summaryrefslogtreecommitdiff
path: root/FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/tfm.c
diff options
context:
space:
mode:
authorlundinc <lundinc@1d2547de-c912-0410-9cb9-b8ca96c0e9e2>2020-08-12 19:11:51 +0000
committerlundinc <lundinc@1d2547de-c912-0410-9cb9-b8ca96c0e9e2>2020-08-12 19:11:51 +0000
commit42255af1e27a3157d541f0812eaca447c569ca49 (patch)
tree5c8702c2f0dc1cb9be1a4d5ff285897d96b97dd2 /FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/tfm.c
parentf5221dff43de249079c2da081723cb7a456f981f (diff)
downloadfreertos-master.tar.gz
commit 70dcbe4527a45ab4fea6d58c016e7d3032f31e8cHEADmaster
Author: Ming Yue <mingyue86010@gmail.com> Date: Tue Aug 11 17:06:59 2020 -0700 Remove unused wolfSSL files. (#197) * Remove unused wolfSSL files. * Add back some removed ciphers. * Update VS project file. commit 0e0edd96e8236b2ea4a6e6018812807be828c77f Author: RichardBarry <3073890+RichardBarry@users.noreply.github.com> Date: Tue Aug 11 10:50:30 2020 -0700 Use new QEMU test project to improve stream/message buffer tests (#168) * Add Eclipse/GCC project that targets the LM3S8962 QEMU model. * Get the Cortex-M QEMU project working. * Continue working on making stream buffer demo more robust and QEMU project. * Rename directory CORTEX_LM3S8986_QEMU to CORTEX_LM3S6965_QEMU. Work on making the Stream Buffer tests more robust. Check in before adding in the trace recorder. * Rename CORTEX_LM3S6969_QEMU to CORTEX_LM3S6969_GCC_QEMU. * Make the StreamBufferDemo.c common demo file (test file) more robust to other test tasks running at an equally high priority. * Work in progress checkin only - comments in main.c are incorrect. * Correct comments at the top of FreeRTOS/Demo/CORTEX_LM3S6965_GCC_QEMU/main.c Make the message buffer tests more robust in the case the a message buffer becomes full when prvSenderTask() has a higher priority than the reader task. * Disable trace recorder in the LM3S6965 QEMU demo. * I'm dropping FreeRTOS-Kernel reference update, since this seems to break the CMBC CI. Co-authored-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> commit 157a7fc39f19583ac8481e93fa3e1c91b1e1860c Author: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com> Date: Sun Aug 9 22:21:44 2020 -0700 Use chacheable RAM in IAR project for MPU_M7_NUCLEO_H743ZI2 project (#193) This change updates the IAR project for Nucleo H743ZI2 to use the cacheable DTC RAM and enables L1 cache. In order to ensure the correct functioning of cache, the project sets configTEX_S_C_B_SRAM in FreeRTOSConfig.h to not mark the RAM as shareable. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> commit f3e43556f90f01b82918ad533b0c616489331919 Author: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com> Date: Sun Aug 9 16:23:53 2020 -0700 Add MPU demo projects for NUCLEO-H743ZI2 board (#155) * Add MPU demo projects for NUCLEO-H743ZI2 board It contains projects for Keil uVision, STM32CubeIDE and IAR EW. This demo shows the use of newly added support for 16 MPU regions. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> * Delete not needed CMSIS files Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> commit 94aa31c3cbae7c929b8a412768b74631f4a6b461 Author: TakayukiMatsuo <62984531+TakayukiMatsuo@users.noreply.github.com> Date: Sat Aug 8 07:58:14 2020 +0900 Update wolfSSL to the latest version(v.4.4.0) (#186) * deleted old version wolfSSL before updating * updated wolfSSL to the latest version(v4.4.0) * updated wolfSSL to the latest version(v4.4.0) * added macros for timing resistance Co-authored-by: RichardBarry <3073890+RichardBarry@users.noreply.github.com> Co-authored-by: Ming Yue <mingyue86010@gmail.com> commit 68518f5866aac58793c737d9a46dd07a6a816aaf Author: RichardBarry <3073890+RichardBarry@users.noreply.github.com> Date: Fri Aug 7 14:59:24 2020 -0700 Removed a 16MByte flash image file that was checked in by mistake (several years ago). (#173) Remove the copies of lwIP that are no longer reference from demo projects. Co-authored-by: Carl Lundin <53273776+lundinc2@users.noreply.github.com> commit d4bf09480a2c77b1a25cce35b32293be61ab586f Author: m17336 <45935231+m17336@users.noreply.github.com> Date: Thu Aug 6 22:37:08 2020 +0300 Update previous AVR ATmega0 and AVR Dx projecs + addition of equivalent projects in MPLAB.X and IAR (#180) * Updated indentation in AVR_ATMega4809_Atmel_Studio and AVR_Dx_Atmel_Studio projects, plus small fixes in their readme files. * Added AVR_ATMega4809_IAR, AVR_ATMega4809_MPLAB.X, AVR_Dx_IAR and AVR_Dx_MPLAB.X demo projects. * Removed build artefacts and added .gitignore files in AVR_ATMega4809_MPLAB.X and AVR_Dx_MPLAB.X projects. Co-authored-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> commit f32a0647c8228ddd066f5d69a85b2e49086e4c95 Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Mon Aug 3 16:45:10 2020 -0700 Remove CBMC patch which is not used anymore (#187) * Delete 0002-Change-FreeRTOS_IP_Private.h-union-to-struct.patch * Delete 0002-Change-FreeRTOS_IP_Private.h-union-to-struct.patch commit 08af68ef9049279b265c3d00e9c48fb9594129a8 Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Sat Aug 1 16:38:23 2020 -0700 Remove dependency of CBMC on Patches (#181) * Changes to DHCP * CBMC DNS changes * Changes for TCP_IP * Changes to TCP_WIN * Define away static to nothing * Remove patches * Changes after Mark's comments v1 * Update MakefileCommon.json * Correction! commit a7fec906a415363338449447daf10d7517b78848 Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Jul 29 17:39:36 2020 -0700 Misc changes (#183) commit 07cf5e07e4a05d6775a2f9e753269f43f82cf6ba Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Jul 29 16:15:38 2020 -0700 MISRA compliance changes for FreeRTOS+TCP headers (#165) * misra changes * Update FreeRTOS_IP_Private.h * Update FreeRTOS_IP_Private.h commit e903ac0fed7ce59916899e404f3e5ae5b08d1478 Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Jul 29 16:03:14 2020 -0700 UPD MISRA changes (#164) Co-authored-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> commit 97551bf44e7dc7dc1e4484a8fd30f699255e8569 Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Jul 29 15:52:00 2020 -0700 MISRA changes in FreeRTOS_TCP_WIN.c (#162) commit f2611cc5e5999c4c87e040a8c2d2e6b5e77a16a6 Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Jul 29 15:38:37 2020 -0700 MISRA compliance changes in FreeRTOS_Sockets{.c/.h} (#161) * MISRA changes Sockets * add other changes * Update FreeRTOSIPConfig.h * Update FreeRTOSIPConfig.h * Update FreeRTOSIPConfig.h * Update FreeRTOSIPConfig.h * correction * Add 'U' * Update FreeRTOS_Sockets.h * Update FreeRTOS_Sockets.h * Update FreeRTOS_Sockets.c * Update FreeRTOS_Sockets.h * Update after Gary's comments * Correction reverted commit ae4d4d38d9b2685bae159b4c87619cdb157c0bf7 Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Jul 29 13:56:57 2020 -0700 MISRA compliance changes for FreeRTOS_TCP_IP.c (#160) * MISRA tcp-ip changes * Changes after Hein's comments on original PR * Update FreeRTOS_TCP_IP.c Co-authored-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> commit a457f43c66eb0f4be9d8f8678c0e3fb8d7ebd57b Author: Carl Lundin <53273776+lundinc2@users.noreply.github.com> Date: Tue Jul 28 13:01:38 2020 -0700 Add missing error state assignment. (#166) commit 915af50524e15a78ceb6c62b3d33f6562621ee46 Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Mon Jul 27 17:30:53 2020 -0700 Add Atmel Studio projects for ATMega4809 and AVR128DA48 (#159) * Added explicit cast to allow roll over and avoid integer promotion during cycles counters comparison in recmutex.c. * Fixed type mismatch between declaration and definition of function xAreSemaphoreTasksStillRunning( void ). * Added Atmel Studio demo projects for ATMega4809 and AVR128DA48. * Per https://www.freertos.org/upgrading-to-FreeRTOS-V8.html, I'm updating portBASE_TYPE to BaseType_t. Signed-off-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> * Update register test for ATmega4809 - to cover r28, r29, r31. - call public API taskYIELD() instead of portYIELD(). * Update ATmega4809 readme.md to include info for serial port setup, and minor wording fix. Co-authored-by: Alexandru Niculae - M17336 <alexandru.niculae@microchip.com> commit 4a7a48790d64127f85cc763721b575c51c452833 Author: Carl Lundin <53273776+lundinc2@users.noreply.github.com> Date: Thu Jul 23 10:22:33 2020 -0700 Add Uncrustify file used for Kernel. (#163) commit e0d62163b08769fd74f020709c398f994088ca96 Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Jul 22 18:06:23 2020 -0700 Sync with +TCP amazon-FreeRTOS (#158) * DNS.c commit * IP.c commit * Add various source & header files commit 8e36bee30eef2107e128edb58e83ee46e8241a91 Author: Nathan Chong <52972368+nchong-at-aws@users.noreply.github.com> Date: Tue Jul 21 12:51:20 2020 -0400 Prove buffer lemmas (#124) * Prove buffer lemmas * Update queue proofs to latest kernel source All changes were syntactic due to uncrustify code-formatting * Strengthen prvCopyDataToQueue proof * Add extract script for diff comparison Co-authored-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> commit c720c18ada40b502436ea811e8d03dca919726d8 Author: Hein Tibosch <hein_tibosch@yahoo.es> Date: Tue Jul 14 05:35:44 2020 +0800 FreeRTOS+TCP Adding the combined driver for SAM4E and SAME70 v2 (#78) * Adding a combined +TCP driver for SAM4E and SAME70 * Changes after review from Aniruddha Co-authored-by: Hein Tibosch <hein@htibosch.net> Co-authored-by: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> commit 4237049b12d9bb6b03694fecf6ea26a353e637c8 Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Mon Jul 13 12:07:56 2020 -0700 Add changes from 2225-2227 amazon-FreeRTOS (#134) commit 7caa32863458c4470d3c620945c30824199f524c Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Fri Jul 10 23:32:30 2020 -0700 Add Full TCP test suite - not using secure sockets (#131) * Add Full-TCP suite * delete unnecessary files * Change after Joshua's comments commit d7667a0034841f2968f9f9f805030cc608bfbce1 Author: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com> Date: Fri Jul 3 15:45:44 2020 -0700 Remove unnecessary semicolon from the linker file (#121) This was creating problem with the onboard LPCLink debug probe. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> commit 529c481c39506d0b331bfd0cdea35e5d1aeaaad0 Author: Nathan Chong <52972368+nchong-at-aws@users.noreply.github.com> Date: Thu Jul 2 15:55:20 2020 -0400 Add VeriFast kernel queue proofs (#117) commit d5fedeaa96b5b1d3c0f6b9b52a8064ab72ff2821 Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Jul 1 13:56:27 2020 -0700 Add checks in FreeRTOS_Socket.c (#104) * Add fail-safes to FreeRTOS_Socket.c * Use all 'pd' errors * Correction after Hein's comments * Correction after Hein's comments v2 * Changes after Hein's comments * Update after Gary's comments commit a9b2aac4e9fda2a259380156df9cc0af51384d2d Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Fri Jun 26 12:09:36 2020 -0700 Folder structure change + Fix broken Projects (#103) * Update folder structure * Correct project files * Move test folder * Some changes after Yuki's comments commit 98bfc38bf3404414878dc68ea41753bea4e24c8e Author: Hein Tibosch <hein_tibosch@yahoo.es> Date: Thu Jun 25 13:01:45 2020 +0800 FreeRTOS+TCP : add memory statistics and dump packets, v3 (#83) * FreeRTOS+TCP : add memory statistics and dump packets, v3 * Two changes as requested by Aniruddha Co-authored-by: Hein Tibosch <hein@htibosch.net> Co-authored-by: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> commit 072a173c9df31c75ff64bde440f3f316cedb9033 Author: S.Burch <8697966+wholl0p@users.noreply.github.com> Date: Mon Jun 22 23:39:26 2020 +0200 Fixed Imports for Infineon XMC1100 Board (#88) Co-authored-by: RichardBarry <3073890+RichardBarry@users.noreply.github.com> commit 2df5eeef5763045c4c74ff0e2a4091b7d19bea89 Author: RichardBarry <3073890+RichardBarry@users.noreply.github.com> Date: Mon Jun 8 14:22:46 2020 -0700 Feature/multiple direct to task notifications (#73) * Add TaskNotifyArray.c with the single task tests updated to use the task notification array up to the point where the timer is created. * Continue working on TaskNotifyArray.c to test the new task notification indexes. Next TaskNotifyArray.c will be refactored to break the tests up a bit. * Refactor and update the comments in TaskNotifyArray.c - no functional changes. * Change from the task notify "array" to task notification "indexed" nomenclature in the new task notification API functions that work on one particular task notification with the array of task notifications. * Update the implementation of the taskNOTIFY_TAKE() and taskNOTIFY_WAIT() trace macros to take the array index of the task notification they are acting on. Rename configNUMBER_OF_TASK_NOTIFICATIONS to configTASK_NOTIFICATION_ARRAY_ENTRIES. Add FreeRTOS/Demo/Common/Minimal/TaskNotifyArray.c to the Visual Studio project - the file implements tests specific to the behaviour of the indexed task notification functions and should be used in addition to the tests already provided in FreeRTOS/Demo/Common/Minimal/TaskNotify.c. commit b9e4ecfaf7286d8493d4a96a93fbb325534ad97b Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Fri Jun 5 11:10:58 2020 -0700 Remove Empty and Un-referenced folder from Demo (#86) commit f11bcc8acc57a23fb03603762e758c25b9d0efb7 Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Jun 3 16:52:31 2020 -0700 Fix a Bug and corresponding CBMC patch (#84) * Update remove-static-in-freertos-tcp-ip.patch * Update FreeRTOS_TCP_IP.c * Update remove-static-in-freertos-tcp-ip.patch * Update remove-static-in-freertos-tcp-ip.patch Co-authored-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> commit bb9f92f771e5f6ea2b9b09c7e89130a75e562eb7 Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Wed Jun 3 10:46:55 2020 -0700 Submodule FreeRTOS/Source 10bbbcf0b..6199b72fb (#82) commit 6efc39f44be5b269168836e95aebbdb8ae77dce3 Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Tue Jun 2 15:09:25 2020 -0700 Add Project for running integration tests v2 (#80) * Project for integration tests * relative paths in project files * relative paths in project files-1 * relative paths in project files-2 * addressed comments * addressed comments v2 Co-authored-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> commit 0eb5909fb02bac9dc074ff1bc2fe338d77f73764 Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Thu May 28 17:05:24 2020 -0700 readme.md for ATmega328PB Xplained Mini. (#76) readme.md to get users jump started. commit cb7edd2323a77f3dbea144c1f48f95582becc99e Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Thu May 28 10:11:58 2020 -0700 Sync with a:FR (#75) * AFR sync * AFR sync: CBMC * AFR sync: CBMC: remove .bak files * AFR sync: CBMC: more cleanup * Corrected CBMC proofs * Corrected CBMC patches * Corrected CBMC patches-1 * Corrected CBMC patches-2 * remove .bak files (3) Co-authored-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> commit 6557291e5407ca7ec6beca53fced1aaa620c5c02 Author: alfred gedeon <alfred2g@hotmail.com> Date: Wed May 27 14:44:33 2020 -0700 Test: Add Linux Networking support with demo application (#71) * Test: Add Linux Networking support with demo application * Test: revert files affected by uncrustify * Test: revert files affected by uncrustify Co-authored-by: Alfred Gedeon <gedeonag@amazon.com> Co-authored-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> commit 8b079bc394e7b205d72210ce9e052404d782938f Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Wed May 27 10:44:03 2020 -0700 ATmega328PB Xplained Mini -- demo project for ATmega port. (#70) * Bootstrap a demo from START. No driver is added in this commit. * Add FreeRTOS source code to project. Remove unnecessary folder nesting. Heap_4 is used here. * Copy over main.c, FreeRTOSConfig.h, and regtest.{c, h}. This commit compiles, but will need some work on timer used. * This port has 2KB RAM. We are using 1KB for heap. Further decreasing minimum stack size, and also use stack overflow check 1 to save some stack space. * Preserve EEPROM set to false. * End of the line. * Reduce register test stack size. 32 8-bit register + 10 bytes for stack frame cost. Round up to 50. * Adding Queue test in Integer test. - g3 to easy debugging. - mainCHECK_PERIOD is set to 1000 ticks. Note that this port for now use WDT as tick timer, and period is set to 15ms. - vErrorChecks, is of highest priority. So if this task gets run before other tasks, the very first check will fail. * Avoid false alarm. Since we don't know in which order the tasks are scheduled, clearing any error for the first entry of vErrorChecks. Signed-off-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> * ParTest.c to init, set, toggle onboard user LED at PB5. * Added a task to blink onboard user LED. Need a magic number for stack size. Signed-off-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> * Explicitly setting timing slicing to 0. This is to avoid unecessary context switch when multiple tasks are of the same priority. Signed-off-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> * Add taskYIELD() at the end of the loop in each register test task. This is to give other tasks of the same priority a chance to run, regardless of scheduling algorithm. Signed-off-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> * minor, update comment in main.c. commit 95a3a02f95749fb7a600723076e291f9dee7426c Author: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Fri May 22 16:26:59 2020 -0700 FreeRTOS-Plus: Unit testing Infrastructure and examples (#72) * Added CMock as submodule * Makefile added * Removed TEMP from Makefile * Added configuration files and header files * Update Makefile * Test runner working * make clean * Example added with README * Update README.md * Restored +TCP files * Cleared +TCP changes * removed comments from Makefile * Update README.md * Update README.md * Update README.md * Updated Test/Unit-test/readme.md commit 5003d17feda25490e655c0f1c15d2b13e395c9f7 Author: Hein Tibosch <hein_tibosch@yahoo.es> Date: Wed May 6 14:16:56 2020 -0400 FreeRTOS+TCP : renewing DHCP lease while network is down (#53) Co-authored-by: Hein Tibosch <hein@htibosch.net> Co-authored-by: Gary Wicker <14828980+gkwicker@users.noreply.github.com> commit d95624c5d6ba95ec0474867d7165de2c28ed41b7 Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Tue May 5 09:57:18 2020 -0700 Move CBMC proofs to FreeRTOS+ directory (#64) * move CBMC proofs to FreeRTOS+ directory * Failing proofs corrected * ParseDNSReply proof added back * removed queue_init.h from -Plus/Test Co-authored-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> commit 95ae7c65758a9473ea16ab08182f056f72331de2 Author: markrtuttle <tuttle@acm.org> Date: Wed Apr 29 04:27:45 2020 +0000 Change cbmc-viewer invocation in CBMC makefile (#63) * Exclude FreeRTOS/Demo from CBMC proof reports. The script cbmc-viewer generates the CBMC proof reports. The script searches source files for symbol definitions and annotates source files with coverage information. This patch causes cbmc-viewer to ignore the directory FreeRTOS/Demo containing 348M of data. The script now terminates in a few seconds. * Make report default target for CBMC Makefile. Modify the Makefile for CBMC proofs to generate the report by default (and not just property checking) and modify property checking to ignore failures (due to property assertions failing) and terminating report generation. Co-authored-by: Mark R. Tuttle <mrtuttle@amazon.com> commit d421ccc89f6f6473dfdd566a00567b0e1fd4cfc3 Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Sat Apr 25 16:57:35 2020 -0700 Reword readme.md under ./Test. (#61) commit 38412865985235b90dbd9da9708b68c4de5918f5 Author: Carl Lundin <53273776+lundinc2@users.noreply.github.com> Date: Sat Apr 25 16:56:54 2020 -0700 Removed a:FR reference. (#60) commit 4db195c916c7b13c82ab3a34a499fe606f266810 Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Tue Apr 21 15:40:08 2020 -0700 Adding FreeRTOS+TCP CBMC proofs to FreeRTOS/FreeRTOS (#56) ParseDNSReply is to be added in the next PR. commit 40a31b6d35a866a3a6c551d95bf08dae855da5bd Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Mon Apr 13 13:58:33 2020 -0700 'uL' -> 'UL' commit 5b3a289b69fc92089aa8bd4d1b44ab816f326f73 Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Mon Apr 13 13:50:53 2020 -0700 Changes after Gary's comments commit edf68637dd22470a8d4f59fecc15b51379bcfeda Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Fri Apr 10 16:26:03 2020 -0700 Update FreeRTOS_ARP.c commit 35f3ac32a8899dd714a8a48952a4224fbcebc4aa Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Fri Apr 10 15:56:18 2020 -0700 correct debug output commit 5e12a70db4b6a8e68a434489683306f040252efa Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Fri Apr 10 15:44:45 2020 -0700 Debugging flag check added commit 4e8ac8de25ac4088b9c789b88a77cd39df4d9167 Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Thu Apr 9 16:57:19 2020 -0700 Comment style consistency and Yuhui's suggestions commit e43f7cd086096ad60491fedba69927a1e1a82f20 Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Thu Apr 9 16:47:41 2020 -0700 Cleanup commit ab3b51c7a0d880a6bf453ec63ae604e15050f310 Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Thu Apr 9 16:33:03 2020 -0700 Update after Gary's comments commit 97f7009699ffb972c0745dfdb526d1fa4e0faf84 Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Apr 8 14:30:15 2020 -0700 Update after richard's comments commit a9fcafc074cec559dd67961ef44273df6180c2db Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Apr 8 14:07:39 2020 -0700 Corrected the formatting - visual studio had messed up the formatting commit c381861014a8043ce30723fc5a8cf5107719c8df Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Apr 8 13:01:12 2020 -0700 commit 2 after gary's comments commit 75677a8d85fa802cca9058d6e23796d5043a0982 Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Apr 8 12:51:10 2020 -0700 Commit after Gary's comments commit 666c0da366030109db2c0c5e7253cebb2f899db7 Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Apr 8 10:56:01 2020 -0700 Update after Yuhui's comments - removed (void) from before memcpy, memset etc. - corrected memcpy style as suggested by Yuhui - Added logging for xNetworkInterfaceOutput. No need to configASSERT commit 4a1148d15b6b8169d2412f8179f734683b179795 Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Apr 1 16:05:36 2020 -0700 Coverity + MISRA compliance Modified code to conform to the MISRA directives more closely. commit fa74f7dccf6b1a356993c6a894f8e1173b8c8157 Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Thu Apr 2 20:26:10 2020 -0700 Removing writes to read-only PLIC interrupt pending registers. Signed-off-by: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> commit 5b9777e11e16609648fb98d2f9a47553ab238950 Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Tue Mar 31 10:45:23 2020 -0700 A readme file to introduce what ./Test directory is about. commit 211bb4cbd9ae6dfa95e8d8501f37d272bde5ab26 Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Tue Mar 24 15:14:24 2020 -0700 Ignore whitespace when working with patches. commit 8156f64d1c45dd59ef12279f19a99f03e79e1f8a Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Tue Feb 25 18:04:23 2020 -0800 Copying CBMC proofs from aws/amazon-freertos repo ./tools/cbmc to this repo ./FreeRTOS/Test/CBMC as is. The commit ID in aws/amazon-freertos is 0c8e0217f2a43bdeb364b58ae01c6c259e03ef1b. commit 9f316c246baafa15c542a5aea81a94f26e3d6507 Author: David Vrabel <david.vrabel@cambridgeconsultants.com> Date: Mon Mar 16 11:21:46 2020 +0000 Demo/Posix_GCC: add demo application for Posix port using GCC This is largely a copy of the Windows demo application with a few key changes: - heap_3 (use malloc()/free()) so tools like valgrind "just work". - printf() wrapped in a mutex to prevent deadlocks on the internal pthread mutexes inside printf(). SCons (https://scons.org/) is used as the build system. This will be built as a 64-bit application, but note that the memory allocation trace points only record the lower 32-bits of the address. commit f78f919b3e2f0d707531a301a8ca07cd02bc4778 Author: Markus Rinne <markus.ka.rinne@gmail.com> Date: Thu Mar 19 21:00:24 2020 +0200 Fix function comments commit 1cd2d38d960a3576addb224582c88489bade5141 Author: David Chalco <david@chalco.io> Date: Fri Mar 20 10:29:05 2020 -0700 unix separators for path and remove .exe suffix from risc compiler (works on windows/mac) commit 938b19419eded12817737ab0644e94ed2ba7e95d Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Thu Mar 19 18:23:09 2020 -0700 Removing ./FreeRTOS-Labs directory, since: - IoT libraries are now in LTS branch. - FAT/POSIX/Light-weight MQTT are in https://github.com/FreeRTOS/FreeRTOS-Labs. commit 1a4abbc9e91b13fd6394464ade59d5e048320c7c Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Tue Mar 17 19:30:02 2020 -0700 Maintenance -- clean up readme.txt and add url to GitHub. (#38) * Removing readme.txt, as now we have README.md in place. The only information missing from README.md is about FAQ. * Adding FAQ information in README.md. * Adding a .url to root to redict user to FreeRTOS github home page. commit 47bb466aa19395b7785bcb830e2e4dd35f6bafc5 Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Tue Mar 17 13:07:44 2020 -0700 Update issue templates Template maintenance. - adding title prefix. - adding examples to "additional context" section. commit f506290041f56867765f8efa70ed2862125bdb7c Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Tue Mar 17 10:15:07 2020 -0700 Create SECURITY.md Apply the recommended SECURITY.md from AWS to our repo. commit 8982a2f80a80a2a0a47cf82de07b52101bd9d606 Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Fri Mar 13 12:50:10 2020 -0700 Add ./lib directory to make sure Zynq project compiles. commit ecf0f12aa14ad6fdafe1ef37257cbb4e03e2abd5 Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Wed Mar 11 10:19:48 2020 -0700 Sync up with Amazon-freertos repo (10th March 2020) (#34) * Sync up with amazon-freertos * Sync up with amazon-freertos * Sync up with amazon-freertos commit 0acffef047973e2e61c2201fd69cd9bbd317f674 Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Tue Mar 10 10:20:48 2020 -0700 GitHub PR template. (#29) commit c40a6da2e4cb8042b56d1b174051cbbe9813781a Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Mon Mar 9 11:18:48 2020 -0700 pass payload length when calling UDP callback (#30) * pass payload length when calling UDP callback commit 12d580e93d4d9074b9a867632f0681a511b4ad12 Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Fri Mar 6 18:16:51 2020 -0800 Update issue templates Initial issue template. Created following https://help.github.com/en/github/building-a-strong-community/configuring-issue-templates-for-your-repository#configuring-the-template-chooser. If change is needed, we could go another round. commit 9debffb5e0e42ff716f58b2270b3af09652294af Author: Yuhui Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Fri Mar 6 17:27:46 2020 -0800 Update README.md to remove dead link. See the conversation https://github.com/FreeRTOS/FreeRTOS/commit/42c627b2b88cb3b487fea983d8b566a8bbae54fa#comments . Linkage for both ```./FreeRTOS/Source``` and ```./FreeRTOS/Demo``` are removed, since it looks weird to only provide linkage to Demo. commit 7e1a4bf563240501fc45167aee9d929c533939dd Author: AniruddhaKanhere <60444055+AniruddhaKanhere@users.noreply.github.com> Date: Fri Mar 6 15:18:09 2020 -0800 Fix DHCP option Client-identifier (#28) commit 42c627b2b88cb3b487fea983d8b566a8bbae54fa Author: Yuhui.Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Fri Mar 6 09:15:11 2020 -0800 Update readme and revert relative URL. (#27) * Reordering: bumping cloning instruction up. * Rewording readme.md to be clear kernel code is a submodule of this repository. * Reverting relative URL, since user cannot click through on GitHub page. (With URL, user could still download the correct version of the code. Reverting simply due to UI issue.) commit 5751ae9b60e248ebd0b4dd7c58df54364d2bb9d5 Author: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com> Date: Fri Mar 6 09:11:42 2020 -0800 Update CORTEX_MPU_M33F_NXP_LPC55S69_MCUXpresso project (#26) This commit updates the project for LPC55S69 so that it works with the latest version of MCUXpresso and SDK. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> commit a9ffffe1f01f45f79e127c15727784984077932f Author: Carl Lundin <53273776+lundinc2@users.noreply.github.com> Date: Thu Mar 5 17:16:13 2020 -0800 Using Relative URL For Submoduling. (#24) commit 52c82076b38fe73d1dc46c97abf74ae9b803696c Author: Carl Lundin <53273776+lundinc2@users.noreply.github.com> Date: Thu Mar 5 09:16:31 2020 -0800 use relative path to point to bundled toolchain instead (#25) commit b877e4ec478de2c24d07ab46241070d7c66f375c Author: lundinc2 <53273776+lundinc2@users.noreply.github.com> Date: Tue Feb 25 13:18:38 2020 -0800 Moved vulnerability reporting and code of conduct to top of CONTRIBUTING.md (#20) commit bef165d46799fb8faa58aaa224f80c16b6538e69 Author: Yuhui.Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Tue Feb 18 22:06:38 2020 -0800 Linking test source file from relative path. (#19) commit 89e7bbe292afd3912d1f0b2402cc506878bad869 Author: Yuhui.Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Tue Feb 18 17:47:55 2020 -0800 A preliminary .gitignore file, to prevent us checking in files unnecessary. (#18) https://github.com/github/gitignore. commit c2a98127acb48c4562233230e66ca5c282688579 Author: RichardBarry <3073890+RichardBarry@users.noreply.github.com> Date: Sun Feb 16 13:19:53 2020 -0800 Minor wording changes in the 'previous releases' section of the readme.me file. (#17) commit 24c772d1439e5c291c0a29fce0a46996ca8afaa9 Author: Yuhui.Zheng <10982575+yuhui-zheng@users.noreply.github.com> Date: Fri Feb 14 12:47:01 2020 -0800 Submodule kernel directory. (#16) * Removing FreeRTOS/Source in readiness for submoduling. * Submoduling kernel. * README.md update due to submoduling. When releasing, please follow these steps: 1. in local directory, clean directory and check "git status" shows "nothing to commit, working tree clean" for ALL subdirectories. 2. copy source code and instructions only to an empty folder. Git related should not be in this folder -- this covers .git, .gitignore, .github, .gitmodules, gitmessages, ...... 3. zip the folder from step 2. (create both .zip and .7z) 4. attach .zip and .7z to the release. (e.g. attach these two in new release -- https://github.com/FreeRTOS/FreeRTOS/releases/new) 5. PLEASE download both, unzip, diff with your local git repo. (should not see any difference other than git related.) And, sanity check a couple of projects. commit c3f8b91652392dc55e0d7067b90a40de5f5f0837 Author: Rashed Talukder <9218468+rashedtalukder@users.noreply.github.com> Date: Thu Feb 13 17:47:14 2020 -0800 Update readme. Fixed typos and cli commands (#14) commit 4723b825f2989213c1cdb2ebf4d6793e0292e363 Author: Julian Poidevin <julian-poidevin@users.noreply.github.com> Date: Fri Feb 14 02:43:36 2020 +0100 Fixed wrong git clone SSH command (#13) Replaced bad https URL with proper SSH URL commit fc819b821715c42602819e58499846147a6394f5 Author: RichardBarry <3073890+RichardBarry@users.noreply.github.com> Date: Thu Feb 13 17:42:22 2020 -0800 Correct the xTimerCreate() documentation which said NULL was returned if the timer period was passed into the function as 0, whereas that is not the case. (#15) Add a note to the documentation for both the xTimerCreate() and xTimerCreateStatic() functions that the timer period must be greater than 0. commit 1c711ab530b5f0dbd811d7d62e0a3763706ffff4 Author: Rashed Talukder <9218468+rashedtalukder@users.noreply.github.com> Date: Wed Feb 12 23:00:18 2020 -0800 Updated contributions guidelines (#12) commit 84fcc0d5317d96c6b086034093c8c1c83e050819 Author: Cobus van Eeden <35851496+cobusve@users.noreply.github.com> Date: Wed Feb 12 15:05:06 2020 -0800 Updates to Markdown files and readme.txt (#11) git-svn-id: http://svn.code.sf.net/p/freertos/code/trunk@2826 1d2547de-c912-0410-9cb9-b8ca96c0e9e2
Diffstat (limited to 'FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/tfm.c')
-rw-r--r--FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/tfm.c3629
1 files changed, 2998 insertions, 631 deletions
diff --git a/FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/tfm.c b/FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/tfm.c
index 2c1e86c31..61b31f0e1 100644
--- a/FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/tfm.c
+++ b/FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/tfm.c
@@ -1,8 +1,8 @@
/* tfm.c
*
- * Copyright (C) 2006-2015 wolfSSL Inc.
+ * Copyright (C) 2006-2020 wolfSSL Inc.
*
- * This file is part of wolfSSL. (formerly known as CyaSSL)
+ * This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@@ -16,18 +16,19 @@
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
+
/*
* Based on public domain TomsFastMath 0.10 by Tom St Denis, tomstdenis@iahu.ca,
* http://math.libtomcrypt.com
*/
/**
- * Edited by Moisés Guimarães (moisesguimaraesm@gmail.com)
- * to fit CyaSSL's needs.
+ * Edited by Moises Guimaraes (moises@wolfssl.com)
+ * to fit wolfSSL's needs.
*/
#ifdef HAVE_CONFIG_H
@@ -36,19 +37,62 @@
/* in case user set USE_FAST_MATH there */
#include <wolfssl/wolfcrypt/settings.h>
+#ifdef NO_INLINE
+ #include <wolfssl/wolfcrypt/misc.h>
+#else
+ #define WOLFSSL_MISC_INCLUDED
+ #include <wolfcrypt/src/misc.c>
+#endif
#ifdef USE_FAST_MATH
+#include <wolfssl/wolfcrypt/random.h>
#include <wolfssl/wolfcrypt/tfm.h>
#include <wolfcrypt/src/asm.c> /* will define asm MACROS or C ones */
+#include <wolfssl/wolfcrypt/wolfmath.h> /* common functions */
+#if defined(FREESCALE_LTC_TFM)
+ #include <wolfssl/wolfcrypt/port/nxp/ksdk_port.h>
+#endif
+#ifdef WOLFSSL_DEBUG_MATH
+ #include <stdio.h>
+#endif
+#ifdef USE_WINDOWS_API
+ #pragma warning(disable:4127)
+ /* Disables the warning:
+ * 4127: conditional expression is constant
+ * in this file.
+ */
+#endif
+
+#if defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)
+#ifdef __cplusplus
+ extern "C" {
+#endif
+WOLFSSL_LOCAL int sp_ModExp_1024(mp_int* base, mp_int* exp, mp_int* mod,
+ mp_int* res);
+WOLFSSL_LOCAL int sp_ModExp_1536(mp_int* base, mp_int* exp, mp_int* mod,
+ mp_int* res);
+WOLFSSL_LOCAL int sp_ModExp_2048(mp_int* base, mp_int* exp, mp_int* mod,
+ mp_int* res);
+WOLFSSL_LOCAL int sp_ModExp_3072(mp_int* base, mp_int* exp, mp_int* mod,
+ mp_int* res);
+WOLFSSL_LOCAL int sp_ModExp_4096(mp_int* base, mp_int* exp, mp_int* mod,
+ mp_int* res);
+#ifdef __cplusplus
+ } /* extern "C" */
+#endif
+#endif
+
+
+#ifndef WOLFSSL_SP_MATH
/* math settings check */
word32 CheckRunTimeSettings(void)
{
return CTC_SETTINGS;
}
-
+#endif
/* math settings size check */
word32 CheckRunTimeFastMath(void)
@@ -92,12 +136,12 @@ void fp_add(fp_int *a, fp_int *b, fp_int *c)
void s_fp_add(fp_int *a, fp_int *b, fp_int *c)
{
int x, y, oldused;
- register fp_word t;
+ fp_word t;
y = MAX(a->used, b->used);
oldused = MIN(c->used, FP_SIZE); /* help static analysis w/ largest size */
c->used = y;
-
+
t = 0;
for (x = 0; x < y; x++) {
t += ((fp_word)a->dp[x]) + ((fp_word)b->dp[x]);
@@ -110,6 +154,8 @@ void s_fp_add(fp_int *a, fp_int *b, fp_int *c)
}
c->used = x;
+
+ /* zero any excess digits on the destination that we didn't write to */
for (; x < oldused; x++) {
c->dp[x] = 0;
}
@@ -171,6 +217,8 @@ void s_fp_sub(fp_int *a, fp_int *b, fp_int *c)
c->dp[x] = (fp_digit)t;
t = (t >> DIGIT_BIT)&1;
}
+
+ /* zero any excess digits on the destination that we didn't write to */
for (; x < oldused; x++) {
c->dp[x] = 0;
}
@@ -178,149 +226,166 @@ void s_fp_sub(fp_int *a, fp_int *b, fp_int *c)
}
/* c = a * b */
-void fp_mul(fp_int *A, fp_int *B, fp_int *C)
+int fp_mul(fp_int *A, fp_int *B, fp_int *C)
{
- int y, yy;
+ int ret = 0;
+ int y, yy, oldused;
+
+#if defined(WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI) && \
+ !defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI)
+ ret = esp_mp_mul(A, B, C);
+ if(ret != -2) return ret;
+#endif
+
+ oldused = C->used;
y = MAX(A->used, B->used);
yy = MIN(A->used, B->used);
/* call generic if we're out of range */
if (y + yy > FP_SIZE) {
- fp_mul_comba(A, B, C);
- return ;
+ ret = fp_mul_comba(A, B, C);
+ goto clean;
}
/* pick a comba (unrolled 4/8/16/32 x or rolled) based on the size
- of the largest input. We also want to avoid doing excess mults if the
+ of the largest input. We also want to avoid doing excess mults if the
inputs are not close to the next power of two. That is, for example,
- if say y=17 then we would do (32-17)^2 = 225 unneeded multiplications
+ if say y=17 then we would do (32-17)^2 = 225 unneeded multiplications
*/
-#ifdef TFM_MUL3
+#if defined(TFM_MUL3) && FP_SIZE >= 6
if (y <= 3) {
- fp_mul_comba3(A,B,C);
- return;
+ ret = fp_mul_comba3(A,B,C);
+ goto clean;
}
#endif
-#ifdef TFM_MUL4
+#if defined(TFM_MUL4) && FP_SIZE >= 8
if (y == 4) {
- fp_mul_comba4(A,B,C);
- return;
+ ret = fp_mul_comba4(A,B,C);
+ goto clean;
}
#endif
-#ifdef TFM_MUL6
+#if defined(TFM_MUL6) && FP_SIZE >= 12
if (y <= 6) {
- fp_mul_comba6(A,B,C);
- return;
+ ret = fp_mul_comba6(A,B,C);
+ goto clean;
}
#endif
-#ifdef TFM_MUL7
+#if defined(TFM_MUL7) && FP_SIZE >= 14
if (y == 7) {
- fp_mul_comba7(A,B,C);
- return;
+ ret = fp_mul_comba7(A,B,C);
+ goto clean;
}
#endif
-#ifdef TFM_MUL8
+#if defined(TFM_MUL8) && FP_SIZE >= 16
if (y == 8) {
- fp_mul_comba8(A,B,C);
- return;
+ ret = fp_mul_comba8(A,B,C);
+ goto clean;
}
#endif
-#ifdef TFM_MUL9
+#if defined(TFM_MUL9) && FP_SIZE >= 18
if (y == 9) {
- fp_mul_comba9(A,B,C);
- return;
+ ret = fp_mul_comba9(A,B,C);
+ goto clean;
}
#endif
-#ifdef TFM_MUL12
+#if defined(TFM_MUL12) && FP_SIZE >= 24
if (y <= 12) {
- fp_mul_comba12(A,B,C);
- return;
+ ret = fp_mul_comba12(A,B,C);
+ goto clean;
}
#endif
-#ifdef TFM_MUL17
+#if defined(TFM_MUL17) && FP_SIZE >= 34
if (y <= 17) {
- fp_mul_comba17(A,B,C);
- return;
+ ret = fp_mul_comba17(A,B,C);
+ goto clean;
}
#endif
-#ifdef TFM_SMALL_SET
+#if defined(TFM_SMALL_SET) && FP_SIZE >= 32
if (y <= 16) {
- fp_mul_comba_small(A,B,C);
- return;
+ ret = fp_mul_comba_small(A,B,C);
+ goto clean;
}
-#endif
-#if defined(TFM_MUL20)
+#endif
+#if defined(TFM_MUL20) && FP_SIZE >= 40
if (y <= 20) {
- fp_mul_comba20(A,B,C);
- return;
+ ret = fp_mul_comba20(A,B,C);
+ goto clean;
}
#endif
-#if defined(TFM_MUL24)
+#if defined(TFM_MUL24) && FP_SIZE >= 48
if (yy >= 16 && y <= 24) {
- fp_mul_comba24(A,B,C);
- return;
+ ret = fp_mul_comba24(A,B,C);
+ goto clean;
}
#endif
-#if defined(TFM_MUL28)
+#if defined(TFM_MUL28) && FP_SIZE >= 56
if (yy >= 20 && y <= 28) {
- fp_mul_comba28(A,B,C);
- return;
+ ret = fp_mul_comba28(A,B,C);
+ goto clean;
}
#endif
-#if defined(TFM_MUL32)
+#if defined(TFM_MUL32) && FP_SIZE >= 64
if (yy >= 24 && y <= 32) {
- fp_mul_comba32(A,B,C);
- return;
+ ret = fp_mul_comba32(A,B,C);
+ goto clean;
}
#endif
-#if defined(TFM_MUL48)
+#if defined(TFM_MUL48) && FP_SIZE >= 96
if (yy >= 40 && y <= 48) {
- fp_mul_comba48(A,B,C);
- return;
+ ret = fp_mul_comba48(A,B,C);
+ goto clean;
}
-#endif
-#if defined(TFM_MUL64)
+#endif
+#if defined(TFM_MUL64) && FP_SIZE >= 128
if (yy >= 56 && y <= 64) {
- fp_mul_comba64(A,B,C);
- return;
+ ret = fp_mul_comba64(A,B,C);
+ goto clean;
}
#endif
- fp_mul_comba(A,B,C);
+ ret = fp_mul_comba(A,B,C);
+
+clean:
+ /* zero any excess digits on the destination that we didn't write to */
+ for (y = C->used; y >= 0 && y < oldused; y++) {
+ C->dp[y] = 0;
+ }
+
+ return ret;
}
void fp_mul_2(fp_int * a, fp_int * b)
{
int x, oldused;
-
+
oldused = b->used;
b->used = a->used;
{
- register fp_digit r, rr, *tmpa, *tmpb;
+ fp_digit r, rr, *tmpa, *tmpb;
/* alias for source */
tmpa = a->dp;
-
+
/* alias for dest */
tmpb = b->dp;
/* carry */
r = 0;
for (x = 0; x < a->used; x++) {
-
- /* get what will be the *next* carry bit from the
- * MSB of the current digit
+
+ /* get what will be the *next* carry bit from the
+ * MSB of the current digit
*/
rr = *tmpa >> ((fp_digit)(DIGIT_BIT - 1));
-
+
/* now shift up this digit, add in the carry [from the previous] */
*tmpb++ = ((*tmpa++ << ((fp_digit)1)) | r);
-
- /* copy the carry that would be from the source
- * digit into the next iteration
+
+ /* copy the carry that would be from the source
+ * digit into the next iteration
*/
r = rr;
}
@@ -332,9 +397,7 @@ void fp_mul_2(fp_int * a, fp_int * b)
++(b->used);
}
- /* now zero any excess digits on the destination
- * that we didn't write to
- */
+ /* zero any excess digits on the destination that we didn't write to */
tmpb = b->dp + b->used;
for (x = b->used; x < oldused; x++) {
*tmpb++ = 0;
@@ -362,7 +425,10 @@ void fp_mul_d(fp_int *a, fp_digit b, fp_int *c)
c->dp[c->used++] = (fp_digit) w;
++x;
}
- for (; x < oldused; x++) {
+
+ /* zero any excess digits on the destination that we didn't write to */
+ /* also checking FP_SIZE here for static analysis */
+ for (; x < oldused && x < FP_SIZE; x++) {
c->dp[x] = 0;
}
fp_clamp(c);
@@ -385,7 +451,7 @@ void fp_mul_2d(fp_int *a, int b, fp_int *c)
/* shift the digits */
if (b != 0) {
- carry = 0;
+ carry = 0;
shift = DIGIT_BIT - b;
for (x = 0; x < c->used; x++) {
carrytmp = c->dp[x] >> shift;
@@ -403,24 +469,37 @@ void fp_mul_2d(fp_int *a, int b, fp_int *c)
/* generic PxQ multiplier */
#if defined(HAVE_INTEL_MULX)
-INLINE static void fp_mul_comba_mulx(fp_int *A, fp_int *B, fp_int *C)
+WC_INLINE static int fp_mul_comba_mulx(fp_int *A, fp_int *B, fp_int *C)
-{
+{
int ix, iy, iz, pa;
- fp_int tmp, *dst;
+ fp_int *dst;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int tmp[1];
+#else
+ fp_int *tmp;
+#endif
+
+ /* Variables used but not seen by cppcheck. */
+ (void)ix; (void)iy; (void)iz;
+
+#ifdef WOLFSSL_SMALL_STACK
+ tmp = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (tmp == NULL)
+ return FP_MEM;
+#endif
/* get size of output and trim */
pa = A->used + B->used;
if (pa >= FP_SIZE) {
pa = FP_SIZE-1;
}
-
- if (A == C || B == C) {
- fp_init(&tmp);
- dst = &tmp;
- } else {
- fp_zero(C);
- dst = C;
+
+ /* Always take branch to use tmp variable. This avoids a cache attack for
+ * determining if C equals A */
+ if (1) {
+ fp_init(tmp);
+ dst = tmp;
}
TFM_INTEL_MUL_COMBA(A, B, dst) ;
@@ -428,45 +507,62 @@ INLINE static void fp_mul_comba_mulx(fp_int *A, fp_int *B, fp_int *C)
dst->used = pa;
dst->sign = A->sign ^ B->sign;
fp_clamp(dst);
- fp_copy(dst, C);
+ fp_copy(dst, C);
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(tmp, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+
+ return FP_OKAY;
}
#endif
-void fp_mul_comba(fp_int *A, fp_int *B, fp_int *C)
+int fp_mul_comba(fp_int *A, fp_int *B, fp_int *C)
{
+ int ret = 0;
int ix, iy, iz, tx, ty, pa;
fp_digit c0, c1, c2, *tmpx, *tmpy;
- fp_int tmp, *dst;
+ fp_int *dst;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int tmp[1];
+#else
+ fp_int *tmp;
+#endif
+
+ IF_HAVE_INTEL_MULX(ret = fp_mul_comba_mulx(A, B, C), return ret) ;
- IF_HAVE_INTEL_MULX(fp_mul_comba_mulx(A, B, C), return) ;
+#ifdef WOLFSSL_SMALL_STACK
+ tmp = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (tmp == NULL)
+ return FP_MEM;
+#endif
COMBA_START;
COMBA_CLEAR;
-
+
/* get size of output and trim */
pa = A->used + B->used;
if (pa >= FP_SIZE) {
pa = FP_SIZE-1;
}
- if (A == C || B == C) {
- fp_init(&tmp);
- dst = &tmp;
- } else {
- fp_zero(C);
- dst = C;
+ /* Always take branch to use tmp variable. This avoids a cache attack for
+ * determining if C equals A */
+ if (1) {
+ fp_init(tmp);
+ dst = tmp;
}
for (ix = 0; ix < pa; ix++) {
/* get offsets into the two bignums */
- ty = MIN(ix, B->used-1);
+ ty = MIN(ix, (B->used > 0 ? B->used - 1 : 0));
tx = ix - ty;
/* setup temp aliases */
tmpx = A->dp + tx;
tmpy = B->dp + ty;
- /* this is the number of times the loop will iterrate, essentially its
+ /* this is the number of times the loop will iterate, essentially its
while (tx++ < a->used && ty-- >= 0) { ... }
*/
iy = MIN(A->used-tx, ty+1);
@@ -474,8 +570,9 @@ void fp_mul_comba(fp_int *A, fp_int *B, fp_int *C)
/* execute loop */
COMBA_FORWARD;
for (iz = 0; iz < iy; ++iz) {
- /* TAO change COMBA_ADD back to MULADD */
- MULADD(*tmpx++, *tmpy--);
+ fp_digit _tmpx = *tmpx++;
+ fp_digit _tmpy = *tmpy--;
+ MULADD(_tmpx, _tmpy);
}
/* store term */
@@ -487,16 +584,28 @@ void fp_mul_comba(fp_int *A, fp_int *B, fp_int *C)
dst->sign = A->sign ^ B->sign;
fp_clamp(dst);
fp_copy(dst, C);
+
+ /* Variables used but not seen by cppcheck. */
+ (void)c0; (void)c1; (void)c2;
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(tmp, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return ret;
}
/* a/b => cb + d == a */
int fp_div(fp_int *a, fp_int *b, fp_int *c, fp_int *d)
{
- fp_int q, x, y, t1, t2;
int n, t, i, norm, neg;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int q[1], x[1], y[1], t1[1], t2[1];
+#else
+ fp_int *q, *x, *y, *t1, *t2;
+#endif
/* is divisor zero ? */
- if (fp_iszero (b) == 1) {
+ if (fp_iszero (b) == FP_YES) {
return FP_VAL;
}
@@ -504,131 +613,140 @@ int fp_div(fp_int *a, fp_int *b, fp_int *c, fp_int *d)
if (fp_cmp_mag (a, b) == FP_LT) {
if (d != NULL) {
fp_copy (a, d);
- }
+ }
if (c != NULL) {
fp_zero (c);
}
return FP_OKAY;
}
- fp_init(&q);
- q.used = a->used + 2;
+#ifdef WOLFSSL_SMALL_STACK
+ q = (fp_int*)XMALLOC(sizeof(fp_int) * 5, NULL, DYNAMIC_TYPE_BIGINT);
+ if (q == NULL) {
+ return FP_MEM;
+ }
+ x = &q[1]; y = &q[2]; t1 = &q[3]; t2 = &q[4];
+#endif
+
+ fp_init(q);
+ q->used = a->used + 2;
- fp_init(&t1);
- fp_init(&t2);
- fp_init_copy(&x, a);
- fp_init_copy(&y, b);
+ fp_init(t1);
+ fp_init(t2);
+ fp_init_copy(x, a);
+ fp_init_copy(y, b);
/* fix the sign */
neg = (a->sign == b->sign) ? FP_ZPOS : FP_NEG;
- x.sign = y.sign = FP_ZPOS;
+ x->sign = y->sign = FP_ZPOS;
/* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
- norm = fp_count_bits(&y) % DIGIT_BIT;
+ norm = fp_count_bits(y) % DIGIT_BIT;
if (norm < (int)(DIGIT_BIT-1)) {
norm = (DIGIT_BIT-1) - norm;
- fp_mul_2d (&x, norm, &x);
- fp_mul_2d (&y, norm, &y);
+ fp_mul_2d (x, norm, x);
+ fp_mul_2d (y, norm, y);
} else {
norm = 0;
}
/* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
- n = x.used - 1;
- t = y.used - 1;
+ n = x->used - 1;
+ t = y->used - 1;
/* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
- fp_lshd (&y, n - t); /* y = y*b**{n-t} */
+ fp_lshd (y, n - t); /* y = y*b**{n-t} */
- while (fp_cmp (&x, &y) != FP_LT) {
- ++(q.dp[n - t]);
- fp_sub (&x, &y, &x);
+ while (fp_cmp (x, y) != FP_LT) {
+ ++(q->dp[n - t]);
+ fp_sub (x, y, x);
}
/* reset y by shifting it back down */
- fp_rshd (&y, n - t);
+ fp_rshd (y, n - t);
/* step 3. for i from n down to (t + 1) */
for (i = n; i >= (t + 1); i--) {
- if (i > x.used) {
+ if (i > x->used) {
continue;
}
- /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
+ /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
- if (x.dp[i] == y.dp[t]) {
- q.dp[i - t - 1] = (fp_digit) ((((fp_word)1) << DIGIT_BIT) - 1);
+ if (x->dp[i] == y->dp[t]) {
+ q->dp[i - t - 1] = (fp_digit) ((((fp_word)1) << DIGIT_BIT) - 1);
} else {
fp_word tmp;
- tmp = ((fp_word) x.dp[i]) << ((fp_word) DIGIT_BIT);
- tmp |= ((fp_word) x.dp[i - 1]);
- tmp /= ((fp_word)y.dp[t]);
- q.dp[i - t - 1] = (fp_digit) (tmp);
+ tmp = ((fp_word) x->dp[i]) << ((fp_word) DIGIT_BIT);
+ tmp |= ((fp_word) x->dp[i - 1]);
+ tmp /= ((fp_word)y->dp[t]);
+ q->dp[i - t - 1] = (fp_digit) (tmp);
}
- /* while (q{i-t-1} * (yt * b + y{t-1})) >
- xi * b**2 + xi-1 * b + xi-2
-
- do q{i-t-1} -= 1;
+ /* while (q{i-t-1} * (yt * b + y{t-1})) >
+ xi * b**2 + xi-1 * b + xi-2
+
+ do q{i-t-1} -= 1;
*/
- q.dp[i - t - 1] = (q.dp[i - t - 1] + 1);
+ q->dp[i - t - 1] = (q->dp[i - t - 1] + 1);
do {
- q.dp[i - t - 1] = (q.dp[i - t - 1] - 1);
+ q->dp[i - t - 1] = (q->dp[i - t - 1] - 1);
/* find left hand */
- fp_zero (&t1);
- t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
- t1.dp[1] = y.dp[t];
- t1.used = 2;
- fp_mul_d (&t1, q.dp[i - t - 1], &t1);
+ fp_zero (t1);
+ t1->dp[0] = (t - 1 < 0) ? 0 : y->dp[t - 1];
+ t1->dp[1] = y->dp[t];
+ t1->used = 2;
+ fp_mul_d (t1, q->dp[i - t - 1], t1);
/* find right hand */
- t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
- t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
- t2.dp[2] = x.dp[i];
- t2.used = 3;
- } while (fp_cmp_mag(&t1, &t2) == FP_GT);
+ t2->dp[0] = (i - 2 < 0) ? 0 : x->dp[i - 2];
+ t2->dp[1] = (i - 1 < 0) ? 0 : x->dp[i - 1];
+ t2->dp[2] = x->dp[i];
+ t2->used = 3;
+ } while (fp_cmp_mag(t1, t2) == FP_GT);
/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
- fp_mul_d (&y, q.dp[i - t - 1], &t1);
- fp_lshd (&t1, i - t - 1);
- fp_sub (&x, &t1, &x);
+ fp_mul_d (y, q->dp[i - t - 1], t1);
+ fp_lshd (t1, i - t - 1);
+ fp_sub (x, t1, x);
/* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
- if (x.sign == FP_NEG) {
- fp_copy (&y, &t1);
- fp_lshd (&t1, i - t - 1);
- fp_add (&x, &t1, &x);
- q.dp[i - t - 1] = q.dp[i - t - 1] - 1;
+ if (x->sign == FP_NEG) {
+ fp_copy (y, t1);
+ fp_lshd (t1, i - t - 1);
+ fp_add (x, t1, x);
+ q->dp[i - t - 1] = q->dp[i - t - 1] - 1;
}
}
- /* now q is the quotient and x is the remainder
- * [which we have to normalize]
+ /* now q is the quotient and x is the remainder
+ * [which we have to normalize]
*/
-
+
/* get sign before writing to c */
- x.sign = x.used == 0 ? FP_ZPOS : a->sign;
+ x->sign = x->used == 0 ? FP_ZPOS : a->sign;
if (c != NULL) {
- fp_clamp (&q);
- fp_copy (&q, c);
+ fp_clamp (q);
+ fp_copy (q, c);
c->sign = neg;
}
if (d != NULL) {
- fp_div_2d (&x, norm, &x, NULL);
+ fp_div_2d (x, norm, x, NULL);
-/* the following is a kludge, essentially we were seeing the right remainder but
- with excess digits that should have been zero
- */
- for (i = b->used; i < x.used; i++) {
- x.dp[i] = 0;
+ /* zero any excess digits on the destination that we didn't write to */
+ for (i = b->used; i < x->used; i++) {
+ x->dp[i] = 0;
}
- fp_clamp(&x);
- fp_copy (&x, d);
+ fp_clamp(x);
+ fp_copy (x, d);
}
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(q, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
return FP_OKAY;
}
@@ -640,7 +758,7 @@ void fp_div_2(fp_int * a, fp_int * b)
oldused = b->used;
b->used = a->used;
{
- register fp_digit r, rr, *tmpa, *tmpb;
+ fp_digit r, rr, *tmpa, *tmpb;
/* source alias */
tmpa = a->dp + b->used - 1;
@@ -661,7 +779,7 @@ void fp_div_2(fp_int * a, fp_int * b)
r = rr;
}
- /* zero excess digits */
+ /* zero any excess digits on the destination that we didn't write to */
tmpb = b->dp + b->used;
for (x = b->used; x < oldused; x++) {
*tmpb++ = 0;
@@ -675,7 +793,6 @@ void fp_div_2(fp_int * a, fp_int * b)
void fp_div_2d(fp_int *a, int b, fp_int *c, fp_int *d)
{
int D;
- fp_int t;
/* if the shift count is <= 0 then we do no work */
if (b <= 0) {
@@ -686,11 +803,9 @@ void fp_div_2d(fp_int *a, int b, fp_int *c, fp_int *d)
return;
}
- fp_init(&t);
-
- /* get the remainder */
- if (d != NULL) {
- fp_mod_2d (a, b, &t);
+ /* get the remainder before a is changed in calculating c */
+ if (a == c && d != NULL) {
+ fp_mod_2d (a, b, d);
}
/* copy */
@@ -706,28 +821,45 @@ void fp_div_2d(fp_int *a, int b, fp_int *c, fp_int *d)
if (D != 0) {
fp_rshb(c, D);
}
- fp_clamp (c);
- if (d != NULL) {
- fp_copy (&t, d);
+
+ /* get the remainder if a is not changed in calculating c */
+ if (a != c && d != NULL) {
+ fp_mod_2d (a, b, d);
}
+
+ fp_clamp (c);
}
/* c = a mod b, 0 <= c < b */
int fp_mod(fp_int *a, fp_int *b, fp_int *c)
{
- fp_int t;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int t[1];
+#else
+ fp_int *t;
+#endif
int err;
- fp_init(&t);
- if ((err = fp_div(a, b, NULL, &t)) != FP_OKAY) {
- return err;
- }
- if (t.sign != b->sign) {
- fp_add(&t, b, c);
- } else {
- fp_copy(&t, c);
+#ifdef WOLFSSL_SMALL_STACK
+ t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL)
+ return FP_MEM;
+#endif
+
+ fp_init(t);
+ err = fp_div(a, b, NULL, t);
+ if (err == FP_OKAY) {
+ if (t->sign != b->sign) {
+ fp_add(t, b, c);
+ } else {
+ fp_copy(t, c);
+ }
}
- return FP_OKAY;
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return err;
}
/* c = a mod 2**d */
@@ -743,7 +875,7 @@ void fp_mod_2d(fp_int *a, int b, fp_int *c)
/* get copy of input */
fp_copy(a, c);
-
+
/* if 2**d is larger than we just return */
if (b >= (DIGIT_BIT * a->used)) {
return;
@@ -760,218 +892,690 @@ void fp_mod_2d(fp_int *a, int b, fp_int *c)
static int fp_invmod_slow (fp_int * a, fp_int * b, fp_int * c)
{
- fp_int x, y, u, v, A, B, C, D;
- int res;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int x[1], y[1], u[1], v[1], A[1], B[1], C[1], D[1];
+#else
+ fp_int *x, *y, *u, *v, *A, *B, *C, *D;
+#endif
+ int err;
/* b cannot be negative */
- if (b->sign == FP_NEG || fp_iszero(b) == 1) {
+ if (b->sign == FP_NEG || fp_iszero(b) == FP_YES) {
return FP_VAL;
}
+ if (fp_iszero(a) == FP_YES) {
+ return FP_VAL;
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ x = (fp_int*)XMALLOC(sizeof(fp_int) * 8, NULL, DYNAMIC_TYPE_BIGINT);
+ if (x == NULL) {
+ return FP_MEM;
+ }
+ y = &x[1]; u = &x[2]; v = &x[3]; A = &x[4]; B = &x[5]; C = &x[6]; D = &x[7];
+#endif
/* init temps */
- fp_init(&x); fp_init(&y);
- fp_init(&u); fp_init(&v);
- fp_init(&A); fp_init(&B);
- fp_init(&C); fp_init(&D);
+ fp_init(x); fp_init(y);
+ fp_init(u); fp_init(v);
+ fp_init(A); fp_init(B);
+ fp_init(C); fp_init(D);
/* x = a, y = b */
- if ((res = fp_mod(a, b, &x)) != FP_OKAY) {
- return res;
+ if ((err = fp_mod(a, b, x)) != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(x, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
+ return err;
}
- fp_copy(b, &y);
+ fp_copy(b, y);
/* 2. [modified] if x,y are both even then return an error! */
- if (fp_iseven (&x) == 1 && fp_iseven (&y) == 1) {
+ if (fp_iseven(x) == FP_YES && fp_iseven(y) == FP_YES) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(x, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
return FP_VAL;
}
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
- fp_copy (&x, &u);
- fp_copy (&y, &v);
- fp_set (&A, 1);
- fp_set (&D, 1);
+ fp_copy (x, u);
+ fp_copy (y, v);
+ fp_set (A, 1);
+ fp_set (D, 1);
top:
/* 4. while u is even do */
- while (fp_iseven (&u) == 1) {
+ while (fp_iseven (u) == FP_YES) {
/* 4.1 u = u/2 */
- fp_div_2 (&u, &u);
+ fp_div_2 (u, u);
/* 4.2 if A or B is odd then */
- if (fp_isodd (&A) == 1 || fp_isodd (&B) == 1) {
+ if (fp_isodd (A) == FP_YES || fp_isodd (B) == FP_YES) {
/* A = (A+y)/2, B = (B-x)/2 */
- fp_add (&A, &y, &A);
- fp_sub (&B, &x, &B);
+ fp_add (A, y, A);
+ fp_sub (B, x, B);
}
/* A = A/2, B = B/2 */
- fp_div_2 (&A, &A);
- fp_div_2 (&B, &B);
+ fp_div_2 (A, A);
+ fp_div_2 (B, B);
}
/* 5. while v is even do */
- while (fp_iseven (&v) == 1) {
+ while (fp_iseven (v) == FP_YES) {
/* 5.1 v = v/2 */
- fp_div_2 (&v, &v);
+ fp_div_2 (v, v);
/* 5.2 if C or D is odd then */
- if (fp_isodd (&C) == 1 || fp_isodd (&D) == 1) {
+ if (fp_isodd (C) == FP_YES || fp_isodd (D) == FP_YES) {
/* C = (C+y)/2, D = (D-x)/2 */
- fp_add (&C, &y, &C);
- fp_sub (&D, &x, &D);
+ fp_add (C, y, C);
+ fp_sub (D, x, D);
}
/* C = C/2, D = D/2 */
- fp_div_2 (&C, &C);
- fp_div_2 (&D, &D);
+ fp_div_2 (C, C);
+ fp_div_2 (D, D);
}
/* 6. if u >= v then */
- if (fp_cmp (&u, &v) != FP_LT) {
+ if (fp_cmp (u, v) != FP_LT) {
/* u = u - v, A = A - C, B = B - D */
- fp_sub (&u, &v, &u);
- fp_sub (&A, &C, &A);
- fp_sub (&B, &D, &B);
+ fp_sub (u, v, u);
+ fp_sub (A, C, A);
+ fp_sub (B, D, B);
} else {
/* v - v - u, C = C - A, D = D - B */
- fp_sub (&v, &u, &v);
- fp_sub (&C, &A, &C);
- fp_sub (&D, &B, &D);
+ fp_sub (v, u, v);
+ fp_sub (C, A, C);
+ fp_sub (D, B, D);
}
/* if not zero goto step 4 */
- if (fp_iszero (&u) == 0)
+ if (fp_iszero (u) == FP_NO)
goto top;
/* now a = C, b = D, gcd == g*v */
/* if v != 1 then there is no inverse */
- if (fp_cmp_d (&v, 1) != FP_EQ) {
+ if (fp_cmp_d (v, 1) != FP_EQ) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(x, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
return FP_VAL;
}
/* if its too low */
- while (fp_cmp_d(&C, 0) == FP_LT) {
- fp_add(&C, b, &C);
+ while (fp_cmp_d(C, 0) == FP_LT) {
+ fp_add(C, b, C);
}
-
+
/* too big */
- while (fp_cmp_mag(&C, b) != FP_LT) {
- fp_sub(&C, b, &C);
+ while (fp_cmp_mag(C, b) != FP_LT) {
+ fp_sub(C, b, C);
}
-
+
/* C is now the inverse */
- fp_copy(&C, c);
+ fp_copy(C, c);
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(x, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
return FP_OKAY;
}
-
/* c = 1/a (mod b) for odd b only */
int fp_invmod(fp_int *a, fp_int *b, fp_int *c)
{
- fp_int x, y, u, v, B, D;
- int neg, loop_check = 0;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int x[1], y[1], u[1], v[1], B[1], D[1];
+#else
+ fp_int *x, *y, *u, *v, *B, *D;
+#endif
+ int neg;
+ int err;
+
+ if (b->sign == FP_NEG || fp_iszero(b) == FP_YES) {
+ return FP_VAL;
+ }
+
+ /* [modified] sanity check on "a" */
+ if (fp_iszero(a) == FP_YES) {
+ return FP_VAL; /* can not divide by 0 here */
+ }
/* 2. [modified] b must be odd */
- if (fp_iseven (b) == FP_YES) {
+ if (fp_iseven(b) == FP_YES) {
return fp_invmod_slow(a,b,c);
}
+#ifdef WOLFSSL_SMALL_STACK
+ x = (fp_int*)XMALLOC(sizeof(fp_int) * 6, NULL, DYNAMIC_TYPE_BIGINT);
+ if (x == NULL) {
+ return FP_MEM;
+ }
+ y = &x[1]; u = &x[2]; v = &x[3]; B = &x[4]; D = &x[5];
+#endif
+
/* init all our temps */
- fp_init(&x); fp_init(&y);
- fp_init(&u); fp_init(&v);
- fp_init(&B); fp_init(&D);
+ fp_init(x); fp_init(y);
+ fp_init(u); fp_init(v);
+ fp_init(B); fp_init(D);
+
+ if (fp_cmp(a, b) != MP_LT) {
+ err = mp_mod(a, b, y);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(x, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
+ return err;
+ }
+ a = y;
+ }
+
+ if (fp_iszero(a) == FP_YES) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(x, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
+ return FP_VAL;
+ }
/* x == modulus, y == value to invert */
- fp_copy(b, &x);
+ fp_copy(b, x);
/* we need y = |a| */
- fp_abs(a, &y);
+ fp_abs(a, y);
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
- fp_copy(&x, &u);
- fp_copy(&y, &v);
- fp_set (&D, 1);
+ fp_copy(x, u);
+ fp_copy(y, v);
+ fp_set (D, 1);
top:
/* 4. while u is even do */
- while (fp_iseven (&u) == FP_YES) {
+ while (fp_iseven (u) == FP_YES) {
/* 4.1 u = u/2 */
- fp_div_2 (&u, &u);
+ fp_div_2 (u, u);
/* 4.2 if B is odd then */
- if (fp_isodd (&B) == FP_YES) {
- fp_sub (&B, &x, &B);
+ if (fp_isodd (B) == FP_YES) {
+ fp_sub (B, x, B);
}
/* B = B/2 */
- fp_div_2 (&B, &B);
+ fp_div_2 (B, B);
}
/* 5. while v is even do */
- while (fp_iseven (&v) == FP_YES) {
+ while (fp_iseven (v) == FP_YES) {
/* 5.1 v = v/2 */
- fp_div_2 (&v, &v);
+ fp_div_2 (v, v);
/* 5.2 if D is odd then */
- if (fp_isodd (&D) == FP_YES) {
+ if (fp_isodd (D) == FP_YES) {
/* D = (D-x)/2 */
- fp_sub (&D, &x, &D);
+ fp_sub (D, x, D);
}
/* D = D/2 */
- fp_div_2 (&D, &D);
+ fp_div_2 (D, D);
}
/* 6. if u >= v then */
- if (fp_cmp (&u, &v) != FP_LT) {
+ if (fp_cmp (u, v) != FP_LT) {
/* u = u - v, B = B - D */
- fp_sub (&u, &v, &u);
- fp_sub (&B, &D, &B);
+ fp_sub (u, v, u);
+ fp_sub (B, D, B);
} else {
/* v - v - u, D = D - B */
- fp_sub (&v, &u, &v);
- fp_sub (&D, &B, &D);
+ fp_sub (v, u, v);
+ fp_sub (D, B, D);
}
/* if not zero goto step 4 */
- if (fp_iszero (&u) == FP_NO) {
- if (++loop_check > 1024) /* bad input */
- return FP_VAL;
+ if (fp_iszero (u) == FP_NO) {
goto top;
}
/* now a = C, b = D, gcd == g*v */
/* if v != 1 then there is no inverse */
- if (fp_cmp_d (&v, 1) != FP_EQ) {
+ if (fp_cmp_d (v, 1) != FP_EQ) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(x, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
return FP_VAL;
}
/* b is now the inverse */
neg = a->sign;
- while (D.sign == FP_NEG) {
- fp_add (&D, b, &D);
+ while (D->sign == FP_NEG) {
+ fp_add (D, b, D);
+ }
+ /* too big */
+ while (fp_cmp_mag(D, b) != FP_LT) {
+ fp_sub(D, b, D);
}
- fp_copy (&D, c);
+ fp_copy (D, c);
c->sign = neg;
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(x, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return FP_OKAY;
+}
+
+#define CT_INV_MOD_PRE_CNT 8
+
+/* modulus (b) must be greater than 2 and a prime */
+int fp_invmod_mont_ct(fp_int *a, fp_int *b, fp_int *c, fp_digit mp)
+{
+ int i, j;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int t[1], e[1];
+ fp_int pre[CT_INV_MOD_PRE_CNT];
+#else
+ fp_int* t;
+ fp_int* e;
+ fp_int* pre;
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ t = (fp_int*)XMALLOC(sizeof(fp_int) * (2 + CT_INV_MOD_PRE_CNT), NULL,
+ DYNAMIC_TYPE_BIGINT);
+ if (t == NULL)
+ return FP_MEM;
+ e = t + 1;
+ pre = t + 2;
+#endif
+
+ fp_init(t);
+ fp_init(e);
+
+ fp_init(&pre[0]);
+ fp_copy(a, &pre[0]);
+ for (i = 1; i < CT_INV_MOD_PRE_CNT; i++) {
+ fp_init(&pre[i]);
+ fp_sqr(&pre[i-1], &pre[i]);
+ fp_montgomery_reduce(&pre[i], b, mp);
+ fp_mul(&pre[i], a, &pre[i]);
+ fp_montgomery_reduce(&pre[i], b, mp);
+ }
+
+ fp_sub_d(b, 2, e);
+ /* Highest bit is always set. */
+ for (i = fp_count_bits(e)-2, j = 1; i >= 0; i--, j++) {
+ if (!fp_is_bit_set(e, i) || j == CT_INV_MOD_PRE_CNT)
+ break;
+ }
+ fp_copy(&pre[j-1], t);
+ for (j = 0; i >= 0; i--) {
+ int set = fp_is_bit_set(e, i);
+
+ if ((j == CT_INV_MOD_PRE_CNT) || (!set && j > 0)) {
+ fp_mul(t, &pre[j-1], t);
+ fp_montgomery_reduce(t, b, mp);
+ j = 0;
+ }
+ fp_sqr(t, t);
+ fp_montgomery_reduce(t, b, mp);
+ j += set;
+ }
+ if (j > 0) {
+ fp_mul(t, &pre[j-1], c);
+ fp_montgomery_reduce(c, b, mp);
+ }
+ else
+ fp_copy(t, c);
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
return FP_OKAY;
}
/* d = a * b (mod c) */
int fp_mulmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d)
{
- fp_int tmp;
- fp_init(&tmp);
- fp_mul(a, b, &tmp);
- return fp_mod(&tmp, c, d);
+ int err;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int t[1];
+#else
+ fp_int *t;
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL)
+ return FP_MEM;
+#endif
+
+ fp_init(t);
+ err = fp_mul(a, b, t);
+ if (err == FP_OKAY) {
+ #if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT)
+ if (d->size < FP_SIZE) {
+ err = fp_mod(t, c, t);
+ fp_copy(t, d);
+ } else
+ #endif
+ {
+ err = fp_mod(t, c, d);
+ }
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return err;
+}
+
+/* d = a - b (mod c) */
+int fp_submod(fp_int *a, fp_int *b, fp_int *c, fp_int *d)
+{
+ int err;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int t[1];
+#else
+ fp_int *t;
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL)
+ return FP_MEM;
+#endif
+
+ fp_init(t);
+ fp_sub(a, b, t);
+#if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT)
+ if (d->size < FP_SIZE) {
+ err = fp_mod(t, c, t);
+ fp_copy(t, d);
+ } else
+#endif
+ {
+ err = fp_mod(t, c, d);
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return err;
+}
+
+/* d = a + b (mod c) */
+int fp_addmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d)
+{
+ int err;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int t[1];
+#else
+ fp_int *t;
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL)
+ return FP_MEM;
+#endif
+
+ fp_init(t);
+ fp_add(a, b, t);
+#if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT)
+ if (d->size < FP_SIZE) {
+ err = fp_mod(t, c, t);
+ fp_copy(t, d);
+ } else
+#endif
+ {
+ err = fp_mod(t, c, d);
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return err;
}
#ifdef TFM_TIMING_RESISTANT
-/* timing resistant montgomery ladder based exptmod
+#ifdef WC_RSA_NONBLOCK
+
+#ifdef WC_RSA_NONBLOCK_TIME
+ /* User can override the check-time at build-time using the
+ * FP_EXPTMOD_NB_CHECKTIME macro to define your own function */
+ #ifndef FP_EXPTMOD_NB_CHECKTIME
+ /* instruction count for each type of operation */
+ /* array lookup is using TFM_EXPTMOD_NB_* states */
+ static const word32 exptModNbInst[TFM_EXPTMOD_NB_COUNT] = {
+ #ifdef TFM_PPC32
+ #ifdef _DEBUG
+ 11098, 8701, 3971, 178394, 858093, 1040, 822, 178056, 181574, 90883, 184339, 236813
+ #else
+ 7050, 2554, 3187, 43178, 200422, 384, 275, 43024, 43550, 30450, 46270, 61376
+ #endif
+ #elif defined(TFM_X86_64)
+ #ifdef _DEBUG
+ 954, 2377, 858, 19027, 90840, 287, 407, 20140, 7874, 11385, 8005, 6151
+ #else
+ 765, 1007, 771, 5216, 34993, 248, 193, 4975, 4201, 3947, 4275, 3811
+ #endif
+ #else /* software only fast math */
+ #ifdef _DEBUG
+ 798, 2245, 802, 16657, 66920, 352, 186, 16997, 16145, 12789, 16742, 15006
+ #else
+ 775, 1084, 783, 4692, 37510, 207, 183, 4374, 4392, 3097, 4442, 4079
+ #endif
+ #endif
+ };
+
+ static int fp_exptmod_nb_checktime(exptModNb_t* nb)
+ {
+ word32 totalInst;
+
+ /* if no max time has been set then stop (do not block) */
+ if (nb->maxBlockInst == 0 || nb->state >= TFM_EXPTMOD_NB_COUNT) {
+ return TFM_EXPTMOD_NB_STOP;
+ }
+
+ /* if instruction table not set then use maxBlockInst as simple counter */
+ if (exptModNbInst[nb->state] == 0) {
+ if (++nb->totalInst < nb->maxBlockInst)
+ return TFM_EXPTMOD_NB_CONTINUE;
+
+ nb->totalInst = 0; /* reset counter */
+ return TFM_EXPTMOD_NB_STOP;
+ }
+
+ /* get total instruction count including next operation */
+ totalInst = nb->totalInst + exptModNbInst[nb->state];
+ /* if the next operation can completed within the maximum then continue */
+ if (totalInst <= nb->maxBlockInst) {
+ return TFM_EXPTMOD_NB_CONTINUE;
+ }
+
+ return TFM_EXPTMOD_NB_STOP;
+ }
+ #define FP_EXPTMOD_NB_CHECKTIME(nb) fp_exptmod_nb_checktime((nb))
+ #endif /* !FP_EXPTMOD_NB_CHECKTIME */
+#endif /* WC_RSA_NONBLOCK_TIME */
+
+/* non-blocking version of timing resistant fp_exptmod function */
+/* supports cache resistance */
+int fp_exptmod_nb(exptModNb_t* nb, fp_int* G, fp_int* X, fp_int* P, fp_int* Y)
+{
+ int err, ret = FP_WOULDBLOCK;
+
+ if (nb == NULL)
+ return FP_VAL;
+
+#ifdef WC_RSA_NONBLOCK_TIME
+ nb->totalInst = 0;
+ do {
+ nb->totalInst += exptModNbInst[nb->state];
+#endif
+
+ switch (nb->state) {
+ case TFM_EXPTMOD_NB_INIT:
+ /* now setup montgomery */
+ if ((err = fp_montgomery_setup(P, &nb->mp)) != FP_OKAY) {
+ nb->state = TFM_EXPTMOD_NB_INIT;
+ return err;
+ }
+
+ /* init ints */
+ fp_init(&nb->R[0]);
+ fp_init(&nb->R[1]);
+ #ifndef WC_NO_CACHE_RESISTANT
+ fp_init(&nb->R[2]);
+ #endif
+ nb->state = TFM_EXPTMOD_NB_MONT;
+ break;
+
+ case TFM_EXPTMOD_NB_MONT:
+ /* mod m -> R[0] */
+ fp_montgomery_calc_normalization(&nb->R[0], P);
+
+ nb->state = TFM_EXPTMOD_NB_MONT_RED;
+ break;
+
+ case TFM_EXPTMOD_NB_MONT_RED:
+ /* reduce G -> R[1] */
+ if (fp_cmp_mag(P, G) != FP_GT) {
+ /* G > P so we reduce it first */
+ fp_mod(G, P, &nb->R[1]);
+ } else {
+ fp_copy(G, &nb->R[1]);
+ }
+
+ nb->state = TFM_EXPTMOD_NB_MONT_MUL;
+ break;
+
+ case TFM_EXPTMOD_NB_MONT_MUL:
+ /* G (R[1]) * m (R[0]) */
+ err = fp_mul(&nb->R[1], &nb->R[0], &nb->R[1]);
+ if (err != FP_OKAY) {
+ nb->state = TFM_EXPTMOD_NB_INIT;
+ return err;
+ }
+
+ nb->state = TFM_EXPTMOD_NB_MONT_MOD;
+ break;
- Based on work by Marc Joye, Sung-Ming Yen, "The Montgomery Powering Ladder", Cryptographic Hardware and Embedded Systems, CHES 2002
+ case TFM_EXPTMOD_NB_MONT_MOD:
+ /* mod m */
+ err = fp_div(&nb->R[1], P, NULL, &nb->R[1]);
+ if (err != FP_OKAY) {
+ nb->state = TFM_EXPTMOD_NB_INIT;
+ return err;
+ }
+
+ nb->state = TFM_EXPTMOD_NB_MONT_MODCHK;
+ break;
+
+ case TFM_EXPTMOD_NB_MONT_MODCHK:
+ /* m matches sign of (G * R mod m) */
+ if (nb->R[1].sign != P->sign) {
+ fp_add(&nb->R[1], P, &nb->R[1]);
+ }
+
+ /* set initial mode and bit cnt */
+ nb->bitcnt = 1;
+ nb->buf = 0;
+ nb->digidx = X->used - 1;
+
+ nb->state = TFM_EXPTMOD_NB_NEXT;
+ break;
+
+ case TFM_EXPTMOD_NB_NEXT:
+ /* grab next digit as required */
+ if (--nb->bitcnt == 0) {
+ /* if nb->digidx == -1 we are out of digits so break */
+ if (nb->digidx == -1) {
+ nb->state = TFM_EXPTMOD_NB_RED;
+ break;
+ }
+ /* read next digit and reset nb->bitcnt */
+ nb->buf = X->dp[nb->digidx--];
+ nb->bitcnt = (int)DIGIT_BIT;
+ }
+
+ /* grab the next msb from the exponent */
+ nb->y = (int)(nb->buf >> (DIGIT_BIT - 1)) & 1;
+ nb->buf <<= (fp_digit)1;
+ nb->state = TFM_EXPTMOD_NB_MUL;
+ FALL_THROUGH;
+
+ case TFM_EXPTMOD_NB_MUL:
+ fp_mul(&nb->R[0], &nb->R[1], &nb->R[nb->y^1]);
+ nb->state = TFM_EXPTMOD_NB_MUL_RED;
+ break;
+
+ case TFM_EXPTMOD_NB_MUL_RED:
+ fp_montgomery_reduce(&nb->R[nb->y^1], P, nb->mp);
+ nb->state = TFM_EXPTMOD_NB_SQR;
+ break;
+
+ case TFM_EXPTMOD_NB_SQR:
+ #ifdef WC_NO_CACHE_RESISTANT
+ fp_sqr(&nb->R[nb->y], &nb->R[nb->y]);
+ #else
+ fp_copy((fp_int*) ( ((wolfssl_word)&nb->R[0] & wc_off_on_addr[nb->y^1]) +
+ ((wolfssl_word)&nb->R[1] & wc_off_on_addr[nb->y]) ),
+ &nb->R[2]);
+ fp_sqr(&nb->R[2], &nb->R[2]);
+ #endif /* WC_NO_CACHE_RESISTANT */
+
+ nb->state = TFM_EXPTMOD_NB_SQR_RED;
+ break;
+
+ case TFM_EXPTMOD_NB_SQR_RED:
+ #ifdef WC_NO_CACHE_RESISTANT
+ fp_montgomery_reduce(&nb->R[nb->y], P, nb->mp);
+ #else
+ fp_montgomery_reduce(&nb->R[2], P, nb->mp);
+ fp_copy(&nb->R[2],
+ (fp_int*) ( ((wolfssl_word)&nb->R[0] & wc_off_on_addr[nb->y^1]) +
+ ((wolfssl_word)&nb->R[1] & wc_off_on_addr[nb->y]) ) );
+ #endif /* WC_NO_CACHE_RESISTANT */
+
+ nb->state = TFM_EXPTMOD_NB_NEXT;
+ break;
+
+ case TFM_EXPTMOD_NB_RED:
+ /* final reduce */
+ fp_montgomery_reduce(&nb->R[0], P, nb->mp);
+ fp_copy(&nb->R[0], Y);
+
+ nb->state = TFM_EXPTMOD_NB_INIT;
+ ret = FP_OKAY;
+ break;
+ } /* switch */
+
+#ifdef WC_RSA_NONBLOCK_TIME
+ /* determine if maximum blocking time has been reached */
+ } while (ret == FP_WOULDBLOCK &&
+ FP_EXPTMOD_NB_CHECKTIME(nb) == TFM_EXPTMOD_NB_CONTINUE);
+#endif
+
+ return ret;
+}
+
+#endif /* WC_RSA_NONBLOCK */
+
+
+/* timing resistant montgomery ladder based exptmod
+ Based on work by Marc Joye, Sung-Ming Yen, "The Montgomery Powering Ladder",
+ Cryptographic Hardware and Embedded Systems, CHES 2002
*/
-static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
+static int _fp_exptmod_ct(fp_int * G, fp_int * X, int digits, fp_int * P,
+ fp_int * Y)
{
+#ifndef WOLFSSL_SMALL_STACK
+#ifdef WC_NO_CACHE_RESISTANT
fp_int R[2];
+#else
+ fp_int R[3]; /* need a temp for cache resistance */
+#endif
+#else
+ fp_int *R;
+#endif
fp_digit buf, mp;
int err, bitcnt, digidx, y;
@@ -980,9 +1584,21 @@ static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
return err;
}
- fp_init(&R[0]);
- fp_init(&R[1]);
-
+#ifdef WOLFSSL_SMALL_STACK
+#ifndef WC_NO_CACHE_RESISTANT
+ R = (fp_int*)XMALLOC(sizeof(fp_int) * 3, NULL, DYNAMIC_TYPE_BIGINT);
+#else
+ R = (fp_int*)XMALLOC(sizeof(fp_int) * 2, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ if (R == NULL)
+ return FP_MEM;
+#endif
+ fp_init(&R[0]);
+ fp_init(&R[1]);
+#ifndef WC_NO_CACHE_RESISTANT
+ fp_init(&R[2]);
+#endif
+
/* now we need R mod m */
fp_montgomery_calc_normalization (&R[0], P);
@@ -998,11 +1614,11 @@ static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
/* for j = t-1 downto 0 do
r_!k = R0*R1; r_k = r_k^2
*/
-
+
/* set initial mode and bit cnt */
bitcnt = 1;
buf = 0;
- digidx = X->used - 1;
+ digidx = digits - 1;
for (;;) {
/* grab next digit as required */
@@ -1021,23 +1637,80 @@ static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
buf <<= (fp_digit)1;
/* do ops */
- fp_mul(&R[0], &R[1], &R[y^1]); fp_montgomery_reduce(&R[y^1], P, mp);
- fp_sqr(&R[y], &R[y]); fp_montgomery_reduce(&R[y], P, mp);
+ err = fp_mul(&R[0], &R[1], &R[y^1]);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(R, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
+ return err;
+ }
+ err = fp_montgomery_reduce(&R[y^1], P, mp);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(R, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
+ return err;
+ }
+
+#ifdef WC_NO_CACHE_RESISTANT
+ err = fp_sqr(&R[y], &R[y]);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(R, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
+ return err;
+ }
+ err = fp_montgomery_reduce(&R[y], P, mp);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(R, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
+ return err;
+ }
+#else
+ /* instead of using R[y] for sqr, which leaks key bit to cache monitor,
+ * use R[2] as temp, make sure address calc is constant, keep
+ * &R[0] and &R[1] in cache */
+ fp_copy((fp_int*) ( ((wolfssl_word)&R[0] & wc_off_on_addr[y^1]) +
+ ((wolfssl_word)&R[1] & wc_off_on_addr[y]) ),
+ &R[2]);
+ err = fp_sqr(&R[2], &R[2]);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(R, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
+ return err;
+ }
+ err = fp_montgomery_reduce(&R[2], P, mp);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(R, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
+ return err;
+ }
+ fp_copy(&R[2],
+ (fp_int*) ( ((wolfssl_word)&R[0] & wc_off_on_addr[y^1]) +
+ ((wolfssl_word)&R[1] & wc_off_on_addr[y]) ) );
+#endif /* WC_NO_CACHE_RESISTANT */
}
- fp_montgomery_reduce(&R[0], P, mp);
+ err = fp_montgomery_reduce(&R[0], P, mp);
fp_copy(&R[0], Y);
- return FP_OKAY;
-}
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(R, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return err;
+}
-#else
+#endif /* TFM_TIMING_RESISTANT */
-/* y = g**x (mod b)
+/* y = g**x (mod b)
* Some restrictions... x must be positive and < b
*/
-static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
+static int _fp_exptmod_nct(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
{
- fp_int M[64], res;
+ fp_int *res;
+ fp_int *M;
fp_digit buf, mp;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
@@ -1053,28 +1726,37 @@ static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
winsize = 5;
} else {
winsize = 6;
- }
-
- /* init M array */
- XMEMSET(M, 0, sizeof(M));
+ }
/* now setup montgomery */
if ((err = fp_montgomery_setup (P, &mp)) != FP_OKAY) {
return err;
}
+ /* only allocate space for what's needed for window plus res */
+ M = (fp_int*)XMALLOC(sizeof(fp_int)*((1 << winsize) + 1), NULL,
+ DYNAMIC_TYPE_BIGINT);
+ if (M == NULL) {
+ return FP_MEM;
+ }
+ res = &M[1 << winsize];
+
+ /* init M array */
+ for(x = 0; x < (1 << winsize); x++)
+ fp_init(&M[x]);
+
/* setup result */
- fp_init(&res);
+ fp_init(res);
/* create M table
*
* The M table contains powers of the input base, e.g. M[x] = G^x mod P
*
- * The first half of the table is not computed though accept for M[0] and M[1]
+ * The first half of the table is not computed though except for M[0] and M[1]
*/
/* now we need R mod m */
- fp_montgomery_calc_normalization (&res, P);
+ fp_montgomery_calc_normalization (res, P);
/* now set M[1] to G * R mod m */
if (fp_cmp_mag(P, G) != FP_GT) {
@@ -1083,24 +1765,37 @@ static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
} else {
fp_copy(G, &M[1]);
}
- fp_mulmod (&M[1], &res, P, &M[1]);
+ fp_mulmod (&M[1], res, P, &M[1]);
- /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
+ /* compute the value at M[1<<(winsize-1)] by
+ * squaring M[1] (winsize-1) times */
fp_copy (&M[1], &M[1 << (winsize - 1)]);
for (x = 0; x < (winsize - 1); x++) {
fp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)]);
- fp_montgomery_reduce (&M[1 << (winsize - 1)], P, mp);
+ err = fp_montgomery_reduce (&M[1 << (winsize - 1)], P, mp);
+ if (err != FP_OKAY) {
+ XFREE(M, NULL, DYNAMIC_TYPE_BIGINT);
+ return err;
+ }
}
/* create upper table */
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
- fp_mul(&M[x - 1], &M[1], &M[x]);
- fp_montgomery_reduce(&M[x], P, mp);
+ err = fp_mul(&M[x - 1], &M[1], &M[x]);
+ if (err != FP_OKAY) {
+ XFREE(M, NULL, DYNAMIC_TYPE_BIGINT);
+ return err;
+ }
+ err = fp_montgomery_reduce(&M[x], P, mp);
+ if (err != FP_OKAY) {
+ XFREE(M, NULL, DYNAMIC_TYPE_BIGINT);
+ return err;
+ }
}
/* set initial mode and bit cnt */
mode = 0;
- bitcnt = 1;
+ bitcnt = (x % DIGIT_BIT) + 1;
buf = 0;
digidx = X->used - 1;
bitcpy = 0;
@@ -1133,8 +1828,16 @@ static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
/* if the bit is zero and mode == 1 then we square */
if (mode == 1 && y == 0) {
- fp_sqr(&res, &res);
- fp_montgomery_reduce(&res, P, mp);
+ err = fp_sqr(res, res);
+ if (err != FP_OKAY) {
+ XFREE(M, NULL, DYNAMIC_TYPE_BIGINT);
+ return err;
+ }
+ fp_montgomery_reduce(res, P, mp);
+ if (err != FP_OKAY) {
+ XFREE(M, NULL, DYNAMIC_TYPE_BIGINT);
+ return err;
+ }
continue;
}
@@ -1146,13 +1849,29 @@ static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
/* ok window is filled so square as required and multiply */
/* square first */
for (x = 0; x < winsize; x++) {
- fp_sqr(&res, &res);
- fp_montgomery_reduce(&res, P, mp);
+ err = fp_sqr(res, res);
+ if (err != FP_OKAY) {
+ XFREE(M, NULL, DYNAMIC_TYPE_BIGINT);
+ return err;
+ }
+ err = fp_montgomery_reduce(res, P, mp);
+ if (err != FP_OKAY) {
+ XFREE(M, NULL, DYNAMIC_TYPE_BIGINT);
+ return err;
+ }
}
/* then multiply */
- fp_mul(&res, &M[bitbuf], &res);
- fp_montgomery_reduce(&res, P, mp);
+ err = fp_mul(res, &M[bitbuf], res);
+ if (err != FP_OKAY) {
+ XFREE(M, NULL, DYNAMIC_TYPE_BIGINT);
+ return err;
+ }
+ err = fp_montgomery_reduce(res, P, mp);
+ if (err != FP_OKAY) {
+ XFREE(M, NULL, DYNAMIC_TYPE_BIGINT);
+ return err;
+ }
/* empty window and reset */
bitcpy = 0;
@@ -1165,15 +1884,31 @@ static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
if (mode == 2 && bitcpy > 0) {
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
- fp_sqr(&res, &res);
- fp_montgomery_reduce(&res, P, mp);
+ err = fp_sqr(res, res);
+ if (err != FP_OKAY) {
+ XFREE(M, NULL, DYNAMIC_TYPE_BIGINT);
+ return err;
+ }
+ err = fp_montgomery_reduce(res, P, mp);
+ if (err != FP_OKAY) {
+ XFREE(M, NULL, DYNAMIC_TYPE_BIGINT);
+ return err;
+ }
/* get next bit of the window */
bitbuf <<= 1;
if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */
- fp_mul(&res, &M[1], &res);
- fp_montgomery_reduce(&res, P, mp);
+ err = fp_mul(res, &M[1], res);
+ if (err != FP_OKAY) {
+ XFREE(M, NULL, DYNAMIC_TYPE_BIGINT);
+ return err;
+ }
+ err = fp_montgomery_reduce(res, P, mp);
+ if (err != FP_OKAY) {
+ XFREE(M, NULL, DYNAMIC_TYPE_BIGINT);
+ return err;
+ }
}
}
}
@@ -1184,45 +1919,553 @@ static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
* to reduce one more time to cancel out the factor
* of R.
*/
- fp_montgomery_reduce(&res, P, mp);
+ err = fp_montgomery_reduce(res, P, mp);
/* swap res with Y */
- fp_copy (&res, Y);
- return FP_OKAY;
+ fp_copy (res, Y);
+
+ XFREE(M, NULL, DYNAMIC_TYPE_BIGINT);
+ return err;
}
+
+#ifdef TFM_TIMING_RESISTANT
+#if DIGIT_BIT <= 16
+ #define WINSIZE 2
+#elif DIGIT_BIT <= 32
+ #define WINSIZE 3
+#elif DIGIT_BIT <= 64
+ #define WINSIZE 4
+#elif DIGIT_BIT <= 128
+ #define WINSIZE 5
+#endif
+
+/* y = 2**x (mod b)
+ * Some restrictions... x must be positive and < b
+ */
+static int _fp_exptmod_base_2(fp_int * X, int digits, fp_int * P,
+ fp_int * Y)
+{
+ fp_digit buf, mp;
+ int err, bitbuf, bitcpy, bitcnt, digidx, x, y;
+#ifdef WOLFSSL_SMALL_STACK
+ fp_int *res;
+ fp_int *tmp;
+#else
+ fp_int res[1];
+ fp_int tmp[1];
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ res = (fp_int*)XMALLOC(2*sizeof(fp_int), NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ if (res == NULL) {
+ return FP_MEM;
+ }
+ tmp = &res[1];
#endif
+ /* now setup montgomery */
+ if ((err = fp_montgomery_setup(P, &mp)) != FP_OKAY) {
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+#endif
+ return err;
+ }
+
+ /* setup result */
+ fp_init(res);
+ fp_init(tmp);
+
+ fp_mul_2d(P, 1 << WINSIZE, tmp);
+
+ /* now we need R mod m */
+ fp_montgomery_calc_normalization(res, P);
+
+ /* Get the top bits left over after taking WINSIZE bits starting at the
+ * least-significant.
+ */
+ digidx = digits - 1;
+ bitcpy = (digits * DIGIT_BIT) % WINSIZE;
+ if (bitcpy > 0) {
+ bitcnt = (int)DIGIT_BIT - bitcpy;
+ buf = X->dp[digidx--];
+ bitbuf = (int)(buf >> bitcnt);
+ /* Multiply montgomery representation of 1 by 2 ^ top */
+ fp_mul_2d(res, bitbuf, res);
+ fp_add(res, tmp, res);
+ err = fp_mod(res, P, res);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ #endif
+ return err;
+ }
+ /* Move out bits used */
+ buf <<= bitcpy;
+ bitcnt++;
+ }
+ else {
+ bitcnt = 1;
+ buf = 0;
+ }
+
+ /* empty window and reset */
+ bitbuf = 0;
+ bitcpy = 0;
+
+ for (;;) {
+ /* grab next digit as required */
+ if (--bitcnt == 0) {
+ /* if digidx == -1 we are out of digits so break */
+ if (digidx == -1) {
+ break;
+ }
+ /* read next digit and reset bitcnt */
+ buf = X->dp[digidx--];
+ bitcnt = (int)DIGIT_BIT;
+ }
+
+ /* grab the next msb from the exponent */
+ y = (int)(buf >> (DIGIT_BIT - 1)) & 1;
+ buf <<= (fp_digit)1;
+ /* add bit to the window */
+ bitbuf |= (y << (WINSIZE - ++bitcpy));
+
+ if (bitcpy == WINSIZE) {
+ /* ok window is filled so square as required and multiply */
+ /* square first */
+ for (x = 0; x < WINSIZE; x++) {
+ err = fp_sqr(res, res);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ #endif
+ return err;
+ }
+ err = fp_montgomery_reduce(res, P, mp);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ #endif
+ return err;
+ }
+ }
+
+ /* then multiply by 2^bitbuf */
+ fp_mul_2d(res, bitbuf, res);
+ /* Add in value to make mod operation take same time */
+ fp_add(res, tmp, res);
+ err = fp_mod(res, P, res);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ #endif
+ return err;
+ }
+
+ /* empty window and reset */
+ bitcpy = 0;
+ bitbuf = 0;
+ }
+ }
+
+ /* fixup result if Montgomery reduction is used
+ * recall that any value in a Montgomery system is
+ * actually multiplied by R mod n. So we have
+ * to reduce one more time to cancel out the factor
+ * of R.
+ */
+ err = fp_montgomery_reduce(res, P, mp);
+
+ /* swap res with Y */
+ fp_copy(res, Y);
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+#endif
+ return err;
+}
+
+#undef WINSIZE
+#else
+#if DIGIT_BIT < 16
+ #define WINSIZE 3
+#elif DIGIT_BIT < 32
+ #define WINSIZE 4
+#elif DIGIT_BIT < 64
+ #define WINSIZE 5
+#elif DIGIT_BIT < 128
+ #define WINSIZE 6
+#elif DIGIT_BIT == 128
+ #define WINSIZE 7
+#endif
+
+/* y = 2**x (mod b)
+ * Some restrictions... x must be positive and < b
+ */
+static int _fp_exptmod_base_2(fp_int * X, int digits, fp_int * P,
+ fp_int * Y)
+{
+ fp_digit buf, mp;
+ int err, bitbuf, bitcpy, bitcnt, digidx, x, y;
+#ifdef WOLFSSL_SMALL_STACK
+ fp_int *res;
+#else
+ fp_int res[1];
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ res = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ if (res == NULL) {
+ return FP_MEM;
+ }
+#endif
+
+ /* now setup montgomery */
+ if ((err = fp_montgomery_setup(P, &mp)) != FP_OKAY) {
+ return err;
+ }
+
+ /* setup result */
+ fp_init(res);
+
+ /* now we need R mod m */
+ fp_montgomery_calc_normalization(res, P);
+
+ /* Get the top bits left over after taking WINSIZE bits starting at the
+ * least-significant.
+ */
+ digidx = digits - 1;
+ bitcpy = (digits * DIGIT_BIT) % WINSIZE;
+ if (bitcpy > 0) {
+ bitcnt = (int)DIGIT_BIT - bitcpy;
+ buf = X->dp[digidx--];
+ bitbuf = (int)(buf >> bitcnt);
+ /* Multiply montgomery representation of 1 by 2 ^ top */
+ fp_mul_2d(res, bitbuf, res);
+ err = fp_mod(res, P, res);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ #endif
+ return err;
+ }
+ /* Move out bits used */
+ buf <<= bitcpy;
+ bitcnt++;
+ }
+ else {
+ bitcnt = 1;
+ buf = 0;
+ }
+
+ /* empty window and reset */
+ bitbuf = 0;
+ bitcpy = 0;
+
+ for (;;) {
+ /* grab next digit as required */
+ if (--bitcnt == 0) {
+ /* if digidx == -1 we are out of digits so break */
+ if (digidx == -1) {
+ break;
+ }
+ /* read next digit and reset bitcnt */
+ buf = X->dp[digidx--];
+ bitcnt = (int)DIGIT_BIT;
+ }
+
+ /* grab the next msb from the exponent */
+ y = (int)(buf >> (DIGIT_BIT - 1)) & 1;
+ buf <<= (fp_digit)1;
+ /* add bit to the window */
+ bitbuf |= (y << (WINSIZE - ++bitcpy));
+
+ if (bitcpy == WINSIZE) {
+ /* ok window is filled so square as required and multiply */
+ /* square first */
+ for (x = 0; x < WINSIZE; x++) {
+ err = fp_sqr(res, res);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ #endif
+ return err;
+ }
+ err = fp_montgomery_reduce(res, P, mp);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ #endif
+ return err;
+ }
+ }
+
+ /* then multiply by 2^bitbuf */
+ fp_mul_2d(res, bitbuf, res);
+ err = fp_mod(res, P, res);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ #endif
+ return err;
+ }
+
+ /* empty window and reset */
+ bitcpy = 0;
+ bitbuf = 0;
+ }
+ }
+
+ /* fixup result if Montgomery reduction is used
+ * recall that any value in a Montgomery system is
+ * actually multiplied by R mod n. So we have
+ * to reduce one more time to cancel out the factor
+ * of R.
+ */
+ err = fp_montgomery_reduce(res, P, mp);
+
+ /* swap res with Y */
+ fp_copy(res, Y);
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+#endif
+ return err;
+}
+
+#undef WINSIZE
+#endif
+
+
int fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
{
+
+#if defined(WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI) && \
+ !defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI)
+ int x = fp_count_bits (X);
+#endif
+
+ /* handle modulus of zero and prevent overflows */
+ if (fp_iszero(P) || (P->used > (FP_SIZE/2))) {
+ return FP_VAL;
+ }
+ if (fp_isone(P)) {
+ fp_set(Y, 0);
+ return FP_OKAY;
+ }
+ if (fp_iszero(X)) {
+ fp_set(Y, 1);
+ return FP_OKAY;
+ }
+ if (fp_iszero(G)) {
+ fp_set(Y, 0);
+ return FP_OKAY;
+ }
+
+#if defined(WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI) && \
+ !defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI)
+ if(x > EPS_RSA_EXPT_XBTIS) {
+ return esp_mp_exptmod(G, X, x, P, Y);
+ }
+#endif
+
+ if (X->sign == FP_NEG) {
+#ifndef POSITIVE_EXP_ONLY /* reduce stack if assume no negatives */
+ int err;
+ #ifndef WOLFSSL_SMALL_STACK
+ fp_int tmp[2];
+ #else
+ fp_int *tmp;
+ #endif
+
+ #ifdef WOLFSSL_SMALL_STACK
+ tmp = (fp_int*)XMALLOC(sizeof(fp_int) * 2, NULL, DYNAMIC_TYPE_BIGINT);
+ if (tmp == NULL)
+ return FP_MEM;
+ #endif
+
+ /* yes, copy G and invmod it */
+ fp_init_copy(&tmp[0], G);
+ fp_init_copy(&tmp[1], P);
+ tmp[1].sign = FP_ZPOS;
+ err = fp_invmod(&tmp[0], &tmp[1], &tmp[0]);
+ if (err == FP_OKAY) {
+ fp_copy(X, &tmp[1]);
+ tmp[1].sign = FP_ZPOS;
+#ifdef TFM_TIMING_RESISTANT
+ err = _fp_exptmod_ct(&tmp[0], &tmp[1], tmp[1].used, P, Y);
+#else
+ err = _fp_exptmod_nct(&tmp[0], &tmp[1], P, Y);
+#endif
+ if (P->sign == FP_NEG) {
+ fp_add(Y, P, Y);
+ }
+ }
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(tmp, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ #endif
+ return err;
+#else
+ return FP_VAL;
+#endif
+ }
+ else if (G->used == 1 && G->dp[0] == 2) {
+ return _fp_exptmod_base_2(X, X->used, P, Y);
+ }
+ else {
+ /* Positive exponent so just exptmod */
+#ifdef TFM_TIMING_RESISTANT
+ return _fp_exptmod_ct(G, X, X->used, P, Y);
+#else
+ return _fp_exptmod_nct(G, X, P, Y);
+#endif
+ }
+}
+
+int fp_exptmod_ex(fp_int * G, fp_int * X, int digits, fp_int * P, fp_int * Y)
+{
+
+#if defined(WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI) && \
+ !defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI)
+ int x = fp_count_bits (X);
+#endif
+
+ if (fp_iszero(G)) {
+ fp_set(G, 0);
+ return FP_OKAY;
+ }
+
/* prevent overflows */
if (P->used > (FP_SIZE/2)) {
return FP_VAL;
}
+#if defined(WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI) && \
+ !defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI)
+ if(x > EPS_RSA_EXPT_XBTIS) {
+ return esp_mp_exptmod(G, X, x, P, Y);
+ }
+#endif
+
if (X->sign == FP_NEG) {
#ifndef POSITIVE_EXP_ONLY /* reduce stack if assume no negatives */
int err;
- fp_int tmp;
+ #ifndef WOLFSSL_SMALL_STACK
+ fp_int tmp[2];
+ #else
+ fp_int *tmp;
+ #endif
+
+ #ifdef WOLFSSL_SMALL_STACK
+ tmp = (fp_int*)XMALLOC(sizeof(fp_int) * 2, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ if (tmp == NULL)
+ return FP_MEM;
+ #endif
/* yes, copy G and invmod it */
- fp_copy(G, &tmp);
- if ((err = fp_invmod(&tmp, P, &tmp)) != FP_OKAY) {
- return err;
+ fp_init_copy(&tmp[0], G);
+ fp_init_copy(&tmp[1], P);
+ tmp[1].sign = FP_ZPOS;
+ err = fp_invmod(&tmp[0], &tmp[1], &tmp[0]);
+ if (err == FP_OKAY) {
+ X->sign = FP_ZPOS;
+#ifdef TFM_TIMING_RESISTANT
+ err = _fp_exptmod_ct(&tmp[0], X, digits, P, Y);
+#else
+ err = _fp_exptmod_nct(&tmp[0], X, P, Y);
+ (void)digits;
+#endif
+ if (X != Y) {
+ X->sign = FP_NEG;
+ }
+ if (P->sign == FP_NEG) {
+ fp_add(Y, P, Y);
+ }
}
- X->sign = FP_ZPOS;
- err = _fp_exptmod(&tmp, X, P, Y);
- if (X != Y) {
- X->sign = FP_NEG;
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(tmp, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
+ return err;
+#else
+ return FP_VAL;
+#endif
+ }
+ else {
+ /* Positive exponent so just exptmod */
+#ifdef TFM_TIMING_RESISTANT
+ return _fp_exptmod_ct(G, X, digits, P, Y);
+#else
+ return _fp_exptmod_nct(G, X, P, Y);
+#endif
+ }
+}
+
+int fp_exptmod_nct(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
+{
+#if defined(WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI) && \
+ !defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI)
+ int x = fp_count_bits (X);
+#endif
+
+ if (fp_iszero(G)) {
+ fp_set(G, 0);
+ return FP_OKAY;
+ }
+
+ /* prevent overflows */
+ if (P->used > (FP_SIZE/2)) {
+ return FP_VAL;
+ }
+
+#if defined(WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI) && \
+ !defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI)
+ if(x > EPS_RSA_EXPT_XBTIS) {
+ return esp_mp_exptmod(G, X, x, P, Y);
+ }
+#endif
+
+ if (X->sign == FP_NEG) {
+#ifndef POSITIVE_EXP_ONLY /* reduce stack if assume no negatives */
+ int err;
+ #ifndef WOLFSSL_SMALL_STACK
+ fp_int tmp[2];
+ #else
+ fp_int *tmp;
+ #endif
+
+ #ifdef WOLFSSL_SMALL_STACK
+ tmp = (fp_int*)XMALLOC(sizeof(fp_int) * 2, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ if (tmp == NULL)
+ return FP_MEM;
+ #endif
+
+ /* yes, copy G and invmod it */
+ fp_init_copy(&tmp[0], G);
+ fp_init_copy(&tmp[1], P);
+ tmp[1].sign = FP_ZPOS;
+ err = fp_invmod(&tmp[0], &tmp[1], &tmp[0]);
+ if (err == FP_OKAY) {
+ X->sign = FP_ZPOS;
+ err = _fp_exptmod_nct(&tmp[0], X, P, Y);
+ if (X != Y) {
+ X->sign = FP_NEG;
+ }
+ if (P->sign == FP_NEG) {
+ fp_add(Y, P, Y);
+ }
}
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(tmp, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
return err;
#else
return FP_VAL;
-#endif
+#endif
}
else {
/* Positive exponent so just exptmod */
- return _fp_exptmod(G, X, P, Y);
+ return _fp_exptmod_nct(G, X, P, Y);
}
}
@@ -1234,13 +2477,13 @@ void fp_2expt(fp_int *a, int b)
/* zero a as per default */
fp_zero (a);
- if (b < 0) {
+ if (b < 0) {
return;
}
z = b / DIGIT_BIT;
if (z >= FP_SIZE) {
- return;
+ return;
}
/* set the used count of where the bit will go */
@@ -1251,118 +2494,141 @@ void fp_2expt(fp_int *a, int b)
}
/* b = a*a */
-void fp_sqr(fp_int *A, fp_int *B)
+int fp_sqr(fp_int *A, fp_int *B)
{
- int y = A->used;
+ int err;
+ int y, oldused;
+
+ oldused = B->used;
+ y = A->used;
/* call generic if we're out of range */
if (y + y > FP_SIZE) {
- fp_sqr_comba(A, B);
- return ;
+ err = fp_sqr_comba(A, B);
+ goto clean;
}
-#if defined(TFM_SQR3)
+#if defined(TFM_SQR3) && FP_SIZE >= 6
if (y <= 3) {
- fp_sqr_comba3(A,B);
- return;
+ err = fp_sqr_comba3(A,B);
+ goto clean;
}
#endif
-#if defined(TFM_SQR4)
+#if defined(TFM_SQR4) && FP_SIZE >= 8
if (y == 4) {
- fp_sqr_comba4(A,B);
- return;
+ err = fp_sqr_comba4(A,B);
+ goto clean;
}
#endif
-#if defined(TFM_SQR6)
+#if defined(TFM_SQR6) && FP_SIZE >= 12
if (y <= 6) {
- fp_sqr_comba6(A,B);
- return;
+ err = fp_sqr_comba6(A,B);
+ goto clean;
}
#endif
-#if defined(TFM_SQR7)
+#if defined(TFM_SQR7) && FP_SIZE >= 14
if (y == 7) {
- fp_sqr_comba7(A,B);
- return;
+ err = fp_sqr_comba7(A,B);
+ goto clean;
}
#endif
-#if defined(TFM_SQR8)
+#if defined(TFM_SQR8) && FP_SIZE >= 16
if (y == 8) {
- fp_sqr_comba8(A,B);
- return;
+ err = fp_sqr_comba8(A,B);
+ goto clean;
}
#endif
-#if defined(TFM_SQR9)
+#if defined(TFM_SQR9) && FP_SIZE >= 18
if (y == 9) {
- fp_sqr_comba9(A,B);
- return;
+ err = fp_sqr_comba9(A,B);
+ goto clean;
}
#endif
-#if defined(TFM_SQR12)
+#if defined(TFM_SQR12) && FP_SIZE >= 24
if (y <= 12) {
- fp_sqr_comba12(A,B);
- return;
+ err = fp_sqr_comba12(A,B);
+ goto clean;
}
#endif
-#if defined(TFM_SQR17)
+#if defined(TFM_SQR17) && FP_SIZE >= 34
if (y <= 17) {
- fp_sqr_comba17(A,B);
- return;
+ err = fp_sqr_comba17(A,B);
+ goto clean;
}
#endif
#if defined(TFM_SMALL_SET)
if (y <= 16) {
- fp_sqr_comba_small(A,B);
- return;
+ err = fp_sqr_comba_small(A,B);
+ goto clean;
}
#endif
-#if defined(TFM_SQR20)
+#if defined(TFM_SQR20) && FP_SIZE >= 40
if (y <= 20) {
- fp_sqr_comba20(A,B);
- return;
+ err = fp_sqr_comba20(A,B);
+ goto clean;
}
#endif
-#if defined(TFM_SQR24)
+#if defined(TFM_SQR24) && FP_SIZE >= 48
if (y <= 24) {
- fp_sqr_comba24(A,B);
- return;
+ err = fp_sqr_comba24(A,B);
+ goto clean;
}
#endif
-#if defined(TFM_SQR28)
+#if defined(TFM_SQR28) && FP_SIZE >= 56
if (y <= 28) {
- fp_sqr_comba28(A,B);
- return;
+ err = fp_sqr_comba28(A,B);
+ goto clean;
}
#endif
-#if defined(TFM_SQR32)
+#if defined(TFM_SQR32) && FP_SIZE >= 64
if (y <= 32) {
- fp_sqr_comba32(A,B);
- return;
+ err = fp_sqr_comba32(A,B);
+ goto clean;
}
#endif
-#if defined(TFM_SQR48)
+#if defined(TFM_SQR48) && FP_SIZE >= 96
if (y <= 48) {
- fp_sqr_comba48(A,B);
- return;
+ err = fp_sqr_comba48(A,B);
+ goto clean;
}
#endif
-#if defined(TFM_SQR64)
+#if defined(TFM_SQR64) && FP_SIZE >= 128
if (y <= 64) {
- fp_sqr_comba64(A,B);
- return;
+ err = fp_sqr_comba64(A,B);
+ goto clean;
}
#endif
- fp_sqr_comba(A, B);
+ err = fp_sqr_comba(A, B);
+
+clean:
+ /* zero any excess digits on the destination that we didn't write to */
+ for (y = B->used; y >= 0 && y < oldused; y++) {
+ B->dp[y] = 0;
+ }
+
+ return err;
}
/* generic comba squarer */
-void fp_sqr_comba(fp_int *A, fp_int *B)
+int fp_sqr_comba(fp_int *A, fp_int *B)
{
int pa, ix, iz;
fp_digit c0, c1, c2;
- fp_int tmp, *dst;
#ifdef TFM_ISO
fp_word tt;
-#endif
+#endif
+ fp_int *dst;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int tmp[1];
+#else
+ fp_int *tmp;
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ tmp = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (tmp == NULL)
+ return FP_MEM;
+#endif
/* get size of output and trim */
pa = A->used + A->used;
@@ -1375,14 +2641,14 @@ void fp_sqr_comba(fp_int *A, fp_int *B)
COMBA_CLEAR;
if (A == B) {
- fp_init(&tmp);
- dst = &tmp;
+ fp_init(tmp);
+ dst = tmp;
} else {
fp_zero(B);
dst = B;
}
- for (ix = 0; ix < pa; ix++) {
+ for (ix = 0; ix < pa; ix++) {
int tx, ty, iy;
fp_digit *tmpy, *tmpx;
@@ -1394,14 +2660,14 @@ void fp_sqr_comba(fp_int *A, fp_int *B)
tmpx = A->dp + tx;
tmpy = A->dp + ty;
- /* this is the number of times the loop will iterrate,
+ /* this is the number of times the loop will iterate,
while (tx++ < a->used && ty-- >= 0) { ... }
*/
iy = MIN(A->used-tx, ty+1);
- /* now for squaring tx can never equal ty
- * we halve the distance since they approach
- * at a rate of 2x and we have to round because
+ /* now for squaring tx can never equal ty
+ * we halve the distance since they approach
+ * at a rate of 2x and we have to round because
* odd cases need to be executed
*/
iy = MIN(iy, (ty-tx+1)>>1);
@@ -1432,6 +2698,17 @@ void fp_sqr_comba(fp_int *A, fp_int *B)
if (dst != B) {
fp_copy(dst, B);
}
+
+ /* Variables used but not seen by cppcheck. */
+ (void)c0; (void)c1; (void)c2;
+#ifdef TFM_ISO
+ (void)tt;
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(tmp, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return FP_OKAY;
}
int fp_cmp(fp_int *a, fp_int *b)
@@ -1454,6 +2731,10 @@ int fp_cmp(fp_int *a, fp_int *b)
/* compare against a single digit */
int fp_cmp_d(fp_int *a, fp_digit b)
{
+ /* special case for zero*/
+ if (a->used == 0 && b == 0)
+ return FP_EQ;
+
/* compare based on sign */
if ((b && a->used == 0) || a->sign == FP_NEG) {
return FP_LT;
@@ -1495,7 +2776,7 @@ int fp_cmp_mag(fp_int *a, fp_int *b)
return FP_EQ;
}
-/* setups the montgomery reduction */
+/* sets up the montgomery reduction */
int fp_montgomery_setup(fp_int *a, fp_digit *rho)
{
fp_digit x, b;
@@ -1562,39 +2843,46 @@ void fp_montgomery_calc_normalization(fp_int *a, fp_int *b)
#endif
#ifdef HAVE_INTEL_MULX
-static inline void innermul8_mulx(fp_digit *c_mulx, fp_digit *cy_mulx, fp_digit *tmpm, fp_digit mu)
+static WC_INLINE void innermul8_mulx(fp_digit *c_mulx, fp_digit *cy_mulx, fp_digit *tmpm, fp_digit mu)
{
- fp_digit _c0, _c1, _c2, _c3, _c4, _c5, _c6, _c7, cy ;
-
- cy = *cy_mulx ;
- _c0=c_mulx[0]; _c1=c_mulx[1]; _c2=c_mulx[2]; _c3=c_mulx[3]; _c4=c_mulx[4]; _c5=c_mulx[5]; _c6=c_mulx[6]; _c7=c_mulx[7];
+ fp_digit cy = *cy_mulx ;
INNERMUL8_MULX ;
- c_mulx[0]=_c0; c_mulx[1]=_c1; c_mulx[2]=_c2; c_mulx[3]=_c3; c_mulx[4]=_c4; c_mulx[5]=_c5; c_mulx[6]=_c6; c_mulx[7]=_c7;
*cy_mulx = cy ;
}
/* computes x/R == x (mod N) via Montgomery Reduction */
-static void fp_montgomery_reduce_mulx(fp_int *a, fp_int *m, fp_digit mp)
+static int fp_montgomery_reduce_mulx(fp_int *a, fp_int *m, fp_digit mp)
{
- fp_digit c[FP_SIZE], *_c, *tmpm, mu = 0;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_digit c[FP_SIZE+1];
+#else
+ fp_digit *c;
+#endif
+ fp_digit *_c, *tmpm, mu = 0;
int oldused, x, y, pa;
/* bail if too large */
if (m->used > (FP_SIZE/2)) {
(void)mu; /* shut up compiler */
- return;
+ return FP_OKAY;
}
#ifdef TFM_SMALL_MONT_SET
if (m->used <= 16) {
- fp_montgomery_reduce_small(a, m, mp);
- return;
+ return fp_montgomery_reduce_small(a, m, mp);
}
#endif
+#ifdef WOLFSSL_SMALL_STACK
+ /* only allocate space for what's needed for window plus res */
+ c = (fp_digit*)XMALLOC(sizeof(fp_digit)*(FP_SIZE + 1), NULL, DYNAMIC_TYPE_BIGINT);
+ if (c == NULL) {
+ return FP_MEM;
+ }
+#endif
/* now zero the buff */
- XMEMSET(c, 0, sizeof c);
+ XMEMSET(c, 0, sizeof(fp_digit)*(FP_SIZE + 1));
pa = m->used;
/* copy the input */
@@ -1625,7 +2913,7 @@ static void fp_montgomery_reduce_mulx(fp_int *a, fp_int *m, fp_digit mp)
PROPCARRY;
++_c;
}
- }
+ }
/* now copy out */
_c = c + pa;
@@ -1634,7 +2922,8 @@ static void fp_montgomery_reduce_mulx(fp_int *a, fp_int *m, fp_digit mp)
*tmpm++ = *_c++;
}
- for (; x < oldused; x++) {
+ /* zero any excess digits on the destination that we didn't write to */
+ for (; x < oldused; x++) {
*tmpm++ = 0;
}
@@ -1642,38 +2931,55 @@ static void fp_montgomery_reduce_mulx(fp_int *a, fp_int *m, fp_digit mp)
a->used = pa+1;
fp_clamp(a);
-
+
/* if A >= m then A = A - m */
if (fp_cmp_mag (a, m) != FP_LT) {
s_fp_sub (a, m, a);
}
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(c, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return FP_OKAY;
}
#endif
/* computes x/R == x (mod N) via Montgomery Reduction */
-void fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp)
+int fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp)
{
- fp_digit c[FP_SIZE], *_c, *tmpm, mu = 0;
- int oldused, x, y, pa;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_digit c[FP_SIZE+1];
+#else
+ fp_digit *c;
+#endif
+ fp_digit *_c, *tmpm, mu = 0;
+ int oldused, x, y, pa, err = 0;
- IF_HAVE_INTEL_MULX(fp_montgomery_reduce_mulx(a, m, mp), return) ;
+ IF_HAVE_INTEL_MULX(err = fp_montgomery_reduce_mulx(a, m, mp), return err) ;
+ (void)err;
/* bail if too large */
if (m->used > (FP_SIZE/2)) {
(void)mu; /* shut up compiler */
- return;
+ return FP_OKAY;
}
#ifdef TFM_SMALL_MONT_SET
if (m->used <= 16) {
- fp_montgomery_reduce_small(a, m, mp);
- return;
+ return fp_montgomery_reduce_small(a, m, mp);
}
#endif
+#ifdef WOLFSSL_SMALL_STACK
+ /* only allocate space for what's needed for window plus res */
+ c = (fp_digit*)XMALLOC(sizeof(fp_digit)*(FP_SIZE + 1), NULL, DYNAMIC_TYPE_BIGINT);
+ if (c == NULL) {
+ return FP_MEM;
+ }
+#endif
/* now zero the buff */
- XMEMSET(c, 0, sizeof c);
+ XMEMSET(c, 0, sizeof(fp_digit)*(FP_SIZE + 1));
pa = m->used;
/* copy the input */
@@ -1690,13 +2996,13 @@ void fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp)
_c = c + x;
tmpm = m->dp;
y = 0;
- #if (defined(TFM_SSE2) || defined(TFM_X86_64))
+#if defined(INNERMUL8)
for (; y < (pa & ~7); y += 8) {
INNERMUL8 ;
_c += 8;
tmpm += 8;
}
- #endif
+#endif
for (; y < pa; y++) {
INNERMUL;
++_c;
@@ -1706,7 +3012,7 @@ void fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp)
PROPCARRY;
++_c;
}
- }
+ }
/* now copy out */
_c = c + pa;
@@ -1715,7 +3021,8 @@ void fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp)
*tmpm++ = *_c++;
}
- for (; x < oldused; x++) {
+ /* zero any excess digits on the destination that we didn't write to */
+ for (; x < oldused; x++) {
*tmpm++ = 0;
}
@@ -1723,21 +3030,40 @@ void fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp)
a->used = pa+1;
fp_clamp(a);
-
+
/* if A >= m then A = A - m */
if (fp_cmp_mag (a, m) != FP_LT) {
s_fp_sub (a, m, a);
}
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(c, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return FP_OKAY;
}
-void fp_read_unsigned_bin(fp_int *a, unsigned char *b, int c)
+void fp_read_unsigned_bin(fp_int *a, const unsigned char *b, int c)
{
+#if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT)
+ const word32 maxC = (a->size * sizeof(fp_digit));
+#else
+ const word32 maxC = (FP_SIZE * sizeof(fp_digit));
+#endif
+
/* zero the int */
fp_zero (a);
+ /* if input b excess max, then truncate */
+ if (c > 0 && (word32)c > maxC) {
+ int excess = (c - maxC);
+ c -= excess;
+ b += excess;
+ }
+
/* If we know the endianness of this architecture, and we're using
32-bit fp_digits, we can optimize this */
-#if (defined(LITTLE_ENDIAN_ORDER) || defined(BIG_ENDIAN_ORDER)) && defined(FP_32BIT)
+#if (defined(LITTLE_ENDIAN_ORDER) || defined(BIG_ENDIAN_ORDER)) && \
+ defined(FP_32BIT)
/* But not for both simultaneously */
#if defined(LITTLE_ENDIAN_ORDER) && defined(BIG_ENDIAN_ORDER)
#error Both LITTLE_ENDIAN_ORDER and BIG_ENDIAN_ORDER defined.
@@ -1745,11 +3071,6 @@ void fp_read_unsigned_bin(fp_int *a, unsigned char *b, int c)
{
unsigned char *pd = (unsigned char *)a->dp;
- if ((unsigned)c > (FP_SIZE * sizeof(fp_digit))) {
- int excess = c - (FP_SIZE * sizeof(fp_digit));
- c -= excess;
- b += excess;
- }
a->used = (c + sizeof(fp_digit) - 1)/sizeof(fp_digit);
/* read the bytes in */
#ifdef BIG_ENDIAN_ORDER
@@ -1757,12 +3078,12 @@ void fp_read_unsigned_bin(fp_int *a, unsigned char *b, int c)
/* Use Duff's device to unroll the loop. */
int idx = (c - 1) & ~3;
switch (c % 4) {
- case 0: do { pd[idx+0] = *b++;
- case 3: pd[idx+1] = *b++;
- case 2: pd[idx+2] = *b++;
- case 1: pd[idx+3] = *b++;
+ case 0: do { pd[idx+0] = *b++; // fallthrough
+ case 3: pd[idx+1] = *b++; // fallthrough
+ case 2: pd[idx+2] = *b++; // fallthrough
+ case 1: pd[idx+3] = *b++; // fallthrough
idx -= 4;
- } while ((c -= 4) > 0);
+ } while ((c -= 4) > 0);
}
}
#else
@@ -1776,25 +3097,108 @@ void fp_read_unsigned_bin(fp_int *a, unsigned char *b, int c)
for (; c > 0; c--) {
fp_mul_2d (a, 8, a);
a->dp[0] |= *b++;
- a->used += 1;
+
+ if (a->used == 0) {
+ a->used = 1;
+ }
}
#endif
fp_clamp (a);
}
-void fp_to_unsigned_bin(fp_int *a, unsigned char *b)
+int fp_to_unsigned_bin_at_pos(int x, fp_int *t, unsigned char *b)
+{
+#if DIGIT_BIT == 64 || DIGIT_BIT == 32
+ int i, j;
+ fp_digit n;
+
+ for (j=0,i=0; i<t->used-1; ) {
+ b[x++] = (unsigned char)(t->dp[i] >> j);
+ j += 8;
+ i += j == DIGIT_BIT;
+ j &= DIGIT_BIT - 1;
+ }
+ n = t->dp[i];
+ while (n != 0) {
+ b[x++] = (unsigned char)n;
+ n >>= 8;
+ }
+ return x;
+#else
+ while (fp_iszero (t) == FP_NO) {
+ b[x++] = (unsigned char) (t->dp[0] & 255);
+ fp_div_2d (t, 8, t, NULL);
+ }
+ return x;
+#endif
+}
+
+int fp_to_unsigned_bin(fp_int *a, unsigned char *b)
+{
+ int x;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int t[1];
+#else
+ fp_int *t;
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL)
+ return FP_MEM;
+#endif
+
+ fp_init_copy(t, a);
+
+ x = fp_to_unsigned_bin_at_pos(0, t, b);
+ fp_reverse (b, x);
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return FP_OKAY;
+}
+
+int fp_to_unsigned_bin_len(fp_int *a, unsigned char *b, int c)
{
+#if DIGIT_BIT == 64 || DIGIT_BIT == 32
+ int i, j, x;
+
+ for (x=c-1,j=0,i=0; x >= 0; x--) {
+ b[x] = (unsigned char)(a->dp[i] >> j);
+ j += 8;
+ i += j == DIGIT_BIT;
+ j &= DIGIT_BIT - 1;
+ }
+
+ return FP_OKAY;
+#else
int x;
- fp_int t;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int t[1];
+#else
+ fp_int *t;
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL)
+ return FP_MEM;
+#endif
- fp_init_copy(&t, a);
+ fp_init_copy(t, a);
- x = 0;
- while (fp_iszero (&t) == FP_NO) {
- b[x++] = (unsigned char) (t.dp[0] & 255);
- fp_div_2d (&t, 8, &t, NULL);
+ for (x = 0; x < c; x++) {
+ b[x] = (unsigned char) (t->dp[0] & 255);
+ fp_div_2d (t, 8, t, NULL);
}
fp_reverse (b, x);
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return FP_OKAY;
+#endif
}
int fp_unsigned_bin_size(fp_int *a)
@@ -1810,6 +3214,77 @@ void fp_set(fp_int *a, fp_digit b)
a->used = a->dp[0] ? 1 : 0;
}
+
+#ifndef MP_SET_CHUNK_BITS
+ #define MP_SET_CHUNK_BITS 4
+#endif
+void fp_set_int(fp_int *a, unsigned long b)
+{
+ int x;
+
+ /* use direct fp_set if b is less than fp_digit max */
+ if (b < FP_DIGIT_MAX) {
+ fp_set (a, (fp_digit)b);
+ return;
+ }
+
+ fp_zero (a);
+
+ /* set chunk bits at a time */
+ for (x = 0; x < (int)(sizeof(b) * 8) / MP_SET_CHUNK_BITS; x++) {
+ fp_mul_2d (a, MP_SET_CHUNK_BITS, a);
+
+ /* OR in the top bits of the source */
+ a->dp[0] |= (b >> ((sizeof(b) * 8) - MP_SET_CHUNK_BITS)) &
+ ((1 << MP_SET_CHUNK_BITS) - 1);
+
+ /* shift the source up to the next chunk bits */
+ b <<= MP_SET_CHUNK_BITS;
+
+ /* ensure that digits are not clamped off */
+ a->used += 1;
+ }
+
+ /* clamp digits */
+ fp_clamp(a);
+}
+
+/* check if a bit is set */
+int fp_is_bit_set (fp_int *a, fp_digit b)
+{
+ fp_digit i;
+
+ if (b > FP_MAX_BITS)
+ return 0;
+ else
+ i = b/DIGIT_BIT;
+
+ if ((fp_digit)a->used < i)
+ return 0;
+
+ return (int)((a->dp[i] >> b%DIGIT_BIT) & (fp_digit)1);
+}
+
+/* set the b bit of a */
+int fp_set_bit (fp_int * a, fp_digit b)
+{
+ fp_digit i;
+
+ if (b > FP_MAX_BITS)
+ return 0;
+ else
+ i = b/DIGIT_BIT;
+
+ /* set the used count of where the bit will go if required */
+ if (a->used < (int)(i+1))
+ a->used = (int)(i+1);
+
+ /* put the single bit in its place */
+ a->dp[i] |= ((fp_digit)1) << (b % DIGIT_BIT);
+
+ return MP_OKAY;
+}
+
int fp_count_bits (fp_int * a)
{
int r;
@@ -1829,6 +3304,7 @@ int fp_count_bits (fp_int * a)
++r;
q >>= ((fp_digit) 1);
}
+
return r;
}
@@ -1853,36 +3329,38 @@ int fp_leading_bit(fp_int *a)
void fp_lshd(fp_int *a, int x)
{
- int y;
+ int y;
- /* move up and truncate as required */
- y = MIN(a->used + x - 1, (int)(FP_SIZE-1));
+ /* move up and truncate as required */
+ y = MIN(a->used + x - 1, (int)(FP_SIZE-1));
- /* store new size */
- a->used = y + 1;
+ /* store new size */
+ a->used = y + 1;
- /* move digits */
- for (; y >= x; y--) {
- a->dp[y] = a->dp[y-x];
- }
-
- /* zero lower digits */
- for (; y >= 0; y--) {
- a->dp[y] = 0;
- }
+ /* move digits */
+ for (; y >= x; y--) {
+ a->dp[y] = a->dp[y-x];
+ }
- /* clamp digits */
- fp_clamp(a);
+ /* zero lower digits */
+ for (; y >= 0; y--) {
+ a->dp[y] = 0;
+ }
+
+ /* clamp digits */
+ fp_clamp(a);
}
/* right shift by bit count */
void fp_rshb(fp_int *c, int x)
{
- register fp_digit *tmpc, mask, shift;
+ fp_digit *tmpc, mask, shift;
fp_digit r, rr;
fp_digit D = x;
+ if (fp_iszero(c)) return;
+
/* mask */
mask = (((fp_digit)1) << D) - 1;
@@ -1905,6 +3383,9 @@ void fp_rshb(fp_int *c, int x)
/* set the carry to the carry bits of the current word found above */
r = rr;
}
+
+ /* clamp digits */
+ fp_clamp(c);
}
@@ -1927,7 +3408,7 @@ void fp_rshd(fp_int *a, int x)
for (; y < a->used; y++) {
a->dp[y] = 0;
}
-
+
/* decrement count */
a->used -= x;
fp_clamp(a);
@@ -1952,16 +3433,40 @@ void fp_reverse (unsigned char *s, int len)
/* c = a - b */
-void fp_sub_d(fp_int *a, fp_digit b, fp_int *c)
+int fp_sub_d(fp_int *a, fp_digit b, fp_int *c)
{
- fp_int tmp;
- fp_init(&tmp);
- fp_set(&tmp, b);
- fp_sub(a, &tmp, c);
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int tmp[1];
+#else
+ fp_int *tmp;
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ tmp = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (tmp == NULL)
+ return FP_MEM;
+#endif
+
+ fp_init(tmp);
+ fp_set(tmp, b);
+#if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT)
+ if (c->size < FP_SIZE) {
+ fp_sub(a, tmp, tmp);
+ fp_copy(tmp, c);
+ } else
+#endif
+ {
+ fp_sub(a, tmp, c);
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(tmp, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return FP_OKAY;
}
-/* CyaSSL callers from normal lib */
+/* wolfSSL callers from normal lib */
/* init a new mp_int */
int mp_init (mp_int * a)
@@ -1971,30 +3476,92 @@ int mp_init (mp_int * a)
return MP_OKAY;
}
-#ifdef ALT_ECC_SIZE
void fp_init(fp_int *a)
{
+#if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT)
a->size = FP_SIZE;
+#endif
+#ifdef HAVE_WOLF_BIGINT
+ wc_bigint_init(&a->raw);
+#endif
fp_zero(a);
}
void fp_zero(fp_int *a)
{
+ int size;
a->used = 0;
a->sign = FP_ZPOS;
- XMEMSET(a->dp, 0, a->size * sizeof(fp_digit));
+#if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT)
+ size = a->size;
+#else
+ size = FP_SIZE;
+#endif
+ XMEMSET(a->dp, 0, size * sizeof(fp_digit));
}
+
+void fp_clear(fp_int *a)
+{
+ int size;
+ a->used = 0;
+ a->sign = FP_ZPOS;
+#if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT)
+ size = a->size;
+#else
+ size = FP_SIZE;
+#endif
+ XMEMSET(a->dp, 0, size * sizeof(fp_digit));
+ fp_free(a);
+}
+
+void fp_forcezero (mp_int * a)
+{
+ int size;
+ a->used = 0;
+ a->sign = FP_ZPOS;
+#if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT)
+ size = a->size;
+#else
+ size = FP_SIZE;
#endif
+ ForceZero(a->dp, size * sizeof(fp_digit));
+#ifdef HAVE_WOLF_BIGINT
+ wc_bigint_zero(&a->raw);
+#endif
+ fp_free(a);
+}
+
+void mp_forcezero (mp_int * a)
+{
+ fp_forcezero(a);
+}
+
+void fp_free(fp_int* a)
+{
+#ifdef HAVE_WOLF_BIGINT
+ wc_bigint_free(&a->raw);
+#else
+ (void)a;
+#endif
+}
/* clear one (frees) */
void mp_clear (mp_int * a)
{
- fp_zero(a);
+ if (a == NULL)
+ return;
+ fp_clear(a);
+}
+
+void mp_free(mp_int* a)
+{
+ fp_free(a);
}
/* handle up to 6 inits */
-int mp_init_multi(mp_int* a, mp_int* b, mp_int* c, mp_int* d, mp_int* e, mp_int* f)
+int mp_init_multi(mp_int* a, mp_int* b, mp_int* c, mp_int* d,
+ mp_int* e, mp_int* f)
{
if (a)
fp_init(a);
@@ -2027,40 +3594,103 @@ int mp_sub (mp_int * a, mp_int * b, mp_int * c)
}
/* high level multiplication (handles sign) */
+#if defined(FREESCALE_LTC_TFM)
+int wolfcrypt_mp_mul(mp_int * a, mp_int * b, mp_int * c)
+#else
int mp_mul (mp_int * a, mp_int * b, mp_int * c)
+#endif
{
- fp_mul(a, b, c);
+ return fp_mul(a, b, c);
+}
+
+int mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
+{
+ fp_mul_d(a, b, c);
return MP_OKAY;
}
/* d = a * b (mod c) */
+#if defined(FREESCALE_LTC_TFM)
+int wolfcrypt_mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+#else
int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+#endif
+{
+ #if defined(WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI) && \
+ !defined(NO_WOLFSSL_ESP32WROOM32_CRYPT_RSA_PRI)
+ int A = fp_count_bits (a);
+ int B = fp_count_bits (b);
+
+ if( A >= ESP_RSA_MULM_BITS && B >= ESP_RSA_MULM_BITS)
+ return esp_mp_mulmod(a, b, c, d);
+ else
+ #endif
+ return fp_mulmod(a, b, c, d);
+}
+
+/* d = a - b (mod c) */
+int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
+{
+ return fp_submod(a, b, c, d);
+}
+
+/* d = a + b (mod c) */
+int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
{
- return fp_mulmod(a, b, c, d);
+ return fp_addmod(a, b, c, d);
}
/* c = a mod b, 0 <= c < b */
+#if defined(FREESCALE_LTC_TFM)
+int wolfcrypt_mp_mod (mp_int * a, mp_int * b, mp_int * c)
+#else
int mp_mod (mp_int * a, mp_int * b, mp_int * c)
+#endif
{
return fp_mod (a, b, c);
}
/* hac 14.61, pp608 */
+#if defined(FREESCALE_LTC_TFM)
+int wolfcrypt_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+#else
int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+#endif
{
return fp_invmod(a, b, c);
}
+/* hac 14.61, pp608 */
+int mp_invmod_mont_ct (mp_int * a, mp_int * b, mp_int * c, mp_digit mp)
+{
+ return fp_invmod_mont_ct(a, b, c, mp);
+}
+
/* this is a shell function that calls either the normal or Montgomery
* exptmod functions. Originally the call to the montgomery code was
- * embedded in the normal function but that wasted alot of stack space
+ * embedded in the normal function but that wasted a lot of stack space
* for nothing (since 99% of the time the Montgomery code would be called)
*/
+#if defined(FREESCALE_LTC_TFM)
+int wolfcrypt_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+#else
int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+#endif
{
return fp_exptmod(G, X, P, Y);
}
+int mp_exptmod_ex (mp_int * G, mp_int * X, int digits, mp_int * P, mp_int * Y)
+{
+ return fp_exptmod_ex(G, X, digits, P, Y);
+}
+
+int mp_exptmod_nct (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+{
+ return fp_exptmod_nct(G, X, P, Y);
+}
+
+
/* compare two ints (signed)*/
int mp_cmp (mp_int * a, mp_int * b)
{
@@ -2079,35 +3709,85 @@ int mp_unsigned_bin_size (mp_int * a)
return fp_unsigned_bin_size(a);
}
+int mp_to_unsigned_bin_at_pos(int x, fp_int *t, unsigned char *b)
+{
+ return fp_to_unsigned_bin_at_pos(x, t, b);
+}
+
/* store in unsigned [big endian] format */
int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
{
- fp_to_unsigned_bin(a,b);
- return MP_OKAY;
+ return fp_to_unsigned_bin(a,b);
}
+int mp_to_unsigned_bin_len(mp_int * a, unsigned char *b, int c)
+{
+ return fp_to_unsigned_bin_len(a, b, c);
+}
/* reads a unsigned char array, assumes the msb is stored first [big endian] */
int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
{
- fp_read_unsigned_bin(a, (unsigned char *)b, c);
+ fp_read_unsigned_bin(a, b, c);
return MP_OKAY;
}
int mp_sub_d(fp_int *a, fp_digit b, fp_int *c)
{
- fp_sub_d(a, b, c);
+ return fp_sub_d(a, b, c);
+}
+
+int mp_mul_2d(fp_int *a, int b, fp_int *c)
+{
+ fp_mul_2d(a, b, c);
+ return MP_OKAY;
+}
+
+int mp_2expt(fp_int* a, int b)
+{
+ fp_2expt(a, b);
return MP_OKAY;
}
+int mp_div(fp_int * a, fp_int * b, fp_int * c, fp_int * d)
+{
+ return fp_div(a, b, c, d);
+}
-#ifdef ALT_ECC_SIZE
-void fp_copy(fp_int *a, fp_int* b)
+int mp_div_2d(fp_int* a, int b, fp_int* c, fp_int* d)
{
+ fp_div_2d(a, b, c, d);
+ return MP_OKAY;
+}
+
+void fp_copy(fp_int *a, fp_int *b)
+{
+ /* if source and destination are different */
if (a != b) {
+#if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT)
+ /* verify a will fit in b */
+ if (b->size >= a->used) {
+ int x, oldused;
+ oldused = b->used;
+ b->used = a->used;
+ b->sign = a->sign;
+
+ XMEMCPY(b->dp, a->dp, a->used * sizeof(fp_digit));
+
+ /* zero any excess digits on the destination that we didn't write to */
+ for (x = b->used; x >= 0 && x < oldused; x++) {
+ b->dp[x] = 0;
+ }
+ }
+ else {
+ /* TODO: Handle error case */
+ }
+#else
+ /* all dp's are same size, so do straight copy */
b->used = a->used;
b->sign = a->sign;
- XMEMCPY(b->dp, a->dp, a->used * sizeof(fp_digit));
+ XMEMCPY(b->dp, a->dp, FP_SIZE * sizeof(fp_digit));
+#endif
}
}
@@ -2118,67 +3798,98 @@ void fp_init_copy(fp_int *a, fp_int* b)
fp_copy(b, a);
}
}
-#endif
-/* fast math conversion */
+/* fast math wrappers */
int mp_copy(fp_int* a, fp_int* b)
{
fp_copy(a, b);
return MP_OKAY;
}
-
-/* fast math conversion */
int mp_isodd(mp_int* a)
{
return fp_isodd(a);
}
-
-/* fast math conversion */
int mp_iszero(mp_int* a)
{
return fp_iszero(a);
}
-
-/* fast math conversion */
int mp_count_bits (mp_int* a)
{
return fp_count_bits(a);
}
-
int mp_leading_bit (mp_int* a)
{
return fp_leading_bit(a);
}
-
-/* fast math conversion */
void mp_rshb (mp_int* a, int x)
{
fp_rshb(a, x);
}
+void mp_rshd (mp_int* a, int x)
+{
+ fp_rshd(a, x);
+}
-/* fast math wrappers */
-int mp_set_int(fp_int *a, fp_digit b)
+int mp_set_int(mp_int *a, unsigned long b)
{
- fp_set(a, b);
+ fp_set_int(a, b);
return MP_OKAY;
}
+int mp_is_bit_set (mp_int *a, mp_digit b)
+{
+ return fp_is_bit_set(a, b);
+}
-#if defined(WOLFSSL_KEY_GEN) || defined (HAVE_ECC)
+int mp_set_bit(mp_int *a, mp_digit b)
+{
+ return fp_set_bit(a, b);
+}
+
+#if defined(WOLFSSL_KEY_GEN) || defined (HAVE_ECC) || !defined(NO_DH) || \
+ !defined(NO_DSA) || !defined(NO_RSA)
/* c = a * a (mod b) */
int fp_sqrmod(fp_int *a, fp_int *b, fp_int *c)
{
- fp_int tmp;
- fp_init(&tmp);
- fp_sqr(a, &tmp);
- return fp_mod(&tmp, b, c);
+ int err;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int t[1];
+#else
+ fp_int *t;
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL)
+ return FP_MEM;
+#endif
+
+ fp_init(t);
+ err = fp_sqr(a, t);
+ if (err == FP_OKAY) {
+ #if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT)
+ if (c->size < FP_SIZE) {
+ err = fp_mod(t, b, t);
+ fp_copy(t, c);
+ }
+ else
+ #endif
+ {
+ err = fp_mod(t, b, c);
+ }
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return err;
}
/* fast math conversion */
@@ -2197,7 +3908,37 @@ int mp_montgomery_calc_normalization(mp_int *a, mp_int *b)
#endif /* WOLFSSL_KEYGEN || HAVE_ECC */
-#if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY)
+#if defined(WC_MP_TO_RADIX) || !defined(NO_DH) || !defined(NO_DSA) || \
+ !defined(NO_RSA)
+
+#ifdef WOLFSSL_KEY_GEN
+/* swap the elements of two integers, for cases where you can't simply swap the
+ * mp_int pointers around
+ */
+static int fp_exch (fp_int * a, fp_int * b)
+{
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int t[1];
+#else
+ fp_int *t;
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL)
+ return FP_MEM;
+#endif
+
+ *t = *a;
+ *a = *b;
+ *b = *t;
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return FP_OKAY;
+}
+#endif
static const int lnz[16] = {
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
@@ -2210,12 +3951,12 @@ int fp_cnt_lsb(fp_int *a)
fp_digit q, qq;
/* easy out */
- if (fp_iszero(a) == 1) {
+ if (fp_iszero(a) == FP_YES) {
return 0;
}
/* scan lower digits until non-zero */
- for (x = 0; x < a->used && a->dp[x] == 0; x++);
+ for (x = 0; x < a->used && a->dp[x] == 0; x++) {}
q = a->dp[x];
x *= DIGIT_BIT;
@@ -2231,30 +3972,32 @@ int fp_cnt_lsb(fp_int *a)
}
-
-
static int s_is_power_of_two(fp_digit b, int *p)
{
int x;
/* fast return if no power of two */
if ((b==0) || (b & (b-1))) {
- return 0;
+ return FP_NO;
}
for (x = 0; x < DIGIT_BIT; x++) {
if (b == (((fp_digit)1)<<x)) {
*p = x;
- return 1;
+ return FP_YES;
}
}
- return 0;
+ return FP_NO;
}
/* a/b => cb + d == a */
static int fp_div_d(fp_int *a, fp_digit b, fp_int *c, fp_digit *d)
{
- fp_int q;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int q[1];
+#else
+ fp_int *q;
+#endif
fp_word w;
fp_digit t;
int ix;
@@ -2265,7 +4008,7 @@ static int fp_div_d(fp_int *a, fp_digit b, fp_int *c, fp_digit *d)
}
/* quick outs */
- if (b == 1 || fp_iszero(a) == 1) {
+ if (b == 1 || fp_iszero(a) == FP_YES) {
if (d != NULL) {
*d = 0;
}
@@ -2276,7 +4019,7 @@ static int fp_div_d(fp_int *a, fp_digit b, fp_int *c, fp_digit *d)
}
/* power of two ? */
- if (s_is_power_of_two(b, &ix) == 1) {
+ if (s_is_power_of_two(b, &ix) == FP_YES) {
if (d != NULL) {
*d = a->dp[0] & ((((fp_digit)1)<<ix) - 1);
}
@@ -2286,33 +4029,45 @@ static int fp_div_d(fp_int *a, fp_digit b, fp_int *c, fp_digit *d)
return FP_OKAY;
}
- /* no easy answer [c'est la vie]. Just division */
- fp_init(&q);
-
- q.used = a->used;
- q.sign = a->sign;
+#ifdef WOLFSSL_SMALL_STACK
+ q = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (q == NULL)
+ return FP_MEM;
+#endif
+
+ fp_init(q);
+
+ if (c != NULL) {
+ q->used = a->used;
+ q->sign = a->sign;
+ }
+
w = 0;
for (ix = a->used - 1; ix >= 0; ix--) {
w = (w << ((fp_word)DIGIT_BIT)) | ((fp_word)a->dp[ix]);
-
+
if (w >= b) {
t = (fp_digit)(w / b);
w -= ((fp_word)t) * ((fp_word)b);
} else {
t = 0;
}
- q.dp[ix] = (fp_digit)t;
+ if (c != NULL)
+ q->dp[ix] = (fp_digit)t;
}
-
+
if (d != NULL) {
*d = (fp_digit)w;
}
-
+
if (c != NULL) {
- fp_clamp(&q);
- fp_copy(&q, c);
+ fp_clamp(q);
+ fp_copy(q, c);
}
-
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(q, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
return FP_OKAY;
}
@@ -2328,101 +4083,148 @@ int mp_mod_d(fp_int *a, fp_digit b, fp_digit *c)
return fp_mod_d(a, b, c);
}
-#endif /* defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) */
-
-#ifdef WOLFSSL_KEY_GEN
-
-void fp_gcd(fp_int *a, fp_int *b, fp_int *c);
-void fp_lcm(fp_int *a, fp_int *b, fp_int *c);
-int fp_isprime(fp_int *a);
+#endif /* WC_MP_TO_RADIX || !NO_DH || !NO_DSA || !NO_RSA */
-int mp_gcd(fp_int *a, fp_int *b, fp_int *c)
-{
- fp_gcd(a, b, c);
- return MP_OKAY;
-}
+#if !defined(NO_DH) || !defined(NO_DSA) || !defined(NO_RSA) || \
+ defined(WOLFSSL_KEY_GEN)
-int mp_lcm(fp_int *a, fp_int *b, fp_int *c)
-{
- fp_lcm(a, b, c);
- return MP_OKAY;
-}
+static int fp_isprime_ex(fp_int *a, int t, int* result);
int mp_prime_is_prime(mp_int* a, int t, int* result)
{
- (void)t;
- *result = fp_isprime(a);
- return MP_OKAY;
+ return fp_isprime_ex(a, t, result);
}
-/* Miller-Rabin test of "a" to the base of "b" as described in
+/* Miller-Rabin test of "a" to the base of "b" as described in
* HAC pp. 139 Algorithm 4.24
*
* Sets result to 0 if definitely composite or 1 if probably prime.
- * Randomly the chance of error is no more than 1/4 and often
+ * Randomly the chance of error is no more than 1/4 and often
* very much lower.
*/
-static void fp_prime_miller_rabin (fp_int * a, fp_int * b, int *result)
+static int fp_prime_miller_rabin_ex(fp_int * a, fp_int * b, int *result,
+ fp_int *n1, fp_int *y, fp_int *r)
{
- fp_int n1, y, r;
- int s, j;
+ int s, j;
+ int err;
/* default */
*result = FP_NO;
/* ensure b > 1 */
if (fp_cmp_d(b, 1) != FP_GT) {
- return;
- }
+ return FP_OKAY;
+ }
/* get n1 = a - 1 */
- fp_init_copy(&n1, a);
- fp_sub_d(&n1, 1, &n1);
+ fp_copy(a, n1);
+ err = fp_sub_d(n1, 1, n1);
+ if (err != FP_OKAY) {
+ return err;
+ }
/* set 2**s * r = n1 */
- fp_init_copy(&r, &n1);
+ fp_copy(n1, r);
/* count the number of least significant bits
* which are zero
*/
- s = fp_cnt_lsb(&r);
+ s = fp_cnt_lsb(r);
/* now divide n - 1 by 2**s */
- fp_div_2d (&r, s, &r, NULL);
+ fp_div_2d (r, s, r, NULL);
/* compute y = b**r mod a */
- fp_init(&y);
- fp_exptmod(b, &r, a, &y);
+ fp_zero(y);
+#if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || \
+ defined(WOLFSSL_HAVE_SP_DH)
+#ifndef WOLFSSL_SP_NO_2048
+ if (fp_count_bits(a) == 1024)
+ sp_ModExp_1024(b, r, a, y);
+ else if (fp_count_bits(a) == 2048)
+ sp_ModExp_2048(b, r, a, y);
+ else
+#endif
+#ifndef WOLFSSL_SP_NO_3072
+ if (fp_count_bits(a) == 1536)
+ sp_ModExp_1536(b, r, a, y);
+ else if (fp_count_bits(a) == 3072)
+ sp_ModExp_3072(b, r, a, y);
+ else
+#endif
+#ifdef WOLFSSL_SP_4096
+ if (fp_count_bits(a) == 4096)
+ sp_ModExp_4096(b, r, a, y);
+ else
+#endif
+#endif
+ fp_exptmod(b, r, a, y);
/* if y != 1 and y != n1 do */
- if (fp_cmp_d (&y, 1) != FP_EQ && fp_cmp (&y, &n1) != FP_EQ) {
+ if (fp_cmp_d (y, 1) != FP_EQ && fp_cmp (y, n1) != FP_EQ) {
j = 1;
/* while j <= s-1 and y != n1 */
- while ((j <= (s - 1)) && fp_cmp (&y, &n1) != FP_EQ) {
- fp_sqrmod (&y, a, &y);
+ while ((j <= (s - 1)) && fp_cmp (y, n1) != FP_EQ) {
+ fp_sqrmod (y, a, y);
/* if y == 1 then composite */
- if (fp_cmp_d (&y, 1) == FP_EQ) {
- return;
+ if (fp_cmp_d (y, 1) == FP_EQ) {
+ return FP_OKAY;
}
++j;
}
/* if y != n1 then composite */
- if (fp_cmp (&y, &n1) != FP_EQ) {
- return;
+ if (fp_cmp (y, n1) != FP_EQ) {
+ return FP_OKAY;
}
}
/* probably prime now */
*result = FP_YES;
+
+ return FP_OKAY;
+}
+
+static int fp_prime_miller_rabin(fp_int * a, fp_int * b, int *result)
+{
+ int err;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int n1[1], y[1], r[1];
+#else
+ fp_int *n1, *y, *r;
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ n1 = (fp_int*)XMALLOC(sizeof(fp_int) * 3, NULL, DYNAMIC_TYPE_BIGINT);
+ if (n1 == NULL) {
+ return FP_MEM;
+ }
+ y = &n1[1]; r = &n1[2];
+#endif
+
+ fp_init(n1);
+ fp_init(y);
+ fp_init(r);
+
+ err = fp_prime_miller_rabin_ex(a, b, result, n1, y, r);
+
+ fp_clear(n1);
+ fp_clear(y);
+ fp_clear(r);
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(n1, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+
+ return err;
}
/* a few primes */
-static const fp_digit primes[256] = {
+static const fp_digit primes[FP_PRIME_SIZE] = {
0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
@@ -2460,104 +4262,427 @@ static const fp_digit primes[256] = {
0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
};
-int fp_isprime(fp_int *a)
+int fp_isprime_ex(fp_int *a, int t, int* result)
{
- fp_int b;
- fp_digit d = 0;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int b[1];
+#else
+ fp_int *b;
+#endif
+ fp_digit d;
int r, res;
+ if (t <= 0 || t > FP_PRIME_SIZE) {
+ *result = FP_NO;
+ return FP_VAL;
+ }
+
+ if (fp_isone(a)) {
+ *result = FP_NO;
+ return FP_OKAY;
+ }
+
+ /* check against primes table */
+ for (r = 0; r < FP_PRIME_SIZE; r++) {
+ if (fp_cmp_d(a, primes[r]) == FP_EQ) {
+ *result = FP_YES;
+ return FP_OKAY;
+ }
+ }
+
/* do trial division */
- for (r = 0; r < 256; r++) {
- fp_mod_d(a, primes[r], &d);
- if (d == 0) {
- return FP_NO;
+ for (r = 0; r < FP_PRIME_SIZE; r++) {
+ res = fp_mod_d(a, primes[r], &d);
+ if (res != MP_OKAY || d == 0) {
+ *result = FP_NO;
+ return FP_OKAY;
}
}
- /* now do 8 miller rabins */
- fp_init(&b);
- for (r = 0; r < 8; r++) {
- fp_set(&b, primes[r]);
- fp_prime_miller_rabin(a, &b, &res);
+#ifdef WOLFSSL_SMALL_STACK
+ b = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (b == NULL)
+ return FP_MEM;
+#endif
+ /* now do 't' miller rabins */
+ fp_init(b);
+ for (r = 0; r < t; r++) {
+ fp_set(b, primes[r]);
+ fp_prime_miller_rabin(a, b, &res);
if (res == FP_NO) {
- return FP_NO;
+ *result = FP_NO;
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(b, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
+ return FP_OKAY;
}
}
- return FP_YES;
+ *result = FP_YES;
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(b, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return FP_OKAY;
+}
+
+
+int mp_prime_is_prime_ex(mp_int* a, int t, int* result, WC_RNG* rng)
+{
+ int ret = FP_YES;
+ fp_digit d;
+ int i;
+
+ if (a == NULL || result == NULL || rng == NULL)
+ return FP_VAL;
+
+ if (fp_isone(a)) {
+ *result = FP_NO;
+ return FP_OKAY;
+ }
+
+ /* check against primes table */
+ for (i = 0; i < FP_PRIME_SIZE; i++) {
+ if (fp_cmp_d(a, primes[i]) == FP_EQ) {
+ *result = FP_YES;
+ return FP_OKAY;
+ }
+ }
+
+ /* do trial division */
+ for (i = 0; i < FP_PRIME_SIZE; i++) {
+ if (fp_mod_d(a, primes[i], &d) == MP_OKAY) {
+ if (d == 0) {
+ *result = FP_NO;
+ return FP_OKAY;
+ }
+ }
+ else
+ return FP_VAL;
+ }
+
+#ifndef WC_NO_RNG
+ /* now do a miller rabin with up to t random numbers, this should
+ * give a (1/4)^t chance of a false prime. */
+ {
+ #ifndef WOLFSSL_SMALL_STACK
+ fp_int b[1], c[1], n1[1], y[1], r[1];
+ byte base[FP_MAX_PRIME_SIZE];
+ #else
+ fp_int *b, *c, *n1, *y, *r;
+ byte* base;
+ #endif
+ word32 baseSz;
+ int err;
+
+ baseSz = fp_count_bits(a);
+ /* The base size is the number of bits / 8. One is added if the number
+ * of bits isn't an even 8. */
+ baseSz = (baseSz / 8) + ((baseSz % 8) ? 1 : 0);
+
+ #ifndef WOLFSSL_SMALL_STACK
+ if (baseSz > sizeof(base))
+ return FP_MEM;
+ #else
+ base = (byte*)XMALLOC(baseSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ if (base == NULL)
+ return FP_MEM;
+
+ b = (fp_int*)XMALLOC(sizeof(fp_int) * 5, NULL, DYNAMIC_TYPE_BIGINT);
+ if (b == NULL) {
+ return FP_MEM;
+ }
+ c = &b[1]; n1 = &b[2]; y= &b[3]; r = &b[4];
+ #endif
+
+ fp_init(b);
+ fp_init(c);
+ fp_init(n1);
+ fp_init(y);
+ fp_init(r);
+
+ err = fp_sub_d(a, 2, c);
+ if (err != FP_OKAY) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(b, NULL, DYNAMIC_TYPE_BIGINT);
+ XFREE(base, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ #endif
+ return err;
+ }
+ while (t > 0) {
+ if ((err = wc_RNG_GenerateBlock(rng, base, baseSz)) != 0) {
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(b, NULL, DYNAMIC_TYPE_BIGINT);
+ XFREE(base, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ #endif
+ return err;
+ }
+
+ fp_read_unsigned_bin(b, base, baseSz);
+ if (fp_cmp_d(b, 2) != FP_GT || fp_cmp(b, c) != FP_LT) {
+ continue;
+ }
+
+ fp_prime_miller_rabin_ex(a, b, &ret, n1, y, r);
+ if (ret == FP_NO)
+ break;
+ fp_zero(b);
+ t--;
+ }
+
+ fp_clear(n1);
+ fp_clear(y);
+ fp_clear(r);
+ fp_clear(b);
+ fp_clear(c);
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(b, NULL, DYNAMIC_TYPE_BIGINT);
+ XFREE(base, NULL, DYNAMIC_TYPE_TMP_BUFFER);
+ #endif
+ }
+#else
+ (void)t;
+#endif /* !WC_NO_RNG */
+
+ *result = ret;
+ return FP_OKAY;
}
+#endif /* !NO_RSA || !NO_DSA || !NO_DH || WOLFSSL_KEY_GEN */
+#ifdef WOLFSSL_KEY_GEN
+
+static int fp_gcd(fp_int *a, fp_int *b, fp_int *c);
+static int fp_lcm(fp_int *a, fp_int *b, fp_int *c);
+static int fp_randprime(fp_int* N, int len, WC_RNG* rng, void* heap);
+
+int mp_gcd(fp_int *a, fp_int *b, fp_int *c)
+{
+ return fp_gcd(a, b, c);
+}
+
+
+int mp_lcm(fp_int *a, fp_int *b, fp_int *c)
+{
+ return fp_lcm(a, b, c);
+}
+
+int mp_rand_prime(mp_int* N, int len, WC_RNG* rng, void* heap)
+{
+ int err;
+
+ err = fp_randprime(N, len, rng, heap);
+ switch(err) {
+ case FP_VAL:
+ return MP_VAL;
+ case FP_MEM:
+ return MP_MEM;
+ default:
+ break;
+ }
+
+ return MP_OKAY;
+}
+
+int mp_exch (mp_int * a, mp_int * b)
+{
+ return fp_exch(a, b);
+}
+
+
+
+int fp_randprime(fp_int* N, int len, WC_RNG* rng, void* heap)
+{
+ static const int USE_BBS = 1;
+ int err, type;
+ int isPrime = FP_YES;
+ /* Assume the candidate is probably prime and then test until
+ * it is proven composite. */
+ byte* buf;
+
+ (void)heap;
+
+ /* get type */
+ if (len < 0) {
+ type = USE_BBS;
+ len = -len;
+ } else {
+ type = 0;
+ }
+
+ /* allow sizes between 2 and 512 bytes for a prime size */
+ if (len < 2 || len > 512) {
+ return FP_VAL;
+ }
+
+ /* allocate buffer to work with */
+ buf = (byte*)XMALLOC(len, heap, DYNAMIC_TYPE_TMP_BUFFER);
+ if (buf == NULL) {
+ return FP_MEM;
+ }
+ XMEMSET(buf, 0, len);
+
+ do {
+#ifdef SHOW_GEN
+ printf(".");
+ fflush(stdout);
+#endif
+ /* generate value */
+ err = wc_RNG_GenerateBlock(rng, buf, len);
+ if (err != 0) {
+ XFREE(buf, heap, DYNAMIC_TYPE_TMP_BUFFER);
+ return FP_VAL;
+ }
+
+ /* munge bits */
+ buf[0] |= 0x80 | 0x40;
+ buf[len-1] |= 0x01 | ((type & USE_BBS) ? 0x02 : 0x00);
+
+ /* load value */
+ fp_read_unsigned_bin(N, buf, len);
+
+ /* test */
+ /* Running Miller-Rabin up to 3 times gives us a 2^{-80} chance
+ * of a 1024-bit candidate being a false positive, when it is our
+ * prime candidate. (Note 4.49 of Handbook of Applied Cryptography.)
+ * Using 8 because we've always used 8 */
+ mp_prime_is_prime_ex(N, 8, &isPrime, rng);
+ } while (isPrime == FP_NO);
+
+ XMEMSET(buf, 0, len);
+ XFREE(buf, heap, DYNAMIC_TYPE_TMP_BUFFER);
+
+ return FP_OKAY;
+}
+
/* c = [a, b] */
-void fp_lcm(fp_int *a, fp_int *b, fp_int *c)
+int fp_lcm(fp_int *a, fp_int *b, fp_int *c)
{
- fp_int t1, t2;
+ int err;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int t[2];
+#else
+ fp_int *t;
+#endif
- fp_init(&t1);
- fp_init(&t2);
- fp_gcd(a, b, &t1);
- if (fp_cmp_mag(a, b) == FP_GT) {
- fp_div(a, &t1, &t2, NULL);
- fp_mul(b, &t2, c);
- } else {
- fp_div(b, &t1, &t2, NULL);
- fp_mul(a, &t2, c);
- }
+#ifdef WOLFSSL_SMALL_STACK
+ t = (fp_int*)XMALLOC(sizeof(fp_int) * 2, NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL) {
+ return FP_MEM;
+ }
+#endif
+
+ fp_init(&t[0]);
+ fp_init(&t[1]);
+ err = fp_gcd(a, b, &t[0]);
+ if (err == FP_OKAY) {
+ if (fp_cmp_mag(a, b) == FP_GT) {
+ err = fp_div(a, &t[0], &t[1], NULL);
+ if (err == FP_OKAY)
+ err = fp_mul(b, &t[1], c);
+ } else {
+ err = fp_div(b, &t[0], &t[1], NULL);
+ if (err == FP_OKAY)
+ err = fp_mul(a, &t[1], c);
+ }
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return err;
}
/* c = (a, b) */
-void fp_gcd(fp_int *a, fp_int *b, fp_int *c)
+int fp_gcd(fp_int *a, fp_int *b, fp_int *c)
{
- fp_int u, v, r;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int u[1], v[1], r[1];
+#else
+ fp_int *u, *v, *r;
+#endif
/* either zero than gcd is the largest */
- if (fp_iszero (a) == 1 && fp_iszero (b) == 0) {
+ if (fp_iszero (a) == FP_YES && fp_iszero (b) == FP_NO) {
fp_abs (b, c);
- return;
+ return FP_OKAY;
}
- if (fp_iszero (a) == 0 && fp_iszero (b) == 1) {
+ if (fp_iszero (a) == FP_NO && fp_iszero (b) == FP_YES) {
fp_abs (a, c);
- return;
+ return FP_OKAY;
}
/* optimized. At this point if a == 0 then
* b must equal zero too
*/
- if (fp_iszero (a) == 1) {
+ if (fp_iszero (a) == FP_YES) {
fp_zero(c);
- return;
+ return FP_OKAY;
}
+#ifdef WOLFSSL_SMALL_STACK
+ u = (fp_int*)XMALLOC(sizeof(fp_int) * 3, NULL, DYNAMIC_TYPE_BIGINT);
+ if (u == NULL) {
+ return FP_MEM;
+ }
+ v = &u[1]; r = &u[2];
+#endif
+
/* sort inputs */
if (fp_cmp_mag(a, b) != FP_LT) {
- fp_init_copy(&u, a);
- fp_init_copy(&v, b);
+ fp_init_copy(u, a);
+ fp_init_copy(v, b);
} else {
- fp_init_copy(&u, b);
- fp_init_copy(&v, a);
+ fp_init_copy(u, b);
+ fp_init_copy(v, a);
}
-
- fp_init(&r);
- while (fp_iszero(&v) == FP_NO) {
- fp_mod(&u, &v, &r);
- fp_copy(&v, &u);
- fp_copy(&r, &v);
+
+ u->sign = FP_ZPOS;
+ v->sign = FP_ZPOS;
+
+ fp_init(r);
+ while (fp_iszero(v) == FP_NO) {
+ fp_mod(u, v, r);
+ fp_copy(v, u);
+ fp_copy(r, v);
}
- fp_copy(&u, c);
+ fp_copy(u, c);
+
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(u, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return FP_OKAY;
}
#endif /* WOLFSSL_KEY_GEN */
-#if defined(HAVE_ECC) || !defined(NO_PWDBASED)
+#if defined(HAVE_ECC) || !defined(NO_PWDBASED) || defined(OPENSSL_EXTRA) || \
+ defined(WC_RSA_BLINDING) || !defined(NO_DSA) || \
+ (!defined(NO_RSA) && !defined(NO_RSA_BOUNDS_CHECK))
/* c = a + b */
void fp_add_d(fp_int *a, fp_digit b, fp_int *c)
{
+#ifndef WOLFSSL_SMALL_STACK
fp_int tmp;
fp_init(&tmp);
fp_set(&tmp, b);
- fp_add(a,&tmp,c);
+ fp_add(a, &tmp, c);
+#else
+ int i;
+ fp_word t = b;
+
+ fp_copy(a, c);
+ for (i = 0; t != 0 && i < FP_SIZE && i < c->used; i++) {
+ t += c->dp[i];
+ c->dp[i] = (fp_digit)t;
+ t >>= DIGIT_BIT;
+ }
+ if (i == c->used && i < FP_SIZE && t != 0) {
+ c->dp[i] = t;
+ c->used++;
+ }
+#endif
}
/* external compatibility */
@@ -2567,19 +4692,78 @@ int mp_add_d(fp_int *a, fp_digit b, fp_int *c)
return MP_OKAY;
}
-#endif /* HAVE_ECC || !NO_PWDBASED */
+#endif /* HAVE_ECC || !NO_PWDBASED || OPENSSL_EXTRA || WC_RSA_BLINDING ||
+ !NO_DSA || (!NO_RSA && !NO_RSA_BOUNDS_CHECK) */
-#ifdef HAVE_ECC
+#if !defined(NO_DSA) || defined(HAVE_ECC) || defined(WOLFSSL_KEY_GEN) || \
+ defined(HAVE_COMP_KEY) || defined(WOLFSSL_DEBUG_MATH) || \
+ defined(DEBUG_WOLFSSL) || defined(OPENSSL_EXTRA) || defined(WC_MP_TO_RADIX)
/* chars used in radix conversions */
-static const char *fp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
+static wcchar fp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "abcdefghijklmnopqrstuvwxyz+/";
+#endif
+
+#if !defined(NO_DSA) || defined(HAVE_ECC)
+#if DIGIT_BIT == 64 || DIGIT_BIT == 32
+static int fp_read_radix_16(fp_int *a, const char *str)
+{
+ int i, j, k, neg;
+ char ch;
+
+ /* if the leading digit is a
+ * minus set the sign to negative.
+ */
+ if (*str == '-') {
+ ++str;
+ neg = FP_NEG;
+ } else {
+ neg = FP_ZPOS;
+ }
+
+ j = 0;
+ k = 0;
+ for (i = (int)(XSTRLEN(str) - 1); i >= 0; i--) {
+ ch = str[i];
+ if (ch >= '0' && ch <= '9')
+ ch -= '0';
+ else if (ch >= 'A' && ch <= 'F')
+ ch -= 'A' - 10;
+ else if (ch >= 'a' && ch <= 'f')
+ ch -= 'a' - 10;
+ else
+ return FP_VAL;
+
+ a->dp[k] |= ((fp_digit)ch) << j;
+ j += 4;
+ k += j == DIGIT_BIT;
+ j &= DIGIT_BIT - 1;
+ }
+
+ a->used = k + 1;
+ fp_clamp(a);
+ /* set the sign only if a != 0 */
+ if (fp_iszero(a) != FP_YES) {
+ a->sign = neg;
+ }
+ return FP_OKAY;
+}
+#endif
static int fp_read_radix(fp_int *a, const char *str, int radix)
{
int y, neg;
char ch;
+ /* set the integer to the default of zero */
+ fp_zero (a);
+
+#if DIGIT_BIT == 64 || DIGIT_BIT == 32
+ if (radix == 16)
+ return fp_read_radix_16(a, str);
+#endif
+
/* make sure the radix is ok */
if (radix < 2 || radix > 64) {
return FP_VAL;
@@ -2595,16 +4779,13 @@ static int fp_read_radix(fp_int *a, const char *str, int radix)
neg = FP_ZPOS;
}
- /* set the integer to the default of zero */
- fp_zero (a);
-
/* process each digit of the string */
while (*str) {
- /* if the radix < 36 the conversion is case insensitive
+ /* if the radix <= 36 the conversion is case insensitive
* this allows numbers like 1AB and 1ab to represent the same value
* [e.g. in hex]
*/
- ch = (char) ((radix < 36) ? XTOUPPER((unsigned char)*str) : *str);
+ ch = (char)((radix <= 36) ? XTOUPPER((unsigned char)*str) : *str);
for (y = 0; y < 64; y++) {
if (ch == fp_s_rmap[y]) {
break;
@@ -2637,24 +4818,20 @@ int mp_read_radix(mp_int *a, const char *str, int radix)
return fp_read_radix(a, str, radix);
}
-/* fast math conversion */
-void mp_set(fp_int *a, fp_digit b)
-{
- fp_set(a,b);
-}
+#endif /* !defined(NO_DSA) || defined(HAVE_ECC) */
+
+#ifdef HAVE_ECC
/* fast math conversion */
int mp_sqr(fp_int *A, fp_int *B)
{
- fp_sqr(A, B);
- return MP_OKAY;
+ return fp_sqr(A, B);
}
-
+
/* fast math conversion */
int mp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp)
{
- fp_montgomery_reduce(a, m, mp);
- return MP_OKAY;
+ return fp_montgomery_reduce(a, m, mp);
}
@@ -2677,25 +4854,215 @@ int mp_init_copy(fp_int * a, fp_int * b)
return MP_OKAY;
}
-
#ifdef HAVE_COMP_KEY
int mp_cnt_lsb(fp_int* a)
{
- fp_cnt_lsb(a);
- return MP_OKAY;
+ return fp_cnt_lsb(a);
}
-int mp_div_2d(fp_int* a, int b, fp_int* c, fp_int* d)
+#endif /* HAVE_COMP_KEY */
+
+#endif /* HAVE_ECC */
+
+#if defined(HAVE_ECC) || !defined(NO_RSA) || !defined(NO_DSA) || \
+ defined(WOLFSSL_KEY_GEN)
+/* fast math conversion */
+int mp_set(fp_int *a, fp_digit b)
{
- fp_div_2d(a, b, c, d);
+ fp_set(a,b);
return MP_OKAY;
}
+#endif
-#endif /* HAVE_COMP_KEY */
+#ifdef WC_MP_TO_RADIX
+/* returns size of ASCII representation */
+int mp_radix_size (mp_int *a, int radix, int *size)
+{
+ int res, digs;
+ fp_digit d;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int t[1];
+#else
+ fp_int *t;
+#endif
-#endif /* HAVE_ECC */
+ *size = 0;
-#endif /* USE_FAST_MATH */
+ /* special case for binary */
+ if (radix == 2) {
+ *size = fp_count_bits (a) + (a->sign == FP_NEG ? 1 : 0) + 1;
+ return FP_YES;
+ }
+
+ /* make sure the radix is in range */
+ if (radix < 2 || radix > 64) {
+ return FP_VAL;
+ }
+
+ if (fp_iszero(a) == MP_YES) {
+ *size = 2;
+ return FP_OKAY;
+ }
+
+ /* digs is the digit count */
+ digs = 0;
+
+ /* if it's negative add one for the sign */
+ if (a->sign == FP_NEG) {
+ ++digs;
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL)
+ return FP_MEM;
+#endif
+
+ /* init a copy of the input */
+ fp_init_copy (t, a);
+
+ /* force temp to positive */
+ t->sign = FP_ZPOS;
+
+ /* fetch out all of the digits */
+ while (fp_iszero (t) == FP_NO) {
+ if ((res = fp_div_d (t, (mp_digit) radix, t, &d)) != FP_OKAY) {
+ fp_zero (t);
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
+ return res;
+ }
+ ++digs;
+ }
+ fp_zero (t);
+
+ /* return digs + 1, the 1 is for the NULL byte that would be required. */
+ *size = digs + 1;
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return FP_OKAY;
+}
+
+/* stores a bignum as a ASCII string in a given radix (2..64) */
+int mp_toradix (mp_int *a, char *str, int radix)
+{
+ int res, digs;
+ fp_digit d;
+ char *_s = str;
+#ifndef WOLFSSL_SMALL_STACK
+ fp_int t[1];
+#else
+ fp_int *t;
+#endif
+
+ /* check range of the radix */
+ if (radix < 2 || radix > 64) {
+ return FP_VAL;
+ }
+ /* quick out if its zero */
+ if (fp_iszero(a) == FP_YES) {
+ *str++ = '0';
+ *str = '\0';
+ return FP_OKAY;
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL)
+ return FP_MEM;
+#endif
+
+ /* init a copy of the input */
+ fp_init_copy (t, a);
+
+ /* if it is negative output a - */
+ if (t->sign == FP_NEG) {
+ ++_s;
+ *str++ = '-';
+ t->sign = FP_ZPOS;
+ }
+
+ digs = 0;
+ while (fp_iszero (t) == FP_NO) {
+ if ((res = fp_div_d (t, (fp_digit) radix, t, &d)) != FP_OKAY) {
+ fp_zero (t);
+ #ifdef WOLFSSL_SMALL_STACK
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
+ return res;
+ }
+ *str++ = fp_s_rmap[d];
+ ++digs;
+ }
+#ifndef WC_DISABLE_RADIX_ZERO_PAD
+ /* For hexadecimal output, add zero padding when number of digits is odd */
+ if ((digs & 1) && (radix == 16)) {
+ *str++ = fp_s_rmap[0];
+ ++digs;
+ }
+#endif
+ /* reverse the digits of the string. In this case _s points
+ * to the first digit [excluding the sign] of the number]
+ */
+ fp_reverse ((unsigned char *)_s, digs);
+
+ /* append a NULL so the string is properly terminated */
+ *str = '\0';
+
+ fp_zero (t);
+#ifdef WOLFSSL_SMALL_STACK
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return FP_OKAY;
+}
+
+#ifdef WOLFSSL_DEBUG_MATH
+void mp_dump(const char* desc, mp_int* a, byte verbose)
+{
+ char buffer[FP_SIZE * sizeof(fp_digit) * 2];
+ int size;
+
+#if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT)
+ size = a->size;
+#else
+ size = FP_SIZE;
+#endif
+
+ printf("%s: ptr=%p, used=%d, sign=%d, size=%d, fpd=%d\n",
+ desc, a, a->used, a->sign, size, (int)sizeof(fp_digit));
+
+ mp_tohex(a, buffer);
+ printf(" %s\n ", buffer);
+
+ if (verbose) {
+ int i;
+ for(i=0; i<size * (int)sizeof(fp_digit); i++) {
+ printf("%x ", *(((byte*)a->dp) + i));
+ }
+ printf("\n");
+ }
+}
+#endif /* WOLFSSL_DEBUG_MATH */
+
+#endif /* WC_MP_TO_RADIX */
+
+
+int mp_abs(mp_int* a, mp_int* b)
+{
+ fp_abs(a, b);
+ return FP_OKAY;
+}
+
+
+int mp_lshd (mp_int * a, int b)
+{
+ fp_lshd(a, b);
+ return FP_OKAY;
+}
+
+#endif /* USE_FAST_MATH */