summaryrefslogtreecommitdiff
path: root/lib/CodeGen/CGIntrinsic.cpp
blob: 1c9dba11e9b48b54d0931a47623d51ad5c8642cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
//===--- CGIntrinsic.cpp - Emit LLVM Code for Intrinsic calls ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
//
//===----------------------------------------------------------------------===//

#include <limits>
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "CGSystemRuntime.h"
#include "flang/AST/ASTContext.h"
#include "flang/AST/ExprVisitor.h"
#include "flang/Frontend/CodeGenOptions.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/CFG.h"

namespace flang {
namespace CodeGen {

RValueTy CodeGenFunction::EmitIntrinsicCall(const IntrinsicCallExpr *E) {
  using namespace intrinsic;

  auto Func = getGenericFunctionKind(E->getIntrinsicFunction());
  auto Group = getFunctionGroup(Func);
  auto Args = E->getArguments();

  switch(Group) {
  case GROUP_CONVERSION:
    if(Func == INT ||
       Func == REAL) {
      if(Args[0]->getType()->isComplexType())
        return EmitComplexToScalarConversion(EmitComplexExpr(Args[0]),
                                             E->getType());
      else
        return EmitScalarToScalarConversion(EmitScalarExpr(Args[0]),
                                            E->getType());
    } else if(Func == CMPLX) {
      if(Args[0]->getType()->isComplexType())
        return EmitComplexToComplexConversion(EmitComplexExpr(Args[0]),
                                              E->getType());
      else {
        if(Args.size() >= 2) {
          auto ElementType = getContext().getComplexTypeElementType(E->getType());
          return ComplexValueTy(EmitScalarToScalarConversion(EmitScalarExpr(Args[0]), ElementType),
                                EmitScalarToScalarConversion(EmitScalarExpr(Args[1]), ElementType));
        }
        else return EmitScalarToComplexConversion(EmitScalarExpr(Args[0]),
                                                  E->getType());
      }
    } else if(Func == ICHAR) {
      auto Value = EmitCharacterDereference(EmitCharacterExpr(Args[0]));
      return Builder.CreateZExtOrTrunc(Value, ConvertType(getContext().IntegerTy));
    } else if(Func == CHAR) {
      auto Temp = CreateTempAlloca(CGM.Int8Ty, "char");
      auto Value = CharacterValueTy(Temp,
                                    llvm::ConstantInt::get(CGM.SizeTy, 1));
      Builder.CreateStore(Builder.CreateSExtOrTrunc(EmitScalarExpr(Args[0]), CGM.Int8Ty),
                          Value.Ptr);
      return Value;
    } else llvm_unreachable("invalid conversion intrinsic");
    break;

  case GROUP_TRUNCATION:
    return EmitIntrinsicCallScalarTruncation(Func, EmitScalarExpr(Args[0]),
                                             E->getType());

  case GROUP_COMPLEX:
    return EmitIntrinsicCallComplex(Func, EmitComplexExpr(Args[0]));

  case GROUP_MATHS:
    if(Func == MAX || Func == MIN)
      return EmitIntrinsicMinMax(Func, Args);
    if(Args[0]->getType()->isComplexType())
      return EmitIntrinsicCallComplexMath(Func, EmitComplexExpr(Args[0]));
    return EmitIntrinsicCallScalarMath(Func, EmitScalarExpr(Args[0]),
                                       Args.size() == 2?
                                        EmitScalarExpr(Args[1]) : nullptr);
  case GROUP_CHARACTER:
    if(Args.size() == 1)
      return EmitIntrinsicCallCharacter(Func, EmitCharacterExpr(Args[0]));
    else
      return EmitIntrinsicCallCharacter(Func, EmitCharacterExpr(Args[0]),
                                        EmitCharacterExpr(Args[1]));

  case GROUP_ARRAY:
    return EmitArrayIntrinsic(Func, Args);

  case GROUP_NUMERIC_INQUIRY:
    return EmitIntrinsicNumericInquiry(Func, Args[0]->getType(), E->getType());

  case GROUP_SYSTEM:
    return EmitSystemIntrinsic(Func, Args);

  case GROUP_INQUIRY: {
    int64_t Val;
    if(E->EvaluateAsInt(Val, getContext()))
      return llvm::ConstantInt::get(ConvertType(E->getType()), Val);
    return EmitInquiryIntrinsic(Func, Args);
  }

  case GROUP_BITOPS:
    return EmitBitOperation(Func, EmitScalarExpr(Args[0]),
             Args.size() > 1? EmitScalarExpr(Args[1]) : nullptr,
             Args.size() > 2? EmitScalarExpr(Args[2]) : nullptr);

  default:
    llvm_unreachable("invalid intrinsic");
    break;
  }

  return RValueTy();
}

llvm::Value *CodeGenFunction::EmitIntrinsicCallScalarTruncation(intrinsic::FunctionKind Func,
                                                                llvm::Value *Value,
                                                                QualType ResultType) {
  llvm::Value *FuncDecl = nullptr;
  auto ValueType = Value->getType();
  switch(Func) {
  case intrinsic::AINT:
    FuncDecl = GetIntrinsicFunction(llvm::Intrinsic::trunc, ValueType);
    break;
  case intrinsic::ANINT:
  case intrinsic::NINT:
    FuncDecl = GetIntrinsicFunction(llvm::Intrinsic::rint, ValueType);
    break;
  case intrinsic::CEILING:
    FuncDecl = GetIntrinsicFunction(llvm::Intrinsic::ceil, ValueType);
    break;
  case intrinsic::FLOOR:
    FuncDecl = GetIntrinsicFunction(llvm::Intrinsic::floor, ValueType);
    break;
  }

  auto Result = Builder.CreateCall(FuncDecl, Value);
  if(ResultType->isIntegerType())
    return EmitScalarToScalarConversion(Result, ResultType);
  return Result;
}

#define MANGLE_MATH_FUNCTION(Str, Type) \
  ((Type)->isFloatTy() ? Str "f" : Str)

llvm::Value* CodeGenFunction::EmitIntrinsicCallScalarMath(intrinsic::FunctionKind Func,
                                                          llvm::Value *A1, llvm::Value *A2) {
  using namespace intrinsic;

  llvm::Value *FuncDecl = nullptr;
  auto ValueType = A1->getType();
  switch(Func) {
  case ABS:
    if(ValueType->isIntegerTy()) {
      auto Condition = Builder.CreateICmpSGE(A1, llvm::ConstantInt::get(ValueType, 0));
      return Builder.CreateSelect(Condition, A1, Builder.CreateNeg(A1));
    }
    FuncDecl = GetIntrinsicFunction(llvm::Intrinsic::fabs, ValueType);
    break;

  case MOD:
    if(ValueType->isIntegerTy())
      return Builder.CreateSRem(A1, A2);
    else
      return Builder.CreateFRem(A1, A2);
    break;

  // |a1|  if a2 >= 0
  // -|a1| if a2 < 0
  case SIGN: {
    auto A1Abs = EmitIntrinsicCallScalarMath(ABS, A1);
    auto Cond = EmitScalarRelationalExpr(BinaryExpr::GreaterThanEqual,
                                         A2, GetConstantZero(A2->getType()));
    return Builder.CreateSelect(Cond, A1Abs, EmitScalarUnaryMinus(A1Abs));
    break;
  }

  //a1-a2 if a1>a2
  //  0   if a1<=a2
  case DIM: {
    auto Cond = EmitScalarRelationalExpr(BinaryExpr::GreaterThan,
                                         A1, A2);
    return Builder.CreateSelect(Cond,
                                EmitScalarBinaryExpr(BinaryExpr::Minus,
                                                     A1, A2),
                                GetConstantZero(A1->getType()));
    break;
  }

  case DPROD: {
    auto TargetType = getContext().DoublePrecisionTy;
    return Builder.CreateFMul(EmitScalarToScalarConversion(A1, TargetType),
                              EmitScalarToScalarConversion(A2, TargetType));
  }

  case SQRT:
    FuncDecl = GetIntrinsicFunction(llvm::Intrinsic::sqrt, ValueType);
    break;
  case EXP:
    FuncDecl = GetIntrinsicFunction(llvm::Intrinsic::exp, ValueType);
    break;
  case LOG:
    FuncDecl = GetIntrinsicFunction(llvm::Intrinsic::log, ValueType);
    break;
  case LOG10:
    FuncDecl = GetIntrinsicFunction(llvm::Intrinsic::log10, ValueType);
    break;
  case SIN:
    FuncDecl = GetIntrinsicFunction(llvm::Intrinsic::sin, ValueType);
    break;
  case COS:
    FuncDecl = GetIntrinsicFunction(llvm::Intrinsic::cos, ValueType);
    break;
  case TAN:
    FuncDecl = CGM.GetCFunction(MANGLE_MATH_FUNCTION("tan", ValueType),
                                ValueType, ValueType);
    break;
  case ASIN:
    FuncDecl = CGM.GetCFunction(MANGLE_MATH_FUNCTION("asin", ValueType),
                                ValueType, ValueType);
    break;
  case ACOS:
    FuncDecl = CGM.GetCFunction(MANGLE_MATH_FUNCTION("acos", ValueType),
                                ValueType, ValueType);
    break;
  case ATAN:
    FuncDecl = CGM.GetCFunction(MANGLE_MATH_FUNCTION("atan", ValueType),
                                ValueType, ValueType);
    break;
  case ATAN2: {
    llvm::Type *Args[] = {ValueType, ValueType};
    FuncDecl = CGM.GetCFunction(MANGLE_MATH_FUNCTION("atan2", ValueType),
                                llvm::makeArrayRef(Args, 2),
                                ValueType);
    break;
  }
  case SINH:
    FuncDecl = CGM.GetCFunction(MANGLE_MATH_FUNCTION("sinh", ValueType),
                                ValueType, ValueType);
    break;
  case COSH:
    FuncDecl = CGM.GetCFunction(MANGLE_MATH_FUNCTION("cosh", ValueType),
                                ValueType, ValueType);
    break;
  case TANH:
    FuncDecl = CGM.GetCFunction(MANGLE_MATH_FUNCTION("tanh", ValueType),
                                ValueType, ValueType);
    break;
  default:
    llvm_unreachable("invalid scalar math intrinsic");
  }
  if(A2)
    return Builder.CreateCall2(FuncDecl, A1, A2);
  return Builder.CreateCall(FuncDecl, A1);
}

llvm::Value *CodeGenFunction::EmitIntrinsicMinMax(intrinsic::FunctionKind Func,
                                                  ArrayRef<Expr*> Arguments) {
  SmallVector<llvm::Value*, 8> Args(Arguments.size());
  for(size_t I = 0; I < Arguments.size(); ++I)
    Args[I] = EmitScalarExpr(Arguments[I]);
  return EmitIntrinsicScalarMinMax(Func, Args);
}

llvm::Value *CodeGenFunction::EmitIntrinsicScalarMinMax(intrinsic::FunctionKind Func,
                                                        ArrayRef<llvm::Value*> Args) {
  auto Value = Args[0];
  auto Op = Func == intrinsic::MAX? BinaryExpr::GreaterThanEqual :
                                    BinaryExpr::LessThanEqual;
  for(size_t I = 1; I < Args.size(); ++I)
    Value = Builder.CreateSelect(EmitScalarRelationalExpr(Op,
                                 Value, Args[I]), Value, Args[I]);
  return Value;
}

// Lets pretend ** is an intrinsic
llvm::Value *CodeGenFunction::EmitScalarPowIntInt(llvm::Value *LHS, llvm::Value *RHS) {
  auto T = cast<llvm::IntegerType>(LHS->getType());
  StringRef FuncName;
  switch(T->getBitWidth()) {
  case 8:
    FuncName = "pow_i1_i1"; break;
  case 16:
    FuncName = "pow_i2_i2"; break;
  case 32:
    FuncName = "pow_i4_i4"; break;
  case 64:
    FuncName = "pow_i8_i8"; break;
  default:
    llvm_unreachable("unsupported integer type");
  }
  auto Func = CGM.GetRuntimeFunction2(FuncName, T, T, T);
  CallArgList Args;
  Args.add(LHS);
  Args.add(RHS);
  return EmitCall(Func.getFunction(), Func.getInfo(), Args).asScalar();
}

ComplexValueTy CodeGenFunction::EmitComplexPowi(ComplexValueTy LHS, llvm::Value *RHS) {
  auto ElementType = LHS.Re->getType();
  auto ValueType = getTypes().GetComplexType(ElementType);
  auto ResultType =  llvm::PointerType::get(ValueType, 0);
  auto Func = CGM.GetRuntimeFunction4(MANGLE_MATH_FUNCTION("cpowi", ElementType),
                                      ElementType, ElementType, RHS->getType(), ResultType);
  CallArgList Args;
  Args.add(LHS.Re);Args.add(LHS.Im);Args.add(RHS);
  auto Result = CreateTempAlloca(ValueType,"libflang_complex_result");
  Args.add(Result);
  EmitCall(Func.getFunction(), Func.getInfo(), Args);
  return EmitComplexLoad(Result);
}

ComplexValueTy CodeGenFunction::EmitComplexPow(ComplexValueTy LHS, ComplexValueTy RHS) {
  auto ElementType = LHS.Re->getType();
  auto ValueType = getTypes().GetComplexType(ElementType);
  auto ResultType =  llvm::PointerType::get(ValueType, 0);
  auto Func = CGM.GetRuntimeFunction5(MANGLE_MATH_FUNCTION("cpow", ElementType),
                                      ElementType, ElementType, ElementType, ElementType, ResultType);
  CallArgList Args;
  Args.add(LHS.Re);Args.add(LHS.Im);
  Args.add(RHS.Re);Args.add(RHS.Im);
  auto Result = CreateTempAlloca(ValueType,"libflang_complex_result");
  Args.add(Result);
  EmitCall(Func.getFunction(), Func.getInfo(), Args);
  return EmitComplexLoad(Result);
}

RValueTy CodeGenFunction::EmitIntrinsicCallComplexMath(intrinsic::FunctionKind Function,
                                                       ComplexValueTy Value) {
  auto ElementType = Value.Re->getType();
  auto ValueType = getTypes().GetComplexType(ElementType);
  auto ResultType =  llvm::PointerType::get(ValueType, 0);
  CGFunction Func;
  CGType Arg1Types[] = { ElementType, ElementType, ResultType };
  ArrayRef<CGType> Arg1(Arg1Types, 3);

  switch(Function) {
  case intrinsic::ABS:
    Func = CGM.GetRuntimeFunction2(MANGLE_MATH_FUNCTION("cabs", ElementType),
                                   ElementType, ElementType, ElementType);
    break;
  case intrinsic::SQRT:
    Func = CGM.GetRuntimeFunction(MANGLE_MATH_FUNCTION("csqrt", ElementType),
                                  Arg1);
    break;
  case intrinsic::EXP:
    Func = CGM.GetRuntimeFunction(MANGLE_MATH_FUNCTION("cexp", ElementType),
                                  Arg1);
    break;
  case intrinsic::LOG:
    Func = CGM.GetRuntimeFunction(MANGLE_MATH_FUNCTION("clog", ElementType),
                                  Arg1);
    break;
  case intrinsic::SIN:
    Func = CGM.GetRuntimeFunction(MANGLE_MATH_FUNCTION("csin", ElementType),
                                  Arg1);
    break;
  case intrinsic::COS:
    Func = CGM.GetRuntimeFunction(MANGLE_MATH_FUNCTION("ccos", ElementType),
                                  Arg1);
    break;
  case intrinsic::TAN:
    Func = CGM.GetRuntimeFunction(MANGLE_MATH_FUNCTION("ctan", ElementType),
                                  Arg1);
    break;
  default:
    llvm_unreachable("invalid complex math intrinsic");
  }

  CallArgList Args;
  Args.add(Value.Re);Args.add(Value.Im);
  if(Function != intrinsic::ABS) {
    auto Result = CreateTempAlloca(ValueType, "libflang_complex_result");
    Args.add(Result);
    EmitCall(Func.getFunction(), Func.getInfo(), Args);
    return EmitComplexLoad(Result);
  }

  return EmitCall(Func.getFunction(), Func.getInfo(), Args);
}

llvm::Value *CodeGenFunction::EmitIntrinsicNumericInquiry(intrinsic::FunctionKind Func,
                                                          QualType ArgType, QualType Result) {
  using namespace intrinsic;
  using namespace std;

  auto RetT = ConvertType(Result);
  auto T = ArgType;
  auto TKind = T->getBuiltinTypeKind();
  int IntResult;

#define HANDLE_INT(Result, func) \
    switch(TKind) {  \
    case BuiltinType::Int1: \
      Result = numeric_limits<int8_t>::func; break; \
    case BuiltinType::Int2: \
      Result = numeric_limits<int16_t>::func; break; \
    case BuiltinType::Int4: \
      Result = numeric_limits<int32_t>::func; break; \
    case BuiltinType::Int8: \
      Result = numeric_limits<int64_t>::func; break; \
    default: \
      llvm_unreachable("invalid type kind"); \
      break; \
    }

#define HANDLE_REAL(Result, func) \
    switch(TKind) {  \
    case BuiltinType::Real4: \
      Result = numeric_limits<float>::func; break; \
    case BuiltinType::Real8: \
      Result = numeric_limits<double>::func; break; \
    default: \
      llvm_unreachable("invalid type kind"); \
      break; \
    }

  // FIXME: the float numeric limit is being implicitly converted into a double here..
#define HANDLE_REAL_RET_REAL(func) \
    switch(TKind) {  \
    case BuiltinType::Real4: \
      return llvm::ConstantFP::get(RetT, numeric_limits<float>::func()); \
      break; \
    case BuiltinType::Real8: \
      return llvm::ConstantFP::get(RetT, numeric_limits<double>::func()); \
      break; \
    default: \
      llvm_unreachable("invalid type kind"); \
      break; \
    }

  if(T->isIntegerType()) {
    switch(Func) {
    case RADIX:
      HANDLE_INT(IntResult, radix);
      break;
    case DIGITS:
      HANDLE_INT(IntResult, digits);
      break;
    case RANGE:
      HANDLE_INT(IntResult, digits10);
      break;
    case HUGE: {
      int64_t i64;
      HANDLE_INT(i64, max());
      return llvm::ConstantInt::get(RetT, i64, true);
      break;
    }
    case TINY: {
      int64_t i64;
      HANDLE_INT(i64, min());
      return llvm::ConstantInt::get(RetT, i64, true);
      break;
    }
    default:
      llvm_unreachable("Invalid integer inquiry intrinsic");
    }
  } else {
    switch(Func) {
    case RADIX:
      HANDLE_REAL(IntResult, radix);
      break;
    case DIGITS:
      HANDLE_REAL(IntResult, digits);
      break;
    case MINEXPONENT:
      HANDLE_REAL(IntResult, min_exponent);
      break;
    case MAXEXPONENT:
      HANDLE_REAL(IntResult, max_exponent);
      break;
    case PRECISION:
      HANDLE_REAL(IntResult, digits10);
      break;
    case RANGE:
      HANDLE_REAL(IntResult, min_exponent10);
      IntResult = abs(IntResult);
      break;
    case HUGE:
      HANDLE_REAL_RET_REAL(max);
      break;
    case TINY:
      HANDLE_REAL_RET_REAL(min);
      break;
    case EPSILON:
      HANDLE_REAL_RET_REAL(epsilon);
      break;
    }
  }

#undef HANDLE_INT
#undef HANDLE_REAL

  return llvm::ConstantInt::get(RetT, IntResult, true);
}

RValueTy CodeGenFunction::EmitSystemIntrinsic(intrinsic::FunctionKind Func,
                                              ArrayRef<Expr*> Arguments) {
  using namespace intrinsic;

  switch(Func) {
  case ETIME:
    return CGM.getSystemRuntime().EmitETIME(*this, Arguments);

  default:
    llvm_unreachable("invalid intrinsic");
    break;
  }

  return RValueTy();
}

llvm::Value *CodeGenFunction::EmitInquiryIntrinsic(intrinsic::FunctionKind Func,
                                                   ArrayRef<Expr*> Arguments) {
  using namespace intrinsic;

  switch(Func) {
  case SELECTED_INT_KIND: {
    auto Func = CGM.GetRuntimeFunction1("selected_int_kind", CGM.Int32Ty, CGM.Int32Ty);
    CallArgList Args;
    Args.add(Builder.CreateSExtOrTrunc(EmitScalarExpr(Arguments[0]), CGM.Int32Ty));
    return EmitCall(Func.getFunction(), Func.getInfo(), Args).asScalar();
  }
  default:
    llvm_unreachable("invalid intrinsic");
    break;
  }

  return nullptr;
}

}
} // end namespace flang