summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorH.J. Lu <hjl.tools@gmail.com>2017-10-01 01:38:03 -0700
committerH.J. Lu <hjl.tools@gmail.com>2017-10-01 01:45:23 -0700
commit6bc500b626e1e06972391c60e4ed285d07525a30 (patch)
treeb96efa1285df9b6c30320c7820f01e2df3dd354c
parent3ff28a9d44de84d2cc3925fd84ea206b323f9169 (diff)
downloadgcc-hjl/x86/master.tar.gz
x32: Add and use libgnarl/s-taprop__x32.adbhjl/x86/master
s-taprop.adb failed to compile for x32: s-taprop.adb:341:29: operator for type "System.Linux.time_t" is not directly visible s-taprop.adb:341:29: add with_clause and use_clause for "Linux" which is caused by 2017-09-25 Doug Rupp <rupp@adacore.com> * libgnarl/s-taprop__linux.adb (Base_Monotonic_Clock): New variable. (Compute_Base_Monotonic_Clock): New function. (Timed_Sleep): Adjust to use Base_Monotonic_Clock. (Timed_Delay): Likewise. (Monotonic_Clock): Likewise. * s-oscons-tmplt.c (CLOCK_MONOTONIC): Use on Linux. This patch adds and uses libgnarl/s-taprop__x32.adb for x32, which is similar to libgnarl/s-taprop__linux.adb, but uses System.Linux.time_t. * gcc-interface/Makefile.in: Replace libgnarl/s-taprop__linux.adb with libgnarl/s-taprop__x32.adb for x32. * libgnarl/s-taprop__x32.adb: New file.
-rw-r--r--gcc/ada/gcc-interface/Makefile.in2
-rw-r--r--gcc/ada/libgnarl/s-taprop__x32.adb1752
2 files changed, 1753 insertions, 1 deletions
diff --git a/gcc/ada/gcc-interface/Makefile.in b/gcc/ada/gcc-interface/Makefile.in
index 2fa47caa547..d8899897481 100644
--- a/gcc/ada/gcc-interface/Makefile.in
+++ b/gcc/ada/gcc-interface/Makefile.in
@@ -1829,7 +1829,7 @@ ifeq ($(strip $(filter-out %x32 linux%,$(target_cpu) $(target_os))),)
s-osinte.ads<libgnarl/s-osinte__linux.ads \
s-osinte.adb<libgnarl/s-osinte__x32.adb \
s-osprim.adb<libgnat/s-osprim__x32.adb \
- s-taprop.adb<libgnarl/s-taprop__linux.adb \
+ s-taprop.adb<libgnarl/s-taprop__x32.adb \
s-tasinf.ads<libgnarl/s-tasinf__linux.ads \
s-tasinf.adb<libgnarl/s-tasinf__linux.adb \
s-tpopsp.adb<libgnarl/s-tpopsp__tls.adb \
diff --git a/gcc/ada/libgnarl/s-taprop__x32.adb b/gcc/ada/libgnarl/s-taprop__x32.adb
new file mode 100644
index 00000000000..b958c8c3fa8
--- /dev/null
+++ b/gcc/ada/libgnarl/s-taprop__x32.adb
@@ -0,0 +1,1752 @@
+------------------------------------------------------------------------------
+-- --
+-- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS --
+-- --
+-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 2017, Free Software Foundation, Inc. --
+-- --
+-- GNARL is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. --
+-- --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception, --
+-- version 3.1, as published by the Free Software Foundation. --
+-- --
+-- You should have received a copy of the GNU General Public License and --
+-- a copy of the GCC Runtime Library Exception along with this program; --
+-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
+-- <http://www.gnu.org/licenses/>. --
+-- --
+-- GNARL was developed by the GNARL team at Florida State University. --
+-- Extensive contributions were provided by Ada Core Technologies, Inc. --
+-- --
+------------------------------------------------------------------------------
+
+-- This is a GNU/Linux/x32 (GNU/LinuxThreads) version of this package
+
+-- This package contains all the GNULL primitives that interface directly with
+-- the underlying OS.
+
+pragma Polling (Off);
+-- Turn off polling, we do not want ATC polling to take place during tasking
+-- operations. It causes infinite loops and other problems.
+
+with Interfaces.C; use Interfaces;
+use type Interfaces.C.int;
+use type Interfaces.C.long;
+
+with System.Task_Info;
+with System.Tasking.Debug;
+with System.Interrupt_Management;
+with System.OS_Constants;
+with System.OS_Primitives;
+with System.Multiprocessors;
+with System.Linux;
+
+with System.Soft_Links;
+-- We use System.Soft_Links instead of System.Tasking.Initialization
+-- because the later is a higher level package that we shouldn't depend on.
+-- For example when using the restricted run time, it is replaced by
+-- System.Tasking.Restricted.Stages.
+
+package body System.Task_Primitives.Operations is
+
+ package OSC renames System.OS_Constants;
+ package SSL renames System.Soft_Links;
+
+ use System.Tasking.Debug;
+ use System.Tasking;
+ use System.OS_Interface;
+ use System.Parameters;
+ use System.OS_Primitives;
+ use System.Task_Info;
+
+ ----------------
+ -- Local Data --
+ ----------------
+
+ -- The followings are logically constants, but need to be initialized
+ -- at run time.
+
+ Single_RTS_Lock : aliased RTS_Lock;
+ -- This is a lock to allow only one thread of control in the RTS at
+ -- a time; it is used to execute in mutual exclusion from all other tasks.
+ -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
+
+ Environment_Task_Id : Task_Id;
+ -- A variable to hold Task_Id for the environment task
+
+ Unblocked_Signal_Mask : aliased sigset_t;
+ -- The set of signals that should be unblocked in all tasks
+
+ -- The followings are internal configuration constants needed
+
+ Next_Serial_Number : Task_Serial_Number := 100;
+ -- We start at 100 (reserve some special values for using in error checks)
+
+ Time_Slice_Val : Integer;
+ pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
+
+ Dispatching_Policy : Character;
+ pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
+
+ Locking_Policy : Character;
+ pragma Import (C, Locking_Policy, "__gl_locking_policy");
+
+ Foreign_Task_Elaborated : aliased Boolean := True;
+ -- Used to identified fake tasks (i.e., non-Ada Threads)
+
+ Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
+ -- Whether to use an alternate signal stack for stack overflows
+
+ Abort_Handler_Installed : Boolean := False;
+ -- True if a handler for the abort signal is installed
+
+ Null_Thread_Id : constant pthread_t := pthread_t'Last;
+ -- Constant to indicate that the thread identifier has not yet been
+ -- initialized.
+
+ Base_Monotonic_Clock : Duration := 0.0;
+
+ --------------------
+ -- Local Packages --
+ --------------------
+
+ package Specific is
+
+ procedure Initialize (Environment_Task : Task_Id);
+ pragma Inline (Initialize);
+ -- Initialize various data needed by this package
+
+ function Is_Valid_Task return Boolean;
+ pragma Inline (Is_Valid_Task);
+ -- Does executing thread have a TCB?
+
+ procedure Set (Self_Id : Task_Id);
+ pragma Inline (Set);
+ -- Set the self id for the current task
+
+ function Self return Task_Id;
+ pragma Inline (Self);
+ -- Return a pointer to the Ada Task Control Block of the calling task
+
+ end Specific;
+
+ package body Specific is separate;
+ -- The body of this package is target specific
+
+ ----------------------------------
+ -- ATCB allocation/deallocation --
+ ----------------------------------
+
+ package body ATCB_Allocation is separate;
+ -- The body of this package is shared across several targets
+
+ ---------------------------------
+ -- Support for foreign threads --
+ ---------------------------------
+
+ function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
+ -- Allocate and Initialize a new ATCB for the current Thread
+
+ function Register_Foreign_Thread
+ (Thread : Thread_Id) return Task_Id is separate;
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Abort_Handler (signo : Signal);
+
+ function Compute_Base_Monotonic_Clock return Duration;
+ -- The monotonic clock epoch is set to some undetermined time in the past
+ -- (typically system boot time). In order to use the monotonic clock for
+ -- absolute time, the offset from a known epoch is needed.
+
+ function GNAT_pthread_condattr_setup
+ (attr : access pthread_condattr_t) return C.int;
+ pragma Import
+ (C, GNAT_pthread_condattr_setup, "__gnat_pthread_condattr_setup");
+
+ function GNAT_has_cap_sys_nice return C.int;
+ pragma Import
+ (C, GNAT_has_cap_sys_nice, "__gnat_has_cap_sys_nice");
+ -- We do not have pragma Linker_Options ("-lcap"); here, because this
+ -- library is not present on many Linux systems. 'libcap' is the Linux
+ -- "capabilities" library, called by __gnat_has_cap_sys_nice.
+
+ function Prio_To_Linux_Prio (Prio : Any_Priority) return C.int is
+ (C.int (Prio) + 1);
+ -- Convert Ada priority to Linux priority. Priorities are 1 .. 99 on
+ -- GNU/Linux, so we map 0 .. 98 to 1 .. 99.
+
+ function Get_Ceiling_Support return Boolean;
+ -- Get the value of the Ceiling_Support constant (see below).
+ -- Note well: If this function or related code is modified, it should be
+ -- tested by hand, because automated testing doesn't exercise it.
+
+ -------------------------
+ -- Get_Ceiling_Support --
+ -------------------------
+
+ function Get_Ceiling_Support return Boolean is
+ Ceiling_Support : Boolean := False;
+ begin
+ if Locking_Policy /= 'C' then
+ return False;
+ end if;
+
+ declare
+ function geteuid return Integer;
+ pragma Import (C, geteuid, "geteuid");
+ Superuser : constant Boolean := geteuid = 0;
+ Has_Cap : constant C.int := GNAT_has_cap_sys_nice;
+ pragma Assert (Has_Cap in 0 | 1);
+ begin
+ Ceiling_Support := Superuser or else Has_Cap = 1;
+ end;
+
+ return Ceiling_Support;
+ end Get_Ceiling_Support;
+
+ pragma Warnings (Off, "non-static call not allowed in preelaborated unit");
+ Ceiling_Support : constant Boolean := Get_Ceiling_Support;
+ pragma Warnings (On, "non-static call not allowed in preelaborated unit");
+ -- True if the locking policy is Ceiling_Locking, and the current process
+ -- has permission to use this policy. The process has permission if it is
+ -- running as 'root', or if the capability was set by the setcap command,
+ -- as in "sudo /sbin/setcap cap_sys_nice=ep exe_file". If it doesn't have
+ -- permission, then a request for Ceiling_Locking is ignored.
+
+ type RTS_Lock_Ptr is not null access all RTS_Lock;
+
+ function Init_Mutex (L : RTS_Lock_Ptr; Prio : Any_Priority) return C.int;
+ -- Initialize the mutex L. If Ceiling_Support is True, then set the ceiling
+ -- to Prio. Returns 0 for success, or ENOMEM for out-of-memory.
+
+ -------------------
+ -- Abort_Handler --
+ -------------------
+
+ procedure Abort_Handler (signo : Signal) is
+ pragma Unreferenced (signo);
+
+ Self_Id : constant Task_Id := Self;
+ Result : C.int;
+ Old_Set : aliased sigset_t;
+
+ begin
+ -- It's not safe to raise an exception when using GCC ZCX mechanism.
+ -- Note that we still need to install a signal handler, since in some
+ -- cases (e.g. shutdown of the Server_Task in System.Interrupts) we
+ -- need to send the Abort signal to a task.
+
+ if ZCX_By_Default then
+ return;
+ end if;
+
+ if Self_Id.Deferral_Level = 0
+ and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level
+ and then not Self_Id.Aborting
+ then
+ Self_Id.Aborting := True;
+
+ -- Make sure signals used for RTS internal purpose are unmasked
+
+ Result :=
+ pthread_sigmask
+ (SIG_UNBLOCK,
+ Unblocked_Signal_Mask'Access,
+ Old_Set'Access);
+ pragma Assert (Result = 0);
+
+ raise Standard'Abort_Signal;
+ end if;
+ end Abort_Handler;
+
+ ----------------------------------
+ -- Compute_Base_Monotonic_Clock --
+ ----------------------------------
+
+ function Compute_Base_Monotonic_Clock return Duration is
+ Aft : Duration;
+ Bef : Duration;
+ Mon : Duration;
+ Res_A : Interfaces.C.int;
+ Res_B : Interfaces.C.int;
+ Res_M : Interfaces.C.int;
+ TS_Aft : aliased timespec;
+ TS_Aft0 : aliased timespec;
+ TS_Bef : aliased timespec;
+ TS_Bef0 : aliased timespec;
+ TS_Mon : aliased timespec;
+ TS_Mon0 : aliased timespec;
+
+ use type System.Linux.time_t;
+ begin
+ Res_B :=
+ clock_gettime
+ (clock_id => OSC.CLOCK_REALTIME,
+ tp => TS_Bef0'Unchecked_Access);
+ pragma Assert (Res_B = 0);
+
+ Res_M :=
+ clock_gettime
+ (clock_id => OSC.CLOCK_RT_Ada,
+ tp => TS_Mon0'Unchecked_Access);
+ pragma Assert (Res_M = 0);
+
+ Res_A :=
+ clock_gettime
+ (clock_id => OSC.CLOCK_REALTIME,
+ tp => TS_Aft0'Unchecked_Access);
+ pragma Assert (Res_A = 0);
+
+ for I in 1 .. 10 loop
+
+ -- Guard against a leap second that will cause CLOCK_REALTIME to jump
+ -- backwards. In the extrenmely unlikely event we call clock_gettime
+ -- before and after the jump the epoch, the result will be off
+ -- slightly.
+ -- Use only results where the tv_sec values match, for the sake of
+ -- convenience.
+ -- Also try to calculate the most accurate epoch by taking the
+ -- minimum difference of 10 tries.
+
+ Res_B :=
+ clock_gettime
+ (clock_id => OSC.CLOCK_REALTIME,
+ tp => TS_Bef'Unchecked_Access);
+ pragma Assert (Res_B = 0);
+
+ Res_M :=
+ clock_gettime
+ (clock_id => OSC.CLOCK_RT_Ada,
+ tp => TS_Mon'Unchecked_Access);
+ pragma Assert (Res_M = 0);
+
+ Res_A :=
+ clock_gettime
+ (clock_id => OSC.CLOCK_REALTIME,
+ tp => TS_Aft'Unchecked_Access);
+ pragma Assert (Res_A = 0);
+
+ -- The calls to clock_gettime before the loop were no good
+
+ if (TS_Bef0.tv_sec /= TS_Aft0.tv_sec
+ and then TS_Bef.tv_sec = TS_Aft.tv_sec)
+
+ -- The most recent calls to clock_gettime were better
+
+ or else
+ (TS_Bef0.tv_sec = TS_Aft0.tv_sec
+ and then TS_Bef.tv_sec = TS_Aft.tv_sec
+ and then (TS_Aft.tv_nsec - TS_Bef.tv_nsec
+ < TS_Aft0.tv_nsec - TS_Bef0.tv_nsec))
+ then
+ TS_Bef0 := TS_Bef;
+ TS_Aft0 := TS_Aft;
+ TS_Mon0 := TS_Mon;
+ end if;
+ end loop;
+
+ Bef := To_Duration (TS_Bef0);
+ Mon := To_Duration (TS_Mon0);
+ Aft := To_Duration (TS_Aft0);
+
+ -- Distribute the division, to avoid potential type overflow someday
+
+ return Bef / 2 + Aft / 2 - Mon;
+ end Compute_Base_Monotonic_Clock;
+
+ --------------
+ -- Lock_RTS --
+ --------------
+
+ procedure Lock_RTS is
+ begin
+ Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
+ end Lock_RTS;
+
+ ----------------
+ -- Unlock_RTS --
+ ----------------
+
+ procedure Unlock_RTS is
+ begin
+ Unlock (Single_RTS_Lock'Access, Global_Lock => True);
+ end Unlock_RTS;
+
+ -----------------
+ -- Stack_Guard --
+ -----------------
+
+ -- The underlying thread system extends the memory (up to 2MB) when needed
+
+ procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
+ pragma Unreferenced (T);
+ pragma Unreferenced (On);
+ begin
+ null;
+ end Stack_Guard;
+
+ --------------------
+ -- Get_Thread_Id --
+ --------------------
+
+ function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
+ begin
+ return T.Common.LL.Thread;
+ end Get_Thread_Id;
+
+ ----------
+ -- Self --
+ ----------
+
+ function Self return Task_Id renames Specific.Self;
+
+ ----------------
+ -- Init_Mutex --
+ ----------------
+
+ function Init_Mutex (L : RTS_Lock_Ptr; Prio : Any_Priority) return C.int is
+ Mutex_Attr : aliased pthread_mutexattr_t;
+ Result, Result_2 : C.int;
+
+ begin
+ Result := pthread_mutexattr_init (Mutex_Attr'Access);
+ pragma Assert (Result in 0 | ENOMEM);
+
+ if Result = ENOMEM then
+ return Result;
+ end if;
+
+ if Ceiling_Support then
+ Result := pthread_mutexattr_setprotocol
+ (Mutex_Attr'Access, PTHREAD_PRIO_PROTECT);
+ pragma Assert (Result = 0);
+
+ Result := pthread_mutexattr_setprioceiling
+ (Mutex_Attr'Access, Prio_To_Linux_Prio (Prio));
+ pragma Assert (Result = 0);
+
+ elsif Locking_Policy = 'I' then
+ Result := pthread_mutexattr_setprotocol
+ (Mutex_Attr'Access, PTHREAD_PRIO_INHERIT);
+ pragma Assert (Result = 0);
+ end if;
+
+ Result := pthread_mutex_init (L, Mutex_Attr'Access);
+ pragma Assert (Result in 0 | ENOMEM);
+
+ Result_2 := pthread_mutexattr_destroy (Mutex_Attr'Access);
+ pragma Assert (Result_2 = 0);
+ return Result; -- of pthread_mutex_init, not pthread_mutexattr_destroy
+ end Init_Mutex;
+
+ ---------------------
+ -- Initialize_Lock --
+ ---------------------
+
+ -- Note: mutexes and cond_variables needed per-task basis are initialized
+ -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
+ -- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
+ -- status change of RTS. Therefore raising Storage_Error in the following
+ -- routines should be able to be handled safely.
+
+ procedure Initialize_Lock
+ (Prio : Any_Priority;
+ L : not null access Lock)
+ is
+ begin
+ if Locking_Policy = 'R' then
+ declare
+ RWlock_Attr : aliased pthread_rwlockattr_t;
+ Result : C.int;
+
+ begin
+ -- Set the rwlock to prefer writer to avoid writers starvation
+
+ Result := pthread_rwlockattr_init (RWlock_Attr'Access);
+ pragma Assert (Result = 0);
+
+ Result := pthread_rwlockattr_setkind_np
+ (RWlock_Attr'Access,
+ PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
+ pragma Assert (Result = 0);
+
+ Result := pthread_rwlock_init (L.RW'Access, RWlock_Attr'Access);
+
+ pragma Assert (Result in 0 | ENOMEM);
+
+ if Result = ENOMEM then
+ raise Storage_Error with "Failed to allocate a lock";
+ end if;
+ end;
+
+ else
+ if Init_Mutex (L.WO'Access, Prio) = ENOMEM then
+ raise Storage_Error with "Failed to allocate a lock";
+ end if;
+ end if;
+ end Initialize_Lock;
+
+ procedure Initialize_Lock
+ (L : not null access RTS_Lock; Level : Lock_Level)
+ is
+ pragma Unreferenced (Level);
+ begin
+ if Init_Mutex (L.all'Access, Any_Priority'Last) = ENOMEM then
+ raise Storage_Error with "Failed to allocate a lock";
+ end if;
+ end Initialize_Lock;
+
+ -------------------
+ -- Finalize_Lock --
+ -------------------
+
+ procedure Finalize_Lock (L : not null access Lock) is
+ Result : C.int;
+ begin
+ if Locking_Policy = 'R' then
+ Result := pthread_rwlock_destroy (L.RW'Access);
+ else
+ Result := pthread_mutex_destroy (L.WO'Access);
+ end if;
+ pragma Assert (Result = 0);
+ end Finalize_Lock;
+
+ procedure Finalize_Lock (L : not null access RTS_Lock) is
+ Result : C.int;
+ begin
+ Result := pthread_mutex_destroy (L);
+ pragma Assert (Result = 0);
+ end Finalize_Lock;
+
+ ----------------
+ -- Write_Lock --
+ ----------------
+
+ procedure Write_Lock
+ (L : not null access Lock;
+ Ceiling_Violation : out Boolean)
+ is
+ Result : C.int;
+ begin
+ if Locking_Policy = 'R' then
+ Result := pthread_rwlock_wrlock (L.RW'Access);
+ else
+ Result := pthread_mutex_lock (L.WO'Access);
+ end if;
+
+ -- The cause of EINVAL is a priority ceiling violation
+
+ pragma Assert (Result in 0 | EINVAL);
+ Ceiling_Violation := Result = EINVAL;
+ end Write_Lock;
+
+ procedure Write_Lock
+ (L : not null access RTS_Lock;
+ Global_Lock : Boolean := False)
+ is
+ Result : C.int;
+ begin
+ if not Single_Lock or else Global_Lock then
+ Result := pthread_mutex_lock (L);
+ pragma Assert (Result = 0);
+ end if;
+ end Write_Lock;
+
+ procedure Write_Lock (T : Task_Id) is
+ Result : C.int;
+ begin
+ if not Single_Lock then
+ Result := pthread_mutex_lock (T.Common.LL.L'Access);
+ pragma Assert (Result = 0);
+ end if;
+ end Write_Lock;
+
+ ---------------
+ -- Read_Lock --
+ ---------------
+
+ procedure Read_Lock
+ (L : not null access Lock;
+ Ceiling_Violation : out Boolean)
+ is
+ Result : C.int;
+ begin
+ if Locking_Policy = 'R' then
+ Result := pthread_rwlock_rdlock (L.RW'Access);
+ else
+ Result := pthread_mutex_lock (L.WO'Access);
+ end if;
+
+ -- The cause of EINVAL is a priority ceiling violation
+
+ pragma Assert (Result in 0 | EINVAL);
+ Ceiling_Violation := Result = EINVAL;
+ end Read_Lock;
+
+ ------------
+ -- Unlock --
+ ------------
+
+ procedure Unlock (L : not null access Lock) is
+ Result : C.int;
+ begin
+ if Locking_Policy = 'R' then
+ Result := pthread_rwlock_unlock (L.RW'Access);
+ else
+ Result := pthread_mutex_unlock (L.WO'Access);
+ end if;
+ pragma Assert (Result = 0);
+ end Unlock;
+
+ procedure Unlock
+ (L : not null access RTS_Lock;
+ Global_Lock : Boolean := False)
+ is
+ Result : C.int;
+ begin
+ if not Single_Lock or else Global_Lock then
+ Result := pthread_mutex_unlock (L);
+ pragma Assert (Result = 0);
+ end if;
+ end Unlock;
+
+ procedure Unlock (T : Task_Id) is
+ Result : C.int;
+ begin
+ if not Single_Lock then
+ Result := pthread_mutex_unlock (T.Common.LL.L'Access);
+ pragma Assert (Result = 0);
+ end if;
+ end Unlock;
+
+ -----------------
+ -- Set_Ceiling --
+ -----------------
+
+ -- Dynamic priority ceilings are not supported by the underlying system
+
+ procedure Set_Ceiling
+ (L : not null access Lock;
+ Prio : Any_Priority)
+ is
+ pragma Unreferenced (L, Prio);
+ begin
+ null;
+ end Set_Ceiling;
+
+ -----------
+ -- Sleep --
+ -----------
+
+ procedure Sleep
+ (Self_ID : Task_Id;
+ Reason : System.Tasking.Task_States)
+ is
+ pragma Unreferenced (Reason);
+
+ Result : C.int;
+
+ begin
+ pragma Assert (Self_ID = Self);
+
+ Result :=
+ pthread_cond_wait
+ (cond => Self_ID.Common.LL.CV'Access,
+ mutex => (if Single_Lock
+ then Single_RTS_Lock'Access
+ else Self_ID.Common.LL.L'Access));
+
+ -- EINTR is not considered a failure
+
+ pragma Assert (Result in 0 | EINTR);
+ end Sleep;
+
+ -----------------
+ -- Timed_Sleep --
+ -----------------
+
+ -- This is for use within the run-time system, so abort is
+ -- assumed to be already deferred, and the caller should be
+ -- holding its own ATCB lock.
+
+ procedure Timed_Sleep
+ (Self_ID : Task_Id;
+ Time : Duration;
+ Mode : ST.Delay_Modes;
+ Reason : System.Tasking.Task_States;
+ Timedout : out Boolean;
+ Yielded : out Boolean)
+ is
+ pragma Unreferenced (Reason);
+
+ Base_Time : constant Duration := Monotonic_Clock;
+ Check_Time : Duration := Base_Time - Base_Monotonic_Clock;
+ Abs_Time : Duration;
+ Request : aliased timespec;
+ Result : C.int;
+
+ begin
+ Timedout := True;
+ Yielded := False;
+
+ Abs_Time :=
+ (if Mode = Relative
+ then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
+ else Duration'Min (Check_Time + Max_Sensible_Delay,
+ Time - Base_Monotonic_Clock));
+
+ if Abs_Time > Check_Time then
+ Request := To_Timespec (Abs_Time);
+
+ loop
+ exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
+
+ Result :=
+ pthread_cond_timedwait
+ (cond => Self_ID.Common.LL.CV'Access,
+ mutex => (if Single_Lock
+ then Single_RTS_Lock'Access
+ else Self_ID.Common.LL.L'Access),
+ abstime => Request'Access);
+
+ Check_Time := Monotonic_Clock;
+ exit when Abs_Time + Base_Monotonic_Clock <= Check_Time
+ or else Check_Time < Base_Time;
+
+ if Result in 0 | EINTR then
+
+ -- Somebody may have called Wakeup for us
+
+ Timedout := False;
+ exit;
+ end if;
+
+ pragma Assert (Result = ETIMEDOUT);
+ end loop;
+ end if;
+ end Timed_Sleep;
+
+ -----------------
+ -- Timed_Delay --
+ -----------------
+
+ -- This is for use in implementing delay statements, so we assume the
+ -- caller is abort-deferred but is holding no locks.
+
+ procedure Timed_Delay
+ (Self_ID : Task_Id;
+ Time : Duration;
+ Mode : ST.Delay_Modes)
+ is
+ Base_Time : constant Duration := Monotonic_Clock;
+ Check_Time : Duration := Base_Time - Base_Monotonic_Clock;
+ Abs_Time : Duration;
+ Request : aliased timespec;
+
+ Result : C.int;
+ pragma Warnings (Off, Result);
+
+ begin
+ if Single_Lock then
+ Lock_RTS;
+ end if;
+
+ Write_Lock (Self_ID);
+
+ Abs_Time :=
+ (if Mode = Relative
+ then Time + Check_Time
+ else Duration'Min (Check_Time + Max_Sensible_Delay,
+ Time - Base_Monotonic_Clock));
+
+ if Abs_Time > Check_Time then
+ Request := To_Timespec (Abs_Time);
+ Self_ID.Common.State := Delay_Sleep;
+
+ loop
+ exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
+
+ Result :=
+ pthread_cond_timedwait
+ (cond => Self_ID.Common.LL.CV'Access,
+ mutex => (if Single_Lock
+ then Single_RTS_Lock'Access
+ else Self_ID.Common.LL.L'Access),
+ abstime => Request'Access);
+
+ Check_Time := Monotonic_Clock;
+ exit when Abs_Time + Base_Monotonic_Clock <= Check_Time
+ or else Check_Time < Base_Time;
+
+ pragma Assert (Result in 0 | ETIMEDOUT | EINTR);
+ end loop;
+
+ Self_ID.Common.State := Runnable;
+ end if;
+
+ Unlock (Self_ID);
+
+ if Single_Lock then
+ Unlock_RTS;
+ end if;
+
+ Result := sched_yield;
+ end Timed_Delay;
+
+ ---------------------
+ -- Monotonic_Clock --
+ ---------------------
+
+ function Monotonic_Clock return Duration is
+ TS : aliased timespec;
+ Result : Interfaces.C.int;
+ begin
+ Result := clock_gettime
+ (clock_id => OSC.CLOCK_RT_Ada, tp => TS'Unchecked_Access);
+ pragma Assert (Result = 0);
+
+ return Base_Monotonic_Clock + To_Duration (TS);
+ end Monotonic_Clock;
+
+ -------------------
+ -- RT_Resolution --
+ -------------------
+
+ function RT_Resolution return Duration is
+ TS : aliased timespec;
+ Result : C.int;
+
+ begin
+ Result := clock_getres (OSC.CLOCK_REALTIME, TS'Unchecked_Access);
+ pragma Assert (Result = 0);
+
+ return To_Duration (TS);
+ end RT_Resolution;
+
+ ------------
+ -- Wakeup --
+ ------------
+
+ procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
+ pragma Unreferenced (Reason);
+ Result : C.int;
+ begin
+ Result := pthread_cond_signal (T.Common.LL.CV'Access);
+ pragma Assert (Result = 0);
+ end Wakeup;
+
+ -----------
+ -- Yield --
+ -----------
+
+ procedure Yield (Do_Yield : Boolean := True) is
+ Result : C.int;
+ pragma Unreferenced (Result);
+ begin
+ if Do_Yield then
+ Result := sched_yield;
+ end if;
+ end Yield;
+
+ ------------------
+ -- Set_Priority --
+ ------------------
+
+ procedure Set_Priority
+ (T : Task_Id;
+ Prio : Any_Priority;
+ Loss_Of_Inheritance : Boolean := False)
+ is
+ pragma Unreferenced (Loss_Of_Inheritance);
+
+ Result : C.int;
+ Param : aliased struct_sched_param;
+
+ function Get_Policy (Prio : Any_Priority) return Character;
+ pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
+ -- Get priority specific dispatching policy
+
+ Priority_Specific_Policy : constant Character := Get_Policy (Prio);
+ -- Upper case first character of the policy name corresponding to the
+ -- task as set by a Priority_Specific_Dispatching pragma.
+
+ begin
+ T.Common.Current_Priority := Prio;
+
+ Param.sched_priority := Prio_To_Linux_Prio (Prio);
+
+ if Dispatching_Policy = 'R'
+ or else Priority_Specific_Policy = 'R'
+ or else Time_Slice_Val > 0
+ then
+ Result :=
+ pthread_setschedparam
+ (T.Common.LL.Thread, SCHED_RR, Param'Access);
+
+ elsif Dispatching_Policy = 'F'
+ or else Priority_Specific_Policy = 'F'
+ or else Time_Slice_Val = 0
+ then
+ Result :=
+ pthread_setschedparam
+ (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
+
+ else
+ Param.sched_priority := 0;
+ Result :=
+ pthread_setschedparam
+ (T.Common.LL.Thread,
+ SCHED_OTHER, Param'Access);
+ end if;
+
+ pragma Assert (Result in 0 | EPERM | EINVAL);
+ end Set_Priority;
+
+ ------------------
+ -- Get_Priority --
+ ------------------
+
+ function Get_Priority (T : Task_Id) return Any_Priority is
+ begin
+ return T.Common.Current_Priority;
+ end Get_Priority;
+
+ ----------------
+ -- Enter_Task --
+ ----------------
+
+ procedure Enter_Task (Self_ID : Task_Id) is
+ begin
+ if Self_ID.Common.Task_Info /= null
+ and then Self_ID.Common.Task_Info.CPU_Affinity = No_CPU
+ then
+ raise Invalid_CPU_Number;
+ end if;
+
+ Self_ID.Common.LL.Thread := pthread_self;
+ Self_ID.Common.LL.LWP := lwp_self;
+
+ -- Set thread name to ease debugging. If the name of the task is
+ -- "foreign thread" (as set by Register_Foreign_Thread) retrieve
+ -- the name of the thread and update the name of the task instead.
+
+ if Self_ID.Common.Task_Image_Len = 14
+ and then Self_ID.Common.Task_Image (1 .. 14) = "foreign thread"
+ then
+ declare
+ Thread_Name : String (1 .. 16);
+ -- PR_GET_NAME returns a string of up to 16 bytes
+
+ Len : Natural := 0;
+ -- Length of the task name contained in Task_Name
+
+ Result : C.int;
+ -- Result from the prctl call
+ begin
+ Result := prctl (PR_GET_NAME, unsigned_long (Thread_Name'Address));
+ pragma Assert (Result = 0);
+
+ -- Find the length of the given name
+
+ for J in Thread_Name'Range loop
+ if Thread_Name (J) /= ASCII.NUL then
+ Len := Len + 1;
+ else
+ exit;
+ end if;
+ end loop;
+
+ -- Cover the odd situation where someone decides to change
+ -- Parameters.Max_Task_Image_Length to less than 16 characters.
+
+ if Len > Parameters.Max_Task_Image_Length then
+ Len := Parameters.Max_Task_Image_Length;
+ end if;
+
+ -- Copy the name of the thread to the task's ATCB
+
+ Self_ID.Common.Task_Image (1 .. Len) := Thread_Name (1 .. Len);
+ Self_ID.Common.Task_Image_Len := Len;
+ end;
+
+ elsif Self_ID.Common.Task_Image_Len > 0 then
+ declare
+ Task_Name : String (1 .. Parameters.Max_Task_Image_Length + 1);
+ Result : C.int;
+
+ begin
+ Task_Name (1 .. Self_ID.Common.Task_Image_Len) :=
+ Self_ID.Common.Task_Image (1 .. Self_ID.Common.Task_Image_Len);
+ Task_Name (Self_ID.Common.Task_Image_Len + 1) := ASCII.NUL;
+
+ Result := prctl (PR_SET_NAME, unsigned_long (Task_Name'Address));
+ pragma Assert (Result = 0);
+ end;
+ end if;
+
+ Specific.Set (Self_ID);
+
+ if Use_Alternate_Stack
+ and then Self_ID.Common.Task_Alternate_Stack /= Null_Address
+ then
+ declare
+ Stack : aliased stack_t;
+ Result : C.int;
+ begin
+ Stack.ss_sp := Self_ID.Common.Task_Alternate_Stack;
+ Stack.ss_size := Alternate_Stack_Size;
+ Stack.ss_flags := 0;
+ Result := sigaltstack (Stack'Access, null);
+ pragma Assert (Result = 0);
+ end;
+ end if;
+ end Enter_Task;
+
+ -------------------
+ -- Is_Valid_Task --
+ -------------------
+
+ function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
+
+ -----------------------------
+ -- Register_Foreign_Thread --
+ -----------------------------
+
+ function Register_Foreign_Thread return Task_Id is
+ begin
+ if Is_Valid_Task then
+ return Self;
+ else
+ return Register_Foreign_Thread (pthread_self);
+ end if;
+ end Register_Foreign_Thread;
+
+ --------------------
+ -- Initialize_TCB --
+ --------------------
+
+ procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
+ Result : C.int;
+ Cond_Attr : aliased pthread_condattr_t;
+
+ begin
+ -- Give the task a unique serial number
+
+ Self_ID.Serial_Number := Next_Serial_Number;
+ Next_Serial_Number := Next_Serial_Number + 1;
+ pragma Assert (Next_Serial_Number /= 0);
+
+ Self_ID.Common.LL.Thread := Null_Thread_Id;
+
+ if not Single_Lock then
+ if Init_Mutex
+ (Self_ID.Common.LL.L'Access, Any_Priority'Last) /= 0
+ then
+ Succeeded := False;
+ return;
+ end if;
+ end if;
+
+ Result := pthread_condattr_init (Cond_Attr'Access);
+ pragma Assert (Result in 0 | ENOMEM);
+
+ if Result = 0 then
+ Result := GNAT_pthread_condattr_setup (Cond_Attr'Access);
+ pragma Assert (Result = 0);
+
+ Result :=
+ pthread_cond_init
+ (Self_ID.Common.LL.CV'Access, Cond_Attr'Access);
+ pragma Assert (Result in 0 | ENOMEM);
+ end if;
+
+ if Result = 0 then
+ Succeeded := True;
+ else
+ if not Single_Lock then
+ Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
+ pragma Assert (Result = 0);
+ end if;
+
+ Succeeded := False;
+ end if;
+
+ Result := pthread_condattr_destroy (Cond_Attr'Access);
+ pragma Assert (Result = 0);
+ end Initialize_TCB;
+
+ -----------------
+ -- Create_Task --
+ -----------------
+
+ procedure Create_Task
+ (T : Task_Id;
+ Wrapper : System.Address;
+ Stack_Size : System.Parameters.Size_Type;
+ Priority : Any_Priority;
+ Succeeded : out Boolean)
+ is
+ Thread_Attr : aliased pthread_attr_t;
+ Adjusted_Stack_Size : C.size_t;
+ Result : C.int;
+
+ use type Multiprocessors.CPU_Range, Interfaces.C.size_t;
+
+ begin
+ -- Check whether both Dispatching_Domain and CPU are specified for
+ -- the task, and the CPU value is not contained within the range of
+ -- processors for the domain.
+
+ if T.Common.Domain /= null
+ and then T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU
+ and then
+ (T.Common.Base_CPU not in T.Common.Domain'Range
+ or else not T.Common.Domain (T.Common.Base_CPU))
+ then
+ Succeeded := False;
+ return;
+ end if;
+
+ Adjusted_Stack_Size := C.size_t (Stack_Size + Alternate_Stack_Size);
+
+ Result := pthread_attr_init (Thread_Attr'Access);
+ pragma Assert (Result in 0 | ENOMEM);
+
+ if Result /= 0 then
+ Succeeded := False;
+ return;
+ end if;
+
+ Result :=
+ pthread_attr_setstacksize (Thread_Attr'Access, Adjusted_Stack_Size);
+ pragma Assert (Result = 0);
+
+ Result :=
+ pthread_attr_setdetachstate
+ (Thread_Attr'Access, PTHREAD_CREATE_DETACHED);
+ pragma Assert (Result = 0);
+
+ -- Set the required attributes for the creation of the thread
+
+ -- Note: Previously, we called pthread_setaffinity_np (after thread
+ -- creation but before thread activation) to set the affinity but it was
+ -- not behaving as expected. Setting the required attributes for the
+ -- creation of the thread works correctly and it is more appropriate.
+
+ -- Do nothing if required support not provided by the operating system
+
+ if pthread_attr_setaffinity_np'Address = Null_Address then
+ null;
+
+ -- Support is available
+
+ elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
+ declare
+ CPUs : constant size_t :=
+ C.size_t (Multiprocessors.Number_Of_CPUs);
+ CPU_Set : constant cpu_set_t_ptr := CPU_ALLOC (CPUs);
+ Size : constant size_t := CPU_ALLOC_SIZE (CPUs);
+
+ begin
+ CPU_ZERO (Size, CPU_Set);
+ System.OS_Interface.CPU_SET
+ (int (T.Common.Base_CPU), Size, CPU_Set);
+ Result :=
+ pthread_attr_setaffinity_np (Thread_Attr'Access, Size, CPU_Set);
+ pragma Assert (Result = 0);
+
+ CPU_FREE (CPU_Set);
+ end;
+
+ -- Handle Task_Info
+
+ elsif T.Common.Task_Info /= null then
+ Result :=
+ pthread_attr_setaffinity_np
+ (Thread_Attr'Access,
+ CPU_SETSIZE / 8,
+ T.Common.Task_Info.CPU_Affinity'Access);
+ pragma Assert (Result = 0);
+
+ -- Handle dispatching domains
+
+ -- To avoid changing CPU affinities when not needed, we set the
+ -- affinity only when assigning to a domain other than the default
+ -- one, or when the default one has been modified.
+
+ elsif T.Common.Domain /= null and then
+ (T.Common.Domain /= ST.System_Domain
+ or else T.Common.Domain.all /=
+ (Multiprocessors.CPU'First ..
+ Multiprocessors.Number_Of_CPUs => True))
+ then
+ declare
+ CPUs : constant size_t :=
+ C.size_t (Multiprocessors.Number_Of_CPUs);
+ CPU_Set : constant cpu_set_t_ptr := CPU_ALLOC (CPUs);
+ Size : constant size_t := CPU_ALLOC_SIZE (CPUs);
+
+ begin
+ CPU_ZERO (Size, CPU_Set);
+
+ -- Set the affinity to all the processors belonging to the
+ -- dispatching domain.
+
+ for Proc in T.Common.Domain'Range loop
+ if T.Common.Domain (Proc) then
+ System.OS_Interface.CPU_SET (int (Proc), Size, CPU_Set);
+ end if;
+ end loop;
+
+ Result :=
+ pthread_attr_setaffinity_np (Thread_Attr'Access, Size, CPU_Set);
+ pragma Assert (Result = 0);
+
+ CPU_FREE (CPU_Set);
+ end;
+ end if;
+
+ -- Since the initial signal mask of a thread is inherited from the
+ -- creator, and the Environment task has all its signals masked, we
+ -- do not need to manipulate caller's signal mask at this point.
+ -- All tasks in RTS will have All_Tasks_Mask initially.
+
+ -- Note: the use of Unrestricted_Access in the following call is needed
+ -- because otherwise we have an error of getting a access-to-volatile
+ -- value which points to a non-volatile object. But in this case it is
+ -- safe to do this, since we know we have no problems with aliasing and
+ -- Unrestricted_Access bypasses this check.
+
+ Result := pthread_create
+ (T.Common.LL.Thread'Unrestricted_Access,
+ Thread_Attr'Access,
+ Thread_Body_Access (Wrapper),
+ To_Address (T));
+
+ pragma Assert (Result in 0 | EAGAIN | ENOMEM);
+
+ if Result /= 0 then
+ Succeeded := False;
+ Result := pthread_attr_destroy (Thread_Attr'Access);
+ pragma Assert (Result = 0);
+ return;
+ end if;
+
+ Succeeded := True;
+
+ Result := pthread_attr_destroy (Thread_Attr'Access);
+ pragma Assert (Result = 0);
+
+ Set_Priority (T, Priority);
+ end Create_Task;
+
+ ------------------
+ -- Finalize_TCB --
+ ------------------
+
+ procedure Finalize_TCB (T : Task_Id) is
+ Result : C.int;
+
+ begin
+ if not Single_Lock then
+ Result := pthread_mutex_destroy (T.Common.LL.L'Access);
+ pragma Assert (Result = 0);
+ end if;
+
+ Result := pthread_cond_destroy (T.Common.LL.CV'Access);
+ pragma Assert (Result = 0);
+
+ if T.Known_Tasks_Index /= -1 then
+ Known_Tasks (T.Known_Tasks_Index) := null;
+ end if;
+
+ ATCB_Allocation.Free_ATCB (T);
+ end Finalize_TCB;
+
+ ---------------
+ -- Exit_Task --
+ ---------------
+
+ procedure Exit_Task is
+ begin
+ Specific.Set (null);
+ end Exit_Task;
+
+ ----------------
+ -- Abort_Task --
+ ----------------
+
+ procedure Abort_Task (T : Task_Id) is
+ Result : C.int;
+
+ ESRCH : constant := 3; -- No such process
+ -- It can happen that T has already vanished, in which case pthread_kill
+ -- returns ESRCH, so we don't consider that to be an error.
+
+ begin
+ if Abort_Handler_Installed then
+ Result :=
+ pthread_kill
+ (T.Common.LL.Thread,
+ Signal (System.Interrupt_Management.Abort_Task_Interrupt));
+ pragma Assert (Result in 0 | ESRCH);
+ end if;
+ end Abort_Task;
+
+ ----------------
+ -- Initialize --
+ ----------------
+
+ procedure Initialize (S : in out Suspension_Object) is
+ Result : C.int;
+
+ begin
+ -- Initialize internal state (always to False (RM D.10(6)))
+
+ S.State := False;
+ S.Waiting := False;
+
+ -- Initialize internal mutex
+
+ Result := pthread_mutex_init (S.L'Access, null);
+
+ pragma Assert (Result in 0 | ENOMEM);
+
+ if Result = ENOMEM then
+ raise Storage_Error;
+ end if;
+
+ -- Initialize internal condition variable
+
+ Result := pthread_cond_init (S.CV'Access, null);
+
+ pragma Assert (Result in 0 | ENOMEM);
+
+ if Result /= 0 then
+ Result := pthread_mutex_destroy (S.L'Access);
+ pragma Assert (Result = 0);
+
+ if Result = ENOMEM then
+ raise Storage_Error;
+ end if;
+ end if;
+ end Initialize;
+
+ --------------
+ -- Finalize --
+ --------------
+
+ procedure Finalize (S : in out Suspension_Object) is
+ Result : C.int;
+
+ begin
+ -- Destroy internal mutex
+
+ Result := pthread_mutex_destroy (S.L'Access);
+ pragma Assert (Result = 0);
+
+ -- Destroy internal condition variable
+
+ Result := pthread_cond_destroy (S.CV'Access);
+ pragma Assert (Result = 0);
+ end Finalize;
+
+ -------------------
+ -- Current_State --
+ -------------------
+
+ function Current_State (S : Suspension_Object) return Boolean is
+ begin
+ -- We do not want to use lock on this read operation. State is marked
+ -- as Atomic so that we ensure that the value retrieved is correct.
+
+ return S.State;
+ end Current_State;
+
+ ---------------
+ -- Set_False --
+ ---------------
+
+ procedure Set_False (S : in out Suspension_Object) is
+ Result : C.int;
+
+ begin
+ SSL.Abort_Defer.all;
+
+ Result := pthread_mutex_lock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ S.State := False;
+
+ Result := pthread_mutex_unlock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ SSL.Abort_Undefer.all;
+ end Set_False;
+
+ --------------
+ -- Set_True --
+ --------------
+
+ procedure Set_True (S : in out Suspension_Object) is
+ Result : C.int;
+
+ begin
+ SSL.Abort_Defer.all;
+
+ Result := pthread_mutex_lock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ -- If there is already a task waiting on this suspension object then
+ -- we resume it, leaving the state of the suspension object to False,
+ -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
+ -- the state to True.
+
+ if S.Waiting then
+ S.Waiting := False;
+ S.State := False;
+
+ Result := pthread_cond_signal (S.CV'Access);
+ pragma Assert (Result = 0);
+
+ else
+ S.State := True;
+ end if;
+
+ Result := pthread_mutex_unlock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ SSL.Abort_Undefer.all;
+ end Set_True;
+
+ ------------------------
+ -- Suspend_Until_True --
+ ------------------------
+
+ procedure Suspend_Until_True (S : in out Suspension_Object) is
+ Result : C.int;
+
+ begin
+ SSL.Abort_Defer.all;
+
+ Result := pthread_mutex_lock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ if S.Waiting then
+
+ -- Program_Error must be raised upon calling Suspend_Until_True
+ -- if another task is already waiting on that suspension object
+ -- (RM D.10(10)).
+
+ Result := pthread_mutex_unlock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ SSL.Abort_Undefer.all;
+
+ raise Program_Error;
+
+ else
+ -- Suspend the task if the state is False. Otherwise, the task
+ -- continues its execution, and the state of the suspension object
+ -- is set to False (ARM D.10 par. 9).
+
+ if S.State then
+ S.State := False;
+ else
+ S.Waiting := True;
+
+ loop
+ -- Loop in case pthread_cond_wait returns earlier than expected
+ -- (e.g. in case of EINTR caused by a signal). This should not
+ -- happen with the current Linux implementation of pthread, but
+ -- POSIX does not guarantee it so this may change in future.
+
+ Result := pthread_cond_wait (S.CV'Access, S.L'Access);
+ pragma Assert (Result in 0 | EINTR);
+
+ exit when not S.Waiting;
+ end loop;
+ end if;
+
+ Result := pthread_mutex_unlock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ SSL.Abort_Undefer.all;
+ end if;
+ end Suspend_Until_True;
+
+ ----------------
+ -- Check_Exit --
+ ----------------
+
+ -- Dummy version
+
+ function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
+ pragma Unreferenced (Self_ID);
+ begin
+ return True;
+ end Check_Exit;
+
+ --------------------
+ -- Check_No_Locks --
+ --------------------
+
+ function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
+ pragma Unreferenced (Self_ID);
+ begin
+ return True;
+ end Check_No_Locks;
+
+ ----------------------
+ -- Environment_Task --
+ ----------------------
+
+ function Environment_Task return Task_Id is
+ begin
+ return Environment_Task_Id;
+ end Environment_Task;
+
+ ------------------
+ -- Suspend_Task --
+ ------------------
+
+ function Suspend_Task
+ (T : ST.Task_Id;
+ Thread_Self : Thread_Id) return Boolean
+ is
+ begin
+ if T.Common.LL.Thread /= Thread_Self then
+ return pthread_kill (T.Common.LL.Thread, SIGSTOP) = 0;
+ else
+ return True;
+ end if;
+ end Suspend_Task;
+
+ -----------------
+ -- Resume_Task --
+ -----------------
+
+ function Resume_Task
+ (T : ST.Task_Id;
+ Thread_Self : Thread_Id) return Boolean
+ is
+ begin
+ if T.Common.LL.Thread /= Thread_Self then
+ return pthread_kill (T.Common.LL.Thread, SIGCONT) = 0;
+ else
+ return True;
+ end if;
+ end Resume_Task;
+
+ --------------------
+ -- Stop_All_Tasks --
+ --------------------
+
+ procedure Stop_All_Tasks is
+ begin
+ null;
+ end Stop_All_Tasks;
+
+ ---------------
+ -- Stop_Task --
+ ---------------
+
+ function Stop_Task (T : ST.Task_Id) return Boolean is
+ pragma Unreferenced (T);
+ begin
+ return False;
+ end Stop_Task;
+
+ -------------------
+ -- Continue_Task --
+ -------------------
+
+ function Continue_Task (T : ST.Task_Id) return Boolean is
+ pragma Unreferenced (T);
+ begin
+ return False;
+ end Continue_Task;
+
+ ----------------
+ -- Initialize --
+ ----------------
+
+ procedure Initialize (Environment_Task : Task_Id) is
+ act : aliased struct_sigaction;
+ old_act : aliased struct_sigaction;
+ Tmp_Set : aliased sigset_t;
+ Result : C.int;
+ -- Whether to use an alternate signal stack for stack overflows
+
+ function State
+ (Int : System.Interrupt_Management.Interrupt_ID) return Character;
+ pragma Import (C, State, "__gnat_get_interrupt_state");
+ -- Get interrupt state. Defined in a-init.c
+ -- The input argument is the interrupt number,
+ -- and the result is one of the following:
+
+ Default : constant Character := 's';
+ -- 'n' this interrupt not set by any Interrupt_State pragma
+ -- 'u' Interrupt_State pragma set state to User
+ -- 'r' Interrupt_State pragma set state to Runtime
+ -- 's' Interrupt_State pragma set state to System (use "default"
+ -- system handler)
+
+ begin
+ Environment_Task_Id := Environment_Task;
+
+ Interrupt_Management.Initialize;
+
+ Base_Monotonic_Clock := Compute_Base_Monotonic_Clock;
+
+ -- Prepare the set of signals that should be unblocked in all tasks
+
+ Result := sigemptyset (Unblocked_Signal_Mask'Access);
+ pragma Assert (Result = 0);
+
+ for J in Interrupt_Management.Interrupt_ID loop
+ if System.Interrupt_Management.Keep_Unmasked (J) then
+ Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
+ pragma Assert (Result = 0);
+ end if;
+ end loop;
+
+ Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
+
+ -- Initialize the global RTS lock
+
+ Specific.Initialize (Environment_Task);
+
+ if Use_Alternate_Stack then
+ Environment_Task.Common.Task_Alternate_Stack :=
+ Alternate_Stack'Address;
+ end if;
+
+ -- Make environment task known here because it doesn't go through
+ -- Activate_Tasks, which does it for all other tasks.
+
+ Known_Tasks (Known_Tasks'First) := Environment_Task;
+ Environment_Task.Known_Tasks_Index := Known_Tasks'First;
+
+ Enter_Task (Environment_Task);
+
+ if State
+ (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
+ then
+ act.sa_flags := 0;
+ act.sa_handler := Abort_Handler'Address;
+
+ Result := sigemptyset (Tmp_Set'Access);
+ pragma Assert (Result = 0);
+ act.sa_mask := Tmp_Set;
+
+ Result :=
+ sigaction
+ (Signal (Interrupt_Management.Abort_Task_Interrupt),
+ act'Unchecked_Access,
+ old_act'Unchecked_Access);
+ pragma Assert (Result = 0);
+ Abort_Handler_Installed := True;
+ end if;
+
+ -- pragma CPU and dispatching domains for the environment task
+
+ Set_Task_Affinity (Environment_Task);
+ end Initialize;
+
+ -----------------------
+ -- Set_Task_Affinity --
+ -----------------------
+
+ procedure Set_Task_Affinity (T : ST.Task_Id) is
+ use type Multiprocessors.CPU_Range;
+
+ begin
+ -- Do nothing if there is no support for setting affinities or the
+ -- underlying thread has not yet been created. If the thread has not
+ -- yet been created then the proper affinity will be set during its
+ -- creation.
+
+ if pthread_setaffinity_np'Address /= Null_Address
+ and then T.Common.LL.Thread /= Null_Thread_Id
+ then
+ declare
+ CPUs : constant size_t :=
+ C.size_t (Multiprocessors.Number_Of_CPUs);
+ CPU_Set : cpu_set_t_ptr := null;
+ Size : constant size_t := CPU_ALLOC_SIZE (CPUs);
+
+ Result : C.int;
+
+ begin
+ -- We look at the specific CPU (Base_CPU) first, then at the
+ -- Task_Info field, and finally at the assigned dispatching
+ -- domain, if any.
+
+ if T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
+
+ -- Set the affinity to an unique CPU
+
+ CPU_Set := CPU_ALLOC (CPUs);
+ System.OS_Interface.CPU_ZERO (Size, CPU_Set);
+ System.OS_Interface.CPU_SET
+ (int (T.Common.Base_CPU), Size, CPU_Set);
+
+ -- Handle Task_Info
+
+ elsif T.Common.Task_Info /= null then
+ CPU_Set := T.Common.Task_Info.CPU_Affinity'Access;
+
+ -- Handle dispatching domains
+
+ elsif T.Common.Domain /= null and then
+ (T.Common.Domain /= ST.System_Domain
+ or else T.Common.Domain.all /=
+ (Multiprocessors.CPU'First ..
+ Multiprocessors.Number_Of_CPUs => True))
+ then
+ -- Set the affinity to all the processors belonging to the
+ -- dispatching domain. To avoid changing CPU affinities when
+ -- not needed, we set the affinity only when assigning to a
+ -- domain other than the default one, or when the default one
+ -- has been modified.
+
+ CPU_Set := CPU_ALLOC (CPUs);
+ System.OS_Interface.CPU_ZERO (Size, CPU_Set);
+
+ for Proc in T.Common.Domain'Range loop
+ if T.Common.Domain (Proc) then
+ System.OS_Interface.CPU_SET (int (Proc), Size, CPU_Set);
+ end if;
+ end loop;
+ end if;
+
+ -- We set the new affinity if needed. Otherwise, the new task
+ -- will inherit its creator's CPU affinity mask (according to
+ -- the documentation of pthread_setaffinity_np), which is
+ -- consistent with Ada's required semantics.
+
+ if CPU_Set /= null then
+ Result :=
+ pthread_setaffinity_np (T.Common.LL.Thread, Size, CPU_Set);
+ pragma Assert (Result = 0);
+
+ CPU_FREE (CPU_Set);
+ end if;
+ end;
+ end if;
+ end Set_Task_Affinity;
+
+end System.Task_Primitives.Operations;