+
+ /**
+ * Draws one pixel in the target coordinate space. This method draws the
+ * specified pixel by getting the painting pixel for that coordinate
+ * from the paintContext and compositing the pixel with the compositeContext.
+ * The resulting pixel is then set by calling {@link #rawSetPixel}.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ */
+ protected void drawPixel(int x, int y)
+ {
+ // FIXME: Implement efficient compositing.
+ if (! (paint instanceof Color))
+ {
+ int[] paintPixel = paintRaster.getPixel(x, y, pixel);
+ Color c = new Color(paintPixel[0], paintPixel[1], paintPixel[2]);
+ rawSetForeground(c);
+ }
+ rawSetPixel(x, y);
+ }
+
+ /**
+ * Draws a pixel in the target coordinate space using the specified color.
+ *
+ * @param x the x coordinate
+ * @param y the y coordinate
+ */
+ protected void rawSetPixel(int x, int y)
+ {
+ // FIXME: Provide default implementation or remove method.
+ }
+
+ /**
+ * Sets the foreground color for drawing.
+ *
+ * @param c the color to set
+ */
+ protected void rawSetForeground(Color c)
+ {
+ // Probably remove method.
+ }
+
+ protected void rawSetForeground(int r, int g, int b)
+ {
+ rawSetForeground(new Color(r, g, b));
+ }
+
+ /**
+ * Returns the color model of this Graphics object.
+ *
+ * @return the color model of this Graphics object
+ */
+ protected abstract ColorModel getColorModel();
+
+ /**
+ * Returns the bounds of the target.
+ *
+ * @return the bounds of the target
+ */
+ protected Rectangle getDeviceBounds()
+ {
+ return destinationRaster.getBounds();
+ }
+
+ /**
+ * Returns the bounds of the drawing area in user space.
+ *
+ * @return the bounds of the drawing area in user space
+ */
+ protected Rectangle2D getUserBounds()
+ {
+ PathIterator pathIter = getDeviceBounds().getPathIterator(getTransform());
+ GeneralPath path = new GeneralPath();
+ path.append(pathIter, true);
+ return path.getBounds();
+
+ }
+ /**
+ * Draws a line in optimization mode. The implementation should respect the
+ * clip but can assume that it is a rectangle.
+ *
+ * @param x0 the starting point, X coordinate
+ * @param y0 the starting point, Y coordinate
+ * @param x1 the end point, X coordinate
+ * @param y1 the end point, Y coordinate
+ */
+ protected void rawDrawLine(int x0, int y0, int x1, int y1)
+ {
+ // This is an implementation of Bresenham's line drawing algorithm.
+ int dy = y1 - y0;
+ int dx = x1 - x0;
+ int stepx, stepy;
+
+ if (dy < 0)
+ {
+ dy = -dy;
+ stepy = -1;
+ }
+ else
+ {
+ stepy = 1;
+ }
+ if (dx < 0)
+ {
+ dx = -dx;
+ stepx = -1;
+ }
+ else
+ {
+ stepx = 1;
+ }
+ dy <<= 1;
+ dx <<= 1;
+
+ drawPixel(x0, y0);
+ if (dx > dy)
+ {
+ int fraction = dy - (dx >> 1); // same as 2*dy - dx
+ while (x0 != x1)
+ {
+ if (fraction >= 0)
+ {
+ y0 += stepy;
+ fraction -= dx;
+ }
+ x0 += stepx;
+ fraction += dy;
+ drawPixel(x0, y0);
+ }
+ }
+ else
+ {
+ int fraction = dx - (dy >> 1);
+ while (y0 != y1)
+ {
+ if (fraction >= 0)
+ {
+ x0 += stepx;
+ fraction -= dy;
+ }
+ y0 += stepy;
+ fraction += dx;
+ drawPixel(x0, y0);
+ }
+ }
+ }
+
+ /**
+ * Fills a rectangle in optimization mode. The implementation should respect
+ * the clip but can assume that it is a rectangle.
+ *
+ * @param x the upper left corner, X coordinate
+ * @param y the upper left corner, Y coordinate
+ * @param w the width
+ * @param h the height
+ */
+ protected void rawFillRect(int x, int y, int w, int h)
+ {
+ int x2 = x + w;
+ int y2 = y + h;
+ for (int xc = x; xc < x2; xc++)
+ {
+ for (int yc = y; yc < y2; yc++)
+ {
+ drawPixel(xc, yc);
+ }
+ }
+ }
+
+ /**
+ * Fills the specified polygon. This should be overridden by backends
+ * that support accelerated (native) polygon filling, which is the
+ * case for most toolkit window and offscreen image implementations.
+ *
+ * The polygon is already clipped when this method is called.
+ */
+ protected void rawFillShape(ArrayList segs, double minX, double minY,
+ double maxX, double maxY, Rectangle2D userBounds)
+ {
+ // This is an implementation of a polygon scanline conversion algorithm
+ // described here:
+ // http://www.cs.berkeley.edu/~ug/slide/pipeline/assignments/scan/
+
+ // Create table of all edges.
+ // The edge buckets, sorted and indexed by their Y values.
+
+ Rectangle deviceBounds = new Rectangle((int) minX, (int) minY,
+ (int) Math.ceil(maxX) - (int) minX,
+ (int) Math.ceil(maxY) - (int) minY);
+ PaintContext pCtx = paint.createContext(getColorModel(), deviceBounds,
+ userBounds, transform, renderingHints);
+
+ ArrayList[] edgeTable = new ArrayList[(int) Math.ceil(maxY)
+ - (int) Math.ceil(minY) + 1];
+
+ for (Iterator i = segs.iterator(); i.hasNext();)
+ {
+ PolyEdge edge = (PolyEdge) i.next();
+ int yindex = (int) ((int) Math.ceil(edge.y0) - (int) Math.ceil(minY));
+ if (edgeTable[yindex] == null) // Create bucket when needed.
+ edgeTable[yindex] = new ArrayList();
+ edgeTable[yindex].add(edge); // Add edge to the bucket of its line.
+ }
+
+ // TODO: The following could be useful for a future optimization.
+// // Sort all the edges in the edge table within their buckets.
+// for (int y = 0; y < edgeTable.length; y++)
+// {
+// if (edgeTable[y] != null)
+// Collections.sort(edgeTable[y]);
+// }
+
+ // The activeEdges list contains all the edges of the current scanline
+ // ordered by their intersection points with this scanline.
+ ArrayList activeEdges = new ArrayList();
+ PolyEdgeComparator comparator = new PolyEdgeComparator();
+
+ // Scan all relevant lines.
+ int minYInt = (int) Math.ceil(minY);
+ for (int y = minYInt; y <= maxY; y++)
+ {
+ ArrayList bucket = edgeTable[y - minYInt];
+ // Update all the x intersections in the current activeEdges table
+ // and remove entries that are no longer in the scanline.
+ for (Iterator i = activeEdges.iterator(); i.hasNext();)
+ {
+ PolyEdge edge = (PolyEdge) i.next();
+ if (y > edge.y1)
+ i.remove();
+ else
+ {
+ edge.xIntersection += edge.slope;
+ //edge.xIntersection = edge.x0 + edge.slope * (y - edge.y0);
+ //System.err.println("edge.xIntersection: " + edge.xIntersection);
+ }
+ }
+
+ if (bucket != null)
+ activeEdges.addAll(bucket);
+
+ // Sort current edges. We are using a bubble sort, because the order
+ // of the intersections will not change in most situations. They
+ // will only change, when edges intersect each other.
+ int size = activeEdges.size();
+ if (size > 1)
+ {
+ for (int i = 1; i < size; i++)
+ {
+ PolyEdge e1 = (PolyEdge) activeEdges.get(i - 1);
+ PolyEdge e2 = (PolyEdge) activeEdges.get(i);
+ if (comparator.compare(e1, e2) > 0)
+ {
+ // Swap e2 with its left neighbor until it 'fits'.
+ int j = i;
+ do
+ {
+ activeEdges.set(j, e1);
+ activeEdges.set(j - 1, e2);
+ j--;
+ if (j >= 1)
+ e1 = (PolyEdge) activeEdges.get(j - 1);
+ } while (j >= 1 && comparator.compare(e1, e2) > 0);
+ }
+ }
+ }
+
+ // Now draw all pixels inside the polygon.
+ // This is the last edge that intersected the scanline.
+ PolyEdge previous = null; // Gets initialized below.
+ boolean active = false;
+ //System.err.println("scanline: " + y);
+ for (Iterator i = activeEdges.iterator(); i.hasNext();)
+ {
+ PolyEdge edge = (PolyEdge) i.next();
+ // Only fill scanline, if the current edge actually intersects
+ // the scanline. There may be edges that lie completely
+ // within the current scanline.
+ //System.err.println("previous: " + previous);
+ //System.err.println("edge: " + edge);
+ if (active)
+ {
+ if (edge.y1 > y)
+ {
+ int x0 = (int) previous.xIntersection;
+ int x1 = (int) edge.xIntersection;
+ fillScanline(pCtx, x0, x1, y);
+ previous = edge;
+ active = false;
+ }
+ }
+ else
+ {
+ if (edge.y1 > y)
+ {
+ previous = edge;
+ active = true;
+ }
+ }
+ }
+ }
+ pCtx.dispose();
+ }
+
+ /**
+ * Paints a scanline between x0 and x1.
+ *
+ * @param x0 the left offset
+ * @param x1 the right offset
+ * @param y the scanline
+ */
+ protected void fillScanline(PaintContext pCtx, int x0, int x1, int y)
+ {
+ Raster paintRaster = pCtx.getRaster(x0, y, x1 - x0, 1);
+ ColorModel paintColorModel = pCtx.getColorModel();
+ CompositeContext cCtx = composite.createContext(paintColorModel,
+ getColorModel(),
+ renderingHints);
+ cCtx.compose(paintRaster, destinationRaster, destinationRaster);
+ updateRaster(destinationRaster, x0, y, x1 - x0, 1);
+ cCtx.dispose();
+ }
+
+ /**
+ * Fills arbitrary shapes in an anti-aliased fashion.
+ *
+ * @param segs the line segments which define the shape which is to be filled
+ * @param minX the bounding box, left X
+ * @param minY the bounding box, upper Y
+ * @param maxX the bounding box, right X
+ * @param maxY the bounding box, lower Y
+ */
+ private void fillShapeAntialias(ArrayList segs, double minX, double minY,
+ double maxX, double maxY,
+ Rectangle2D userBounds)
+ {
+ // This is an implementation of a polygon scanline conversion algorithm
+ // described here:
+ // http://www.cs.berkeley.edu/~ug/slide/pipeline/assignments/scan/
+ // The antialiasing is implemented using a sampling technique, we do
+ // not scan whole lines but fractions of the line.
+
+ Rectangle deviceBounds = new Rectangle((int) minX, (int) minY,
+ (int) Math.ceil(maxX) - (int) minX,
+ (int) Math.ceil(maxY) - (int) minY);
+ PaintContext pCtx = paint.createContext(getColorModel(), deviceBounds,
+ userBounds, transform,
+ renderingHints);
+
+ // This array will contain the oversampled transparency values for
+ // each pixel in the scanline.
+ int numScanlines = (int) Math.ceil(maxY) - (int) minY;
+ int numScanlinePixels = (int) Math.ceil(maxX) - (int) minX + 1;
+ if (alpha == null || alpha.length < (numScanlinePixels + 1))
+ alpha = new int[numScanlinePixels + 1];
+
+ int firstLine = (int) minY;
+ //System.err.println("minY: " + minY);
+ int firstSubline = (int) (Math.ceil((minY - Math.floor(minY)) * AA_SAMPLING));
+ double firstLineDouble = firstLine + firstSubline / (double) AA_SAMPLING;
+ //System.err.println("firstSubline: " + firstSubline);
+
+ // Create table of all edges.
+ // The edge buckets, sorted and indexed by their Y values.
+ //System.err.println("numScanlines: " + numScanlines);
+ if (edgeTable == null
+ || edgeTable.length < numScanlines * AA_SAMPLING + AA_SAMPLING)
+ edgeTable = new ArrayList[numScanlines * AA_SAMPLING + AA_SAMPLING];
+
+ //System.err.println("firstLineDouble: " + firstLineDouble);
+
+ for (Iterator i = segs.iterator(); i.hasNext();)
+ {
+ PolyEdge edge = (PolyEdge) i.next();
+ int yindex = (int) (Math.ceil((edge.y0 - firstLineDouble) * AA_SAMPLING));
+ //System.err.println("yindex: " + yindex + " for y0: " + edge.y0);
+ // Initialize edge's slope and initial xIntersection.
+ edge.slope = ((edge.x1 - edge.x0) / (edge.y1 - edge.y0)) / AA_SAMPLING;
+ if (edge.y0 == edge.y1) // Horizontal edge.
+ edge.xIntersection = Math.min(edge.x0, edge.x1);
+ else
+ {
+ double alignedFirst = Math.ceil(edge.y0 * AA_SAMPLING) / AA_SAMPLING;
+ edge.xIntersection = edge.x0 + (edge.slope * AA_SAMPLING) * (alignedFirst - edge.y0);
+ }
+ //System.err.println(edge);
+ // FIXME: Sanity check should not be needed when clipping works.
+ if (yindex >= 0 && yindex < edgeTable.length)
+ {
+ if (edgeTable[yindex] == null) // Create bucket when needed.
+ edgeTable[yindex] = new ArrayList();
+ edgeTable[yindex].add(edge); // Add edge to the bucket of its line.
+ }
+ }
+
+ // The activeEdges list contains all the edges of the current scanline
+ // ordered by their intersection points with this scanline.
+ ArrayList activeEdges = new ArrayList();
+ PolyEdgeComparator comparator = new PolyEdgeComparator();
+
+ // Scan all lines.
+ int yindex = 0;
+ //System.err.println("firstLine: " + firstLine + ", maxY: " + maxY + ", firstSubline: " + firstSubline);
+ for (int y = firstLine; y <= maxY; y++)
+ {
+ for (int subY = firstSubline; subY < AA_SAMPLING; subY++)
+ {
+ //System.err.println("scanline: " + y + ", subScanline: " + subY);
+ ArrayList bucket = edgeTable[yindex];
+ // Update all the x intersections in the current activeEdges table
+ // and remove entries that are no longer in the scanline.
+ for (Iterator i = activeEdges.iterator(); i.hasNext();)
+ {
+ PolyEdge edge = (PolyEdge) i.next();
+ // TODO: Do the following using integer arithmetics.
+ if ((y + ((double) subY / (double) AA_SAMPLING)) > edge.y1)
+ i.remove();
+ else
+ {
+ edge.xIntersection += edge.slope;
+ //System.err.println("edge: " + edge);
+ //edge.xIntersection = edge.x0 + edge.slope * (y - edge.y0);
+ //System.err.println("edge.xIntersection: " + edge.xIntersection);
+ }
+ }
+
+ if (bucket != null)
+ {
+ activeEdges.addAll(bucket);
+ edgeTable[yindex].clear();
+ }
+
+ // Sort current edges. We are using a bubble sort, because the order
+ // of the intersections will not change in most situations. They
+ // will only change, when edges intersect each other.
+ int size = activeEdges.size();
+ if (size > 1)
+ {
+ for (int i = 1; i < size; i++)
+ {
+ PolyEdge e1 = (PolyEdge) activeEdges.get(i - 1);
+ PolyEdge e2 = (PolyEdge) activeEdges.get(i);
+ if (comparator.compare(e1, e2) > 0)
+ {
+ // Swap e2 with its left neighbor until it 'fits'.
+ int j = i;
+ do
+ {
+ activeEdges.set(j, e1);
+ activeEdges.set(j - 1, e2);
+ j--;
+ if (j >= 1)
+ e1 = (PolyEdge) activeEdges.get(j - 1);
+ } while (j >= 1 && comparator.compare(e1, e2) > 0);
+ }
+ }
+ }
+
+ // Now draw all pixels inside the polygon.
+ // This is the last edge that intersected the scanline.
+ PolyEdge previous = null; // Gets initialized below.
+ boolean active = false;
+ //System.err.println("scanline: " + y + ", subscanline: " + subY);
+ for (Iterator i = activeEdges.iterator(); i.hasNext();)
+ {
+ PolyEdge edge = (PolyEdge) i.next();
+ // Only fill scanline, if the current edge actually intersects
+ // the scanline. There may be edges that lie completely
+ // within the current scanline.
+ //System.err.println("previous: " + previous);
+ //System.err.println("edge: " + edge);
+ if (active)
+ {
+ // TODO: Use integer arithmetics here.
+ if (edge.y1 > (y + (subY / (double) AA_SAMPLING)))
+ {
+ //System.err.println(edge);
+ // TODO: Eliminate the aligments.
+ int x0 = (int) Math.min(Math.max(previous.xIntersection, minX), maxX);
+ int x1 = (int) Math.min(Math.max(edge.xIntersection, minX), maxX);
+ //System.err.println("minX: " + minX + ", x0: " + x0 + ", x1: " + x1 + ", maxX: " + maxX);
+ // TODO: Pull out cast.
+ alpha[x0 - (int) minX]++;
+ alpha[x1 - (int) minX + 1]--;
+ previous = edge;
+ active = false;
+ }
+ }
+ else
+ {
+ // TODO: Use integer arithmetics here.
+ if (edge.y1 > (y + (subY / (double) AA_SAMPLING)))
+ {
+ //System.err.println(edge);
+ previous = edge;
+ active = true;
+ }
+ }
+ }
+ yindex++;
+ }
+ firstSubline = 0;
+ // Render full scanline.
+ //System.err.println("scanline: " + y);
+ fillScanlineAA(alpha, (int) minX, (int) y, numScanlinePixels, pCtx);
+ }
+ if (paint instanceof Color && composite == AlphaComposite.SrcOver)
+ rawSetForeground((Color) paint);
+
+ pCtx.dispose();
+ }
+
+ /**
+ * Fills a horizontal line between x0 and x1 for anti aliased rendering.
+ * the alpha array contains the deltas of the alpha values from one pixel
+ * to the next.
+ *
+ * @param alpha the alpha values in the scanline
+ * @param x0 the beginning of the scanline
+ * @param y the y coordinate of the line
+ */
+ private void fillScanlineAA(int[] alpha, int x0, int y, int numScanlinePixels,
+ PaintContext pCtx)
+ {
+ // FIXME: This doesn't work. Fixit.
+ CompositeContext cCtx = composite.createContext(pCtx.getColorModel(),
+ getColorModel(),
+ renderingHints);
+ Raster paintRaster = pCtx.getRaster(x0, y, numScanlinePixels, 1);
+ System.err.println("paintColorModel: " + pCtx.getColorModel());
+ WritableRaster aaRaster = paintRaster.createCompatibleWritableRaster();
+ int numBands = paintRaster.getNumBands();
+ int[] pixels = new int[numScanlinePixels + paintRaster.getNumBands()];
+ pixels = paintRaster.getPixels(x0, y, numScanlinePixels, 1, pixels);
+ ColorModel cm = pCtx.getColorModel();
+
+ double lastAlpha = 0.;
+ int lastAlphaInt = 0;
+ int[] components = new int[4];
+
+ for (int i = 0; i < pixels.length; i++)
+ {
+ if (alpha[i] != 0)
+ {
+ lastAlphaInt += alpha[i];
+ lastAlpha = lastAlphaInt / AA_SAMPLING;
+ }
+ components = cm.getComponents(pixel[i], components, 0);
+ components[0] = (int) (components[0] * lastAlpha);
+ pixel[i] = cm.getDataElement(components, 0);
+ }
+
+ aaRaster.setPixels(0, 0, numScanlinePixels, 1, pixels);
+ cCtx.compose(aaRaster, destinationRaster, destinationRaster);
+ updateRaster(destinationRaster, x0, y, numScanlinePixels, 1);
+
+ cCtx.dispose();
+ }
+
+
+ /**
+ * Initializes this graphics object. This must be called by subclasses in
+ * order to correctly initialize the state of this object.
+ */
+ protected void init()
+ {
+ setPaint(Color.BLACK);
+ setFont(new Font("SansSerif", Font.PLAIN, 12));
+ isOptimized = true;
+
+ // FIXME: Should not be necessary. A clip of null should mean
+ // 'clip against device bounds.
+ clip = getDeviceBounds();
+ destinationRaster = getDestinationRaster();
+ }
+
+ /**
+ * Returns a WritableRaster that is used by this class to perform the
+ * rendering in. It is not necessary that the target surface immediately
+ * reflects changes in the raster. Updates to the raster are notified via
+ * {@link #updateRaster}.
+ *
+ * @return the destination raster
+ */
+ protected abstract WritableRaster getDestinationRaster();
+
+ /**
+ * Notifies the backend that the raster has changed in the specified
+ * rectangular area. The raster that is provided in this method is always
+ * the same as the one returned in {@link #getDestinationRaster}.
+ * Backends that reflect changes to this raster directly don't need to do
+ * anything here.
+ *
+ * @param raster the updated raster, identical to the raster returned
+ * by {@link #getDestinationRaster()}
+ * @param x the upper left corner of the updated region, X coordinate
+ * @param y the upper lef corner of the updated region, Y coordinate
+ * @param w the width of the updated region
+ * @param h the height of the updated region
+ */
+ protected void updateRaster(Raster raster, int x, int y, int w, int h)
+ {
+ // Nothing to do here. Backends that need to update their surface
+ // to reflect the change should override this method.
+ }
+
+ // Some helper methods.
+
+ /**
+ * Helper method to check and update the optimization conditions.
+ */
+ private void updateOptimization()
+ {
+ int transformType = transform.getType();
+ boolean optimizedTransform = false;
+ if (transformType == AffineTransform.TYPE_IDENTITY
+ || transformType == AffineTransform.TYPE_TRANSLATION)
+ optimizedTransform = true;
+
+ boolean optimizedClip = (clip == null || clip instanceof Rectangle);
+ isOptimized = optimizedClip
+ && optimizedTransform && paint instanceof Color
+ && composite == AlphaComposite.SrcOver
+ && stroke.equals(new BasicStroke());
+ }
+
+ /**
+ * Calculates the intersection of two rectangles. The result is stored
+ * in <code>rect</code>. This is basically the same
+ * like {@link Rectangle#intersection(Rectangle)}, only that it does not
+ * create new Rectangle instances. The tradeoff is that you loose any data in
+ * <code>rect</code>.
+ *
+ * @param x upper-left x coodinate of first rectangle
+ * @param y upper-left y coodinate of first rectangle
+ * @param w width of first rectangle
+ * @param h height of first rectangle
+ * @param rect a Rectangle object of the second rectangle
+ *
+ * @throws NullPointerException if rect is null
+ *
+ * @return a rectangle corresponding to the intersection of the
+ * two rectangles. An empty rectangle is returned if the rectangles
+ * do not overlap
+ */
+ private static Rectangle computeIntersection(int x, int y, int w, int h,
+ Rectangle rect)
+ {
+ int x2 = (int) rect.x;
+ int y2 = (int) rect.y;
+ int w2 = (int) rect.width;
+ int h2 = (int) rect.height;
+
+ int dx = (x > x2) ? x : x2;
+ int dy = (y > y2) ? y : y2;
+ int dw = (x + w < x2 + w2) ? (x + w - dx) : (x2 + w2 - dx);
+ int dh = (y + h < y2 + h2) ? (y + h - dy) : (y2 + h2 - dy);
+
+ if (dw >= 0 && dh >= 0)
+ rect.setBounds(dx, dy, dw, dh);
+ else
+ rect.setBounds(0, 0, 0, 0);
+
+ return rect;
+ }
+
+ /**
+ * Helper method to transform the clip. This is called by the various
+ * transformation-manipulation methods to update the clip (which is in
+ * userspace) accordingly.
+ *
+ * The transform usually is the inverse transform that was applied to the
+ * graphics object.
+ *
+ * @param t the transform to apply to the clip
+ */
+ private void updateClip(AffineTransform t)
+ {
+ if (! (clip instanceof GeneralPath))
+ clip = new GeneralPath(clip);
+
+ GeneralPath p = (GeneralPath) clip;
+ p.transform(t);
+ }
+
+ /**
+ * Clips the specified shape using the current clip. If the resulting shape
+ * is empty, this will return <code>null</code>.
+ *
+ * @param s the shape to clip
+ *
+ * @return the clipped shape or <code>null</code> if the result is empty
+ */
+ private Shape clipShape(Shape s)
+ {
+ Shape clipped = null;
+
+ // Clip the shape if necessary.
+ if (clip != null)
+ {
+ Area a;
+ if (! (s instanceof Area))
+ a = new Area(s);
+ else
+ a = (Area) s;
+
+ Area clipArea;
+ if (! (clip instanceof Area))
+ clipArea = new Area(clip);
+ else
+ clipArea = (Area) clip;
+
+ a.intersect(clipArea);
+ if (! a.isEmpty())
+ clipped = a;
+ }
+ else
+ {
+ clipped = s;
+ }
+ return clipped;
+ }
+}