summaryrefslogtreecommitdiff
path: root/mpc/src/log10.c
blob: 4e77aafe15ebbc92a446a000a8b2b4b0c922632c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/* mpc_log10 -- Take the base-10 logarithm of a complex number.

Copyright (C) 2012 INRIA

This file is part of GNU MPC.

GNU MPC is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/

#include <limits.h> /* for CHAR_BIT */
#include "mpc-impl.h"

/* Auxiliary functions which implement Ziv's strategy for special cases.
   if flag = 0: compute only real part
   if flag = 1: compute only imaginary
   Exact cases should be dealt with separately. */
static int
mpc_log10_aux (mpc_ptr rop, mpc_srcptr op, mpc_rnd_t rnd, int flag, int nb)
{
  mp_prec_t prec = (MPFR_PREC_MIN > 4) ? MPFR_PREC_MIN : 4;
  mpc_t tmp;
  mpfr_t log10;
  int ok = 0, ret;

  prec = mpfr_get_prec ((flag == 0) ? mpc_realref (rop) : mpc_imagref (rop));
  prec += 10;
  mpc_init2 (tmp, prec);
  mpfr_init2 (log10, prec);
  while (ok == 0)
    {
      mpfr_set_ui (log10, 10, GMP_RNDN); /* exact since prec >= 4 */
      mpfr_log (log10, log10, GMP_RNDN);
      /* In each case we have two roundings, thus the final value is
         x * (1+u)^2 where x is the exact value, and |u| <= 2^(-prec-1).
         Thus the error is always less than 3 ulps. */
      switch (nb)
        {
        case 0: /* imag <- atan2(y/x) */
          mpfr_atan2 (mpc_imagref (tmp), mpc_imagref (op), mpc_realref (op),
                      MPC_RND_IM (rnd));
          mpfr_div (mpc_imagref (tmp), mpc_imagref (tmp), log10, GMP_RNDN);
          ok = mpfr_can_round (mpc_imagref (tmp), prec - 2, GMP_RNDN,
                               GMP_RNDZ, MPC_PREC_IM(rop) +
                               (MPC_RND_IM (rnd) == GMP_RNDN));
          if (ok)
            ret = mpfr_set (mpc_imagref (rop), mpc_imagref (tmp),
                            MPC_RND_IM (rnd));
          break;
        case 1: /* real <- log(x) */
          mpfr_log (mpc_realref (tmp), mpc_realref (op), MPC_RND_RE (rnd));
          mpfr_div (mpc_realref (tmp), mpc_realref (tmp), log10, GMP_RNDN);
          ok = mpfr_can_round (mpc_realref (tmp), prec - 2, GMP_RNDN,
                               GMP_RNDZ, MPC_PREC_RE(rop) +
                               (MPC_RND_RE (rnd) == GMP_RNDN));
          if (ok)
            ret = mpfr_set (mpc_realref (rop), mpc_realref (tmp),
                            MPC_RND_RE (rnd));
          break;
        case 2: /* imag <- pi */
          mpfr_const_pi (mpc_imagref (tmp), MPC_RND_IM (rnd));
          mpfr_div (mpc_imagref (tmp), mpc_imagref (tmp), log10, GMP_RNDN);
          ok = mpfr_can_round (mpc_imagref (tmp), prec - 2, GMP_RNDN,
                               GMP_RNDZ, MPC_PREC_IM(rop) +
                               (MPC_RND_IM (rnd) == GMP_RNDN));
          if (ok)
            ret = mpfr_set (mpc_imagref (rop), mpc_imagref (tmp),
                            MPC_RND_IM (rnd));
          break;
        }
      prec += prec / 2;
      mpc_set_prec (tmp, prec);
      mpfr_set_prec (log10, prec);
    }
  mpc_clear (tmp);
  mpfr_clear (log10);
  return ret;
}

int
mpc_log10 (mpc_ptr rop, mpc_srcptr op, mpc_rnd_t rnd)
{
  int ok = 0, loops = 0, re_cmp, im_cmp, inex_re, inex_im, negative_zero;
  mpfr_t w;
  mpfr_prec_t prec;
  mpfr_rnd_t rnd_im;
  mpc_t ww;
  mpc_rnd_t invrnd;

  /* special values: NaN and infinities: same as mpc_log */
  if (!mpc_fin_p (op)) /* real or imaginary parts are NaN or Inf */
    {
      if (mpfr_nan_p (mpc_realref (op)))
        {
          if (mpfr_inf_p (mpc_imagref (op)))
            /* (NaN, Inf) -> (+Inf, NaN) */
            mpfr_set_inf (mpc_realref (rop), +1);
          else
            /* (NaN, xxx) -> (NaN, NaN) */
            mpfr_set_nan (mpc_realref (rop));
         mpfr_set_nan (mpc_imagref (rop));
         inex_im = 0; /* Inf/NaN is exact */
        }
      else if (mpfr_nan_p (mpc_imagref (op)))
        {
          if (mpfr_inf_p (mpc_realref (op)))
            /* (Inf, NaN) -> (+Inf, NaN) */
            mpfr_set_inf (mpc_realref (rop), +1);
          else
            /* (xxx, NaN) -> (NaN, NaN) */
            mpfr_set_nan (mpc_realref (rop));
          mpfr_set_nan (mpc_imagref (rop));
          inex_im = 0; /* Inf/NaN is exact */
        }
      else /* We have an infinity in at least one part. */
        {
          /* (+Inf, y) -> (+Inf, 0) for finite positive-signed y */
          if (mpfr_inf_p (mpc_realref (op)) && mpfr_signbit (mpc_realref (op))
              == 0 && mpfr_number_p (mpc_imagref (op)))
            inex_im = mpfr_atan2 (mpc_imagref (rop), mpc_imagref (op),
                                  mpc_realref (op), MPC_RND_IM (rnd));
          else
            /* (xxx, Inf) -> (+Inf, atan2(Inf/xxx))
               (Inf, yyy) -> (+Inf, atan2(yyy/Inf)) */
            inex_im = mpc_log10_aux (rop, op, rnd, 1, 0);
          mpfr_set_inf (mpc_realref (rop), +1);
        }
      return MPC_INEX(0, inex_im);
    }

   /* special cases: real and purely imaginary numbers */
  re_cmp = mpfr_cmp_ui (mpc_realref (op), 0);
  im_cmp = mpfr_cmp_ui (mpc_imagref (op), 0);
  if (im_cmp == 0) /* Im(op) = 0 */
    {
      if (re_cmp == 0) /* Re(op) = 0 */
        {
          if (mpfr_signbit (mpc_realref (op)) == 0)
            inex_im = mpfr_atan2 (mpc_imagref (rop), mpc_imagref (op),
                                  mpc_realref (op), MPC_RND_IM (rnd));
          else
            inex_im = mpc_log10_aux (rop, op, rnd, 1, 0);
          mpfr_set_inf (mpc_realref (rop), -1);
          inex_re = 0; /* -Inf is exact */
        }
      else if (re_cmp > 0)
        {
          inex_re = mpfr_log10 (mpc_realref (rop), mpc_realref (op),
                                MPC_RND_RE (rnd));
          inex_im = mpfr_set (mpc_imagref (rop), mpc_imagref (op),
                              MPC_RND_IM (rnd));
        }
      else /* log10(x + 0*i) for negative x */
        { /* op = x + 0*i; let w = -x = |x| */
          negative_zero = mpfr_signbit (mpc_imagref (op));
          if (negative_zero)
            rnd_im = INV_RND (MPC_RND_IM (rnd));
          else
            rnd_im = MPC_RND_IM (rnd);
          ww->re[0] = *mpc_realref (op);
          MPFR_CHANGE_SIGN (ww->re);
          ww->im[0] = *mpc_imagref (op);
          if (mpfr_cmp_ui (ww->re, 1) == 0)
            inex_re = mpfr_set_ui (mpc_realref (rop), 0, MPC_RND_RE (rnd));
          else
            inex_re = mpc_log10_aux (rop, ww, rnd, 0, 1);
          inex_im = mpc_log10_aux (rop, op, MPC_RND (0,rnd_im), 1, 2);
          if (negative_zero)
            {
              mpc_conj (rop, rop, MPC_RNDNN);
              inex_im = -inex_im;
            }
        }
      return MPC_INEX(inex_re, inex_im);
    }
   else if (re_cmp == 0)
     {
       if (im_cmp > 0)
         {
           inex_re = mpfr_log10 (mpc_realref (rop), mpc_imagref (op), MPC_RND_RE (rnd));
           inex_im = mpc_log10_aux (rop, op, rnd, 1, 2);
           /* division by 2 does not change the ternary flag */
           mpfr_div_2ui (mpc_imagref (rop), mpc_imagref (rop), 1, GMP_RNDN);
         }
       else
         {
           w [0] = *mpc_imagref (op);
           MPFR_CHANGE_SIGN (w);
           inex_re = mpfr_log10 (mpc_realref (rop), w, MPC_RND_RE (rnd));
           invrnd = MPC_RND (0, INV_RND (MPC_RND_IM (rnd)));
           inex_im = mpc_log10_aux (rop, op, invrnd, 1, 2);
           /* division by 2 does not change the ternary flag */
           mpfr_div_2ui (mpc_imagref (rop), mpc_imagref (rop), 1, GMP_RNDN);
           mpfr_neg (mpc_imagref (rop), mpc_imagref (rop), GMP_RNDN);
           inex_im = -inex_im; /* negate the ternary flag */
         }
       return MPC_INEX(inex_re, inex_im);
     }

  /* generic case: neither Re(op) nor Im(op) is NaN, Inf or zero */
  prec = MPC_PREC_RE(rop);
  mpfr_init2 (w, prec);
  mpc_init2 (ww, prec);
  /* let op = x + iy; compute log(op)/log(10) */
  while (ok == 0)
    {
      loops ++;
      prec += (loops <= 2) ? mpc_ceil_log2 (prec) + 4 : prec / 2;
      mpfr_set_prec (w, prec);
      mpc_set_prec (ww, prec);

      mpc_log (ww, op, MPC_RNDNN);
      mpfr_set_ui (w, 10, GMP_RNDN); /* exact since prec >= 4 */
      mpfr_log (w, w, GMP_RNDN);
      mpc_div_fr (ww, ww, w, MPC_RNDNN);

      ok = mpfr_can_round (mpc_realref (ww), prec - 2, GMP_RNDN, GMP_RNDZ,
                           MPC_PREC_RE(rop) + (MPC_RND_RE (rnd) == GMP_RNDN));

      /* Special code to deal with cases where the real part of log10(x+i*y)
         is exact, like x=3 and y=1. Since Re(log10(x+i*y)) = log10(x^2+y^2)/2
         this happens whenever x^2+y^2 is a nonnegative power of 10.
         Indeed x^2+y^2 cannot equal 10^(a/2^b) for a, b integers, a odd, b>0,
         since x^2+y^2 is rational, and 10^(a/2^b) is irrational.
         Similarly, for b=0, x^2+y^2 cannot equal 10^a for a < 0 since x^2+y^2
         is a rational with denominator a power of 2.
         Now let x^2+y^2 = 10^s. Without loss of generality we can assume
         x = u/2^e and y = v/2^e with u, v, e integers: u^2+v^2 = 10^s*2^(2e)
         thus u^2+v^2 = 0 mod 2^(2e). By recurrence on e, necessarily
         u = v = 0 mod 2^e, thus x and y are necessarily integers.
      */
      if ((ok == 0) && (loops == 1) && mpfr_integer_p (mpc_realref (op)) &&
          mpfr_integer_p (mpc_imagref (op)))
        {
          mpz_t x, y;
          unsigned long s, v;

          mpz_init (x);
          mpz_init (y);
          mpfr_get_z (x, mpc_realref (op), GMP_RNDN); /* exact */
          mpfr_get_z (y, mpc_imagref (op), GMP_RNDN); /* exact */
          mpz_mul (x, x, x);
          mpz_mul (y, y, y);
          mpz_add (x, x, y); /* x^2+y^2 */
          v = mpz_scan1 (x, 0);
          /* if x = 10^s then necessarily s = v */
          s = mpz_sizeinbase (x, 10);
          /* since s is either the number of digits of x or one more,
             then x = 10^(s-1) or 10^(s-2) */
          if (s == v + 1 || s == v + 2)
            {
              mpz_div_2exp (x, x, v);
              mpz_ui_pow_ui (y, 5, v);
              if (mpz_cmp (y, x) == 0) /* Re(log10(x+i*y)) is exactly v/2 */
                {
                  /* we reset the precision of Re(ww) so that v can be
                     represented exactly */
                  mpfr_set_prec (mpc_realref (ww), sizeof(unsigned long)*CHAR_BIT);
                  mpfr_set_ui_2exp (mpc_realref (ww), v, -1, GMP_RNDN); /* exact */
                  ok = 1;
                }
            }
          mpz_clear (x);
          mpz_clear (y);
        }

      ok = ok && mpfr_can_round (mpc_imagref (ww), prec-2, GMP_RNDN, GMP_RNDZ,
                            MPC_PREC_IM(rop) + (MPC_RND_IM (rnd) == GMP_RNDN));
    }

  inex_re = mpfr_set (mpc_realref(rop), mpc_realref (ww), MPC_RND_RE (rnd));
  inex_im = mpfr_set (mpc_imagref(rop), mpc_imagref (ww), MPC_RND_IM (rnd));
  mpfr_clear (w);
  mpc_clear (ww);
  return MPC_INEX(inex_re, inex_im);
}