summaryrefslogtreecommitdiff
path: root/mpc/src/sqr.c
diff options
context:
space:
mode:
Diffstat (limited to 'mpc/src/sqr.c')
-rw-r--r--mpc/src/sqr.c324
1 files changed, 324 insertions, 0 deletions
diff --git a/mpc/src/sqr.c b/mpc/src/sqr.c
new file mode 100644
index 0000000000..f1ce1bac8a
--- /dev/null
+++ b/mpc/src/sqr.c
@@ -0,0 +1,324 @@
+/* mpc_sqr -- Square a complex number.
+
+Copyright (C) 2002, 2005, 2008, 2009, 2010, 2011, 2012 INRIA
+
+This file is part of GNU MPC.
+
+GNU MPC is free software; you can redistribute it and/or modify it under
+the terms of the GNU Lesser General Public License as published by the
+Free Software Foundation; either version 3 of the License, or (at your
+option) any later version.
+
+GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
+more details.
+
+You should have received a copy of the GNU Lesser General Public License
+along with this program. If not, see http://www.gnu.org/licenses/ .
+*/
+
+#include <stdio.h> /* for MPC_ASSERT */
+#include "mpc-impl.h"
+
+
+static int
+mpfr_fsss (mpfr_ptr z, mpfr_srcptr a, mpfr_srcptr c, mpfr_rnd_t rnd)
+{
+ /* Computes z = a^2 - c^2.
+ Assumes that a and c are finite and non-zero; so a squaring yielding
+ an infinity is an overflow, and a squaring yielding 0 is an underflow.
+ Assumes further that z is distinct from a and c. */
+
+ int inex;
+ mpfr_t u, v;
+
+ /* u=a^2, v=c^2 exactly */
+ mpfr_init2 (u, 2*mpfr_get_prec (a));
+ mpfr_init2 (v, 2*mpfr_get_prec (c));
+ mpfr_sqr (u, a, GMP_RNDN);
+ mpfr_sqr (v, c, GMP_RNDN);
+
+ /* tentatively compute z as u-v; here we need z to be distinct
+ from a and c to not lose the latter */
+ inex = mpfr_sub (z, u, v, rnd);
+
+ if (mpfr_inf_p (z)) {
+ /* replace by "correctly rounded overflow" */
+ mpfr_set_si (z, (mpfr_signbit (z) ? -1 : 1), GMP_RNDN);
+ inex = mpfr_mul_2ui (z, z, mpfr_get_emax (), rnd);
+ }
+ else if (mpfr_zero_p (u) && !mpfr_zero_p (v)) {
+ /* exactly u underflowed, determine inexact flag */
+ inex = (mpfr_signbit (u) ? 1 : -1);
+ }
+ else if (mpfr_zero_p (v) && !mpfr_zero_p (u)) {
+ /* exactly v underflowed, determine inexact flag */
+ inex = (mpfr_signbit (v) ? -1 : 1);
+ }
+ else if (mpfr_nan_p (z) || (mpfr_zero_p (u) && mpfr_zero_p (v))) {
+ /* In the first case, u and v are +inf.
+ In the second case, u and v are zeroes; their difference may be 0
+ or the least representable number, with a sign to be determined.
+ Redo the computations with mpz_t exponents */
+ mpfr_exp_t ea, ec;
+ mpz_t eu, ev;
+ /* cheat to work around the const qualifiers */
+
+ /* Normalise the input by shifting and keep track of the shifts in
+ the exponents of u and v */
+ ea = mpfr_get_exp (a);
+ ec = mpfr_get_exp (c);
+
+ mpfr_set_exp ((mpfr_ptr) a, (mpfr_prec_t) 0);
+ mpfr_set_exp ((mpfr_ptr) c, (mpfr_prec_t) 0);
+
+ mpz_init (eu);
+ mpz_init (ev);
+ mpz_set_si (eu, (long int) ea);
+ mpz_mul_2exp (eu, eu, 1);
+ mpz_set_si (ev, (long int) ec);
+ mpz_mul_2exp (ev, ev, 1);
+
+ /* recompute u and v and move exponents to eu and ev */
+ mpfr_sqr (u, a, GMP_RNDN);
+ /* exponent of u is non-positive */
+ mpz_sub_ui (eu, eu, (unsigned long int) (-mpfr_get_exp (u)));
+ mpfr_set_exp (u, (mpfr_prec_t) 0);
+ mpfr_sqr (v, c, GMP_RNDN);
+ mpz_sub_ui (ev, ev, (unsigned long int) (-mpfr_get_exp (v)));
+ mpfr_set_exp (v, (mpfr_prec_t) 0);
+ if (mpfr_nan_p (z)) {
+ mpfr_exp_t emax = mpfr_get_emax ();
+ int overflow;
+ /* We have a = ma * 2^ea with 1/2 <= |ma| < 1 and ea <= emax.
+ So eu <= 2*emax, and eu > emax since we have
+ an overflow. The same holds for ev. Shift u and v by as much as
+ possible so that one of them has exponent emax and the
+ remaining exponents in eu and ev are the same. Then carry out
+ the addition. Shifting u and v prevents an underflow. */
+ if (mpz_cmp (eu, ev) >= 0) {
+ mpfr_set_exp (u, emax);
+ mpz_sub_ui (eu, eu, (long int) emax);
+ mpz_sub (ev, ev, eu);
+ mpfr_set_exp (v, (mpfr_exp_t) mpz_get_ui (ev));
+ /* remaining common exponent is now in eu */
+ }
+ else {
+ mpfr_set_exp (v, emax);
+ mpz_sub_ui (ev, ev, (long int) emax);
+ mpz_sub (eu, eu, ev);
+ mpfr_set_exp (u, (mpfr_exp_t) mpz_get_ui (eu));
+ mpz_set (eu, ev);
+ /* remaining common exponent is now also in eu */
+ }
+ inex = mpfr_sub (z, u, v, rnd);
+ /* Result is finite since u and v have the same sign. */
+ overflow = mpfr_mul_2ui (z, z, mpz_get_ui (eu), rnd);
+ if (overflow)
+ inex = overflow;
+ }
+ else {
+ int underflow;
+ /* Subtraction of two zeroes. We have a = ma * 2^ea
+ with 1/2 <= |ma| < 1 and ea >= emin and similarly for b.
+ So 2*emin < 2*emin+1 <= eu < emin < 0, and analogously for v. */
+ mpfr_exp_t emin = mpfr_get_emin ();
+ if (mpz_cmp (eu, ev) <= 0) {
+ mpfr_set_exp (u, emin);
+ mpz_add_ui (eu, eu, (unsigned long int) (-emin));
+ mpz_sub (ev, ev, eu);
+ mpfr_set_exp (v, (mpfr_exp_t) mpz_get_si (ev));
+ }
+ else {
+ mpfr_set_exp (v, emin);
+ mpz_add_ui (ev, ev, (unsigned long int) (-emin));
+ mpz_sub (eu, eu, ev);
+ mpfr_set_exp (u, (mpfr_exp_t) mpz_get_si (eu));
+ mpz_set (eu, ev);
+ }
+ inex = mpfr_sub (z, u, v, rnd);
+ mpz_neg (eu, eu);
+ underflow = mpfr_div_2ui (z, z, mpz_get_ui (eu), rnd);
+ if (underflow)
+ inex = underflow;
+ }
+
+ mpz_clear (eu);
+ mpz_clear (ev);
+
+ mpfr_set_exp ((mpfr_ptr) a, ea);
+ mpfr_set_exp ((mpfr_ptr) c, ec);
+ /* works also when a == c */
+ }
+
+ mpfr_clear (u);
+ mpfr_clear (v);
+
+ return inex;
+}
+
+
+int
+mpc_sqr (mpc_ptr rop, mpc_srcptr op, mpc_rnd_t rnd)
+{
+ int ok;
+ mpfr_t u, v;
+ mpfr_t x;
+ /* temporary variable to hold the real part of op,
+ needed in the case rop==op */
+ mpfr_prec_t prec;
+ int inex_re, inex_im, inexact;
+ mpfr_exp_t emin;
+ int saved_underflow;
+
+ /* special values: NaN and infinities */
+ if (!mpc_fin_p (op)) {
+ if (mpfr_nan_p (mpc_realref (op)) || mpfr_nan_p (mpc_imagref (op))) {
+ mpfr_set_nan (mpc_realref (rop));
+ mpfr_set_nan (mpc_imagref (rop));
+ }
+ else if (mpfr_inf_p (mpc_realref (op))) {
+ if (mpfr_inf_p (mpc_imagref (op))) {
+ mpfr_set_inf (mpc_imagref (rop),
+ MPFR_SIGN (mpc_realref (op)) * MPFR_SIGN (mpc_imagref (op)));
+ mpfr_set_nan (mpc_realref (rop));
+ }
+ else {
+ if (mpfr_zero_p (mpc_imagref (op)))
+ mpfr_set_nan (mpc_imagref (rop));
+ else
+ mpfr_set_inf (mpc_imagref (rop),
+ MPFR_SIGN (mpc_realref (op)) * MPFR_SIGN (mpc_imagref (op)));
+ mpfr_set_inf (mpc_realref (rop), +1);
+ }
+ }
+ else /* IM(op) is infinity, RE(op) is not */ {
+ if (mpfr_zero_p (mpc_realref (op)))
+ mpfr_set_nan (mpc_imagref (rop));
+ else
+ mpfr_set_inf (mpc_imagref (rop),
+ MPFR_SIGN (mpc_realref (op)) * MPFR_SIGN (mpc_imagref (op)));
+ mpfr_set_inf (mpc_realref (rop), -1);
+ }
+ return MPC_INEX (0, 0); /* exact */
+ }
+
+ prec = MPC_MAX_PREC(rop);
+
+ /* Check for real resp. purely imaginary number */
+ if (mpfr_zero_p (mpc_imagref(op))) {
+ int same_sign = mpfr_signbit (mpc_realref (op)) == mpfr_signbit (mpc_imagref (op));
+ inex_re = mpfr_sqr (mpc_realref(rop), mpc_realref(op), MPC_RND_RE(rnd));
+ inex_im = mpfr_set_ui (mpc_imagref(rop), 0ul, GMP_RNDN);
+ if (!same_sign)
+ mpc_conj (rop, rop, MPC_RNDNN);
+ return MPC_INEX(inex_re, inex_im);
+ }
+ if (mpfr_zero_p (mpc_realref(op))) {
+ int same_sign = mpfr_signbit (mpc_realref (op)) == mpfr_signbit (mpc_imagref (op));
+ inex_re = -mpfr_sqr (mpc_realref(rop), mpc_imagref(op), INV_RND (MPC_RND_RE(rnd)));
+ mpfr_neg (mpc_realref(rop), mpc_realref(rop), GMP_RNDN);
+ inex_im = mpfr_set_ui (mpc_imagref(rop), 0ul, GMP_RNDN);
+ if (!same_sign)
+ mpc_conj (rop, rop, MPC_RNDNN);
+ return MPC_INEX(inex_re, inex_im);
+ }
+
+ if (rop == op)
+ {
+ mpfr_init2 (x, MPC_PREC_RE (op));
+ mpfr_set (x, op->re, GMP_RNDN);
+ }
+ else
+ x [0] = op->re [0];
+ /* From here on, use x instead of op->re and safely overwrite rop->re. */
+
+ /* Compute real part of result. */
+ if (SAFE_ABS (mpfr_exp_t,
+ mpfr_get_exp (mpc_realref (op)) - mpfr_get_exp (mpc_imagref (op)))
+ > (mpfr_exp_t) MPC_MAX_PREC (op) / 2) {
+ /* If the real and imaginary parts of the argument have very different
+ exponents, it is not reasonable to use Karatsuba squaring; compute
+ exactly with the standard formulae instead, even if this means an
+ additional multiplication. Using the approach copied from mul, over-
+ and underflows are also handled correctly. */
+
+ inex_re = mpfr_fsss (rop->re, x, op->im, MPC_RND_RE (rnd));
+ }
+ else {
+ /* Karatsuba squaring: we compute the real part as (x+y)*(x-y) and the
+ imaginary part as 2*x*y, with a total of 2M instead of 2S+1M for the
+ naive algorithm, which computes x^2-y^2 and 2*y*y */
+ mpfr_init (u);
+ mpfr_init (v);
+
+ emin = mpfr_get_emin ();
+
+ do
+ {
+ prec += mpc_ceil_log2 (prec) + 5;
+
+ mpfr_set_prec (u, prec);
+ mpfr_set_prec (v, prec);
+
+ /* Let op = x + iy. We need u = x+y and v = x-y, rounded away. */
+ /* The error is bounded above by 1 ulp. */
+ /* We first let inexact be 1 if the real part is not computed */
+ /* exactly and determine the sign later. */
+ inexact = ROUND_AWAY (mpfr_add (u, x, mpc_imagref (op), MPFR_RNDA), u)
+ | ROUND_AWAY (mpfr_sub (v, x, mpc_imagref (op), MPFR_RNDA), v);
+
+ /* compute the real part as u*v, rounded away */
+ /* determine also the sign of inex_re */
+
+ if (mpfr_sgn (u) == 0 || mpfr_sgn (v) == 0) {
+ /* as we have rounded away, the result is exact */
+ mpfr_set_ui (mpc_realref (rop), 0, GMP_RNDN);
+ inex_re = 0;
+ ok = 1;
+ }
+ else {
+ mpfr_rnd_t rnd_away;
+ /* FIXME: can be replaced by MPFR_RNDA in mpfr >= 3 */
+ rnd_away = (mpfr_sgn (u) * mpfr_sgn (v) > 0 ? GMP_RNDU : GMP_RNDD);
+ inexact |= ROUND_AWAY (mpfr_mul (u, u, v, MPFR_RNDA), u); /* error 5 */
+ if (mpfr_get_exp (u) == emin || mpfr_inf_p (u)) {
+ /* under- or overflow */
+ inex_re = mpfr_fsss (rop->re, x, op->im, MPC_RND_RE (rnd));
+ ok = 1;
+ }
+ else {
+ ok = (!inexact) | mpfr_can_round (u, prec - 3,
+ rnd_away, GMP_RNDZ,
+ MPC_PREC_RE (rop) + (MPC_RND_RE (rnd) == GMP_RNDN));
+ if (ok) {
+ inex_re = mpfr_set (mpc_realref (rop), u, MPC_RND_RE (rnd));
+ if (inex_re == 0)
+ /* remember that u was already rounded */
+ inex_re = inexact;
+ }
+ }
+ }
+ }
+ while (!ok);
+
+ mpfr_clear (u);
+ mpfr_clear (v);
+ }
+
+ saved_underflow = mpfr_underflow_p ();
+ mpfr_clear_underflow ();
+ inex_im = mpfr_mul (rop->im, x, op->im, MPC_RND_IM (rnd));
+ if (!mpfr_underflow_p ())
+ inex_im |= mpfr_mul_2ui (rop->im, rop->im, 1, MPC_RND_IM (rnd));
+ /* We must not multiply by 2 if rop->im has been set to the smallest
+ representable number. */
+ if (saved_underflow)
+ mpfr_set_underflow ();
+
+ if (rop == op)
+ mpfr_clear (x);
+
+ return MPC_INEX (inex_re, inex_im);
+}