summaryrefslogtreecommitdiff
path: root/mpc/src/fma.c
blob: 7f5cd31b8ad5fbfd62df1bbbe96ea445b368ed8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/* mpc_fma -- Fused multiply-add of three complex numbers

Copyright (C) 2011, 2012 INRIA

This file is part of GNU MPC.

GNU MPC is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/

#include "mpc-impl.h"

/* return a bound on the precision needed to add or subtract x and y exactly */
static mpfr_prec_t
bound_prec_addsub (mpfr_srcptr x, mpfr_srcptr y)
{
  if (!mpfr_regular_p (x))
    return mpfr_get_prec (y);
  else if (!mpfr_regular_p (y))
    return mpfr_get_prec (x);
  else /* neither x nor y are NaN, Inf or zero */
    {
      mpfr_exp_t ex = mpfr_get_exp (x);
      mpfr_exp_t ey = mpfr_get_exp (y);
      mpfr_exp_t ulpx = ex - mpfr_get_prec (x);
      mpfr_exp_t ulpy = ey - mpfr_get_prec (y);
      return ((ex >= ey) ? ex : ey) + 1 - ((ulpx <= ulpy) ? ulpx : ulpy);
    }
}

/* r <- a*b+c */
int
mpc_fma_naive (mpc_ptr r, mpc_srcptr a, mpc_srcptr b, mpc_srcptr c, mpc_rnd_t rnd)
{
  mpfr_t rea_reb, rea_imb, ima_reb, ima_imb, tmp;
  mpfr_prec_t pre12, pre13, pre23, pim12, pim13, pim23;
  int inex_re, inex_im;

  mpfr_init2 (rea_reb, mpfr_get_prec (mpc_realref(a)) + mpfr_get_prec (mpc_realref(b)));
  mpfr_init2 (rea_imb, mpfr_get_prec (mpc_realref(a)) + mpfr_get_prec (mpc_imagref(b)));
  mpfr_init2 (ima_reb, mpfr_get_prec (mpc_imagref(a)) + mpfr_get_prec (mpc_realref(b)));
  mpfr_init2 (ima_imb, mpfr_get_prec (mpc_imagref(a)) + mpfr_get_prec (mpc_imagref(b)));

  mpfr_mul (rea_reb, mpc_realref(a), mpc_realref(b), GMP_RNDZ); /* exact */
  mpfr_mul (rea_imb, mpc_realref(a), mpc_imagref(b), GMP_RNDZ); /* exact */
  mpfr_mul (ima_reb, mpc_imagref(a), mpc_realref(b), GMP_RNDZ); /* exact */
  mpfr_mul (ima_imb, mpc_imagref(a), mpc_imagref(b), GMP_RNDZ); /* exact */

  /* Re(r) <- rea_reb - ima_imb + Re(c) */

  pre12 = bound_prec_addsub (rea_reb, ima_imb); /* bound on exact precision for
						   rea_reb - ima_imb */
  pre13 = bound_prec_addsub (rea_reb, mpc_realref(c));
  /* bound for rea_reb + Re(c) */
  pre23 = bound_prec_addsub (ima_imb, mpc_realref(c));
  /* bound for ima_imb - Re(c) */
  if (pre12 <= pre13 && pre12 <= pre23) /* (rea_reb - ima_imb) + Re(c) */
    {
      mpfr_init2 (tmp, pre12);
      mpfr_sub (tmp, rea_reb, ima_imb, GMP_RNDZ); /* exact */
      inex_re = mpfr_add (mpc_realref(r), tmp, mpc_realref(c), MPC_RND_RE(rnd));
      /* the only possible bad overlap is between r and c, but since we are
	 only touching the real part of both, it is ok */
    }
  else if (pre13 <= pre23) /* (rea_reb + Re(c)) - ima_imb */
    {
      mpfr_init2 (tmp, pre13);
      mpfr_add (tmp, rea_reb, mpc_realref(c), GMP_RNDZ); /* exact */
      inex_re = mpfr_sub (mpc_realref(r), tmp, ima_imb, MPC_RND_RE(rnd));
      /* the only possible bad overlap is between r and c, but since we are
	 only touching the real part of both, it is ok */
    }
  else /* rea_reb + (Re(c) - ima_imb) */
    {
      mpfr_init2 (tmp, pre23);
      mpfr_sub (tmp, mpc_realref(c), ima_imb, GMP_RNDZ); /* exact */
      inex_re = mpfr_add (mpc_realref(r), tmp, rea_reb, MPC_RND_RE(rnd));
      /* the only possible bad overlap is between r and c, but since we are
	 only touching the real part of both, it is ok */
    }

  /* Im(r) <- rea_imb + ima_reb + Im(c) */
  pim12 = bound_prec_addsub (rea_imb, ima_reb); /* bound on exact precision for
						   rea_imb + ima_reb */
  pim13 = bound_prec_addsub (rea_imb, mpc_imagref(c));
  /* bound for rea_imb + Im(c) */
  pim23 = bound_prec_addsub (ima_reb, mpc_imagref(c));
  /* bound for ima_reb + Im(c) */
  if (pim12 <= pim13 && pim12 <= pim23) /* (rea_imb + ima_reb) + Im(c) */
    {
      mpfr_set_prec (tmp, pim12);
      mpfr_add (tmp, rea_imb, ima_reb, GMP_RNDZ); /* exact */
      inex_im = mpfr_add (mpc_imagref(r), tmp, mpc_imagref(c), MPC_RND_IM(rnd));
      /* the only possible bad overlap is between r and c, but since we are
	 only touching the imaginary part of both, it is ok */
    }
  else if (pim13 <= pim23) /* (rea_imb + Im(c)) + ima_reb */
    {
      mpfr_set_prec (tmp, pim13);
      mpfr_add (tmp, rea_imb, mpc_imagref(c), GMP_RNDZ); /* exact */
      inex_im = mpfr_add (mpc_imagref(r), tmp, ima_reb, MPC_RND_IM(rnd));
      /* the only possible bad overlap is between r and c, but since we are
	 only touching the imaginary part of both, it is ok */
    }
  else /* rea_imb + (Im(c) + ima_reb) */
    {
      mpfr_set_prec (tmp, pre23);
      mpfr_add (tmp, mpc_imagref(c), ima_reb, GMP_RNDZ); /* exact */
      inex_im = mpfr_add (mpc_imagref(r), tmp, rea_imb, MPC_RND_IM(rnd));
      /* the only possible bad overlap is between r and c, but since we are
	 only touching the imaginary part of both, it is ok */
    }

  mpfr_clear (rea_reb);
  mpfr_clear (rea_imb);
  mpfr_clear (ima_reb);
  mpfr_clear (ima_imb);
  mpfr_clear (tmp);

  return MPC_INEX(inex_re, inex_im);
}

/* The algorithm is as follows:
   - in a first pass, we use the target precision + some extra bits
   - if it fails, we add the number of cancelled bits when adding
     Re(a*b) and Re(c) [similarly for the imaginary part]
   - it is fails again, we call the mpc_fma_naive function, which also
     deals with the special cases */
int
mpc_fma (mpc_ptr r, mpc_srcptr a, mpc_srcptr b, mpc_srcptr c, mpc_rnd_t rnd)
{
  mpc_t ab;
  mpfr_prec_t pre, pim, wpre, wpim;
  mpfr_exp_t diffre, diffim;
  int i, inex = 0, okre = 0, okim = 0;

  if (mpc_fin_p (a) == 0 || mpc_fin_p (b) == 0 || mpc_fin_p (c) == 0)
    return mpc_fma_naive (r, a, b, c, rnd);

  pre = mpfr_get_prec (mpc_realref(r));
  pim = mpfr_get_prec (mpc_imagref(r));
  wpre = pre + mpc_ceil_log2 (pre) + 10;
  wpim = pim + mpc_ceil_log2 (pim) + 10;
  mpc_init3 (ab, wpre, wpim);
  for (i = 0; i < 2; ++i)
    {
      mpc_mul (ab, a, b, MPC_RNDZZ);
      if (mpfr_zero_p (mpc_realref(ab)) || mpfr_zero_p (mpc_imagref(ab)))
        break;
      diffre = mpfr_get_exp (mpc_realref(ab));
      diffim = mpfr_get_exp (mpc_imagref(ab));
      mpc_add (ab, ab, c, MPC_RNDZZ);
      if (mpfr_zero_p (mpc_realref(ab)) || mpfr_zero_p (mpc_imagref(ab)))
        break;
      diffre -= mpfr_get_exp (mpc_realref(ab));
      diffim -= mpfr_get_exp (mpc_imagref(ab));
      diffre = (diffre > 0 ? diffre + 1 : 1);
      diffim = (diffim > 0 ? diffim + 1 : 1);
      okre = diffre > (mpfr_exp_t) wpre ? 0 : mpfr_can_round (mpc_realref(ab),
                                 wpre - diffre, GMP_RNDN, GMP_RNDZ,
                                 pre + (MPC_RND_RE (rnd) == GMP_RNDN));
      okim = diffim > (mpfr_exp_t) wpim ? 0 : mpfr_can_round (mpc_imagref(ab),
                                 wpim - diffim, GMP_RNDN, GMP_RNDZ,
                                 pim + (MPC_RND_IM (rnd) == GMP_RNDN));
      if (okre && okim)
        {
          inex = mpc_set (r, ab, rnd);
          break;
        }
      if (i == 1)
        break;
      if (okre == 0 && diffre > 1)
        wpre += diffre;
      if (okim == 0 && diffim > 1)
        wpim += diffim;
      mpfr_set_prec (mpc_realref(ab), wpre);
      mpfr_set_prec (mpc_imagref(ab), wpim);
    }
  mpc_clear (ab);
  return okre && okim ? inex : mpc_fma_naive (r, a, b, c, rnd);
}