summaryrefslogtreecommitdiff
path: root/libavcodec/aaccoder.c
diff options
context:
space:
mode:
Diffstat (limited to 'libavcodec/aaccoder.c')
-rw-r--r--libavcodec/aaccoder.c1037
1 files changed, 1037 insertions, 0 deletions
diff --git a/libavcodec/aaccoder.c b/libavcodec/aaccoder.c
new file mode 100644
index 0000000000..763d3b90dd
--- /dev/null
+++ b/libavcodec/aaccoder.c
@@ -0,0 +1,1037 @@
+/*
+ * AAC coefficients encoder
+ * Copyright (C) 2008-2009 Konstantin Shishkov
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file libavcodec/aaccoder.c
+ * AAC coefficients encoder
+ */
+
+/***********************************
+ * TODOs:
+ * speedup quantizer selection
+ * add sane pulse detection
+ ***********************************/
+
+#include "avcodec.h"
+#include "put_bits.h"
+#include "aac.h"
+#include "aacenc.h"
+#include "aactab.h"
+
+/** bits needed to code codebook run value for long windows */
+static const uint8_t run_value_bits_long[64] = {
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
+};
+
+/** bits needed to code codebook run value for short windows */
+static const uint8_t run_value_bits_short[16] = {
+ 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
+};
+
+static const uint8_t* run_value_bits[2] = {
+ run_value_bits_long, run_value_bits_short
+};
+
+
+/**
+ * Quantize one coefficient.
+ * @return absolute value of the quantized coefficient
+ * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
+ */
+static av_always_inline int quant(float coef, const float Q)
+{
+ return pow(coef * Q, 0.75) + 0.4054;
+}
+
+static void quantize_bands(int (*out)[2], const float *in, const float *scaled, int size, float Q34, int is_signed, int maxval)
+{
+ int i;
+ double qc;
+ for (i = 0; i < size; i++) {
+ qc = scaled[i] * Q34;
+ out[i][0] = (int)FFMIN((int)qc, maxval);
+ out[i][1] = (int)FFMIN((int)(qc + 0.4054), maxval);
+ if (is_signed && in[i] < 0.0f) {
+ out[i][0] = -out[i][0];
+ out[i][1] = -out[i][1];
+ }
+ }
+}
+
+static void abs_pow34_v(float *out, const float* in, const int size)
+{
+#ifndef USE_REALLY_FULL_SEARCH
+ int i;
+ for (i = 0; i < size; i++) {
+ out[i] = pow(fabsf(in[i]), 0.75);
+ }
+#endif /* USE_REALLY_FULL_SEARCH */
+}
+
+static av_always_inline int quant2(float coef, const float Q)
+{
+ return pow(coef * Q, 0.75);
+}
+
+static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
+static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
+
+/**
+ * Calculate rate distortion cost for quantizing with given codebook
+ *
+ * @return quantization distortion
+ */
+static float quantize_band_cost(struct AACEncContext *s, const float *in, const float *scaled, int size, int scale_idx, int cb,
+ const float lambda, const float uplim, int *bits)
+{
+ const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
+ const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
+ const float CLIPPED_ESCAPE = 165140.0f*IQ;
+ int i, j, k;
+ float cost = 0;
+ const int dim = cb < FIRST_PAIR_BT ? 4 : 2;
+ int resbits = 0;
+#ifndef USE_REALLY_FULL_SEARCH
+ const float Q34 = pow(Q, 0.75);
+ const int range = aac_cb_range[cb];
+ const int maxval = aac_cb_maxval[cb];
+ int offs[4];
+#endif /* USE_REALLY_FULL_SEARCH */
+
+ if(!cb){
+ for(i = 0; i < size; i++)
+ cost += in[i]*in[i]*lambda;
+ return cost;
+ }
+#ifndef USE_REALLY_FULL_SEARCH
+ offs[0] = 1;
+ for(i = 1; i < dim; i++)
+ offs[i] = offs[i-1]*range;
+ quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
+#endif /* USE_REALLY_FULL_SEARCH */
+ for(i = 0; i < size; i += dim){
+ float mincost;
+ int minidx = 0;
+ int minbits = 0;
+ const float *vec;
+#ifndef USE_REALLY_FULL_SEARCH
+ int (*quants)[2] = &s->qcoefs[i];
+ mincost = 0.0f;
+ for(j = 0; j < dim; j++){
+ mincost += in[i+j]*in[i+j]*lambda;
+ }
+ minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
+ minbits = ff_aac_spectral_bits[cb-1][minidx];
+ mincost += minbits;
+ for(j = 0; j < (1<<dim); j++){
+ float rd = 0.0f;
+ int curbits;
+ int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
+ int same = 0;
+ for(k = 0; k < dim; k++){
+ if((j & (1 << k)) && quants[k][0] == quants[k][1]){
+ same = 1;
+ break;
+ }
+ }
+ if(same)
+ continue;
+ for(k = 0; k < dim; k++)
+ curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
+ curbits = ff_aac_spectral_bits[cb-1][curidx];
+ vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
+#else
+ mincost = INFINITY;
+ vec = ff_aac_codebook_vectors[cb-1];
+ for(j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim){
+ float rd = 0.0f;
+ int curbits = ff_aac_spectral_bits[cb-1][j];
+#endif /* USE_REALLY_FULL_SEARCH */
+ if(IS_CODEBOOK_UNSIGNED(cb)){
+ for(k = 0; k < dim; k++){
+ float t = fabsf(in[i+k]);
+ float di;
+ //do not code with escape sequence small values
+ if(vec[k] == 64.0f && t < 39.0f*IQ){
+ rd = INFINITY;
+ break;
+ }
+ if(vec[k] == 64.0f){//FIXME: slow
+ if (t >= CLIPPED_ESCAPE) {
+ di = t - CLIPPED_ESCAPE;
+ curbits += 21;
+ }else{
+ int c = av_clip(quant(t, Q), 0, 8191);
+ di = t - c*cbrt(c)*IQ;
+ curbits += av_log2(c)*2 - 4 + 1;
+ }
+ }else{
+ di = t - vec[k]*IQ;
+ }
+ if(vec[k] != 0.0f)
+ curbits++;
+ rd += di*di*lambda;
+ }
+ }else{
+ for(k = 0; k < dim; k++){
+ float di = in[i+k] - vec[k]*IQ;
+ rd += di*di*lambda;
+ }
+ }
+ rd += curbits;
+ if(rd < mincost){
+ mincost = rd;
+ minidx = j;
+ minbits = curbits;
+ }
+ }
+ cost += mincost;
+ resbits += minbits;
+ if(cost >= uplim)
+ return uplim;
+ }
+
+ if(bits)
+ *bits = resbits;
+ return cost;
+}
+
+static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, const float *in, int size,
+ int scale_idx, int cb, const float lambda)
+{
+ const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
+ const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
+ const float CLIPPED_ESCAPE = 165140.0f*IQ;
+ const int dim = (cb < FIRST_PAIR_BT) ? 4 : 2;
+ int i, j, k;
+#ifndef USE_REALLY_FULL_SEARCH
+ const float Q34 = pow(Q, 0.75);
+ const int range = aac_cb_range[cb];
+ const int maxval = aac_cb_maxval[cb];
+ int offs[4];
+ float *scaled = s->scoefs;
+#endif /* USE_REALLY_FULL_SEARCH */
+
+//START_TIMER
+ if(!cb)
+ return;
+
+#ifndef USE_REALLY_FULL_SEARCH
+ offs[0] = 1;
+ for(i = 1; i < dim; i++)
+ offs[i] = offs[i-1]*range;
+ abs_pow34_v(scaled, in, size);
+ quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
+#endif /* USE_REALLY_FULL_SEARCH */
+ for(i = 0; i < size; i += dim){
+ float mincost;
+ int minidx = 0;
+ int minbits = 0;
+ const float *vec;
+#ifndef USE_REALLY_FULL_SEARCH
+ int (*quants)[2] = &s->qcoefs[i];
+ mincost = 0.0f;
+ for(j = 0; j < dim; j++){
+ mincost += in[i+j]*in[i+j]*lambda;
+ }
+ minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
+ minbits = ff_aac_spectral_bits[cb-1][minidx];
+ mincost += minbits;
+ for(j = 0; j < (1<<dim); j++){
+ float rd = 0.0f;
+ int curbits;
+ int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
+ int same = 0;
+ for(k = 0; k < dim; k++){
+ if((j & (1 << k)) && quants[k][0] == quants[k][1]){
+ same = 1;
+ break;
+ }
+ }
+ if(same)
+ continue;
+ for(k = 0; k < dim; k++)
+ curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
+ curbits = ff_aac_spectral_bits[cb-1][curidx];
+ vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
+#else
+ vec = ff_aac_codebook_vectors[cb-1];
+ mincost = INFINITY;
+ for(j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim){
+ float rd = 0.0f;
+ int curbits = ff_aac_spectral_bits[cb-1][j];
+ int curidx = j;
+#endif /* USE_REALLY_FULL_SEARCH */
+ if(IS_CODEBOOK_UNSIGNED(cb)){
+ for(k = 0; k < dim; k++){
+ float t = fabsf(in[i+k]);
+ float di;
+ //do not code with escape sequence small values
+ if(vec[k] == 64.0f && t < 39.0f*IQ){
+ rd = INFINITY;
+ break;
+ }
+ if(vec[k] == 64.0f){//FIXME: slow
+ if (t >= CLIPPED_ESCAPE) {
+ di = t - CLIPPED_ESCAPE;
+ curbits += 21;
+ }else{
+ int c = av_clip(quant(t, Q), 0, 8191);
+ di = t - c*cbrt(c)*IQ;
+ curbits += av_log2(c)*2 - 4 + 1;
+ }
+ }else{
+ di = t - vec[k]*IQ;
+ }
+ if(vec[k] != 0.0f)
+ curbits++;
+ rd += di*di*lambda;
+ }
+ }else{
+ for(k = 0; k < dim; k++){
+ float di = in[i+k] - vec[k]*IQ;
+ rd += di*di*lambda;
+ }
+ }
+ rd += curbits;
+ if(rd < mincost){
+ mincost = rd;
+ minidx = curidx;
+ minbits = curbits;
+ }
+ }
+ put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]);
+ if(IS_CODEBOOK_UNSIGNED(cb))
+ for(j = 0; j < dim; j++)
+ if(ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f)
+ put_bits(pb, 1, in[i+j] < 0.0f);
+ if(cb == ESC_BT){
+ for(j = 0; j < 2; j++){
+ if(ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f){
+ int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
+ int len = av_log2(coef);
+
+ put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
+ put_bits(pb, len, coef & ((1 << len) - 1));
+ }
+ }
+ }
+ }
+//STOP_TIMER("quantize_and_encode")
+}
+
+/**
+ * structure used in optimal codebook search
+ */
+typedef struct BandCodingPath {
+ int prev_idx; ///< pointer to the previous path point
+ int codebook; ///< codebook for coding band run
+ float cost; ///< path cost
+ int run;
+} BandCodingPath;
+
+/**
+ * Encode band info for single window group bands.
+ */
+static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
+ int win, int group_len, const float lambda)
+{
+ BandCodingPath path[120][12];
+ int w, swb, cb, start, start2, size;
+ int i, j;
+ const int max_sfb = sce->ics.max_sfb;
+ const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
+ const int run_esc = (1 << run_bits) - 1;
+ int idx, ppos, count;
+ int stackrun[120], stackcb[120], stack_len;
+ float next_minrd = INFINITY;
+ int next_mincb = 0;
+
+ abs_pow34_v(s->scoefs, sce->coeffs, 1024);
+ start = win*128;
+ for(cb = 0; cb < 12; cb++){
+ path[0][cb].cost = 0.0f;
+ path[0][cb].prev_idx = -1;
+ path[0][cb].run = 0;
+ }
+ for(swb = 0; swb < max_sfb; swb++){
+ start2 = start;
+ size = sce->ics.swb_sizes[swb];
+ if(sce->zeroes[win*16 + swb]){
+ for(cb = 0; cb < 12; cb++){
+ path[swb+1][cb].prev_idx = cb;
+ path[swb+1][cb].cost = path[swb][cb].cost;
+ path[swb+1][cb].run = path[swb][cb].run + 1;
+ }
+ }else{
+ float minrd = next_minrd;
+ int mincb = next_mincb;
+ next_minrd = INFINITY;
+ next_mincb = 0;
+ for(cb = 0; cb < 12; cb++){
+ float cost_stay_here, cost_get_here;
+ float rd = 0.0f;
+ for(w = 0; w < group_len; w++){
+ FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
+ rd += quantize_band_cost(s, sce->coeffs + start + w*128,
+ s->scoefs + start + w*128, size,
+ sce->sf_idx[(win+w)*16+swb], cb,
+ lambda / band->threshold, INFINITY, NULL);
+ }
+ cost_stay_here = path[swb][cb].cost + rd;
+ cost_get_here = minrd + rd + run_bits + 4;
+ if( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
+ != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
+ cost_stay_here += run_bits;
+ if (cost_get_here < cost_stay_here) {
+ path[swb+1][cb].prev_idx = mincb;
+ path[swb+1][cb].cost = cost_get_here;
+ path[swb+1][cb].run = 1;
+ } else {
+ path[swb+1][cb].prev_idx = cb;
+ path[swb+1][cb].cost = cost_stay_here;
+ path[swb+1][cb].run = path[swb][cb].run + 1;
+ }
+ if (path[swb+1][cb].cost < next_minrd) {
+ next_minrd = path[swb+1][cb].cost;
+ next_mincb = cb;
+ }
+ }
+ }
+ start += sce->ics.swb_sizes[swb];
+ }
+
+ //convert resulting path from backward-linked list
+ stack_len = 0;
+ idx = 0;
+ for(cb = 1; cb < 12; cb++){
+ if(path[max_sfb][cb].cost < path[max_sfb][idx].cost)
+ idx = cb;
+ }
+ ppos = max_sfb;
+ while(ppos > 0){
+ cb = idx;
+ stackrun[stack_len] = path[ppos][cb].run;
+ stackcb [stack_len] = cb;
+ idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
+ ppos -= path[ppos][cb].run;
+ stack_len++;
+ }
+ //perform actual band info encoding
+ start = 0;
+ for(i = stack_len - 1; i >= 0; i--){
+ put_bits(&s->pb, 4, stackcb[i]);
+ count = stackrun[i];
+ memset(sce->zeroes + win*16 + start, !stackcb[i], count);
+ //XXX: memset when band_type is also uint8_t
+ for(j = 0; j < count; j++){
+ sce->band_type[win*16 + start] = stackcb[i];
+ start++;
+ }
+ while(count >= run_esc){
+ put_bits(&s->pb, run_bits, run_esc);
+ count -= run_esc;
+ }
+ put_bits(&s->pb, run_bits, count);
+ }
+}
+
+static void encode_window_bands_info_fixed(AACEncContext *s, SingleChannelElement *sce,
+ int win, int group_len, const float lambda)
+{
+ encode_window_bands_info(s, sce, win, group_len, 1.0f);
+}
+
+
+typedef struct TrellisPath {
+ float cost;
+ int prev;
+ int min_val;
+ int max_val;
+} TrellisPath;
+
+static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
+ SingleChannelElement *sce, const float lambda)
+{
+ int q, w, w2, g, start = 0;
+ int i;
+ int idx;
+ TrellisPath paths[256*121];
+ int bandaddr[121];
+ int minq;
+ float mincost;
+
+ for(i = 0; i < 256; i++){
+ paths[i].cost = 0.0f;
+ paths[i].prev = -1;
+ paths[i].min_val = i;
+ paths[i].max_val = i;
+ }
+ for(i = 256; i < 256*121; i++){
+ paths[i].cost = INFINITY;
+ paths[i].prev = -2;
+ paths[i].min_val = INT_MAX;
+ paths[i].max_val = 0;
+ }
+ idx = 256;
+ abs_pow34_v(s->scoefs, sce->coeffs, 1024);
+ for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+ start = w*128;
+ for(g = 0; g < sce->ics.num_swb; g++){
+ const float *coefs = sce->coeffs + start;
+ float qmin, qmax;
+ int nz = 0;
+
+ bandaddr[idx >> 8] = w*16+g;
+ qmin = INT_MAX;
+ qmax = 0.0f;
+ for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+ FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
+ if(band->energy <= band->threshold || band->threshold == 0.0f){
+ sce->zeroes[(w+w2)*16+g] = 1;
+ continue;
+ }
+ sce->zeroes[(w+w2)*16+g] = 0;
+ nz = 1;
+ for(i = 0; i < sce->ics.swb_sizes[g]; i++){
+ float t = fabsf(coefs[w2*128+i]);
+ if(t > 0.0f) qmin = fminf(qmin, t);
+ qmax = fmaxf(qmax, t);
+ }
+ }
+ if(nz){
+ int minscale, maxscale;
+ float minrd = INFINITY;
+ //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
+ minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
+ //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
+ maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
+ for(q = minscale; q < maxscale; q++){
+ float dists[12], dist;
+ memset(dists, 0, sizeof(dists));
+ for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+ FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
+ int cb;
+ for(cb = 0; cb <= ESC_BT; cb++){
+ dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
+ q, cb, lambda / band->threshold, INFINITY, NULL);
+ }
+ }
+ dist = dists[0];
+ for(i = 1; i <= ESC_BT; i++)
+ dist = fminf(dist, dists[i]);
+ minrd = fminf(minrd, dist);
+
+ for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){
+ float cost;
+ int minv, maxv;
+ if(isinf(paths[idx - 256 + i].cost))
+ continue;
+ cost = paths[idx - 256 + i].cost + dist
+ + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
+ minv = FFMIN(paths[idx - 256 + i].min_val, q);
+ maxv = FFMAX(paths[idx - 256 + i].max_val, q);
+ if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){
+ paths[idx + q].cost = cost;
+ paths[idx + q].prev = idx - 256 + i;
+ paths[idx + q].min_val = minv;
+ paths[idx + q].max_val = maxv;
+ }
+ }
+ }
+ }else{
+ for(q = 0; q < 256; q++){
+ if(!isinf(paths[idx - 256 + q].cost)){
+ paths[idx + q].cost = paths[idx - 256 + q].cost + 1;
+ paths[idx + q].prev = idx - 256 + q;
+ paths[idx + q].min_val = FFMIN(paths[idx - 256 + q].min_val, q);
+ paths[idx + q].max_val = FFMAX(paths[idx - 256 + q].max_val, q);
+ continue;
+ }
+ for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){
+ float cost;
+ int minv, maxv;
+ if(isinf(paths[idx - 256 + i].cost))
+ continue;
+ cost = paths[idx - 256 + i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
+ minv = FFMIN(paths[idx - 256 + i].min_val, q);
+ maxv = FFMAX(paths[idx - 256 + i].max_val, q);
+ if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){
+ paths[idx + q].cost = cost;
+ paths[idx + q].prev = idx - 256 + i;
+ paths[idx + q].min_val = minv;
+ paths[idx + q].max_val = maxv;
+ }
+ }
+ }
+ }
+ sce->zeroes[w*16+g] = !nz;
+ start += sce->ics.swb_sizes[g];
+ idx += 256;
+ }
+ }
+ idx -= 256;
+ mincost = paths[idx].cost;
+ minq = idx;
+ for(i = 1; i < 256; i++){
+ if(paths[idx + i].cost < mincost){
+ mincost = paths[idx + i].cost;
+ minq = idx + i;
+ }
+ }
+ while(minq >= 256){
+ sce->sf_idx[bandaddr[minq>>8]] = minq & 0xFF;
+ minq = paths[minq].prev;
+ }
+ //set the same quantizers inside window groups
+ for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
+ for(g = 0; g < sce->ics.num_swb; g++)
+ for(w2 = 1; w2 < sce->ics.group_len[w]; w2++)
+ sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
+}
+
+/**
+ * two-loop quantizers search taken from ISO 13818-7 Appendix C
+ */
+static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *s,
+ SingleChannelElement *sce, const float lambda)
+{
+ int start = 0, i, w, w2, g;
+ int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
+ float dists[128], uplims[128];
+ int fflag, minscaler;
+ int its = 0;
+ int allz = 0;
+ float minthr = INFINITY;
+
+ //XXX: some heuristic to determine initial quantizers will reduce search time
+ memset(dists, 0, sizeof(dists));
+ //determine zero bands and upper limits
+ for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+ for(g = 0; g < sce->ics.num_swb; g++){
+ int nz = 0;
+ float uplim = 0.0f;
+ for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+ FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
+ uplim += band->threshold;
+ if(band->energy <= band->threshold || band->threshold == 0.0f){
+ sce->zeroes[(w+w2)*16+g] = 1;
+ continue;
+ }
+ nz = 1;
+ }
+ uplims[w*16+g] = uplim *512;
+ sce->zeroes[w*16+g] = !nz;
+ if(nz)
+ minthr = fminf(minthr, uplim);
+ allz = FFMAX(allz, nz);
+ }
+ }
+ for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+ for(g = 0; g < sce->ics.num_swb; g++){
+ if(sce->zeroes[w*16+g]){
+ sce->sf_idx[w*16+g] = SCALE_ONE_POS;
+ continue;
+ }
+ sce->sf_idx[w*16+g] = SCALE_ONE_POS + fminf(log2(uplims[w*16+g]/minthr)*4,59);
+ }
+ }
+
+ if(!allz)
+ return;
+ abs_pow34_v(s->scoefs, sce->coeffs, 1024);
+ //perform two-loop search
+ //outer loop - improve quality
+ do{
+ int tbits, qstep;
+ minscaler = sce->sf_idx[0];
+ //inner loop - quantize spectrum to fit into given number of bits
+ qstep = its ? 1 : 32;
+ do{
+ int prev = -1;
+ tbits = 0;
+ fflag = 0;
+ for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+ start = w*128;
+ for(g = 0; g < sce->ics.num_swb; g++){
+ const float *coefs = sce->coeffs + start;
+ const float *scaled = s->scoefs + start;
+ int bits = 0;
+ int cb;
+ float mindist = INFINITY;
+ int minbits = 0;
+
+ if(sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218)
+ continue;
+ minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
+ for(cb = 0; cb <= ESC_BT; cb++){
+ float dist = 0.0f;
+ int bb = 0;
+ for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+ int b;
+ dist += quantize_band_cost(s, coefs + w2*128,
+ scaled + w2*128,
+ sce->ics.swb_sizes[g],
+ sce->sf_idx[w*16+g],
+ ESC_BT,
+ 1.0,
+ INFINITY,
+ &b);
+ bb += b;
+ }
+ if(dist < mindist){
+ mindist = dist;
+ minbits = bb;
+ }
+ }
+ dists[w*16+g] = mindist - minbits;
+ bits = minbits;
+ if(prev != -1){
+ bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
+ }
+ tbits += bits;
+ start += sce->ics.swb_sizes[g];
+ prev = sce->sf_idx[w*16+g];
+ }
+ }
+ if(tbits > destbits){
+ for(i = 0; i < 128; i++){
+ if(sce->sf_idx[i] < 218 - qstep){
+ sce->sf_idx[i] += qstep;
+ }
+ }
+ }else{
+ for(i = 0; i < 128; i++){
+ if(sce->sf_idx[i] > 60 - qstep){
+ sce->sf_idx[i] -= qstep;
+ }
+ }
+ }
+ qstep >>= 1;
+ if(!qstep && tbits > destbits*1.02)
+ qstep = 1;
+ if(sce->sf_idx[0] >= 217)break;
+ }while(qstep);
+
+ fflag = 0;
+ minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
+ for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+ start = w*128;
+ for(g = 0; g < sce->ics.num_swb; g++){
+ int prevsc = sce->sf_idx[w*16+g];
+ if(dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60)
+ sce->sf_idx[w*16+g]--;
+ sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
+ sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
+ if(sce->sf_idx[w*16+g] != prevsc)
+ fflag = 1;
+ }
+ }
+ its++;
+ }while(fflag && its < 10);
+}
+
+static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
+ SingleChannelElement *sce, const float lambda)
+{
+ int start = 0, i, w, w2, g;
+ float uplim[128], maxq[128];
+ int minq, maxsf;
+ float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
+ int last = 0, lastband = 0, curband = 0;
+ float avg_energy = 0.0;
+ if(sce->ics.num_windows == 1){
+ start = 0;
+ for(i = 0; i < 1024; i++){
+ if(i - start >= sce->ics.swb_sizes[curband]){
+ start += sce->ics.swb_sizes[curband];
+ curband++;
+ }
+ if(sce->coeffs[i]){
+ avg_energy += sce->coeffs[i] * sce->coeffs[i];
+ last = i;
+ lastband = curband;
+ }
+ }
+ }else{
+ for(w = 0; w < 8; w++){
+ const float *coeffs = sce->coeffs + w*128;
+ start = 0;
+ for(i = 0; i < 128; i++){
+ if(i - start >= sce->ics.swb_sizes[curband]){
+ start += sce->ics.swb_sizes[curband];
+ curband++;
+ }
+ if(coeffs[i]){
+ avg_energy += coeffs[i] * coeffs[i];
+ last = FFMAX(last, i);
+ lastband = FFMAX(lastband, curband);
+ }
+ }
+ }
+ }
+ last++;
+ avg_energy /= last;
+ if(avg_energy == 0.0f){
+ for(i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
+ sce->sf_idx[i] = SCALE_ONE_POS;
+ return;
+ }
+ for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+ start = w*128;
+ for(g = 0; g < sce->ics.num_swb; g++){
+ float *coefs = sce->coeffs + start;
+ const int size = sce->ics.swb_sizes[g];
+ int start2 = start, end2 = start + size, peakpos = start;
+ float maxval = -1, thr = 0.0f, t;
+ maxq[w*16+g] = 0.0f;
+ if(g > lastband){
+ maxq[w*16+g] = 0.0f;
+ start += size;
+ for(w2 = 0; w2 < sce->ics.group_len[w]; w2++)
+ memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
+ continue;
+ }
+ for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+ for(i = 0; i < size; i++){
+ float t = coefs[w2*128+i]*coefs[w2*128+i];
+ maxq[w*16+g] = fmaxf(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
+ thr += t;
+ if(sce->ics.num_windows == 1 && maxval < t){
+ maxval = t;
+ peakpos = start+i;
+ }
+ }
+ }
+ if(sce->ics.num_windows == 1){
+ start2 = FFMAX(peakpos - 2, start2);
+ end2 = FFMIN(peakpos + 3, end2);
+ }else{
+ start2 -= start;
+ end2 -= start;
+ }
+ start += size;
+ thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
+ t = 1.0 - (1.0 * start2 / last);
+ uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
+ }
+ }
+ memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
+ abs_pow34_v(s->scoefs, sce->coeffs, 1024);
+ for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+ start = w*128;
+ for(g = 0; g < sce->ics.num_swb; g++){
+ const float *coefs = sce->coeffs + start;
+ const float *scaled = s->scoefs + start;
+ const int size = sce->ics.swb_sizes[g];
+ int scf, prev_scf, step;
+ int min_scf = 0, max_scf = 255;
+ float curdiff;
+ if(maxq[w*16+g] < 21.544){
+ sce->zeroes[w*16+g] = 1;
+ start += size;
+ continue;
+ }
+ sce->zeroes[w*16+g] = 0;
+ scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218);
+ step = 16;
+ for(;;){
+ float dist = 0.0f;
+ int quant_max;
+
+ for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+ int b;
+ dist += quantize_band_cost(s, coefs + w2*128,
+ scaled + w2*128,
+ sce->ics.swb_sizes[g],
+ scf,
+ ESC_BT,
+ 1.0,
+ INFINITY,
+ &b);
+ dist -= b;
+ }
+ dist *= 1.0f/512.0f;
+ quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]);
+ if(quant_max >= 8191){ // too much, return to the previous quantizer
+ sce->sf_idx[w*16+g] = prev_scf;
+ break;
+ }
+ prev_scf = scf;
+ curdiff = fabsf(dist - uplim[w*16+g]);
+ if(curdiff == 0.0f)
+ step = 0;
+ else
+ step = fabsf(log2(curdiff));
+ if(dist > uplim[w*16+g])
+ step = -step;
+ if(FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)){
+ sce->sf_idx[w*16+g] = scf;
+ break;
+ }
+ scf += step;
+ if(step > 0)
+ min_scf = scf;
+ else
+ max_scf = scf;
+ }
+ start += size;
+ }
+ }
+ minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
+ for(i = 1; i < 128; i++){
+ if(!sce->sf_idx[i])
+ sce->sf_idx[i] = sce->sf_idx[i-1];
+ else
+ minq = FFMIN(minq, sce->sf_idx[i]);
+ }
+ if(minq == INT_MAX) minq = 0;
+ minq = FFMIN(minq, SCALE_MAX_POS);
+ maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
+ for(i = 126; i >= 0; i--){
+ if(!sce->sf_idx[i])
+ sce->sf_idx[i] = sce->sf_idx[i+1];
+ sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
+ }
+}
+
+static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
+ SingleChannelElement *sce, const float lambda)
+{
+ int start = 0, i, w, w2, g;
+ int minq = 255;
+
+ memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
+ for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
+ start = w*128;
+ for(g = 0; g < sce->ics.num_swb; g++){
+ for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
+ FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
+ if(band->energy <= band->threshold){
+ sce->sf_idx[(w+w2)*16+g] = 218;
+ sce->zeroes[(w+w2)*16+g] = 1;
+ }else{
+ sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218);
+ sce->zeroes[(w+w2)*16+g] = 0;
+ }
+ minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
+ }
+ }
+ }
+ for(i = 0; i < 128; i++){
+ sce->sf_idx[i] = 140;//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
+ }
+ //set the same quantizers inside window groups
+ for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
+ for(g = 0; g < sce->ics.num_swb; g++)
+ for(w2 = 1; w2 < sce->ics.group_len[w]; w2++)
+ sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
+}
+
+static void search_for_ms(AACEncContext *s, ChannelElement *cpe, const float lambda)
+{
+ int start = 0, i, w, w2, g;
+ float M[128], S[128];
+ float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
+ SingleChannelElement *sce0 = &cpe->ch[0];
+ SingleChannelElement *sce1 = &cpe->ch[1];
+ if(!cpe->common_window)
+ return;
+ for(w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]){
+ for(g = 0; g < sce0->ics.num_swb; g++){
+ if(!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]){
+ float dist1 = 0.0f, dist2 = 0.0f;
+ for(w2 = 0; w2 < sce0->ics.group_len[w]; w2++){
+ FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
+ FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
+ float minthr = fminf(band0->threshold, band1->threshold);
+ float maxthr = fmaxf(band0->threshold, band1->threshold);
+ for(i = 0; i < sce0->ics.swb_sizes[g]; i++){
+ M[i] = (sce0->coeffs[start+w2*128+i]
+ + sce1->coeffs[start+w2*128+i])*0.5;
+ S[i] = sce0->coeffs[start+w2*128+i]
+ - sce1->coeffs[start+w2*128+i];
+ }
+ abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
+ abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
+ abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
+ abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
+ dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
+ L34,
+ sce0->ics.swb_sizes[g],
+ sce0->sf_idx[(w+w2)*16+g],
+ sce0->band_type[(w+w2)*16+g],
+ lambda / band0->threshold, INFINITY, NULL);
+ dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
+ R34,
+ sce1->ics.swb_sizes[g],
+ sce1->sf_idx[(w+w2)*16+g],
+ sce1->band_type[(w+w2)*16+g],
+ lambda / band1->threshold, INFINITY, NULL);
+ dist2 += quantize_band_cost(s, M,
+ M34,
+ sce0->ics.swb_sizes[g],
+ sce0->sf_idx[(w+w2)*16+g],
+ sce0->band_type[(w+w2)*16+g],
+ lambda / maxthr, INFINITY, NULL);
+ dist2 += quantize_band_cost(s, S,
+ S34,
+ sce1->ics.swb_sizes[g],
+ sce1->sf_idx[(w+w2)*16+g],
+ sce1->band_type[(w+w2)*16+g],
+ lambda / minthr, INFINITY, NULL);
+ }
+ cpe->ms_mask[w*16+g] = dist2 < dist1;
+ }
+ start += sce0->ics.swb_sizes[g];
+ }
+ }
+}
+
+AACCoefficientsEncoder ff_aac_coders[] = {
+ {
+ search_for_quantizers_faac,
+ encode_window_bands_info_fixed,
+ quantize_and_encode_band,
+// search_for_ms,
+ },
+ {
+ search_for_quantizers_anmr,
+ encode_window_bands_info,
+ quantize_and_encode_band,
+// search_for_ms,
+ },
+ {
+ search_for_quantizers_twoloop,
+ encode_window_bands_info,
+ quantize_and_encode_band,
+// search_for_ms,
+ },
+ {
+ search_for_quantizers_fast,
+ encode_window_bands_info,
+ quantize_and_encode_band,
+// search_for_ms,
+ },
+};