summaryrefslogtreecommitdiff
path: root/libavcodec/wmaprodec.c
blob: 8c43e46553724011b6c4d94bebba944a8e7d57dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
/*
 * Wmapro compatible decoder
 * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
 * Copyright (c) 2008 - 2009 Sascha Sommer, Benjamin Larsson
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * @brief wmapro decoder implementation
 * Wmapro is an MDCT based codec comparable to wma standard or AAC.
 * The decoding therefore consists of the following steps:
 * - bitstream decoding
 * - reconstruction of per-channel data
 * - rescaling and inverse quantization
 * - IMDCT
 * - windowing and overlapp-add
 *
 * The compressed wmapro bitstream is split into individual packets.
 * Every such packet contains one or more wma frames.
 * The compressed frames may have a variable length and frames may
 * cross packet boundaries.
 * Common to all wmapro frames is the number of samples that are stored in
 * a frame.
 * The number of samples and a few other decode flags are stored
 * as extradata that has to be passed to the decoder.
 *
 * The wmapro frames themselves are again split into a variable number of
 * subframes. Every subframe contains the data for 2^N time domain samples
 * where N varies between 7 and 12.
 *
 * Example wmapro bitstream (in samples):
 *
 * ||   packet 0           || packet 1 || packet 2      packets
 * ---------------------------------------------------
 * || frame 0      || frame 1       || frame 2    ||    frames
 * ---------------------------------------------------
 * ||   |      |   ||   |   |   |   ||            ||    subframes of channel 0
 * ---------------------------------------------------
 * ||      |   |   ||   |   |   |   ||            ||    subframes of channel 1
 * ---------------------------------------------------
 *
 * The frame layouts for the individual channels of a wma frame does not need
 * to be the same.
 *
 * However, if the offsets and lengths of several subframes of a frame are the
 * same, the subframes of the channels can be grouped.
 * Every group may then use special coding techniques like M/S stereo coding
 * to improve the compression ratio. These channel transformations do not
 * need to be applied to a whole subframe. Instead, they can also work on
 * individual scale factor bands (see below).
 * The coefficients that carry the audio signal in the frequency domain
 * are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
 * In addition to that, the encoder can switch to a runlevel coding scheme
 * by transmitting subframe_length / 128 zero coefficients.
 *
 * Before the audio signal can be converted to the time domain, the
 * coefficients have to be rescaled and inverse quantized.
 * A subframe is therefore split into several scale factor bands that get
 * scaled individually.
 * Scale factors are submitted for every frame but they might be shared
 * between the subframes of a channel. Scale factors are initially DPCM-coded.
 * Once scale factors are shared, the differences are transmitted as runlevel
 * codes.
 * Every subframe length and offset combination in the frame layout shares a
 * common quantization factor that can be adjusted for every channel by a
 * modifier.
 * After the inverse quantization, the coefficients get processed by an IMDCT.
 * The resulting values are then windowed with a sine window and the first half
 * of the values are added to the second half of the output from the previous
 * subframe in order to reconstruct the output samples.
 */

#include "avcodec.h"
#include "internal.h"
#include "get_bits.h"
#include "put_bits.h"
#include "wmaprodata.h"
#include "dsputil.h"
#include "wma.h"

/** current decoder limitations */
#define WMAPRO_MAX_CHANNELS    8                             ///< max number of handled channels
#define MAX_SUBFRAMES  32                                    ///< max number of subframes per channel
#define MAX_BANDS      29                                    ///< max number of scale factor bands
#define MAX_FRAMESIZE  32768                                 ///< maximum compressed frame size

#define WMAPRO_BLOCK_MAX_BITS 12                                           ///< log2 of max block size
#define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS)                 ///< maximum block size
#define WMAPRO_BLOCK_SIZES    (WMAPRO_BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1) ///< possible block sizes


#define VLCBITS            9
#define SCALEVLCBITS       8
#define VEC4MAXDEPTH    ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS)
#define VEC2MAXDEPTH    ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS)
#define VEC1MAXDEPTH    ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS)
#define SCALEMAXDEPTH   ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS)
#define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS)

static VLC              sf_vlc;           ///< scale factor DPCM vlc
static VLC              sf_rl_vlc;        ///< scale factor run length vlc
static VLC              vec4_vlc;         ///< 4 coefficients per symbol
static VLC              vec2_vlc;         ///< 2 coefficients per symbol
static VLC              vec1_vlc;         ///< 1 coefficient per symbol
static VLC              coef_vlc[2];      ///< coefficient run length vlc codes
static float            sin64[33];        ///< sinus table for decorrelation

/**
 * @brief frame specific decoder context for a single channel
 */
typedef struct {
    int16_t  prev_block_len;                          ///< length of the previous block
    uint8_t  transmit_coefs;
    uint8_t  num_subframes;
    uint16_t subframe_len[MAX_SUBFRAMES];             ///< subframe length in samples
    uint16_t subframe_offset[MAX_SUBFRAMES];          ///< subframe positions in the current frame
    uint8_t  cur_subframe;                            ///< current subframe number
    uint16_t decoded_samples;                         ///< number of already processed samples
    uint8_t  grouped;                                 ///< channel is part of a group
    int      quant_step;                              ///< quantization step for the current subframe
    int8_t   reuse_sf;                                ///< share scale factors between subframes
    int8_t   scale_factor_step;                       ///< scaling step for the current subframe
    int      max_scale_factor;                        ///< maximum scale factor for the current subframe
    int      saved_scale_factors[2][MAX_BANDS];       ///< resampled and (previously) transmitted scale factor values
    int8_t   scale_factor_idx;                        ///< index for the transmitted scale factor values (used for resampling)
    int*     scale_factors;                           ///< pointer to the scale factor values used for decoding
    uint8_t  table_idx;                               ///< index in sf_offsets for the scale factor reference block
    float*   coeffs;                                  ///< pointer to the subframe decode buffer
    DECLARE_ALIGNED(16, float, out)[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]; ///< output buffer
} WMAProChannelCtx;

/**
 * @brief channel group for channel transformations
 */
typedef struct {
    uint8_t num_channels;                                     ///< number of channels in the group
    int8_t  transform;                                        ///< transform on / off
    int8_t  transform_band[MAX_BANDS];                        ///< controls if the transform is enabled for a certain band
    float   decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS];
    float*  channel_data[WMAPRO_MAX_CHANNELS];                ///< transformation coefficients
} WMAProChannelGrp;

/**
 * @brief main decoder context
 */
typedef struct WMAProDecodeCtx {
    /* generic decoder variables */
    AVCodecContext*  avctx;                         ///< codec context for av_log
    DSPContext       dsp;                           ///< accelerated DSP functions
    uint8_t          frame_data[MAX_FRAMESIZE +
                      FF_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data
    PutBitContext    pb;                            ///< context for filling the frame_data buffer
    FFTContext       mdct_ctx[WMAPRO_BLOCK_SIZES];  ///< MDCT context per block size
    DECLARE_ALIGNED(16, float, tmp)[WMAPRO_BLOCK_MAX_SIZE]; ///< IMDCT output buffer
    float*           windows[WMAPRO_BLOCK_SIZES];   ///< windows for the different block sizes

    /* frame size dependent frame information (set during initialization) */
    uint32_t         decode_flags;                  ///< used compression features
    uint8_t          len_prefix;                    ///< frame is prefixed with its length
    uint8_t          dynamic_range_compression;     ///< frame contains DRC data
    uint8_t          bits_per_sample;               ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
    uint16_t         samples_per_frame;             ///< number of samples to output
    uint16_t         log2_frame_size;
    int8_t           num_channels;                  ///< number of channels in the stream (same as AVCodecContext.num_channels)
    int8_t           lfe_channel;                   ///< lfe channel index
    uint8_t          max_num_subframes;
    uint8_t          subframe_len_bits;             ///< number of bits used for the subframe length
    uint8_t          max_subframe_len_bit;          ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
    uint16_t         min_samples_per_subframe;
    int8_t           num_sfb[WMAPRO_BLOCK_SIZES];   ///< scale factor bands per block size
    int16_t          sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS];                    ///< scale factor band offsets (multiples of 4)
    int8_t           sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix
    int16_t          subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values

    /* packet decode state */
    GetBitContext    pgb;                           ///< bitstream reader context for the packet
    uint8_t          packet_offset;                 ///< frame offset in the packet
    uint8_t          packet_sequence_number;        ///< current packet number
    int              num_saved_bits;                ///< saved number of bits
    int              frame_offset;                  ///< frame offset in the bit reservoir
    int              subframe_offset;               ///< subframe offset in the bit reservoir
    uint8_t          packet_loss;                   ///< set in case of bitstream error
    uint8_t          packet_done;                   ///< set when a packet is fully decoded

    /* frame decode state */
    uint32_t         frame_num;                     ///< current frame number (not used for decoding)
    GetBitContext    gb;                            ///< bitstream reader context
    int              buf_bit_size;                  ///< buffer size in bits
    float*           samples;                       ///< current samplebuffer pointer
    float*           samples_end;                   ///< maximum samplebuffer pointer
    uint8_t          drc_gain;                      ///< gain for the DRC tool
    int8_t           skip_frame;                    ///< skip output step
    int8_t           parsed_all_subframes;          ///< all subframes decoded?

    /* subframe/block decode state */
    int16_t          subframe_len;                  ///< current subframe length
    int8_t           channels_for_cur_subframe;     ///< number of channels that contain the subframe
    int8_t           channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS];
    int8_t           num_bands;                     ///< number of scale factor bands
    int16_t*         cur_sfb_offsets;               ///< sfb offsets for the current block
    uint8_t          table_idx;                     ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables
    int8_t           esc_len;                       ///< length of escaped coefficients

    uint8_t          num_chgroups;                  ///< number of channel groups
    WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS];  ///< channel group information

    WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS];  ///< per channel data
} WMAProDecodeCtx;


/**
 *@brief helper function to print the most important members of the context
 *@param s context
 */
static void av_cold dump_context(WMAProDecodeCtx *s)
{
#define PRINT(a, b)     av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b);
#define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b);

    PRINT("ed sample bit depth", s->bits_per_sample);
    PRINT_HEX("ed decode flags", s->decode_flags);
    PRINT("samples per frame",   s->samples_per_frame);
    PRINT("log2 frame size",     s->log2_frame_size);
    PRINT("max num subframes",   s->max_num_subframes);
    PRINT("len prefix",          s->len_prefix);
    PRINT("num channels",        s->num_channels);
}

/**
 *@brief Uninitialize the decoder and free all resources.
 *@param avctx codec context
 *@return 0 on success, < 0 otherwise
 */
static av_cold int decode_end(AVCodecContext *avctx)
{
    WMAProDecodeCtx *s = avctx->priv_data;
    int i;

    for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
        ff_mdct_end(&s->mdct_ctx[i]);

    return 0;
}

/**
 *@brief Initialize the decoder.
 *@param avctx codec context
 *@return 0 on success, -1 otherwise
 */
static av_cold int decode_init(AVCodecContext *avctx)
{
    WMAProDecodeCtx *s = avctx->priv_data;
    uint8_t *edata_ptr = avctx->extradata;
    unsigned int channel_mask;
    int i;
    int log2_max_num_subframes;
    int num_possible_block_sizes;

    s->avctx = avctx;
    dsputil_init(&s->dsp, avctx);
    init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);

    avctx->sample_fmt = SAMPLE_FMT_FLT;

    if (avctx->extradata_size >= 18) {
        s->decode_flags    = AV_RL16(edata_ptr+14);
        channel_mask       = AV_RL32(edata_ptr+2);
        s->bits_per_sample = AV_RL16(edata_ptr);
        /** dump the extradata */
        for (i = 0; i < avctx->extradata_size; i++)
            dprintf(avctx, "[%x] ", avctx->extradata[i]);
        dprintf(avctx, "\n");

    } else {
        av_log_ask_for_sample(avctx, "Unknown extradata size\n");
        return AVERROR_INVALIDDATA;
    }

    /** generic init */
    s->log2_frame_size = av_log2(avctx->block_align) + 4;

    /** frame info */
    s->skip_frame  = 1; /** skip first frame */
    s->packet_loss = 1;
    s->len_prefix  = (s->decode_flags & 0x40);

    if (!s->len_prefix) {
        av_log_ask_for_sample(avctx, "no length prefix\n");
        return AVERROR_INVALIDDATA;
    }

    /** get frame len */
    s->samples_per_frame = 1 << ff_wma_get_frame_len_bits(avctx->sample_rate,
                                                          3, s->decode_flags);

    /** init previous block len */
    for (i = 0; i < avctx->channels; i++)
        s->channel[i].prev_block_len = s->samples_per_frame;

    /** subframe info */
    log2_max_num_subframes       = ((s->decode_flags & 0x38) >> 3);
    s->max_num_subframes         = 1 << log2_max_num_subframes;
    if (s->max_num_subframes == 16)
        s->max_subframe_len_bit = 1;
    s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;

    num_possible_block_sizes     = log2_max_num_subframes + 1;
    s->min_samples_per_subframe  = s->samples_per_frame / s->max_num_subframes;
    s->dynamic_range_compression = (s->decode_flags & 0x80);

    if (s->max_num_subframes > MAX_SUBFRAMES) {
        av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %i\n",
               s->max_num_subframes);
        return AVERROR_INVALIDDATA;
    }

    s->num_channels = avctx->channels;

    /** extract lfe channel position */
    s->lfe_channel = -1;

    if (channel_mask & 8) {
        unsigned int mask;
        for (mask = 1; mask < 16; mask <<= 1) {
            if (channel_mask & mask)
                ++s->lfe_channel;
        }
    }

    if (s->num_channels < 0) {
        av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n", s->num_channels);
        return AVERROR_INVALIDDATA;
    } else if (s->num_channels > WMAPRO_MAX_CHANNELS) {
        av_log_ask_for_sample(avctx, "unsupported number of channels\n");
        return AVERROR_PATCHWELCOME;
    }

    INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE,
                    scale_huffbits, 1, 1,
                    scale_huffcodes, 2, 2, 616);

    INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE,
                    scale_rl_huffbits, 1, 1,
                    scale_rl_huffcodes, 4, 4, 1406);

    INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE,
                    coef0_huffbits, 1, 1,
                    coef0_huffcodes, 4, 4, 2108);

    INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE,
                    coef1_huffbits, 1, 1,
                    coef1_huffcodes, 4, 4, 3912);

    INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE,
                    vec4_huffbits, 1, 1,
                    vec4_huffcodes, 2, 2, 604);

    INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE,
                    vec2_huffbits, 1, 1,
                    vec2_huffcodes, 2, 2, 562);

    INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE,
                    vec1_huffbits, 1, 1,
                    vec1_huffcodes, 2, 2, 562);

    /** calculate number of scale factor bands and their offsets
        for every possible block size */
    for (i = 0; i < num_possible_block_sizes; i++) {
        int subframe_len = s->samples_per_frame >> i;
        int x;
        int band = 1;

        s->sfb_offsets[i][0] = 0;

        for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) {
            int offset = (subframe_len * 2 * critical_freq[x])
                          / s->avctx->sample_rate + 2;
            offset &= ~3;
            if (offset > s->sfb_offsets[i][band - 1])
                s->sfb_offsets[i][band++] = offset;
        }
        s->sfb_offsets[i][band - 1] = subframe_len;
        s->num_sfb[i]               = band - 1;
    }


    /** Scale factors can be shared between blocks of different size
        as every block has a different scale factor band layout.
        The matrix sf_offsets is needed to find the correct scale factor.
     */

    for (i = 0; i < num_possible_block_sizes; i++) {
        int b;
        for (b = 0; b < s->num_sfb[i]; b++) {
            int x;
            int offset = ((s->sfb_offsets[i][b]
                           + s->sfb_offsets[i][b + 1] - 1) << i) >> 1;
            for (x = 0; x < num_possible_block_sizes; x++) {
                int v = 0;
                while (s->sfb_offsets[x][v + 1] << x < offset)
                    ++v;
                s->sf_offsets[i][x][b] = v;
            }
        }
    }

    /** init MDCT, FIXME: only init needed sizes */
    for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
        ff_mdct_init(&s->mdct_ctx[i], BLOCK_MIN_BITS+1+i, 1,
                     1.0 / (1 << (BLOCK_MIN_BITS + i - 1))
                     / (1 << (s->bits_per_sample - 1)));

    /** init MDCT windows: simple sinus window */
    for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) {
        const int win_idx = WMAPRO_BLOCK_MAX_BITS - i;
        ff_init_ff_sine_windows(win_idx);
        s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx];
    }

    /** calculate subwoofer cutoff values */
    for (i = 0; i < num_possible_block_sizes; i++) {
        int block_size = s->samples_per_frame >> i;
        int cutoff = (440*block_size + 3 * (s->avctx->sample_rate >> 1) - 1)
                     / s->avctx->sample_rate;
        s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size);
    }

    /** calculate sine values for the decorrelation matrix */
    for (i = 0; i < 33; i++)
        sin64[i] = sin(i*M_PI / 64.0);

    if (avctx->debug & FF_DEBUG_BITSTREAM)
        dump_context(s);

    avctx->channel_layout = channel_mask;
    return 0;
}

/**
 *@brief Decode the subframe length.
 *@param s context
 *@param offset sample offset in the frame
 *@return decoded subframe length on success, < 0 in case of an error
 */
static int decode_subframe_length(WMAProDecodeCtx *s, int offset)
{
    int frame_len_shift = 0;
    int subframe_len;

    /** no need to read from the bitstream when only one length is possible */
    if (offset == s->samples_per_frame - s->min_samples_per_subframe)
        return s->min_samples_per_subframe;

    /** 1 bit indicates if the subframe is of maximum length */
    if (s->max_subframe_len_bit) {
        if (get_bits1(&s->gb))
            frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1);
    } else
        frame_len_shift = get_bits(&s->gb, s->subframe_len_bits);

    subframe_len = s->samples_per_frame >> frame_len_shift;

    /** sanity check the length */
    if (subframe_len < s->min_samples_per_subframe ||
        subframe_len > s->samples_per_frame) {
        av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
               subframe_len);
        return AVERROR_INVALIDDATA;
    }
    return subframe_len;
}

/**
 *@brief Decode how the data in the frame is split into subframes.
 *       Every WMA frame contains the encoded data for a fixed number of
 *       samples per channel. The data for every channel might be split
 *       into several subframes. This function will reconstruct the list of
 *       subframes for every channel.
 *
 *       If the subframes are not evenly split, the algorithm estimates the
 *       channels with the lowest number of total samples.
 *       Afterwards, for each of these channels a bit is read from the
 *       bitstream that indicates if the channel contains a subframe with the
 *       next subframe size that is going to be read from the bitstream or not.
 *       If a channel contains such a subframe, the subframe size gets added to
 *       the channel's subframe list.
 *       The algorithm repeats these steps until the frame is properly divided
 *       between the individual channels.
 *
 *@param s context
 *@return 0 on success, < 0 in case of an error
 */
static int decode_tilehdr(WMAProDecodeCtx *s)
{
    uint16_t num_samples[WMAPRO_MAX_CHANNELS];        /**< sum of samples for all currently known subframes of a channel */
    uint8_t  contains_subframe[WMAPRO_MAX_CHANNELS];  /**< flag indicating if a channel contains the current subframe */
    int channels_for_cur_subframe = s->num_channels;  /**< number of channels that contain the current subframe */
    int fixed_channel_layout = 0;                     /**< flag indicating that all channels use the same subframe offsets and sizes */
    int min_channel_len = 0;                          /**< smallest sum of samples (channels with this length will be processed first) */
    int c;

    /* Should never consume more than 3073 bits (256 iterations for the
     * while loop when always the minimum amount of 128 samples is substracted
     * from missing samples in the 8 channel case).
     * 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS  + 4)
     */

    /** reset tiling information */
    for (c = 0; c < s->num_channels; c++)
        s->channel[c].num_subframes = 0;

    memset(num_samples, 0, sizeof(num_samples));

    if (s->max_num_subframes == 1 || get_bits1(&s->gb))
        fixed_channel_layout = 1;

    /** loop until the frame data is split between the subframes */
    do {
        int subframe_len;

        /** check which channels contain the subframe */
        for (c = 0; c < s->num_channels; c++) {
            if (num_samples[c] == min_channel_len) {
                if (fixed_channel_layout || channels_for_cur_subframe == 1 ||
                   (min_channel_len == s->samples_per_frame - s->min_samples_per_subframe))
                    contains_subframe[c] = 1;
                else
                    contains_subframe[c] = get_bits1(&s->gb);
            } else
                contains_subframe[c] = 0;
        }

        /** get subframe length, subframe_len == 0 is not allowed */
        if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0)
            return AVERROR_INVALIDDATA;

        /** add subframes to the individual channels and find new min_channel_len */
        min_channel_len += subframe_len;
        for (c = 0; c < s->num_channels; c++) {
            WMAProChannelCtx* chan = &s->channel[c];

            if (contains_subframe[c]) {
                if (chan->num_subframes >= MAX_SUBFRAMES) {
                    av_log(s->avctx, AV_LOG_ERROR,
                           "broken frame: num subframes > 31\n");
                    return AVERROR_INVALIDDATA;
                }
                chan->subframe_len[chan->num_subframes] = subframe_len;
                num_samples[c] += subframe_len;
                ++chan->num_subframes;
                if (num_samples[c] > s->samples_per_frame) {
                    av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
                           "channel len > samples_per_frame\n");
                    return AVERROR_INVALIDDATA;
                }
            } else if (num_samples[c] <= min_channel_len) {
                if (num_samples[c] < min_channel_len) {
                    channels_for_cur_subframe = 0;
                    min_channel_len = num_samples[c];
                }
                ++channels_for_cur_subframe;
            }
        }
    } while (min_channel_len < s->samples_per_frame);

    for (c = 0; c < s->num_channels; c++) {
        int i;
        int offset = 0;
        for (i = 0; i < s->channel[c].num_subframes; i++) {
            dprintf(s->avctx, "frame[%i] channel[%i] subframe[%i]"
                    " len %i\n", s->frame_num, c, i,
                    s->channel[c].subframe_len[i]);
            s->channel[c].subframe_offset[i] = offset;
            offset += s->channel[c].subframe_len[i];
        }
    }

    return 0;
}

/**
 *@brief Calculate a decorrelation matrix from the bitstream parameters.
 *@param s codec context
 *@param chgroup channel group for which the matrix needs to be calculated
 */
static void decode_decorrelation_matrix(WMAProDecodeCtx *s,
                                        WMAProChannelGrp *chgroup)
{
    int i;
    int offset = 0;
    int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS];
    memset(chgroup->decorrelation_matrix, 0, s->num_channels *
           s->num_channels * sizeof(*chgroup->decorrelation_matrix));

    for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++)
        rotation_offset[i] = get_bits(&s->gb, 6);

    for (i = 0; i < chgroup->num_channels; i++)
        chgroup->decorrelation_matrix[chgroup->num_channels * i + i] =
            get_bits1(&s->gb) ? 1.0 : -1.0;

    for (i = 1; i < chgroup->num_channels; i++) {
        int x;
        for (x = 0; x < i; x++) {
            int y;
            for (y = 0; y < i + 1; y++) {
                float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y];
                float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y];
                int n = rotation_offset[offset + x];
                float sinv;
                float cosv;

                if (n < 32) {
                    sinv = sin64[n];
                    cosv = sin64[32 - n];
                } else {
                    sinv =  sin64[64 -  n];
                    cosv = -sin64[n  - 32];
                }

                chgroup->decorrelation_matrix[y + x * chgroup->num_channels] =
                                               (v1 * sinv) - (v2 * cosv);
                chgroup->decorrelation_matrix[y + i * chgroup->num_channels] =
                                               (v1 * cosv) + (v2 * sinv);
            }
        }
        offset += i;
    }
}

/**
 *@brief Decode channel transformation parameters
 *@param s codec context
 *@return 0 in case of success, < 0 in case of bitstream errors
 */
static int decode_channel_transform(WMAProDecodeCtx* s)
{
    int i;
    /* should never consume more than 1921 bits for the 8 channel case
     * 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS
     * + MAX_CHANNELS + MAX_BANDS + 1)
     */

    /** in the one channel case channel transforms are pointless */
    s->num_chgroups = 0;
    if (s->num_channels > 1) {
        int remaining_channels = s->channels_for_cur_subframe;

        if (get_bits1(&s->gb)) {
            av_log_ask_for_sample(s->avctx,
                                  "unsupported channel transform bit\n");
            return AVERROR_INVALIDDATA;
        }

        for (s->num_chgroups = 0; remaining_channels &&
             s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) {
            WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups];
            float** channel_data = chgroup->channel_data;
            chgroup->num_channels = 0;
            chgroup->transform = 0;

            /** decode channel mask */
            if (remaining_channels > 2) {
                for (i = 0; i < s->channels_for_cur_subframe; i++) {
                    int channel_idx = s->channel_indexes_for_cur_subframe[i];
                    if (!s->channel[channel_idx].grouped
                        && get_bits1(&s->gb)) {
                        ++chgroup->num_channels;
                        s->channel[channel_idx].grouped = 1;
                        *channel_data++ = s->channel[channel_idx].coeffs;
                    }
                }
            } else {
                chgroup->num_channels = remaining_channels;
                for (i = 0; i < s->channels_for_cur_subframe; i++) {
                    int channel_idx = s->channel_indexes_for_cur_subframe[i];
                    if (!s->channel[channel_idx].grouped)
                        *channel_data++ = s->channel[channel_idx].coeffs;
                    s->channel[channel_idx].grouped = 1;
                }
            }

            /** decode transform type */
            if (chgroup->num_channels == 2) {
                if (get_bits1(&s->gb)) {
                    if (get_bits1(&s->gb)) {
                        av_log_ask_for_sample(s->avctx,
                                              "unsupported channel transform type\n");
                    }
                } else {
                    chgroup->transform = 1;
                    if (s->num_channels == 2) {
                        chgroup->decorrelation_matrix[0] =  1.0;
                        chgroup->decorrelation_matrix[1] = -1.0;
                        chgroup->decorrelation_matrix[2] =  1.0;
                        chgroup->decorrelation_matrix[3] =  1.0;
                    } else {
                        /** cos(pi/4) */
                        chgroup->decorrelation_matrix[0] =  0.70703125;
                        chgroup->decorrelation_matrix[1] = -0.70703125;
                        chgroup->decorrelation_matrix[2] =  0.70703125;
                        chgroup->decorrelation_matrix[3] =  0.70703125;
                    }
                }
            } else if (chgroup->num_channels > 2) {
                if (get_bits1(&s->gb)) {
                    chgroup->transform = 1;
                    if (get_bits1(&s->gb)) {
                        decode_decorrelation_matrix(s, chgroup);
                    } else {
                        /** FIXME: more than 6 coupled channels not supported */
                        if (chgroup->num_channels > 6) {
                            av_log_ask_for_sample(s->avctx,
                                                  "coupled channels > 6\n");
                        } else {
                            memcpy(chgroup->decorrelation_matrix,
                                   default_decorrelation[chgroup->num_channels],
                                   chgroup->num_channels * chgroup->num_channels *
                                   sizeof(*chgroup->decorrelation_matrix));
                        }
                    }
                }
            }

            /** decode transform on / off */
            if (chgroup->transform) {
                if (!get_bits1(&s->gb)) {
                    int i;
                    /** transform can be enabled for individual bands */
                    for (i = 0; i < s->num_bands; i++) {
                        chgroup->transform_band[i] = get_bits1(&s->gb);
                    }
                } else {
                    memset(chgroup->transform_band, 1, s->num_bands);
                }
            }
            remaining_channels -= chgroup->num_channels;
        }
    }
    return 0;
}

/**
 *@brief Extract the coefficients from the bitstream.
 *@param s codec context
 *@param c current channel number
 *@return 0 on success, < 0 in case of bitstream errors
 */
static int decode_coeffs(WMAProDecodeCtx *s, int c)
{
    /* Integers 0..15 as single-precision floats.  The table saves a
       costly int to float conversion, and storing the values as
       integers allows fast sign-flipping. */
    static const int fval_tab[16] = {
        0x00000000, 0x3f800000, 0x40000000, 0x40400000,
        0x40800000, 0x40a00000, 0x40c00000, 0x40e00000,
        0x41000000, 0x41100000, 0x41200000, 0x41300000,
        0x41400000, 0x41500000, 0x41600000, 0x41700000,
    };
    int vlctable;
    VLC* vlc;
    WMAProChannelCtx* ci = &s->channel[c];
    int rl_mode = 0;
    int cur_coeff = 0;
    int num_zeros = 0;
    const uint16_t* run;
    const float* level;

    dprintf(s->avctx, "decode coefficients for channel %i\n", c);

    vlctable = get_bits1(&s->gb);
    vlc = &coef_vlc[vlctable];

    if (vlctable) {
        run = coef1_run;
        level = coef1_level;
    } else {
        run = coef0_run;
        level = coef0_level;
    }

    /** decode vector coefficients (consumes up to 167 bits per iteration for
      4 vector coded large values) */
    while (!rl_mode && cur_coeff + 3 < s->subframe_len) {
        int vals[4];
        int i;
        unsigned int idx;

        idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH);

        if (idx == HUFF_VEC4_SIZE - 1) {
            for (i = 0; i < 4; i += 2) {
                idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH);
                if (idx == HUFF_VEC2_SIZE - 1) {
                    int v0, v1;
                    v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
                    if (v0 == HUFF_VEC1_SIZE - 1)
                        v0 += ff_wma_get_large_val(&s->gb);
                    v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
                    if (v1 == HUFF_VEC1_SIZE - 1)
                        v1 += ff_wma_get_large_val(&s->gb);
                    ((float*)vals)[i  ] = v0;
                    ((float*)vals)[i+1] = v1;
                } else {
                    vals[i]   = fval_tab[symbol_to_vec2[idx] >> 4 ];
                    vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF];
                }
            }
        } else {
            vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12      ];
            vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF];
            vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF];
            vals[3] = fval_tab[ symbol_to_vec4[idx]       & 0xF];
        }

        /** decode sign */
        for (i = 0; i < 4; i++) {
            if (vals[i]) {
                int sign = get_bits1(&s->gb) - 1;
                *(uint32_t*)&ci->coeffs[cur_coeff] = vals[i] ^ sign<<31;
                num_zeros = 0;
            } else {
                ci->coeffs[cur_coeff] = 0;
                /** switch to run level mode when subframe_len / 128 zeros
                    were found in a row */
                rl_mode |= (++num_zeros > s->subframe_len >> 8);
            }
            ++cur_coeff;
        }
    }

    /** decode run level coded coefficients */
    if (rl_mode) {
        memset(&ci->coeffs[cur_coeff], 0,
               sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff));
        if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc,
                                    level, run, 1, ci->coeffs,
                                    cur_coeff, s->subframe_len,
                                    s->subframe_len, s->esc_len, 0))
            return AVERROR_INVALIDDATA;
    }

    return 0;
}

/**
 *@brief Extract scale factors from the bitstream.
 *@param s codec context
 *@return 0 on success, < 0 in case of bitstream errors
 */
static int decode_scale_factors(WMAProDecodeCtx* s)
{
    int i;

    /** should never consume more than 5344 bits
     *  MAX_CHANNELS * (1 +  MAX_BANDS * 23)
     */

    for (i = 0; i < s->channels_for_cur_subframe; i++) {
        int c = s->channel_indexes_for_cur_subframe[i];
        int* sf;
        int* sf_end;
        s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx];
        sf_end = s->channel[c].scale_factors + s->num_bands;

        /** resample scale factors for the new block size
         *  as the scale factors might need to be resampled several times
         *  before some  new values are transmitted, a backup of the last
         *  transmitted scale factors is kept in saved_scale_factors
         */
        if (s->channel[c].reuse_sf) {
            const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx];
            int b;
            for (b = 0; b < s->num_bands; b++)
                s->channel[c].scale_factors[b] =
                    s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++];
        }

        if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) {

            if (!s->channel[c].reuse_sf) {
                int val;
                /** decode DPCM coded scale factors */
                s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1;
                val = 45 / s->channel[c].scale_factor_step;
                for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) {
                    val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60;
                    *sf = val;
                }
            } else {
                int i;
                /** run level decode differences to the resampled factors */
                for (i = 0; i < s->num_bands; i++) {
                    int idx;
                    int skip;
                    int val;
                    int sign;

                    idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH);

                    if (!idx) {
                        uint32_t code = get_bits(&s->gb, 14);
                        val  =  code >> 6;
                        sign = (code & 1) - 1;
                        skip = (code & 0x3f) >> 1;
                    } else if (idx == 1) {
                        break;
                    } else {
                        skip = scale_rl_run[idx];
                        val  = scale_rl_level[idx];
                        sign = get_bits1(&s->gb)-1;
                    }

                    i += skip;
                    if (i >= s->num_bands) {
                        av_log(s->avctx, AV_LOG_ERROR,
                               "invalid scale factor coding\n");
                        return AVERROR_INVALIDDATA;
                    }
                    s->channel[c].scale_factors[i] += (val ^ sign) - sign;
                }
            }
            /** swap buffers */
            s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx;
            s->channel[c].table_idx = s->table_idx;
            s->channel[c].reuse_sf  = 1;
        }

        /** calculate new scale factor maximum */
        s->channel[c].max_scale_factor = s->channel[c].scale_factors[0];
        for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) {
            s->channel[c].max_scale_factor =
                FFMAX(s->channel[c].max_scale_factor, *sf);
        }

    }
    return 0;
}

/**
 *@brief Reconstruct the individual channel data.
 *@param s codec context
 */
static void inverse_channel_transform(WMAProDecodeCtx *s)
{
    int i;

    for (i = 0; i < s->num_chgroups; i++) {
        if (s->chgroup[i].transform) {
            float data[WMAPRO_MAX_CHANNELS];
            const int num_channels = s->chgroup[i].num_channels;
            float** ch_data = s->chgroup[i].channel_data;
            float** ch_end = ch_data + num_channels;
            const int8_t* tb = s->chgroup[i].transform_band;
            int16_t* sfb;

            /** multichannel decorrelation */
            for (sfb = s->cur_sfb_offsets;
                 sfb < s->cur_sfb_offsets + s->num_bands; sfb++) {
                int y;
                if (*tb++ == 1) {
                    /** multiply values with the decorrelation_matrix */
                    for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) {
                        const float* mat = s->chgroup[i].decorrelation_matrix;
                        const float* data_end = data + num_channels;
                        float* data_ptr = data;
                        float** ch;

                        for (ch = ch_data; ch < ch_end; ch++)
                            *data_ptr++ = (*ch)[y];

                        for (ch = ch_data; ch < ch_end; ch++) {
                            float sum = 0;
                            data_ptr = data;
                            while (data_ptr < data_end)
                                sum += *data_ptr++ * *mat++;

                            (*ch)[y] = sum;
                        }
                    }
                } else if (s->num_channels == 2) {
                    int len = FFMIN(sfb[1], s->subframe_len) - sfb[0];
                    s->dsp.vector_fmul_scalar(ch_data[0] + sfb[0],
                                              ch_data[0] + sfb[0],
                                              181.0 / 128, len);
                    s->dsp.vector_fmul_scalar(ch_data[1] + sfb[0],
                                              ch_data[1] + sfb[0],
                                              181.0 / 128, len);
                }
            }
        }
    }
}

/**
 *@brief Apply sine window and reconstruct the output buffer.
 *@param s codec context
 */
static void wmapro_window(WMAProDecodeCtx *s)
{
    int i;
    for (i = 0; i < s->channels_for_cur_subframe; i++) {
        int c = s->channel_indexes_for_cur_subframe[i];
        float* window;
        int winlen = s->channel[c].prev_block_len;
        float* start = s->channel[c].coeffs - (winlen >> 1);

        if (s->subframe_len < winlen) {
            start += (winlen - s->subframe_len) >> 1;
            winlen = s->subframe_len;
        }

        window = s->windows[av_log2(winlen) - BLOCK_MIN_BITS];

        winlen >>= 1;

        s->dsp.vector_fmul_window(start, start, start + winlen,
                                  window, 0, winlen);

        s->channel[c].prev_block_len = s->subframe_len;
    }
}

/**
 *@brief Decode a single subframe (block).
 *@param s codec context
 *@return 0 on success, < 0 when decoding failed
 */
static int decode_subframe(WMAProDecodeCtx *s)
{
    int offset = s->samples_per_frame;
    int subframe_len = s->samples_per_frame;
    int i;
    int total_samples   = s->samples_per_frame * s->num_channels;
    int transmit_coeffs = 0;
    int cur_subwoofer_cutoff;

    s->subframe_offset = get_bits_count(&s->gb);

    /** reset channel context and find the next block offset and size
        == the next block of the channel with the smallest number of
        decoded samples
    */
    for (i = 0; i < s->num_channels; i++) {
        s->channel[i].grouped = 0;
        if (offset > s->channel[i].decoded_samples) {
            offset = s->channel[i].decoded_samples;
            subframe_len =
                s->channel[i].subframe_len[s->channel[i].cur_subframe];
        }
    }

    dprintf(s->avctx,
            "processing subframe with offset %i len %i\n", offset, subframe_len);

    /** get a list of all channels that contain the estimated block */
    s->channels_for_cur_subframe = 0;
    for (i = 0; i < s->num_channels; i++) {
        const int cur_subframe = s->channel[i].cur_subframe;
        /** substract already processed samples */
        total_samples -= s->channel[i].decoded_samples;

        /** and count if there are multiple subframes that match our profile */
        if (offset == s->channel[i].decoded_samples &&
            subframe_len == s->channel[i].subframe_len[cur_subframe]) {
            total_samples -= s->channel[i].subframe_len[cur_subframe];
            s->channel[i].decoded_samples +=
                s->channel[i].subframe_len[cur_subframe];
            s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i;
            ++s->channels_for_cur_subframe;
        }
    }

    /** check if the frame will be complete after processing the
        estimated block */
    if (!total_samples)
        s->parsed_all_subframes = 1;


    dprintf(s->avctx, "subframe is part of %i channels\n",
            s->channels_for_cur_subframe);

    /** calculate number of scale factor bands and their offsets */
    s->table_idx         = av_log2(s->samples_per_frame/subframe_len);
    s->num_bands         = s->num_sfb[s->table_idx];
    s->cur_sfb_offsets   = s->sfb_offsets[s->table_idx];
    cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx];

    /** configure the decoder for the current subframe */
    for (i = 0; i < s->channels_for_cur_subframe; i++) {
        int c = s->channel_indexes_for_cur_subframe[i];

        s->channel[c].coeffs = &s->channel[c].out[(s->samples_per_frame >> 1)
                                                  + offset];
    }

    s->subframe_len = subframe_len;
    s->esc_len = av_log2(s->subframe_len - 1) + 1;

    /** skip extended header if any */
    if (get_bits1(&s->gb)) {
        int num_fill_bits;
        if (!(num_fill_bits = get_bits(&s->gb, 2))) {
            int len = get_bits(&s->gb, 4);
            num_fill_bits = get_bits(&s->gb, len) + 1;
        }

        if (num_fill_bits >= 0) {
            if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) {
                av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n");
                return AVERROR_INVALIDDATA;
            }

            skip_bits_long(&s->gb, num_fill_bits);
        }
    }

    /** no idea for what the following bit is used */
    if (get_bits1(&s->gb)) {
        av_log_ask_for_sample(s->avctx, "reserved bit set\n");
        return AVERROR_INVALIDDATA;
    }


    if (decode_channel_transform(s) < 0)
        return AVERROR_INVALIDDATA;


    for (i = 0; i < s->channels_for_cur_subframe; i++) {
        int c = s->channel_indexes_for_cur_subframe[i];
        if ((s->channel[c].transmit_coefs = get_bits1(&s->gb)))
            transmit_coeffs = 1;
    }

    if (transmit_coeffs) {
        int step;
        int quant_step = 90 * s->bits_per_sample >> 4;
        if ((get_bits1(&s->gb))) {
            /** FIXME: might change run level mode decision */
            av_log_ask_for_sample(s->avctx, "unsupported quant step coding\n");
            return AVERROR_INVALIDDATA;
        }
        /** decode quantization step */
        step = get_sbits(&s->gb, 6);
        quant_step += step;
        if (step == -32 || step == 31) {
            const int sign = (step == 31) - 1;
            int quant = 0;
            while (get_bits_count(&s->gb) + 5 < s->num_saved_bits &&
                   (step = get_bits(&s->gb, 5)) == 31) {
                quant += 31;
            }
            quant_step += ((quant + step) ^ sign) - sign;
        }
        if (quant_step < 0) {
            av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n");
        }

        /** decode quantization step modifiers for every channel */

        if (s->channels_for_cur_subframe == 1) {
            s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step;
        } else {
            int modifier_len = get_bits(&s->gb, 3);
            for (i = 0; i < s->channels_for_cur_subframe; i++) {
                int c = s->channel_indexes_for_cur_subframe[i];
                s->channel[c].quant_step = quant_step;
                if (get_bits1(&s->gb)) {
                    if (modifier_len) {
                        s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1;
                    } else
                        ++s->channel[c].quant_step;
                }
            }
        }

        /** decode scale factors */
        if (decode_scale_factors(s) < 0)
            return AVERROR_INVALIDDATA;
    }

    dprintf(s->avctx, "BITSTREAM: subframe header length was %i\n",
            get_bits_count(&s->gb) - s->subframe_offset);

    /** parse coefficients */
    for (i = 0; i < s->channels_for_cur_subframe; i++) {
        int c = s->channel_indexes_for_cur_subframe[i];
        if (s->channel[c].transmit_coefs &&
            get_bits_count(&s->gb) < s->num_saved_bits) {
            decode_coeffs(s, c);
        } else
            memset(s->channel[c].coeffs, 0,
                   sizeof(*s->channel[c].coeffs) * subframe_len);
    }

    dprintf(s->avctx, "BITSTREAM: subframe length was %i\n",
            get_bits_count(&s->gb) - s->subframe_offset);

    if (transmit_coeffs) {
        /** reconstruct the per channel data */
        inverse_channel_transform(s);
        for (i = 0; i < s->channels_for_cur_subframe; i++) {
            int c = s->channel_indexes_for_cur_subframe[i];
            const int* sf = s->channel[c].scale_factors;
            int b;

            if (c == s->lfe_channel)
                memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) *
                       (subframe_len - cur_subwoofer_cutoff));

            /** inverse quantization and rescaling */
            for (b = 0; b < s->num_bands; b++) {
                const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len);
                const int exp = s->channel[c].quant_step -
                            (s->channel[c].max_scale_factor - *sf++) *
                            s->channel[c].scale_factor_step;
                const float quant = pow(10.0, exp / 20.0);
                int start = s->cur_sfb_offsets[b];
                s->dsp.vector_fmul_scalar(s->tmp + start,
                                          s->channel[c].coeffs + start,
                                          quant, end - start);
            }

            /** apply imdct (ff_imdct_half == DCTIV with reverse) */
            ff_imdct_half(&s->mdct_ctx[av_log2(subframe_len) - BLOCK_MIN_BITS],
                          s->channel[c].coeffs, s->tmp);
        }
    }

    /** window and overlapp-add */
    wmapro_window(s);

    /** handled one subframe */
    for (i = 0; i < s->channels_for_cur_subframe; i++) {
        int c = s->channel_indexes_for_cur_subframe[i];
        if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
            av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
            return AVERROR_INVALIDDATA;
        }
        ++s->channel[c].cur_subframe;
    }

    return 0;
}

/**
 *@brief Decode one WMA frame.
 *@param s codec context
 *@return 0 if the trailer bit indicates that this is the last frame,
 *        1 if there are additional frames
 */
static int decode_frame(WMAProDecodeCtx *s)
{
    GetBitContext* gb = &s->gb;
    int more_frames = 0;
    int len = 0;
    int i;

    /** check for potential output buffer overflow */
    if (s->num_channels * s->samples_per_frame > s->samples_end - s->samples) {
        /** return an error if no frame could be decoded at all */
        av_log(s->avctx, AV_LOG_ERROR,
               "not enough space for the output samples\n");
        s->packet_loss = 1;
        return 0;
    }

    /** get frame length */
    if (s->len_prefix)
        len = get_bits(gb, s->log2_frame_size);

    dprintf(s->avctx, "decoding frame with length %x\n", len);

    /** decode tile information */
    if (decode_tilehdr(s)) {
        s->packet_loss = 1;
        return 0;
    }

    /** read postproc transform */
    if (s->num_channels > 1 && get_bits1(gb)) {
        av_log_ask_for_sample(s->avctx, "Unsupported postproc transform found\n");
        s->packet_loss = 1;
        return 0;
    }

    /** read drc info */
    if (s->dynamic_range_compression) {
        s->drc_gain = get_bits(gb, 8);
        dprintf(s->avctx, "drc_gain %i\n", s->drc_gain);
    }

    /** no idea what these are for, might be the number of samples
        that need to be skipped at the beginning or end of a stream */
    if (get_bits1(gb)) {
        int skip;

        /** usually true for the first frame */
        if (get_bits1(gb)) {
            skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
            dprintf(s->avctx, "start skip: %i\n", skip);
        }

        /** sometimes true for the last frame */
        if (get_bits1(gb)) {
            skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
            dprintf(s->avctx, "end skip: %i\n", skip);
        }

    }

    dprintf(s->avctx, "BITSTREAM: frame header length was %i\n",
            get_bits_count(gb) - s->frame_offset);

    /** reset subframe states */
    s->parsed_all_subframes = 0;
    for (i = 0; i < s->num_channels; i++) {
        s->channel[i].decoded_samples = 0;
        s->channel[i].cur_subframe    = 0;
        s->channel[i].reuse_sf        = 0;
    }

    /** decode all subframes */
    while (!s->parsed_all_subframes) {
        if (decode_subframe(s) < 0) {
            s->packet_loss = 1;
            return 0;
        }
    }

    /** interleave samples and write them to the output buffer */
    for (i = 0; i < s->num_channels; i++) {
        float* ptr  = s->samples + i;
        int incr = s->num_channels;
        float* iptr = s->channel[i].out;
        float* iend = iptr + s->samples_per_frame;

        // FIXME should create/use a DSP function here
        while (iptr < iend) {
            *ptr = *iptr++;
            ptr += incr;
        }

        /** reuse second half of the IMDCT output for the next frame */
        memcpy(&s->channel[i].out[0],
               &s->channel[i].out[s->samples_per_frame],
               s->samples_per_frame * sizeof(*s->channel[i].out) >> 1);
    }

    if (s->skip_frame) {
        s->skip_frame = 0;
    } else
        s->samples += s->num_channels * s->samples_per_frame;

    if (len != (get_bits_count(gb) - s->frame_offset) + 2) {
        /** FIXME: not sure if this is always an error */
        av_log(s->avctx, AV_LOG_ERROR, "frame[%i] would have to skip %i bits\n",
               s->frame_num, len - (get_bits_count(gb) - s->frame_offset) - 1);
        s->packet_loss = 1;
        return 0;
    }

    /** skip the rest of the frame data */
    skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1);

    /** decode trailer bit */
    more_frames = get_bits1(gb);

    ++s->frame_num;
    return more_frames;
}

/**
 *@brief Calculate remaining input buffer length.
 *@param s codec context
 *@param gb bitstream reader context
 *@return remaining size in bits
 */
static int remaining_bits(WMAProDecodeCtx *s, GetBitContext *gb)
{
    return s->buf_bit_size - get_bits_count(gb);
}

/**
 *@brief Fill the bit reservoir with a (partial) frame.
 *@param s codec context
 *@param gb bitstream reader context
 *@param len length of the partial frame
 *@param append decides wether to reset the buffer or not
 */
static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len,
                      int append)
{
    int buflen;

    /** when the frame data does not need to be concatenated, the input buffer
        is resetted and additional bits from the previous frame are copyed
        and skipped later so that a fast byte copy is possible */

    if (!append) {
        s->frame_offset = get_bits_count(gb) & 7;
        s->num_saved_bits = s->frame_offset;
        init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
    }

    buflen = (s->num_saved_bits + len + 8) >> 3;

    if (len <= 0 || buflen > MAX_FRAMESIZE) {
        av_log_ask_for_sample(s->avctx, "input buffer too small\n");
        s->packet_loss = 1;
        return;
    }

    s->num_saved_bits += len;
    if (!append) {
        ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3),
                     s->num_saved_bits);
    } else {
        int align = 8 - (get_bits_count(gb) & 7);
        align = FFMIN(align, len);
        put_bits(&s->pb, align, get_bits(gb, align));
        len -= align;
        ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len);
    }
    skip_bits_long(gb, len);

    {
        PutBitContext tmp = s->pb;
        flush_put_bits(&tmp);
    }

    init_get_bits(&s->gb, s->frame_data, s->num_saved_bits);
    skip_bits(&s->gb, s->frame_offset);
}

/**
 *@brief Decode a single WMA packet.
 *@param avctx codec context
 *@param data the output buffer
 *@param data_size number of bytes that were written to the output buffer
 *@param avpkt input packet
 *@return number of bytes that were read from the input buffer
 */
static int decode_packet(AVCodecContext *avctx,
                         void *data, int *data_size, AVPacket* avpkt)
{
    WMAProDecodeCtx *s = avctx->priv_data;
    GetBitContext* gb  = &s->pgb;
    const uint8_t* buf = avpkt->data;
    int buf_size       = avpkt->size;
    int num_bits_prev_frame;
    int packet_sequence_number;

    s->samples       = data;
    s->samples_end   = (float*)((int8_t*)data + *data_size);
    *data_size = 0;

    if (s->packet_done || s->packet_loss) {
        s->packet_done = 0;
        s->buf_bit_size = buf_size << 3;

        /** sanity check for the buffer length */
        if (buf_size < avctx->block_align)
            return 0;

        buf_size = avctx->block_align;

        /** parse packet header */
        init_get_bits(gb, buf, s->buf_bit_size);
        packet_sequence_number = get_bits(gb, 4);
        skip_bits(gb, 2);

        /** get number of bits that need to be added to the previous frame */
        num_bits_prev_frame = get_bits(gb, s->log2_frame_size);
        dprintf(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number,
                num_bits_prev_frame);

        /** check for packet loss */
        if (!s->packet_loss &&
            ((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) {
            s->packet_loss = 1;
            av_log(avctx, AV_LOG_ERROR, "Packet loss detected! seq %x vs %x\n",
                   s->packet_sequence_number, packet_sequence_number);
        }
        s->packet_sequence_number = packet_sequence_number;

        if (num_bits_prev_frame > 0) {
            /** append the previous frame data to the remaining data from the
                previous packet to create a full frame */
            save_bits(s, gb, num_bits_prev_frame, 1);
            dprintf(avctx, "accumulated %x bits of frame data\n",
                    s->num_saved_bits - s->frame_offset);

            /** decode the cross packet frame if it is valid */
            if (!s->packet_loss)
                decode_frame(s);
        } else if (s->num_saved_bits - s->frame_offset) {
            dprintf(avctx, "ignoring %x previously saved bits\n",
                    s->num_saved_bits - s->frame_offset);
        }

        s->packet_loss = 0;

    } else {
        int frame_size;
        s->buf_bit_size = avpkt->size << 3;
        init_get_bits(gb, avpkt->data, s->buf_bit_size);
        skip_bits(gb, s->packet_offset);
        if (remaining_bits(s, gb) > s->log2_frame_size &&
            (frame_size = show_bits(gb, s->log2_frame_size)) &&
            frame_size <= remaining_bits(s, gb)) {
            save_bits(s, gb, frame_size, 0);
            s->packet_done = !decode_frame(s);
        } else
            s->packet_done = 1;
    }

    if (s->packet_done && !s->packet_loss &&
        remaining_bits(s, gb) > 0) {
        /** save the rest of the data so that it can be decoded
            with the next packet */
        save_bits(s, gb, remaining_bits(s, gb), 0);
    }

    *data_size = (int8_t *)s->samples - (int8_t *)data;
    s->packet_offset = get_bits_count(gb) & 7;

    return (s->packet_loss) ? AVERROR_INVALIDDATA : get_bits_count(gb) >> 3;
}

/**
 *@brief Clear decoder buffers (for seeking).
 *@param avctx codec context
 */
static void flush(AVCodecContext *avctx)
{
    WMAProDecodeCtx *s = avctx->priv_data;
    int i;
    /** reset output buffer as a part of it is used during the windowing of a
        new frame */
    for (i = 0; i < s->num_channels; i++)
        memset(s->channel[i].out, 0, s->samples_per_frame *
               sizeof(*s->channel[i].out));
    s->packet_loss = 1;
}


/**
 *@brief wmapro decoder
 */
AVCodec wmapro_decoder = {
    "wmapro",
    AVMEDIA_TYPE_AUDIO,
    CODEC_ID_WMAPRO,
    sizeof(WMAProDecodeCtx),
    decode_init,
    NULL,
    decode_end,
    decode_packet,
    .capabilities = CODEC_CAP_SUBFRAMES,
    .flush= flush,
    .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"),
};