1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
|
/*
* DCA XLL extension
*
* Copyright (C) 2012 Paul B Mahol
* Copyright (C) 2014 Niels Möller
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/attributes.h"
#include "libavutil/common.h"
#include "libavutil/internal.h"
#include "avcodec.h"
#include "dca.h"
#include "dcadata.h"
#include "get_bits.h"
#include "unary.h"
/* Sign as bit 0 */
static inline int get_bits_sm(GetBitContext *s, unsigned n)
{
int x = get_bits(s, n);
if (x & 1)
return -(x >> 1) - 1;
else
return x >> 1;
}
/* Return -1 on error. */
static int32_t get_dmix_coeff(DCAContext *s, int inverse)
{
unsigned code = get_bits(&s->gb, 9);
int32_t sign = (int32_t) (code >> 8) - 1;
unsigned idx = code & 0xff;
int inv_offset = FF_DCA_DMIXTABLE_SIZE -FF_DCA_INV_DMIXTABLE_SIZE;
if (idx >= FF_DCA_DMIXTABLE_SIZE) {
av_log(s->avctx, AV_LOG_ERROR,
"XLL: Invalid channel set downmix code %x\n", code);
return -1;
} else if (!inverse) {
return (ff_dca_dmixtable[idx] ^ sign) - sign;
} else if (idx < inv_offset) {
av_log(s->avctx, AV_LOG_ERROR,
"XLL: Invalid channel set inverse downmix code %x\n", code);
return -1;
} else {
return (ff_dca_inv_dmixtable[idx - inv_offset] ^ sign) - sign;
}
}
static int32_t dca_get_dmix_coeff(DCAContext *s)
{
return get_dmix_coeff(s, 0);
}
static int32_t dca_get_inv_dmix_coeff(DCAContext *s)
{
return get_dmix_coeff(s, 1);
}
/* parse XLL header */
int ff_dca_xll_decode_header(DCAContext *s)
{
int hdr_pos, hdr_size;
av_unused int version, frame_size;
int i, chset_index;
/* get bit position of sync header */
hdr_pos = get_bits_count(&s->gb) - 32;
version = get_bits(&s->gb, 4) + 1;
hdr_size = get_bits(&s->gb, 8) + 1;
frame_size = get_bits_long(&s->gb, get_bits(&s->gb, 5) + 1) + 1;
s->xll_channels =
s->xll_residual_channels = 0;
s->xll_nch_sets = get_bits(&s->gb, 4) + 1;
s->xll_segments = 1 << get_bits(&s->gb, 4);
s->xll_log_smpl_in_seg = get_bits(&s->gb, 4);
s->xll_smpl_in_seg = 1 << s->xll_log_smpl_in_seg;
s->xll_bits4seg_size = get_bits(&s->gb, 5) + 1;
s->xll_banddata_crc = get_bits(&s->gb, 2);
s->xll_scalable_lsb = get_bits1(&s->gb);
s->xll_bits4ch_mask = get_bits(&s->gb, 5) + 1;
if (s->xll_scalable_lsb) {
s->xll_fixed_lsb_width = get_bits(&s->gb, 4);
if (s->xll_fixed_lsb_width)
av_log(s->avctx, AV_LOG_WARNING,
"XLL: fixed lsb width = %d, non-zero not supported.\n",
s->xll_fixed_lsb_width);
}
/* skip to the end of the common header */
i = get_bits_count(&s->gb);
if (hdr_pos + hdr_size * 8 > i)
skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
for (chset_index = 0; chset_index < s->xll_nch_sets; chset_index++) {
XllChSetSubHeader *chset = &s->xll_chsets[chset_index];
hdr_pos = get_bits_count(&s->gb);
hdr_size = get_bits(&s->gb, 10) + 1;
chset->channels = get_bits(&s->gb, 4) + 1;
chset->residual_encode = get_bits(&s->gb, chset->channels);
chset->bit_resolution = get_bits(&s->gb, 5) + 1;
chset->bit_width = get_bits(&s->gb, 5) + 1;
chset->sampling_frequency = ff_dca_sampling_freqs[get_bits(&s->gb, 4)];
chset->samp_freq_interp = get_bits(&s->gb, 2);
chset->replacement_set = get_bits(&s->gb, 2);
if (chset->replacement_set)
chset->active_replace_set = get_bits(&s->gb, 1);
if (s->one2one_map_chtospkr) {
chset->primary_ch_set = get_bits(&s->gb, 1);
chset->downmix_coeff_code_embedded = get_bits(&s->gb, 1);
if (chset->downmix_coeff_code_embedded) {
chset->downmix_embedded = get_bits(&s->gb, 1);
if (chset->primary_ch_set) {
chset->downmix_type = get_bits(&s->gb, 3);
if (chset->downmix_type > 6) {
av_log(s->avctx, AV_LOG_ERROR,
"XLL: Invalid channel set downmix type\n");
return AVERROR_INVALIDDATA;
}
}
}
chset->hier_chset = get_bits(&s->gb, 1);
if (chset->downmix_coeff_code_embedded) {
/* nDownmixCoeffs is specified as N * M. For a primary
* channel set, it appears that N = number of
* channels, and M is the number of downmix channels.
*
* For a non-primary channel set, N is specified as
* number of channels + 1, and M is derived from the
* channel set hierarchy, and at least in simple cases
* M is the number of channels in preceding channel
* sets. */
if (chset->primary_ch_set) {
static const char dmix_table[7] = { 1, 2, 2, 3, 3, 4, 4 };
chset->downmix_ncoeffs = chset->channels * dmix_table[chset->downmix_type];
} else
chset->downmix_ncoeffs = (chset->channels + 1) * s->xll_channels;
if (chset->downmix_ncoeffs > DCA_XLL_DMIX_NCOEFFS_MAX) {
avpriv_request_sample(s->avctx,
"XLL: More than %d downmix coefficients",
DCA_XLL_DMIX_NCOEFFS_MAX);
return AVERROR_PATCHWELCOME;
} else if (chset->primary_ch_set) {
for (i = 0; i < chset->downmix_ncoeffs; i++)
if ((chset->downmix_coeffs[i] = dca_get_dmix_coeff(s)) == -1)
return AVERROR_INVALIDDATA;
} else {
unsigned c, r;
for (c = 0, i = 0; c < s->xll_channels; c++, i += chset->channels + 1) {
if ((chset->downmix_coeffs[i] = dca_get_inv_dmix_coeff(s)) == -1)
return AVERROR_INVALIDDATA;
for (r = 1; r <= chset->channels; r++) {
int32_t coeff = dca_get_dmix_coeff(s);
if (coeff == -1)
return AVERROR_INVALIDDATA;
chset->downmix_coeffs[i + r] =
(chset->downmix_coeffs[i] * (int64_t) coeff + (1 << 15)) >> 16;
}
}
}
}
chset->ch_mask_enabled = get_bits(&s->gb, 1);
if (chset->ch_mask_enabled)
chset->ch_mask = get_bits(&s->gb, s->xll_bits4ch_mask);
else
/* Skip speaker configuration bits */
skip_bits_long(&s->gb, 25 * chset->channels);
} else {
chset->primary_ch_set = 1;
chset->downmix_coeff_code_embedded = 0;
/* Spec: NumChHierChSet = 0, NumDwnMixCodeCoeffs = 0, whatever that means. */
chset->mapping_coeffs_present = get_bits(&s->gb, 1);
if (chset->mapping_coeffs_present) {
avpriv_report_missing_feature(s->avctx, "XLL: mapping coefficients");
return AVERROR_PATCHWELCOME;
}
}
if (chset->sampling_frequency > 96000)
chset->num_freq_bands = 2 * (1 + get_bits(&s->gb, 1));
else
chset->num_freq_bands = 1;
if (chset->num_freq_bands > 1) {
avpriv_report_missing_feature(s->avctx, "XLL: num_freq_bands > 1");
return AVERROR_PATCHWELCOME;
}
if (get_bits(&s->gb, 1)) { /* pw_ch_decor_enabled */
int bits = av_ceil_log2(chset->channels);
for (i = 0; i < chset->channels; i++) {
unsigned j = get_bits(&s->gb, bits);
if (j >= chset->channels) {
av_log(s->avctx, AV_LOG_ERROR,
"Original channel order value %u too large, only %d channels.\n",
j, chset->channels);
return AVERROR_INVALIDDATA;
}
chset->orig_chan_order[0][i] = j;
chset->orig_chan_order_inv[0][j] = i;
}
for (i = 0; i < chset->channels / 2; i++) {
if (get_bits(&s->gb, 1)) /* bChPFlag */
chset->pw_ch_pairs_coeffs[0][i] = get_bits_sm(&s->gb, 7);
else
chset->pw_ch_pairs_coeffs[0][i] = 0;
}
} else {
for (i = 0; i < chset->channels; i++)
chset->orig_chan_order[0][i] =
chset->orig_chan_order_inv[0][i] = i;
for (i = 0; i < chset->channels / 2; i++)
chset->pw_ch_pairs_coeffs[0][i] = 0;
}
/* Adaptive prediction order */
chset->adapt_order_max[0] = 0;
for (i = 0; i < chset->channels; i++) {
chset->adapt_order[0][i] = get_bits(&s->gb, 4);
if (chset->adapt_order_max[0] < chset->adapt_order[0][i])
chset->adapt_order_max[0] = chset->adapt_order[0][i];
}
/* Fixed prediction order, used in case the adaptive order
* above is zero */
for (i = 0; i < chset->channels; i++)
chset->fixed_order[0][i] =
chset->adapt_order[0][i] ? 0 : get_bits(&s->gb, 2);
for (i = 0; i < chset->channels; i++) {
unsigned j;
for (j = 0; j < chset->adapt_order[0][i]; j++)
chset->lpc_refl_coeffs_q_ind[0][i][j] = get_bits(&s->gb, 8);
}
if (s->xll_scalable_lsb) {
chset->lsb_fsize[0] = get_bits(&s->gb, s->xll_bits4seg_size);
for (i = 0; i < chset->channels; i++)
chset->scalable_lsbs[0][i] = get_bits(&s->gb, 4);
for (i = 0; i < chset->channels; i++)
chset->bit_width_adj_per_ch[0][i] = get_bits(&s->gb, 4);
} else {
memset(chset->scalable_lsbs[0], 0,
chset->channels * sizeof(chset->scalable_lsbs[0][0]));
memset(chset->bit_width_adj_per_ch[0], 0,
chset->channels * sizeof(chset->bit_width_adj_per_ch[0][0]));
}
s->xll_channels += chset->channels;
s->xll_residual_channels += chset->channels -
av_popcount(chset->residual_encode);
/* FIXME: Parse header data for extra frequency bands. */
/* Skip to end of channel set sub header. */
i = get_bits_count(&s->gb);
if (hdr_pos + 8 * hdr_size < i) {
av_log(s->avctx, AV_LOG_ERROR,
"chset header too large, %d bits, should be <= %d bits\n",
i - hdr_pos, 8 * hdr_size);
return AVERROR_INVALIDDATA;
}
if (hdr_pos + 8 * hdr_size > i)
skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i);
}
return 0;
}
/* parse XLL navigation table */
int ff_dca_xll_decode_navi(DCAContext *s, int asset_end)
{
int nbands, band, chset, seg, data_start;
/* FIXME: Supports only a single frequency band */
nbands = 1;
for (band = 0; band < nbands; band++) {
s->xll_navi.band_size[band] = 0;
for (seg = 0; seg < s->xll_segments; seg++) {
/* Note: The spec, ETSI TS 102 114 V1.4.1 (2012-09), says
* we should read a base value for segment_size from the
* stream, before reading the sizes of the channel sets.
* But that's apparently incorrect. */
s->xll_navi.segment_size[band][seg] = 0;
for (chset = 0; chset < s->xll_nch_sets; chset++)
if (band < s->xll_chsets[chset].num_freq_bands) {
s->xll_navi.chset_size[band][seg][chset] =
get_bits(&s->gb, s->xll_bits4seg_size) + 1;
s->xll_navi.segment_size[band][seg] +=
s->xll_navi.chset_size[band][seg][chset];
}
s->xll_navi.band_size[band] += s->xll_navi.segment_size[band][seg];
}
}
/* Align to 8 bits and skip 16-bit CRC. */
skip_bits_long(&s->gb, 16 + ((-get_bits_count(&s->gb)) & 7));
data_start = get_bits_count(&s->gb);
if (data_start + 8 * s->xll_navi.band_size[0] > asset_end) {
av_log(s->avctx, AV_LOG_ERROR,
"XLL: Data in NAVI table exceeds containing asset\n"
"start: %d (bit), size %u (bytes), end %d (bit), error %u\n",
data_start, s->xll_navi.band_size[0], asset_end,
data_start + 8 * s->xll_navi.band_size[0] - asset_end);
return AVERROR_INVALIDDATA;
}
init_get_bits(&s->xll_navi.gb, s->gb.buffer + data_start / 8,
8 * s->xll_navi.band_size[0]);
return 0;
}
static void dca_xll_inv_adapt_pred(int *samples, int nsamples, unsigned order,
const int *prev, const uint8_t *q_ind)
{
static const uint16_t table[0x81] = {
0, 3070, 5110, 7140, 9156, 11154, 13132, 15085,
17010, 18904, 20764, 22588, 24373, 26117, 27818, 29474,
31085, 32648, 34164, 35631, 37049, 38418, 39738, 41008,
42230, 43404, 44530, 45609, 46642, 47630, 48575, 49477,
50337, 51157, 51937, 52681, 53387, 54059, 54697, 55302,
55876, 56421, 56937, 57426, 57888, 58326, 58741, 59132,
59502, 59852, 60182, 60494, 60789, 61066, 61328, 61576,
61809, 62029, 62236, 62431, 62615, 62788, 62951, 63105,
63250, 63386, 63514, 63635, 63749, 63855, 63956, 64051,
64140, 64224, 64302, 64376, 64446, 64512, 64573, 64631,
64686, 64737, 64785, 64830, 64873, 64913, 64950, 64986,
65019, 65050, 65079, 65107, 65133, 65157, 65180, 65202,
65222, 65241, 65259, 65275, 65291, 65306, 65320, 65333,
65345, 65357, 65368, 65378, 65387, 65396, 65405, 65413,
65420, 65427, 65434, 65440, 65446, 65451, 65456, 65461,
65466, 65470, 65474, 65478, 65481, 65485, 65488, 65491,
65535, /* Final value is for the -128 corner case, see below. */
};
int c[DCA_XLL_AORDER_MAX];
int64_t s;
unsigned i, j;
for (i = 0; i < order; i++) {
if (q_ind[i] & 1)
/* The index value 0xff corresponds to a lookup of entry 0x80 in
* the table, and no value is provided in the specification. */
c[i] = -table[(q_ind[i] >> 1) + 1];
else
c[i] = table[q_ind[i] >> 1];
}
/* The description in the spec is a bit convoluted. We can convert
* the reflected values to direct values in place, using a
* sequence of reflections operating on two values. */
for (i = 1; i < order; i++) {
/* i = 1: scale c[0]
* i = 2: reflect c[0] <-> c[1]
* i = 3: scale c[1], reflect c[0] <-> c[2]
* i = 4: reflect c[0] <-> c[3] reflect c[1] <-> c[2]
* ... */
if (i & 1)
c[i / 2] += ((int64_t) c[i] * c[i / 2] + 0x8000) >> 16;
for (j = 0; j < i / 2; j++) {
int r0 = c[j];
int r1 = c[i - j - 1];
c[j] += ((int64_t) c[i] * r1 + 0x8000) >> 16;
c[i - j - 1] += ((int64_t) c[i] * r0 + 0x8000) >> 16;
}
}
/* Apply predictor. */
/* NOTE: Processing samples in this order means that the
* predictor is applied to the newly reconstructed samples. */
if (prev) {
for (i = 0; i < order; i++) {
for (j = s = 0; j < i; j++)
s += (int64_t) c[j] * samples[i - 1 - j];
for (; j < order; j++)
s += (int64_t) c[j] * prev[DCA_XLL_AORDER_MAX + i - 1 - j];
samples[i] -= av_clip((s + 0x8000) >> 16, -0x1000000, 0xffffff);
}
}
for (i = order; i < nsamples; i++) {
for (j = s = 0; j < order; j++)
s += (int64_t) c[j] * samples[i - 1 - j];
/* NOTE: Equations seem to imply addition, while the
* pseudocode seems to use subtraction.*/
samples[i] -= av_clip((s + 0x8000) >> 16, -0x1000000, 0xffffff);
}
}
int ff_dca_xll_decode_audio(DCAContext *s, AVFrame *frame)
{
/* FIXME: Decodes only the first frequency band. */
int seg, chset_i;
/* Coding parameters for each channel set. */
struct coding_params {
int seg_type;
int rice_code_flag[16];
int pancAuxABIT[16];
int pancABIT0[16]; /* Not sure what this is */
int pancABIT[16]; /* Not sure what this is */
int nSamplPart0[16];
} param_state[16];
GetBitContext *gb = &s->xll_navi.gb;
int *history;
/* Layout: First the sample buffer for one segment per channel,
* followed by history buffers of DCA_XLL_AORDER_MAX samples for
* each channel. */
av_fast_malloc(&s->xll_sample_buf, &s->xll_sample_buf_size,
(s->xll_smpl_in_seg + DCA_XLL_AORDER_MAX) *
s->xll_channels * sizeof(*s->xll_sample_buf));
if (!s->xll_sample_buf)
return AVERROR(ENOMEM);
history = s->xll_sample_buf + s->xll_smpl_in_seg * s->xll_channels;
for (seg = 0; seg < s->xll_segments; seg++) {
unsigned in_channel;
for (chset_i = in_channel = 0; chset_i < s->xll_nch_sets; chset_i++) {
/* The spec isn't very explicit, but I think the NAVI sizes are in bytes. */
int end_pos = get_bits_count(gb) +
8 * s->xll_navi.chset_size[0][seg][chset_i];
int i, j;
struct coding_params *params = ¶m_state[chset_i];
/* I think this flag means that we should keep seg_type and
* other parameters from the previous segment. */
int use_seg_state_code_param;
XllChSetSubHeader *chset = &s->xll_chsets[chset_i];
if (in_channel >= s->avctx->channels)
/* FIXME: Could go directly to next segment */
goto next_chset;
if (s->avctx->sample_rate != chset->sampling_frequency) {
av_log(s->avctx, AV_LOG_WARNING,
"XLL: unexpected chset sample rate %d, expected %d\n",
chset->sampling_frequency, s->avctx->sample_rate);
goto next_chset;
}
if (seg != 0)
use_seg_state_code_param = get_bits(gb, 1);
else
use_seg_state_code_param = 0;
if (!use_seg_state_code_param) {
int num_param_sets, i;
unsigned bits4ABIT;
params->seg_type = get_bits(gb, 1);
num_param_sets = params->seg_type ? 1 : chset->channels;
if (chset->bit_width > 16) {
bits4ABIT = 5;
} else {
if (chset->bit_width > 8)
bits4ABIT = 4;
else
bits4ABIT = 3;
if (s->xll_nch_sets > 1)
bits4ABIT++;
}
for (i = 0; i < num_param_sets; i++) {
params->rice_code_flag[i] = get_bits(gb, 1);
if (!params->seg_type && params->rice_code_flag[i] && get_bits(gb, 1))
params->pancAuxABIT[i] = get_bits(gb, bits4ABIT) + 1;
else
params->pancAuxABIT[i] = 0;
}
for (i = 0; i < num_param_sets; i++) {
if (!seg) {
/* Parameters for part 1 */
params->pancABIT0[i] = get_bits(gb, bits4ABIT);
if (params->rice_code_flag[i] == 0 && params->pancABIT0[i] > 0)
/* For linear code */
params->pancABIT0[i]++;
/* NOTE: In the spec, not indexed by band??? */
if (params->seg_type == 0)
params->nSamplPart0[i] = chset->adapt_order[0][i];
else
params->nSamplPart0[i] = chset->adapt_order_max[0];
} else
params->nSamplPart0[i] = 0;
/* Parameters for part 2 */
params->pancABIT[i] = get_bits(gb, bits4ABIT);
if (params->rice_code_flag[i] == 0 && params->pancABIT[i] > 0)
/* For linear code */
params->pancABIT[i]++;
}
}
for (i = 0; i < chset->channels; i++) {
int param_index = params->seg_type ? 0 : i;
int part0 = params->nSamplPart0[param_index];
int bits = part0 ? params->pancABIT0[param_index] : 0;
int *sample_buf = s->xll_sample_buf +
(in_channel + i) * s->xll_smpl_in_seg;
if (!params->rice_code_flag[param_index]) {
/* Linear code */
if (bits)
for (j = 0; j < part0; j++)
sample_buf[j] = get_bits_sm(gb, bits);
else
memset(sample_buf, 0, part0 * sizeof(sample_buf[0]));
/* Second part */
bits = params->pancABIT[param_index];
if (bits)
for (j = part0; j < s->xll_smpl_in_seg; j++)
sample_buf[j] = get_bits_sm(gb, bits);
else
memset(sample_buf + part0, 0,
(s->xll_smpl_in_seg - part0) * sizeof(sample_buf[0]));
} else {
int aux_bits = params->pancAuxABIT[param_index];
for (j = 0; j < part0; j++) {
/* FIXME: Is this identical to Golomb code? */
int t = get_unary(gb, 1, 33) << bits;
/* FIXME: Could move this test outside of the loop, for efficiency. */
if (bits)
t |= get_bits(gb, bits);
sample_buf[j] = (t & 1) ? -(t >> 1) - 1 : (t >> 1);
}
/* Second part */
bits = params->pancABIT[param_index];
/* Follow the spec's suggestion of using the
* buffer also to store the hybrid-rice flags. */
memset(sample_buf + part0, 0,
(s->xll_smpl_in_seg - part0) * sizeof(sample_buf[0]));
if (aux_bits > 0) {
/* For hybrid rice encoding, some samples are linearly
* coded. According to the spec, "nBits4SamplLoci" bits
* are used for each index, but this value is not
* defined. I guess we should use log2(xll_smpl_in_seg)
* bits. */
int count = get_bits(gb, s->xll_log_smpl_in_seg);
av_log(s->avctx, AV_LOG_DEBUG, "aux count %d (bits %d)\n",
count, s->xll_log_smpl_in_seg);
for (j = 0; j < count; j++)
sample_buf[get_bits(gb, s->xll_log_smpl_in_seg)] = 1;
}
for (j = part0; j < s->xll_smpl_in_seg; j++) {
if (!sample_buf[j]) {
int t = get_unary(gb, 1, 33);
if (bits)
t = (t << bits) | get_bits(gb, bits);
sample_buf[j] = (t & 1) ? -(t >> 1) - 1 : (t >> 1);
} else
sample_buf[j] = get_bits_sm(gb, aux_bits);
}
}
}
for (i = 0; i < chset->channels; i++) {
unsigned adapt_order = chset->adapt_order[0][i];
int *sample_buf = s->xll_sample_buf +
(in_channel + i) * s->xll_smpl_in_seg;
int *prev = history + (in_channel + i) * DCA_XLL_AORDER_MAX;
if (!adapt_order) {
unsigned order;
for (order = chset->fixed_order[0][i]; order > 0; order--) {
unsigned j;
for (j = 1; j < s->xll_smpl_in_seg; j++)
sample_buf[j] += sample_buf[j - 1];
}
} else
/* Inverse adaptive prediction, in place. */
dca_xll_inv_adapt_pred(sample_buf, s->xll_smpl_in_seg,
adapt_order, seg ? prev : NULL,
chset->lpc_refl_coeffs_q_ind[0][i]);
memcpy(prev, sample_buf + s->xll_smpl_in_seg - DCA_XLL_AORDER_MAX,
DCA_XLL_AORDER_MAX * sizeof(*prev));
}
for (i = 1; i < chset->channels; i += 2) {
int coeff = chset->pw_ch_pairs_coeffs[0][i / 2];
if (coeff != 0) {
int *sample_buf = s->xll_sample_buf +
(in_channel + i) * s->xll_smpl_in_seg;
int *prev = sample_buf - s->xll_smpl_in_seg;
unsigned j;
for (j = 0; j < s->xll_smpl_in_seg; j++)
/* Shift is unspecified, but should apparently be 3. */
sample_buf[j] += ((int64_t) coeff * prev[j] + 4) >> 3;
}
}
if (s->xll_scalable_lsb) {
int lsb_start = end_pos - 8 * chset->lsb_fsize[0] -
8 * (s->xll_banddata_crc & 2);
int done;
i = get_bits_count(gb);
if (i > lsb_start) {
av_log(s->avctx, AV_LOG_ERROR,
"chset data lsb exceeds NAVI size, end_pos %d, lsb_start %d, pos %d\n",
end_pos, lsb_start, i);
return AVERROR_INVALIDDATA;
}
if (i < lsb_start)
skip_bits_long(gb, lsb_start - i);
for (i = done = 0; i < chset->channels; i++) {
int bits = chset->scalable_lsbs[0][i];
if (bits > 0) {
/* The channel reordering is conceptually done
* before adding the lsb:s, so we need to do
* the inverse permutation here. */
unsigned pi = chset->orig_chan_order_inv[0][i];
int *sample_buf = s->xll_sample_buf +
(in_channel + pi) * s->xll_smpl_in_seg;
int adj = chset->bit_width_adj_per_ch[0][i];
int msb_shift = bits;
unsigned j;
if (adj > 0)
msb_shift += adj - 1;
for (j = 0; j < s->xll_smpl_in_seg; j++)
sample_buf[j] = (sample_buf[j] << msb_shift) +
(get_bits(gb, bits) << adj);
done += bits * s->xll_smpl_in_seg;
}
}
if (done > 8 * chset->lsb_fsize[0]) {
av_log(s->avctx, AV_LOG_ERROR,
"chset lsb exceeds lsb_size\n");
return AVERROR_INVALIDDATA;
}
}
/* Store output. */
for (i = 0; i < chset->channels; i++) {
int *sample_buf = s->xll_sample_buf +
(in_channel + i) * s->xll_smpl_in_seg;
int shift = 1 - chset->bit_resolution;
int out_channel = chset->orig_chan_order[0][i];
float *out;
/* XLL uses the channel order C, L, R, and we want L,
* R, C. FIXME: Generalize. */
if (chset->ch_mask_enabled &&
(chset->ch_mask & 7) == 7 && out_channel < 3)
out_channel = out_channel ? out_channel - 1 : 2;
out_channel += in_channel;
if (out_channel >= s->avctx->channels)
continue;
out = (float *) frame->extended_data[out_channel];
out += seg * s->xll_smpl_in_seg;
/* NOTE: A one bit means residual encoding is *not* used. */
if ((chset->residual_encode >> i) & 1) {
/* Replace channel samples.
* FIXME: Most likely not the right thing to do. */
for (j = 0; j < s->xll_smpl_in_seg; j++)
out[j] = ldexpf(sample_buf[j], shift);
} else {
/* Add residual signal to core channel */
for (j = 0; j < s->xll_smpl_in_seg; j++)
out[j] += ldexpf(sample_buf[j], shift);
}
}
if (chset->downmix_coeff_code_embedded &&
!chset->primary_ch_set && chset->hier_chset) {
/* Undo hierarchical downmix of earlier channels. */
unsigned mix_channel;
for (mix_channel = 0; mix_channel < in_channel; mix_channel++) {
float *mix_buf;
const int *col;
float coeff;
unsigned row;
/* Similar channel reorder C, L, R vs L, R, C reorder. */
if (chset->ch_mask_enabled &&
(chset->ch_mask & 7) == 7 && mix_channel < 3)
mix_buf = (float *) frame->extended_data[mix_channel ? mix_channel - 1 : 2];
else
mix_buf = (float *) frame->extended_data[mix_channel];
mix_buf += seg * s->xll_smpl_in_seg;
col = &chset->downmix_coeffs[mix_channel * (chset->channels + 1)];
/* Scale */
coeff = ldexpf(col[0], -16);
for (j = 0; j < s->xll_smpl_in_seg; j++)
mix_buf[j] *= coeff;
for (row = 0;
row < chset->channels && in_channel + row < s->avctx->channels;
row++)
if (col[row + 1]) {
const float *new_channel =
(const float *) frame->extended_data[in_channel + row];
new_channel += seg * s->xll_smpl_in_seg;
coeff = ldexpf(col[row + 1], -15);
for (j = 0; j < s->xll_smpl_in_seg; j++)
mix_buf[j] -= coeff * new_channel[j];
}
}
}
next_chset:
in_channel += chset->channels;
/* Skip to next channel set using the NAVI info. */
i = get_bits_count(gb);
if (i > end_pos) {
av_log(s->avctx, AV_LOG_ERROR,
"chset data exceeds NAVI size\n");
return AVERROR_INVALIDDATA;
}
if (i < end_pos)
skip_bits_long(gb, end_pos - i);
}
}
return 0;
}
|