summaryrefslogtreecommitdiff
path: root/src/libFLAC/include/private/lpc.h
blob: a9076903df6740179e7c8deec2175da54e0c4883 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/* libFLAC - Free Lossless Audio Codec library
 * Copyright (C) 2000-2009  Josh Coalson
 * Copyright (C) 2011-2016  Xiph.Org Foundation
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the Xiph.org Foundation nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef FLAC__PRIVATE__LPC_H
#define FLAC__PRIVATE__LPC_H

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "private/cpu.h"
#include "private/float.h"
#include "FLAC/format.h"

#ifndef FLAC__INTEGER_ONLY_LIBRARY

/*
 *	FLAC__lpc_window_data()
 *	--------------------------------------------------------------------
 *	Applies the given window to the data.
 *  OPT: asm implementation
 *
 *	IN in[0,data_len-1]
 *	IN window[0,data_len-1]
 *	OUT out[0,lag-1]
 *	IN data_len
 */
void FLAC__lpc_window_data(const FLAC__int32 in[], const FLAC__real window[], FLAC__real out[], uint32_t data_len);

/*
 *	FLAC__lpc_compute_autocorrelation()
 *	--------------------------------------------------------------------
 *	Compute the autocorrelation for lags between 0 and lag-1.
 *	Assumes data[] outside of [0,data_len-1] == 0.
 *	Asserts that lag > 0.
 *
 *	IN data[0,data_len-1]
 *	IN data_len
 *	IN 0 < lag <= data_len
 *	OUT autoc[0,lag-1]
 */
void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
#ifndef FLAC__NO_ASM
#  if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN
#    ifdef FLAC__SSE2_SUPPORTED
void FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_8(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
void FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_10(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
void FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_14(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
#    endif
#  endif
#if defined(FLAC__CPU_PPC64) && defined(FLAC__USE_VSX)
#ifdef FLAC__HAS_TARGET_POWER9
void FLAC__lpc_compute_autocorrelation_intrin_power9_vsx_lag_8(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
void FLAC__lpc_compute_autocorrelation_intrin_power9_vsx_lag_10(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
void FLAC__lpc_compute_autocorrelation_intrin_power9_vsx_lag_14(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
#endif
#ifdef FLAC__HAS_TARGET_POWER8
void FLAC__lpc_compute_autocorrelation_intrin_power8_vsx_lag_8(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
void FLAC__lpc_compute_autocorrelation_intrin_power8_vsx_lag_10(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
void FLAC__lpc_compute_autocorrelation_intrin_power8_vsx_lag_14(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
#endif
#endif
#endif

/*
 *	FLAC__lpc_compute_lp_coefficients()
 *	--------------------------------------------------------------------
 *	Computes LP coefficients for orders 1..max_order.
 *	Do not call if autoc[0] == 0.0.  This means the signal is zero
 *	and there is no point in calculating a predictor.
 *
 *	IN autoc[0,max_order]                      autocorrelation values
 *	IN 0 < max_order <= FLAC__MAX_LPC_ORDER    max LP order to compute
 *	OUT lp_coeff[0,max_order-1][0,max_order-1] LP coefficients for each order
 *	*** IMPORTANT:
 *	*** lp_coeff[0,max_order-1][max_order,FLAC__MAX_LPC_ORDER-1] are untouched
 *	OUT error[0,max_order-1]                   error for each order (more
 *	                                           specifically, the variance of
 *	                                           the error signal times # of
 *	                                           samples in the signal)
 *
 *	Example: if max_order is 9, the LP coefficients for order 9 will be
 *	         in lp_coeff[8][0,8], the LP coefficients for order 8 will be
 *			 in lp_coeff[7][0,7], etc.
 */
void FLAC__lpc_compute_lp_coefficients(const double autoc[], uint32_t *max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], double error[]);

/*
 *	FLAC__lpc_quantize_coefficients()
 *	--------------------------------------------------------------------
 *	Quantizes the LP coefficients.  NOTE: precision + bits_per_sample
 *	must be less than 32 (sizeof(FLAC__int32)*8).
 *
 *	IN lp_coeff[0,order-1]    LP coefficients
 *	IN order                  LP order
 *	IN FLAC__MIN_QLP_COEFF_PRECISION < precision
 *	                          desired precision (in bits, including sign
 *	                          bit) of largest coefficient
 *	OUT qlp_coeff[0,order-1]  quantized coefficients
 *	OUT shift                 # of bits to shift right to get approximated
 *	                          LP coefficients.  NOTE: could be negative.
 *	RETURN 0 => quantization OK
 *	       1 => coefficients require too much shifting for *shift to
 *              fit in the LPC subframe header.  'shift' is unset.
 *         2 => coefficients are all zero, which is bad.  'shift' is
 *              unset.
 */
int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], uint32_t order, uint32_t precision, FLAC__int32 qlp_coeff[], int *shift);

/*
 *	FLAC__lpc_compute_residual_from_qlp_coefficients()
 *	--------------------------------------------------------------------
 *	Compute the residual signal obtained from sutracting the predicted
 *	signal from the original.
 *
 *	IN data[-order,data_len-1] original signal (NOTE THE INDICES!)
 *	IN data_len                length of original signal
 *	IN qlp_coeff[0,order-1]    quantized LP coefficients
 *	IN order > 0               LP order
 *	IN lp_quantization         quantization of LP coefficients in bits
 *	OUT residual[0,data_len-1] residual signal
 */
void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
void FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);

#ifndef FLAC__NO_ASM
#   ifdef FLAC__CPU_ARM64
void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_neon(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_neon(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
#   endif

#  ifdef FLAC__CPU_IA32
#    ifdef FLAC__HAS_NASM
void FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
void FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_asm_ia32(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
#    endif
#  endif
#  if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN
#    ifdef FLAC__SSE2_SUPPORTED
void FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_sse2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
#    endif
#    ifdef FLAC__SSE4_1_SUPPORTED
void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse41(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_sse41(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
#    endif
#    ifdef FLAC__AVX2_SUPPORTED
void FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_avx2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_avx2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_avx2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
#    endif
#  endif
#endif

#endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */

/*
 *	FLAC__lpc_restore_signal()
 *	--------------------------------------------------------------------
 *	Restore the original signal by summing the residual and the
 *	predictor.
 *
 *	IN residual[0,data_len-1]  residual signal
 *	IN data_len                length of original signal
 *	IN qlp_coeff[0,order-1]    quantized LP coefficients
 *	IN order > 0               LP order
 *	IN lp_quantization         quantization of LP coefficients in bits
 *	*** IMPORTANT: the caller must pass in the historical samples:
 *	IN  data[-order,-1]        previously-reconstructed historical samples
 *	OUT data[0,data_len-1]     original signal
 */
void FLAC__lpc_restore_signal(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 data[]);
void FLAC__lpc_restore_signal_wide(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 data[]);
#ifndef FLAC__NO_ASM
#  ifdef FLAC__CPU_IA32
#    ifdef FLAC__HAS_NASM
void FLAC__lpc_restore_signal_asm_ia32(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 data[]);
void FLAC__lpc_restore_signal_asm_ia32_mmx(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 data[]);
void FLAC__lpc_restore_signal_wide_asm_ia32(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 data[]);
#    endif /* FLAC__HAS_NASM */
#  endif /* FLAC__CPU_IA32 */
#  if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN
#    ifdef FLAC__SSE4_1_SUPPORTED
void FLAC__lpc_restore_signal_intrin_sse41(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 data[]);
void FLAC__lpc_restore_signal_16_intrin_sse41(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 data[]);
void FLAC__lpc_restore_signal_wide_intrin_sse41(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 data[]);
#    endif
#  endif
#endif /* FLAC__NO_ASM */

#ifndef FLAC__INTEGER_ONLY_LIBRARY

/*
 *	FLAC__lpc_compute_expected_bits_per_residual_sample()
 *	--------------------------------------------------------------------
 *	Compute the expected number of bits per residual signal sample
 *	based on the LP error (which is related to the residual variance).
 *
 *	IN lpc_error >= 0.0   error returned from calculating LP coefficients
 *	IN total_samples > 0  # of samples in residual signal
 *	RETURN                expected bits per sample
 */
double FLAC__lpc_compute_expected_bits_per_residual_sample(double lpc_error, uint32_t total_samples);
double FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(double lpc_error, double error_scale);

/*
 *	FLAC__lpc_compute_best_order()
 *	--------------------------------------------------------------------
 *	Compute the best order from the array of signal errors returned
 *	during coefficient computation.
 *
 *	IN lpc_error[0,max_order-1] >= 0.0  error returned from calculating LP coefficients
 *	IN max_order > 0                    max LP order
 *	IN total_samples > 0                # of samples in residual signal
 *	IN overhead_bits_per_order          # of bits overhead for each increased LP order
 *	                                    (includes warmup sample size and quantized LP coefficient)
 *	RETURN [1,max_order]                best order
 */
uint32_t FLAC__lpc_compute_best_order(const double lpc_error[], uint32_t max_order, uint32_t total_samples, uint32_t overhead_bits_per_order);

#endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */

#endif