summaryrefslogtreecommitdiff
path: root/mpc/src/mul.c
blob: 2be9b8d646d100915a459e41f6fb37f114403384 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/* mpc_mul -- Multiply two complex numbers

Copyright (C) 2002, 2004, 2005, 2008, 2009, 2010, 2011, 2012 INRIA

This file is part of GNU MPC.

GNU MPC is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/

#include <stdio.h>    /* for MPC_ASSERT */
#include "mpc-impl.h"

#define mpz_add_si(z,x,y) do { \
   if (y >= 0) \
      mpz_add_ui (z, x, (long int) y); \
   else \
      mpz_sub_ui (z, x, (long int) (-y)); \
   } while (0);

/* compute z=x*y when x has an infinite part */
static int
mul_infinite (mpc_ptr z, mpc_srcptr x, mpc_srcptr y)
{
   /* Let x=xr+i*xi and y=yr+i*yi; extract the signs of the operands */
   int xrs = mpfr_signbit (mpc_realref (x)) ? -1 : 1;
   int xis = mpfr_signbit (mpc_imagref (x)) ? -1 : 1;
   int yrs = mpfr_signbit (mpc_realref (y)) ? -1 : 1;
   int yis = mpfr_signbit (mpc_imagref (y)) ? -1 : 1;

   int u, v;

   /* compute the sign of
      u = xrs * yrs * xr * yr - xis * yis * xi * yi
      v = xrs * yis * xr * yi + xis * yrs * xi * yr
      +1 if positive, -1 if negatiye, 0 if NaN */
   if (  mpfr_nan_p (mpc_realref (x)) || mpfr_nan_p (mpc_imagref (x))
      || mpfr_nan_p (mpc_realref (y)) || mpfr_nan_p (mpc_imagref (y))) {
      u = 0;
      v = 0;
   }
   else if (mpfr_inf_p (mpc_realref (x))) {
      /* x = (+/-inf) xr + i*xi */
      u = (   mpfr_zero_p (mpc_realref (y))
           || (mpfr_inf_p (mpc_imagref (x)) && mpfr_zero_p (mpc_imagref (y)))
           || (mpfr_zero_p (mpc_imagref (x)) && mpfr_inf_p (mpc_imagref (y)))
           || (   (mpfr_inf_p (mpc_imagref (x)) || mpfr_inf_p (mpc_imagref (y)))
              && xrs*yrs == xis*yis)
           ? 0 : xrs * yrs);
      v = (   mpfr_zero_p (mpc_imagref (y))
           || (mpfr_inf_p (mpc_imagref (x)) && mpfr_zero_p (mpc_realref (y)))
           || (mpfr_zero_p (mpc_imagref (x)) && mpfr_inf_p (mpc_realref (y)))
           || (   (mpfr_inf_p (mpc_imagref (x)) || mpfr_inf_p (mpc_imagref (x)))
               && xrs*yis != xis*yrs)
           ? 0 : xrs * yis);
   }
   else {
      /* x = xr + i*(+/-inf) with |xr| != inf */
      u = (   mpfr_zero_p (mpc_imagref (y))
           || (mpfr_zero_p (mpc_realref (x)) && mpfr_inf_p (mpc_realref (y)))
           || (mpfr_inf_p (mpc_realref (y)) && xrs*yrs == xis*yis)
           ? 0 : -xis * yis);
      v = (   mpfr_zero_p (mpc_realref (y))
           || (mpfr_zero_p (mpc_realref (x)) && mpfr_inf_p (mpc_imagref (y)))
           || (mpfr_inf_p (mpc_imagref (y)) && xrs*yis != xis*yrs)
           ? 0 : xis * yrs);
   }

   if (u == 0 && v == 0) {
      /* Naive result is NaN+i*NaN. Obtain an infinity using the algorithm
         given in Annex G.5.1 of the ISO C99 standard */
      int xr = (mpfr_zero_p (mpc_realref (x)) || mpfr_nan_p (mpc_realref (x)) ? 0
                : (mpfr_inf_p (mpc_realref (x)) ? 1 : 0));
      int xi = (mpfr_zero_p (mpc_imagref (x)) || mpfr_nan_p (mpc_imagref (x)) ? 0
                : (mpfr_inf_p (mpc_imagref (x)) ? 1 : 0));
      int yr = (mpfr_zero_p (mpc_realref (y)) || mpfr_nan_p (mpc_realref (y)) ? 0 : 1);
      int yi = (mpfr_zero_p (mpc_imagref (y)) || mpfr_nan_p (mpc_imagref (y)) ? 0 : 1);
      if (mpc_inf_p (y)) {
         yr = mpfr_inf_p (mpc_realref (y)) ? 1 : 0;
         yi = mpfr_inf_p (mpc_imagref (y)) ? 1 : 0;
      }

      u = xrs * xr * yrs * yr - xis * xi * yis * yi;
      v = xrs * xr * yis * yi + xis * xi * yrs * yr;
   }

   if (u == 0)
      mpfr_set_nan (mpc_realref (z));
   else
      mpfr_set_inf (mpc_realref (z), u);

   if (v == 0)
      mpfr_set_nan (mpc_imagref (z));
   else
      mpfr_set_inf (mpc_imagref (z), v);

   return MPC_INEX (0, 0); /* exact */
}


/* compute z = x*y for Im(y) == 0 */
static int
mul_real (mpc_ptr z, mpc_srcptr x, mpc_srcptr y, mpc_rnd_t rnd)
{
   int xrs, xis, yrs, yis;
   int inex;

   /* save signs of operands */
   xrs = MPFR_SIGNBIT (mpc_realref (x));
   xis = MPFR_SIGNBIT (mpc_imagref (x));
   yrs = MPFR_SIGNBIT (mpc_realref (y));
   yis = MPFR_SIGNBIT (mpc_imagref (y));

   inex = mpc_mul_fr (z, x, mpc_realref (y), rnd);
   /* Signs of zeroes may be wrong. Their correction does not change the
      inexact flag. */
   if (mpfr_zero_p (mpc_realref (z)))
      mpfr_setsign (mpc_realref (z), mpc_realref (z), MPC_RND_RE(rnd) == GMP_RNDD
                     || (xrs != yrs && xis == yis), GMP_RNDN);
   if (mpfr_zero_p (mpc_imagref (z)))
      mpfr_setsign (mpc_imagref (z), mpc_imagref (z), MPC_RND_IM (rnd) == GMP_RNDD
                     || (xrs != yis && xis != yrs), GMP_RNDN);

   return inex;
}


/* compute z = x*y for Re(y) == 0, and Im(x) != 0 and Im(y) != 0 */
static int
mul_imag (mpc_ptr z, mpc_srcptr x, mpc_srcptr y, mpc_rnd_t rnd)
{
   int sign;
   int inex_re, inex_im;
   int overlap = z == x || z == y;
   mpc_t rop;

   if (overlap)
      mpc_init3 (rop, MPC_PREC_RE (z), MPC_PREC_IM (z));
   else
      rop [0] = z[0];

   sign =    (MPFR_SIGNBIT (mpc_realref (y)) != MPFR_SIGNBIT (mpc_imagref (x)))
          && (MPFR_SIGNBIT (mpc_imagref (y)) != MPFR_SIGNBIT (mpc_realref (x)));

   inex_re = -mpfr_mul (mpc_realref (rop), mpc_imagref (x), mpc_imagref (y),
                        INV_RND (MPC_RND_RE (rnd)));
   mpfr_neg (mpc_realref (rop), mpc_realref (rop), GMP_RNDN); /* exact */
   inex_im = mpfr_mul (mpc_imagref (rop), mpc_realref (x), mpc_imagref (y),
                       MPC_RND_IM (rnd));
   mpc_set (z, rop, MPC_RNDNN);

   /* Sign of zeroes may be wrong (note that Re(z) cannot be zero) */
   if (mpfr_zero_p (mpc_imagref (z)))
      mpfr_setsign (mpc_imagref (z), mpc_imagref (z), MPC_RND_IM (rnd) == GMP_RNDD
                     || sign, GMP_RNDN);

   if (overlap)
      mpc_clear (rop);

   return MPC_INEX (inex_re, inex_im);
}


static int
mpfr_fmma (mpfr_ptr z, mpfr_srcptr a, mpfr_srcptr b, mpfr_srcptr c,
           mpfr_srcptr d, int sign, mpfr_rnd_t rnd)
{
   /* Computes z = ab+cd if sign >= 0, or z = ab-cd if sign < 0.
      Assumes that a, b, c, d are finite and non-zero; so any multiplication
      of two of them yielding an infinity is an overflow, and a
      multiplication yielding 0 is an underflow.
      Assumes further that z is distinct from a, b, c, d. */

   int inex;
   mpfr_t u, v;

   /* u=a*b, v=sign*c*d exactly */
   mpfr_init2 (u, mpfr_get_prec (a) + mpfr_get_prec (b));
   mpfr_init2 (v, mpfr_get_prec (c) + mpfr_get_prec (d));
   mpfr_mul (u, a, b, GMP_RNDN);
   mpfr_mul (v, c, d, GMP_RNDN);
   if (sign < 0)
      mpfr_neg (v, v, GMP_RNDN);

   /* tentatively compute z as u+v; here we need z to be distinct
      from a, b, c, d to not lose the latter */
   inex = mpfr_add (z, u, v, rnd);

   if (mpfr_inf_p (z)) {
      /* replace by "correctly rounded overflow" */
      mpfr_set_si (z, (mpfr_signbit (z) ? -1 : 1), GMP_RNDN);
      inex = mpfr_mul_2ui (z, z, mpfr_get_emax (), rnd);
   }
   else if (mpfr_zero_p (u) && !mpfr_zero_p (v)) {
      /* exactly u underflowed, determine inexact flag */
      inex = (mpfr_signbit (u) ? 1 : -1);
   }
   else if (mpfr_zero_p (v) && !mpfr_zero_p (u)) {
      /* exactly v underflowed, determine inexact flag */
      inex = (mpfr_signbit (v) ? 1 : -1);
   }
   else if (mpfr_nan_p (z) || (mpfr_zero_p (u) && mpfr_zero_p (v))) {
      /* In the first case, u and v are infinities with opposite signs.
         In the second case, u and v are zeroes; their sum may be 0 or the
         least representable number, with a sign to be determined.
         Redo the computations with mpz_t exponents */
      mpfr_exp_t ea, eb, ec, ed;
      mpz_t eu, ev;
         /* cheat to work around the const qualifiers */

      /* Normalise the input by shifting and keep track of the shifts in
         the exponents of u and v */
      ea = mpfr_get_exp (a);
      eb = mpfr_get_exp (b);
      ec = mpfr_get_exp (c);
      ed = mpfr_get_exp (d);

      mpfr_set_exp ((mpfr_ptr) a, (mpfr_prec_t) 0);
      mpfr_set_exp ((mpfr_ptr) b, (mpfr_prec_t) 0);
      mpfr_set_exp ((mpfr_ptr) c, (mpfr_prec_t) 0);
      mpfr_set_exp ((mpfr_ptr) d, (mpfr_prec_t) 0);

      mpz_init (eu);
      mpz_init (ev);
      mpz_set_si (eu, (long int) ea);
      mpz_add_si (eu, eu, (long int) eb);
      mpz_set_si (ev, (long int) ec);
      mpz_add_si (ev, ev, (long int) ed);

      /* recompute u and v and move exponents to eu and ev */
      mpfr_mul (u, a, b, GMP_RNDN);
      /* exponent of u is non-positive */
      mpz_sub_ui (eu, eu, (unsigned long int) (-mpfr_get_exp (u)));
      mpfr_set_exp (u, (mpfr_prec_t) 0);
      mpfr_mul (v, c, d, GMP_RNDN);
      if (sign < 0)
         mpfr_neg (v, v, GMP_RNDN);
      mpz_sub_ui (ev, ev, (unsigned long int) (-mpfr_get_exp (v)));
      mpfr_set_exp (v, (mpfr_prec_t) 0);

      if (mpfr_nan_p (z)) {
         mpfr_exp_t emax = mpfr_get_emax ();
         int overflow;
         /* We have a = ma * 2^ea with 1/2 <= |ma| < 1 and ea <= emax, and
            analogously for b. So eu <= 2*emax, and eu > emax since we have
            an overflow. The same holds for ev. Shift u and v by as much as
            possible so that one of them has exponent emax and the
            remaining exponents in eu and ev are the same. Then carry out
            the addition. Shifting u and v prevents an underflow. */
         if (mpz_cmp (eu, ev) >= 0) {
            mpfr_set_exp (u, emax);
            mpz_sub_ui (eu, eu, (long int) emax);
            mpz_sub (ev, ev, eu);
            mpfr_set_exp (v, (mpfr_exp_t) mpz_get_ui (ev));
               /* remaining common exponent is now in eu */
         }
         else {
            mpfr_set_exp (v, emax);
            mpz_sub_ui (ev, ev, (long int) emax);
            mpz_sub (eu, eu, ev);
            mpfr_set_exp (u, (mpfr_exp_t) mpz_get_ui (eu));
            mpz_set (eu, ev);
               /* remaining common exponent is now also in eu */
         }
         inex = mpfr_add (z, u, v, rnd);
            /* Result is finite since u and v have different signs. */
         overflow = mpfr_mul_2ui (z, z, mpz_get_ui (eu), rnd);
         if (overflow)
            inex = overflow;
      }
      else {
         int underflow;
         /* Addition of two zeroes with same sign. We have a = ma * 2^ea
            with 1/2 <= |ma| < 1 and ea >= emin and similarly for b.
            So 2*emin < 2*emin+1 <= eu < emin < 0, and analogously for v. */
         mpfr_exp_t emin = mpfr_get_emin ();
         if (mpz_cmp (eu, ev) <= 0) {
            mpfr_set_exp (u, emin);
            mpz_add_ui (eu, eu, (unsigned long int) (-emin));
            mpz_sub (ev, ev, eu);
            mpfr_set_exp (v, (mpfr_exp_t) mpz_get_si (ev));
         }
         else {
            mpfr_set_exp (v, emin);
            mpz_add_ui (ev, ev, (unsigned long int) (-emin));
            mpz_sub (eu, eu, ev);
            mpfr_set_exp (u, (mpfr_exp_t) mpz_get_si (eu));
            mpz_set (eu, ev);
         }
         inex = mpfr_add (z, u, v, rnd);
         mpz_neg (eu, eu);
         underflow = mpfr_div_2ui (z, z, mpz_get_ui (eu), rnd);
         if (underflow)
            inex = underflow;
      }

      mpz_clear (eu);
      mpz_clear (ev);

      mpfr_set_exp ((mpfr_ptr) a, ea);
      mpfr_set_exp ((mpfr_ptr) b, eb);
      mpfr_set_exp ((mpfr_ptr) c, ec);
      mpfr_set_exp ((mpfr_ptr) d, ed);
         /* works also when some of a, b, c, d are not all distinct */
   }

   mpfr_clear (u);
   mpfr_clear (v);

   return inex;
}


int
mpc_mul_naive (mpc_ptr z, mpc_srcptr x, mpc_srcptr y, mpc_rnd_t rnd)
{
   /* computes z=x*y by the schoolbook method, where x and y are assumed
      to be finite and without zero parts                                */
   int overlap, inex;
   mpc_t rop;

   MPC_ASSERT (   mpfr_regular_p (mpc_realref (x)) && mpfr_regular_p (mpc_imagref (x))
               && mpfr_regular_p (mpc_realref (y)) && mpfr_regular_p (mpc_imagref (y)));
   overlap = (z == x) || (z == y);
   if (overlap)
      mpc_init3 (rop, MPC_PREC_RE (z), MPC_PREC_IM (z));
   else
      rop [0] = z [0];

   inex = MPC_INEX (mpfr_fmma (mpc_realref (rop), mpc_realref (x), mpc_realref (y), mpc_imagref (x),
                               mpc_imagref (y), -1, MPC_RND_RE (rnd)),
                    mpfr_fmma (mpc_imagref (rop), mpc_realref (x), mpc_imagref (y), mpc_imagref (x),
                               mpc_realref (y), +1, MPC_RND_IM (rnd)));

   mpc_set (z, rop, MPC_RNDNN);
   if (overlap)
      mpc_clear (rop);

   return inex;
}


int
mpc_mul_karatsuba (mpc_ptr rop, mpc_srcptr op1, mpc_srcptr op2, mpc_rnd_t rnd)
{
   /* computes rop=op1*op2 by a Karatsuba algorithm, where op1 and op2
      are assumed to be finite and without zero parts                  */
  mpfr_srcptr a, b, c, d;
  int mul_i, ok, inexact, mul_a, mul_c, inex_re = 0, inex_im = 0, sign_x, sign_u;
  mpfr_t u, v, w, x;
  mpfr_prec_t prec, prec_re, prec_u, prec_v, prec_w;
  mpfr_rnd_t rnd_re, rnd_u;
  int overlap;
     /* true if rop == op1 or rop == op2 */
  mpc_t result;
     /* overlap is quite difficult to handle, because we have to tentatively
        round the variable u in the end to either the real or the imaginary
        part of rop (it is not possible to tell now whether the real or
        imaginary part is used). If this fails, we have to start again and
        need the correct values of op1 and op2.
        So we just create a new variable for the result in this case. */
  int loop;
  const int MAX_MUL_LOOP = 1;

  overlap = (rop == op1) || (rop == op2);
  if (overlap)
     mpc_init3 (result, MPC_PREC_RE (rop), MPC_PREC_IM (rop));
  else
     result [0] = rop [0];

  a = mpc_realref(op1);
  b = mpc_imagref(op1);
  c = mpc_realref(op2);
  d = mpc_imagref(op2);

  /* (a + i*b) * (c + i*d) = [ac - bd] + i*[ad + bc] */

  mul_i = 0; /* number of multiplications by i */
  mul_a = 1; /* implicit factor for a */
  mul_c = 1; /* implicit factor for c */

  if (mpfr_cmp_abs (a, b) < 0)
    {
      MPFR_SWAP (a, b);
      mul_i ++;
      mul_a = -1; /* consider i * (a+i*b) = -b + i*a */
    }

  if (mpfr_cmp_abs (c, d) < 0)
    {
      MPFR_SWAP (c, d);
      mul_i ++;
      mul_c = -1; /* consider -d + i*c instead of c + i*d */
    }

  /* find the precision and rounding mode for the new real part */
  if (mul_i % 2)
    {
      prec_re = MPC_PREC_IM(rop);
      rnd_re = MPC_RND_IM(rnd);
    }
  else /* mul_i = 0 or 2 */
    {
      prec_re = MPC_PREC_RE(rop);
      rnd_re = MPC_RND_RE(rnd);
    }

  if (mul_i)
    rnd_re = INV_RND(rnd_re);

  /* now |a| >= |b| and |c| >= |d| */
  prec = MPC_MAX_PREC(rop);

  mpfr_init2 (v, prec_v = mpfr_get_prec (a) + mpfr_get_prec (d));
  mpfr_init2 (w, prec_w = mpfr_get_prec (b) + mpfr_get_prec (c));
  mpfr_init2 (u, 2);
  mpfr_init2 (x, 2);

  inexact = mpfr_mul (v, a, d, GMP_RNDN);
  if (inexact) {
     /* over- or underflow */
    ok = 0;
    goto clear;
  }
  if (mul_a == -1)
    mpfr_neg (v, v, GMP_RNDN);

  inexact = mpfr_mul (w, b, c, GMP_RNDN);
  if (inexact) {
     /* over- or underflow */
     ok = 0;
     goto clear;
  }
  if (mul_c == -1)
    mpfr_neg (w, w, GMP_RNDN);

  /* compute sign(v-w) */
  sign_x = mpfr_cmp_abs (v, w);
  if (sign_x > 0)
    sign_x = 2 * mpfr_sgn (v) - mpfr_sgn (w);
  else if (sign_x == 0)
    sign_x = mpfr_sgn (v) - mpfr_sgn (w);
  else
    sign_x = mpfr_sgn (v) - 2 * mpfr_sgn (w);

   sign_u = mul_a * mpfr_sgn (a) * mul_c * mpfr_sgn (c);

   if (sign_x * sign_u < 0)
    {  /* swap inputs */
      MPFR_SWAP (a, c);
      MPFR_SWAP (b, d);
      mpfr_swap (v, w);
      { int tmp; tmp = mul_a; mul_a = mul_c; mul_c = tmp; }
      sign_x = - sign_x;
    }

   /* now sign_x * sign_u >= 0 */
   loop = 0;
   do
     {
        loop++;
         /* the following should give failures with prob. <= 1/prec */
         prec += mpc_ceil_log2 (prec) + 3;

         mpfr_set_prec (u, prec_u = prec);
         mpfr_set_prec (x, prec);

         /* first compute away(b +/- a) and store it in u */
         inexact = (mul_a == -1 ?
                    ROUND_AWAY (mpfr_sub (u, b, a, MPFR_RNDA), u) :
                    ROUND_AWAY (mpfr_add (u, b, a, MPFR_RNDA), u));

         /* then compute away(+/-c - d) and store it in x */
         inexact |= (mul_c == -1 ?
                     ROUND_AWAY (mpfr_add (x, c, d, MPFR_RNDA), x) :
                     ROUND_AWAY (mpfr_sub (x, c, d, MPFR_RNDA), x));
         if (mul_c == -1)
           mpfr_neg (x, x, GMP_RNDN);

         if (inexact == 0)
            mpfr_prec_round (u, prec_u = 2 * prec, GMP_RNDN);

         /* compute away(u*x) and store it in u */
         inexact |= ROUND_AWAY (mpfr_mul (u, u, x, MPFR_RNDA), u);
            /* (a+b)*(c-d) */

	 /* if all computations are exact up to here, it may be that
	    the real part is exact, thus we need if possible to
	    compute v - w exactly */
	 if (inexact == 0)
	   {
	     mpfr_prec_t prec_x;
             /* v and w are different from 0, so mpfr_get_exp is safe to use */
             prec_x = SAFE_ABS (mpfr_exp_t, mpfr_get_exp (v) - mpfr_get_exp (w))
                      + MPC_MAX (prec_v, prec_w) + 1;
                      /* +1 is necessary for a potential carry */
	     /* ensure we do not use a too large precision */
	     if (prec_x > prec_u)
               prec_x = prec_u;
	     if (prec_x > prec)
	       mpfr_prec_round (x, prec_x, GMP_RNDN);
	   }

         rnd_u = (sign_u > 0) ? GMP_RNDU : GMP_RNDD;
         inexact |= mpfr_sub (x, v, w, rnd_u); /* ad - bc */

         /* in case u=0, ensure that rnd_u rounds x away from zero */
         if (mpfr_sgn (u) == 0)
           rnd_u = (mpfr_sgn (x) > 0) ? GMP_RNDU : GMP_RNDD;
         inexact |= mpfr_add (u, u, x, rnd_u); /* ac - bd */

         ok = inexact == 0 ||
           mpfr_can_round (u, prec_u - 3, rnd_u, GMP_RNDZ,
                           prec_re + (rnd_re == GMP_RNDN));
         /* this ensures both we can round correctly and determine the correct
            inexact flag (for rounding to nearest) */
     }
   while (!ok && loop <= MAX_MUL_LOOP);
      /* after MAX_MUL_LOOP rounds, use mpc_naive instead */

   if (ok) {
      /* if inexact is zero, then u is exactly ac-bd, otherwise fix the sign
         of the inexact flag for u, which was rounded away from ac-bd */
      if (inexact != 0)
      inexact = mpfr_sgn (u);

      if (mul_i == 0)
      {
         inex_re = mpfr_set (mpc_realref(result), u, MPC_RND_RE(rnd));
         if (inex_re == 0)
            {
            inex_re = inexact; /* u is rounded away from 0 */
            inex_im = mpfr_add (mpc_imagref(result), v, w, MPC_RND_IM(rnd));
            }
         else
            inex_im = mpfr_add (mpc_imagref(result), v, w, MPC_RND_IM(rnd));
      }
      else if (mul_i == 1) /* (x+i*y)/i = y - i*x */
      {
         inex_im = mpfr_neg (mpc_imagref(result), u, MPC_RND_IM(rnd));
         if (inex_im == 0)
            {
            inex_im = -inexact; /* u is rounded away from 0 */
            inex_re = mpfr_add (mpc_realref(result), v, w, MPC_RND_RE(rnd));
            }
         else
            inex_re = mpfr_add (mpc_realref(result), v, w, MPC_RND_RE(rnd));
      }
      else /* mul_i = 2, z/i^2 = -z */
      {
         inex_re = mpfr_neg (mpc_realref(result), u, MPC_RND_RE(rnd));
         if (inex_re == 0)
            {
            inex_re = -inexact; /* u is rounded away from 0 */
            inex_im = -mpfr_add (mpc_imagref(result), v, w,
                                 INV_RND(MPC_RND_IM(rnd)));
            mpfr_neg (mpc_imagref(result), mpc_imagref(result), MPC_RND_IM(rnd));
            }
         else
            {
            inex_im = -mpfr_add (mpc_imagref(result), v, w,
                                 INV_RND(MPC_RND_IM(rnd)));
            mpfr_neg (mpc_imagref(result), mpc_imagref(result), MPC_RND_IM(rnd));
            }
      }

      mpc_set (rop, result, MPC_RNDNN);
   }

clear:
   mpfr_clear (u);
   mpfr_clear (v);
   mpfr_clear (w);
   mpfr_clear (x);
   if (overlap)
      mpc_clear (result);

   if (ok)
      return MPC_INEX(inex_re, inex_im);
   else
      return mpc_mul_naive (rop, op1, op2, rnd);
}


int
mpc_mul (mpc_ptr a, mpc_srcptr b, mpc_srcptr c, mpc_rnd_t rnd)
{
   /* Conforming to ISO C99 standard (G.5.1 multiplicative operators),
      infinities are treated specially if both parts are NaN when computed
      naively. */
   if (mpc_inf_p (b))
      return mul_infinite (a, b, c);
   if (mpc_inf_p (c))
      return mul_infinite (a, c, b);

   /* NaN contamination of both parts in result */
   if (mpfr_nan_p (mpc_realref (b)) || mpfr_nan_p (mpc_imagref (b))
       || mpfr_nan_p (mpc_realref (c)) || mpfr_nan_p (mpc_imagref (c))) {
      mpfr_set_nan (mpc_realref (a));
      mpfr_set_nan (mpc_imagref (a));
      return MPC_INEX (0, 0);
   }

   /* check for real multiplication */
   if (mpfr_zero_p (mpc_imagref (b)))
      return mul_real (a, c, b, rnd);
   if (mpfr_zero_p (mpc_imagref (c)))
      return mul_real (a, b, c, rnd);

   /* check for purely imaginary multiplication */
   if (mpfr_zero_p (mpc_realref (b)))
      return mul_imag (a, c, b, rnd);
   if (mpfr_zero_p (mpc_realref (c)))
      return mul_imag (a, b, c, rnd);

   /* If the real and imaginary part of one argument have a very different */
   /* exponent, it is not reasonable to use Karatsuba multiplication.      */
   if (   SAFE_ABS (mpfr_exp_t,
                     mpfr_get_exp (mpc_realref (b)) - mpfr_get_exp (mpc_imagref (b)))
         > (mpfr_exp_t) MPC_MAX_PREC (b) / 2
      || SAFE_ABS (mpfr_exp_t,
                     mpfr_get_exp (mpc_realref (c)) - mpfr_get_exp (mpc_imagref (c)))
         > (mpfr_exp_t) MPC_MAX_PREC (c) / 2)
      return mpc_mul_naive (a, b, c, rnd);
   else
      return ((MPC_MAX_PREC(a)
               <= (mpfr_prec_t) MUL_KARATSUBA_THRESHOLD * BITS_PER_MP_LIMB)
            ? mpc_mul_naive : mpc_mul_karatsuba) (a, b, c, rnd);
}