summaryrefslogtreecommitdiff
path: root/rtl/inc/sortbase.pp
blob: 99b2cbc96e2cb9f1a9fb0aede7bf6e10dce97569 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
{
    This file is part of the Free Pascal Run Time Library (rtl)
    Copyright (c) 1999-2019 by the Free Pascal development team

    This file provides the base for the pluggable sorting algorithm
    support. It also provides a default QuickSort implementation.

    See the file COPYING.FPC, included in this distribution,
    for details about the copyright.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

 **********************************************************************}

unit sortbase;

{$MODE objfpc}

interface

type
  TListSortComparer_NoContext = function(Item1, Item2: Pointer): Integer;
  TPtrListSorter_NoContext = procedure(ItemPtrs: PPointer; ItemCount: SizeUInt; Comparer: TListSortComparer_NoContext);
  TItemListSorter_NoContext = procedure(Items: Pointer; ItemCount, ItemSize: SizeUInt; Comparer: TListSortComparer_NoContext);

  TListSortComparer_Context = function(Item1, Item2, Context: Pointer): Integer;
  TListSortCustomItemExchanger_Context = procedure(Item1, Item2, Context: Pointer);
  TPtrListSorter_Context = procedure(ItemPtrs: PPointer; ItemCount: SizeUInt; Comparer: TListSortComparer_Context; Context: Pointer);
  TItemListSorter_Context = procedure(Items: Pointer; ItemCount, ItemSize: SizeUInt; Comparer: TListSortComparer_Context; Context: Pointer);
  TItemListSorter_CustomItemExchanger_Context = procedure(Items: Pointer;
    ItemCount, ItemSize: SizeUInt; Comparer: TListSortComparer_Context;
    Exchanger: TListSortCustomItemExchanger_Context; Context: Pointer);

  PSortingAlgorithm = ^TSortingAlgorithm;
  TSortingAlgorithm = record
    PtrListSorter_NoContextComparer: TPtrListSorter_NoContext;
    PtrListSorter_ContextComparer: TPtrListSorter_Context;
    ItemListSorter_ContextComparer: TItemListSorter_Context;
    ItemListSorter_CustomItemExchanger_ContextComparer: TItemListSorter_CustomItemExchanger_Context;
  end;

{
                       QuickSort

  Average performance: O(n log n)
    Worst performance: O(n*n)
     Extra memory use: O(log n) on the stack
               Stable: no
     Additional notes: Uses the middle element as the pivot. This makes it work
                       well also on already sorted sequences, which can occur
                       often in practice. As expected from QuickSort, it works
                       best on random sequences and is usually the fastest
                       algorithm to sort them. It is, however, possible for a
                       malicious user to craft special sequences, which trigger
                       its worst O(n*n) case. They can also occur in practice,
                       although they are very unlikely. If this is not an
                       acceptable risk (e.g. for high risk applications,
                       security-conscious applications or applications with hard
                       real-time requirements), another sorting algorithm must
                       be used.
}

procedure QuickSort_PtrList_NoContext(
                ItemPtrs: PPointer;
                ItemCount: SizeUInt;
                Comparer: TListSortComparer_NoContext);
procedure QuickSort_PtrList_Context(
                ItemPtrs: PPointer;
                ItemCount: SizeUInt;
                Comparer: TListSortComparer_Context;
                Context: Pointer);
procedure QuickSort_ItemList_Context(
                Items: Pointer;
                ItemCount, ItemSize: SizeUInt;
                Comparer: TListSortComparer_Context;
                Context: Pointer);
procedure QuickSort_ItemList_CustomItemExchanger_Context(
                Items: Pointer;
                ItemCount, ItemSize: SizeUInt;
                Comparer: TListSortComparer_Context;
                Exchanger: TListSortCustomItemExchanger_Context;
                Context: Pointer);

const
  QuickSort: TSortingAlgorithm = (
    PtrListSorter_NoContextComparer: @QuickSort_PtrList_NoContext;
    PtrListSorter_ContextComparer: @QuickSort_PtrList_Context;
    ItemListSorter_ContextComparer: @QuickSort_ItemList_Context;
    ItemListSorter_CustomItemExchanger_ContextComparer: @QuickSort_ItemList_CustomItemExchanger_Context;
  );

var
  DefaultSortingAlgorithm: PSortingAlgorithm = @QuickSort;

implementation

Procedure QuickSort_PtrList_NoContext(ItemPtrs: PPointer; L, R : SizeUInt;
                                      Comparer: TListSortComparer_NoContext);
var
  I, J, PivotIdx : SizeUInt;
  P, Q : Pointer;
begin
 repeat
   I := L;
   J := R;
   PivotIdx := L + ((R - L) shr 1); { same as ((L + R) div 2), but without the possibility of overflow }
   P := ItemPtrs[PivotIdx];
   repeat
     while (I < PivotIdx) and (Comparer(P, ItemPtrs[i]) > 0) do
       Inc(I);
     while (J > PivotIdx) and (Comparer(P, ItemPtrs[J]) < 0) do
       Dec(J);
     if I < J then
     begin
       Q := ItemPtrs[I];
       ItemPtrs[I] := ItemPtrs[J];
       ItemPtrs[J] := Q;
       if PivotIdx = I then
       begin
         PivotIdx := J;
         Inc(I);
       end
       else if PivotIdx = J then
       begin
         PivotIdx := I;
         Dec(J);
       end
       else
       begin
         Inc(I);
         Dec(J);
       end;
     end;
   until I >= J;
   // sort the smaller range recursively
   // sort the bigger range via the loop
   // Reasons: memory usage is O(log(n)) instead of O(n) and loop is faster than recursion
   if (PivotIdx - L) < (R - PivotIdx) then
   begin
     if (L + 1) < PivotIdx then
       QuickSort_PtrList_NoContext(ItemPtrs, L, PivotIdx - 1, Comparer);
     L := PivotIdx + 1;
   end
   else
   begin
     if (PivotIdx + 1) < R then
       QuickSort_PtrList_NoContext(ItemPtrs, PivotIdx + 1, R, Comparer);
     if (L + 1) < PivotIdx then
       R := PivotIdx - 1
     else
       exit;
   end;
 until L >= R;
end;

procedure QuickSort_PtrList_NoContext(ItemPtrs: PPointer; ItemCount: SizeUInt; Comparer: TListSortComparer_NoContext);
begin
  if not Assigned(ItemPtrs) or (ItemCount < 2) then
    exit;
  QuickSort_PtrList_NoContext(ItemPtrs, 0, ItemCount - 1, Comparer);
end;

procedure QuickSort_PtrList_Context(ItemPtrs: PPointer; ItemCount: SizeUInt; Comparer: TListSortComparer_Context; Context: Pointer);

  procedure QuickSort(L, R : SizeUInt);
  var
    I, J, PivotIdx : SizeUInt;
    P, Q : Pointer;
  begin
    repeat
      I := L;
      J := R;
      PivotIdx := L + ((R - L) shr 1); { same as ((L + R) div 2), but without the possibility of overflow }
      P := ItemPtrs[PivotIdx];
      repeat
        while (I < PivotIdx) and (Comparer(P, ItemPtrs[I], Context) > 0) do
          Inc(I);
        while (J > PivotIdx) and (Comparer(P, ItemPtrs[J], Context) < 0) do
          Dec(J);
        if I < J then
        begin
          Q := ItemPtrs[I];
          ItemPtrs[I] := ItemPtrs[J];
          ItemPtrs[J] := Q;
          if PivotIdx = I then
          begin
            PivotIdx := J;
            Inc(I);
          end
          else if PivotIdx = J then
          begin
            PivotIdx := I;
            Dec(J);
          end
          else
          begin
            Inc(I);
            Dec(J);
          end;
        end;
      until I >= J;
      // sort the smaller range recursively
      // sort the bigger range via the loop
      // Reasons: memory usage is O(log(n)) instead of O(n) and loop is faster than recursion
      if (PivotIdx - L) < (R - PivotIdx) then
      begin
        if (L + 1) < PivotIdx then
          QuickSort(L, PivotIdx - 1);
        L := PivotIdx + 1;
      end
      else
      begin
        if (PivotIdx + 1) < R then
          QuickSort(PivotIdx + 1, R);
        if (L + 1) < PivotIdx then
          R := PivotIdx - 1
        else
          exit;
      end;
    until L >= R;
  end;

begin
  if not Assigned(ItemPtrs) or (ItemCount < 2) then
    exit;
  QuickSort(0, ItemCount - 1);
end;

procedure QuickSort_ItemList_Context(Items: Pointer; ItemCount, ItemSize: SizeUInt; Comparer: TListSortComparer_Context; Context: Pointer);

var
  TempBuf: Pointer;

  procedure QuickSort(L, R : SizeUInt);
  var
    I, J, PivotIdx : SizeUInt;
    P : Pointer;
  begin
    repeat
      I := L;
      J := R;
      PivotIdx := L + ((R - L) shr 1); { same as ((L + R) div 2), but without the possibility of overflow }
      P := Items + ItemSize*PivotIdx;
      repeat
        while (I < PivotIdx) and (Comparer(P, Items + ItemSize*I, Context) > 0) do
          Inc(I);
        while (J > PivotIdx) and (Comparer(P, Items + ItemSize*J, Context) < 0) do
          Dec(J);
        if I < J then
        begin
          Move((Items + ItemSize*I)^, TempBuf^, ItemSize);
          Move((Items + ItemSize*J)^, (Items + ItemSize*I)^, ItemSize);
          Move(TempBuf^, (Items + ItemSize*J)^, ItemSize);
          if PivotIdx = I then
          begin
            PivotIdx := J;
            P := Items + ItemSize*PivotIdx;
            Inc(I);
          end
          else if PivotIdx = J then
          begin
            PivotIdx := I;
            P := Items + ItemSize*PivotIdx;
            Dec(J);
          end
          else
          begin
            Inc(I);
            Dec(J);
          end;
        end;
      until I >= J;
      // sort the smaller range recursively
      // sort the bigger range via the loop
      // Reasons: memory usage is O(log(n)) instead of O(n) and loop is faster than recursion
      if (PivotIdx - L) < (R - PivotIdx) then
      begin
        if (L + 1) < PivotIdx then
          QuickSort(L, PivotIdx - 1);
        L := PivotIdx + 1;
      end
      else
      begin
        if (PivotIdx + 1) < R then
          QuickSort(PivotIdx + 1, R);
        if (L + 1) < PivotIdx then
          R := PivotIdx - 1
        else
          exit;
      end;
    until L >= R;
  end;

begin
  if not Assigned(Items) or (ItemCount < 2) or (ItemSize < 1) then
    exit;
  GetMem(TempBuf, ItemSize);
{$ifdef FPC_HAS_FEATURE_EXCEPTIONS}
  try
    QuickSort(0, ItemCount - 1);
  finally
    FreeMem(TempBuf, ItemSize);
  end;
{$else FPC_HAS_FEATURE_EXCEPTIONS}
  QuickSort(0, ItemCount - 1);
  FreeMem(TempBuf, ItemSize);
{$endif FPC_HAS_FEATURE_EXCEPTIONS}
end;

procedure QuickSort_ItemList_CustomItemExchanger_Context(
                Items: Pointer;
                ItemCount, ItemSize: SizeUInt;
                Comparer: TListSortComparer_Context;
                Exchanger: TListSortCustomItemExchanger_Context;
                Context: Pointer);

  procedure QuickSort(L, R : SizeUInt);
  var
    I, J, PivotIdx : SizeUInt;
    P : Pointer;
  begin
    repeat
      I := L;
      J := R;
      PivotIdx := L + ((R - L) shr 1); { same as ((L + R) div 2), but without the possibility of overflow }
      P := Items + ItemSize*PivotIdx;
      repeat
        while (I < PivotIdx) and (Comparer(P, Items + ItemSize*I, Context) > 0) do
          Inc(I);
        while (J > PivotIdx) and (Comparer(P, Items + ItemSize*J, Context) < 0) do
          Dec(J);
        if I < J then
        begin
          Exchanger(Items + ItemSize*I, Items + ItemSize*J, Context);
          if PivotIdx = I then
          begin
            PivotIdx := J;
            P := Items + ItemSize*PivotIdx;
            Inc(I);
          end
          else if PivotIdx = J then
          begin
            PivotIdx := I;
            P := Items + ItemSize*PivotIdx;
            Dec(J);
          end
          else
          begin
            Inc(I);
            Dec(J);
          end;
        end;
      until I >= J;
      // sort the smaller range recursively
      // sort the bigger range via the loop
      // Reasons: memory usage is O(log(n)) instead of O(n) and loop is faster than recursion
      if (PivotIdx - L) < (R - PivotIdx) then
      begin
        if (L + 1) < PivotIdx then
          QuickSort(L, PivotIdx - 1);
        L := PivotIdx + 1;
      end
      else
      begin
        if (PivotIdx + 1) < R then
          QuickSort(PivotIdx + 1, R);
        if (L + 1) < PivotIdx then
          R := PivotIdx - 1
        else
          exit;
      end;
    until L >= R;
  end;

begin
  if not Assigned(Items) or (ItemCount < 2) or (ItemSize < 1) then
    exit;
  QuickSort(0, ItemCount - 1);
end;

end.