1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1996-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
-module(queue).
%% Creation, inspection and conversion
-export([new/0,is_queue/1,is_empty/1,len/1,to_list/1,from_list/1,member/2]).
%% Original style API
-export([in/2,in_r/2,out/1,out_r/1]).
%% Less garbage style API
-export([get/1,get_r/1,peek/1,peek_r/1,drop/1,drop_r/1]).
%% Higher level API
-export([reverse/1,join/2,split/2,filter/2]).
%% Okasaki API from klacke
-export([cons/2,head/1,tail/1,
snoc/2,last/1,daeh/1,init/1,liat/1,lait/1]).
%%--------------------------------------------------------------------------
%% Efficient implementation of double ended fifo queues
%%
%% Queue representation
%%
%% {RearList,FrontList}
%%
%% The first element in the queue is at the head of the FrontList
%% The last element in the queue is at the head of the RearList,
%% that is; the RearList is reversed.
%%
%% A declaration equivalent to the following is currently hard-coded
%% in erl_types.erl
%%
%% -opaque queue() :: {list(), list()}.
%% Creation, inspection and conversion
%% O(1)
-spec new() -> queue().
new() -> {[],[]}. %{RearList,FrontList}
%% O(1)
-spec is_queue(Term :: term()) -> boolean().
is_queue({R,F}) when is_list(R), is_list(F) ->
true;
is_queue(_) ->
false.
%% O(1)
-spec is_empty(Q :: queue()) -> boolean().
is_empty({[],[]}) ->
true;
is_empty({In,Out}) when is_list(In), is_list(Out) ->
false;
is_empty(Q) ->
erlang:error(badarg, [Q]).
%% O(len(Q))
-spec len(Q :: queue()) -> non_neg_integer().
len({R,F}) when is_list(R), is_list(F) ->
length(R)+length(F);
len(Q) ->
erlang:error(badarg, [Q]).
%% O(len(Q))
-spec to_list(Q :: queue()) -> list().
to_list({In,Out}) when is_list(In), is_list(Out) ->
Out++lists:reverse(In, []);
to_list(Q) ->
erlang:error(badarg, [Q]).
%% Create queue from list
%%
%% O(length(L))
-spec from_list(L :: list()) -> queue().
from_list(L) when is_list(L) ->
f2r(L);
from_list(L) ->
erlang:error(badarg, [L]).
%% Return true or false depending on if element is in queue
%%
%% O(length(Q)) worst case
-spec member(Item :: term(), Q :: queue()) -> boolean().
member(X, {R,F}) when is_list(R), is_list(F) ->
lists:member(X, R) orelse lists:member(X, F);
member(X, Q) ->
erlang:error(badarg, [X,Q]).
%%--------------------------------------------------------------------------
%% Original style API
%% Append to tail/rear
%% Put at least one element in each list, if it is cheap
%%
%% O(1)
-spec in(Item :: term(), Q1 :: queue()) -> Q2 :: queue().
in(X, {[_]=In,[]}) ->
{[X], In};
in(X, {In,Out}) when is_list(In), is_list(Out) ->
{[X|In],Out};
in(X, Q) ->
erlang:error(badarg, [X,Q]).
%% Prepend to head/front
%% Put at least one element in each list, if it is cheap
%%
%% O(1)
-spec in_r(Item :: term(), Q1 :: queue()) -> Q2 :: queue().
in_r(X, {[],[_]=F}) ->
{F,[X]};
in_r(X, {R,F}) when is_list(R), is_list(F) ->
{R,[X|F]};
in_r(X, Q) ->
erlang:error(badarg, [X,Q]).
%% Take from head/front
%%
%% O(1) amortized, O(len(Q)) worst case
-spec out(Q1 :: queue()) ->
{{value, Item :: term()}, Q2 :: queue()} |
{empty, Q1 :: queue()}.
out({[],[]}=Q) ->
{empty,Q};
out({[V],[]}) ->
{{value,V},{[],[]}};
out({[Y|In],[]}) ->
[V|Out] = lists:reverse(In, []),
{{value,V},{[Y],Out}};
out({In,[V]}) when is_list(In) ->
{{value,V},r2f(In)};
out({In,[V|Out]}) when is_list(In) ->
{{value,V},{In,Out}};
out(Q) ->
erlang:error(badarg, [Q]).
%% Take from tail/rear
%%
%% O(1) amortized, O(len(Q)) worst case
-spec out_r(Q1 :: queue()) ->
{{value, Item :: term()}, Q2 :: queue()} |
{empty, Q1 :: queue()}.
out_r({[],[]}=Q) ->
{empty,Q};
out_r({[],[V]}) ->
{{value,V},{[],[]}};
out_r({[],[Y|Out]}) ->
[V|In] = lists:reverse(Out, []),
{{value,V},{In,[Y]}};
out_r({[V],Out}) when is_list(Out) ->
{{value,V},f2r(Out)};
out_r({[V|In],Out}) when is_list(Out) ->
{{value,V},{In,Out}};
out_r(Q) ->
erlang:error(badarg, [Q]).
%%--------------------------------------------------------------------------
%% Less garbage style API.
%% Return the first element in the queue
%%
%% O(1) since the queue is supposed to be well formed
-spec get(Q :: queue()) -> Item :: term().
get({[],[]}=Q) ->
erlang:error(empty, [Q]);
get({R,F}) when is_list(R), is_list(F) ->
get(R, F);
get(Q) ->
erlang:error(badarg, [Q]).
-spec get(list(), list()) -> term().
get(R, [H|_]) when is_list(R) ->
H;
get([H], []) ->
H;
get([_|R], []) -> % malformed queue -> O(len(Q))
lists:last(R).
%% Return the last element in the queue
%%
%% O(1) since the queue is supposed to be well formed
-spec get_r(Q :: queue()) -> Item :: term().
get_r({[],[]}=Q) ->
erlang:error(empty, [Q]);
get_r({[H|_],F}) when is_list(F) ->
H;
get_r({[],[H]}) ->
H;
get_r({[],[_|F]}) -> % malformed queue -> O(len(Q))
lists:last(F);
get_r(Q) ->
erlang:error(badarg, [Q]).
%% Return the first element in the queue
%%
%% O(1) since the queue is supposed to be well formed
-spec peek(Q :: queue()) -> empty | {value,Item :: term()}.
peek({[],[]}) ->
empty;
peek({R,[H|_]}) when is_list(R) ->
{value,H};
peek({[H],[]}) ->
{value,H};
peek({[_|R],[]}) -> % malformed queue -> O(len(Q))
{value,lists:last(R)};
peek(Q) ->
erlang:error(badarg, [Q]).
%% Return the last element in the queue
%%
%% O(1) since the queue is supposed to be well formed
-spec peek_r(Q :: queue()) -> empty | {value,Item :: term()}.
peek_r({[],[]}) ->
empty;
peek_r({[H|_],F}) when is_list(F) ->
{value,H};
peek_r({[],[H]}) ->
{value,H};
peek_r({[],[_|R]}) -> % malformed queue -> O(len(Q))
{value,lists:last(R)};
peek_r(Q) ->
erlang:error(badarg, [Q]).
%% Remove the first element and return resulting queue
%%
%% O(1) amortized
-spec drop(Q1 :: queue()) -> Q2 :: queue().
drop({[],[]}=Q) ->
erlang:error(empty, [Q]);
drop({[_],[]}) ->
{[],[]};
drop({[Y|R],[]}) ->
[_|F] = lists:reverse(R, []),
{[Y],F};
drop({R, [_]}) when is_list(R) ->
r2f(R);
drop({R, [_|F]}) when is_list(R) ->
{R,F};
drop(Q) ->
erlang:error(badarg, [Q]).
%% Remove the last element and return resulting queue
%%
%% O(1) amortized
-spec drop_r(Q1 :: queue()) -> Q2 :: queue().
drop_r({[],[]}=Q) ->
erlang:error(empty, [Q]);
drop_r({[],[_]}) ->
{[],[]};
drop_r({[],[Y|F]}) ->
[_|R] = lists:reverse(F, []),
{R,[Y]};
drop_r({[_], F}) when is_list(F) ->
f2r(F);
drop_r({[_|R], F}) when is_list(F) ->
{R,F};
drop_r(Q) ->
erlang:error(badarg, [Q]).
%%--------------------------------------------------------------------------
%% Higher level API
%% Return reversed queue
%%
%% O(1)
-spec reverse(Q1 :: queue()) -> Q2 :: queue().
reverse({R,F}) when is_list(R), is_list(F) ->
{F,R};
reverse(Q) ->
erlang:error(badarg, [Q]).
%% Join two queues
%%
%% Q2 empty: O(1)
%% else: O(len(Q1))
-spec join(Q1 :: queue(), Q2 :: queue()) -> Q3 :: queue().
join({R,F}=Q, {[],[]}) when is_list(R), is_list(F) ->
Q;
join({[],[]}, {R,F}=Q) when is_list(R), is_list(F) ->
Q;
join({R1,F1}, {R2,F2}) when is_list(R1), is_list(F1), is_list(R2), is_list(F2) ->
{R2,F1++lists:reverse(R1,F2)};
join(Q1, Q2) ->
erlang:error(badarg, [Q1,Q2]).
%% Split a queue in two
%%
%% N = 0..len(Q)
%% O(max(N, len(Q)))
-spec split(N :: non_neg_integer(), Q1 :: queue()) ->
{Q2 :: queue(),Q3 :: queue()}.
split(0, {R,F}=Q) when is_list(R), is_list(F) ->
{{[],[]},Q};
split(N, {R,F}=Q) when is_integer(N), N >= 1, is_list(R), is_list(F) ->
Lf = erlang:length(F),
if N < Lf -> % Lf >= 2
[X|F1] = F,
split_f1_to_r2(N-1, R, F1, [], [X]);
N > Lf ->
Lr = length(R),
M = Lr - (N-Lf),
if M < 0 ->
erlang:error(badarg, [N,Q]);
M > 0 ->
[X|R1] = R,
split_r1_to_f2(M-1, R1, F, [X], []);
true -> % M == 0
{Q,{[],[]}}
end;
true -> % N == Lf
{f2r(F),r2f(R)}
end;
split(N, Q) ->
erlang:error(badarg, [N,Q]).
%% Move N elements from F1 to R2
split_f1_to_r2(0, R1, F1, R2, F2) ->
{{R2,F2},{R1,F1}};
split_f1_to_r2(N, R1, [X|F1], R2, F2) ->
split_f1_to_r2(N-1, R1, F1, [X|R2], F2).
%% Move N elements from R1 to F2
split_r1_to_f2(0, R1, F1, R2, F2) ->
{{R1,F1},{R2,F2}};
split_r1_to_f2(N, [X|R1], F1, R2, F2) ->
split_r1_to_f2(N-1, R1, F1, R2, [X|F2]).
%% filter, or rather filtermap with insert, traverses in queue order
%%
%% Fun(_) -> List: O(length(List) * len(Q))
%% else: O(len(Q)
-spec filter(Fun, Q1 :: queue()) -> Q2 :: queue() when
Fun :: fun((Item :: term()) -> boolean() | list()).
filter(Fun, {R0,F0}) when is_function(Fun, 1), is_list(R0), is_list(F0) ->
F = filter_f(Fun, F0),
R = filter_r(Fun, R0),
if R =:= [] ->
f2r(F);
F =:= [] ->
r2f(R);
true ->
{R,F}
end;
filter(Fun, Q) ->
erlang:error(badarg, [Fun,Q]).
%% Call Fun in head to tail order
filter_f(_, []) ->
[];
filter_f(Fun, [X|F]) ->
case Fun(X) of
true ->
[X|filter_f(Fun, F)];
false ->
filter_f(Fun, F);
L when is_list(L) ->
L++filter_f(Fun, F)
end.
%% Call Fun in reverse order, i.e tail to head
%% and reverse list result from fun to match queue order
filter_r(_, []) ->
[];
filter_r(Fun, [X|R0]) ->
R = filter_r(Fun, R0),
case Fun(X) of
true ->
[X|R];
false ->
R;
L when is_list(L) ->
lists:reverse(L, R)
end.
%%--------------------------------------------------------------------------
%% Okasaki API inspired by an Erlang user contribution "deque.erl"
%% by Claes Wikstrom <klacke@kaja.klacke.net> 1999.
%%
%% This implementation does not use the internal data format from Klacke's
%% doubly ended queues that was "shamelessly stolen" from
%% "Purely Functional Data structures" by Chris Okasaki, since the data
%% format of this module must remain the same in case some application
%% has saved a queue in external format or sends it to an old node.
%%
%% This implementation tries to do the best of the situation and should
%% be almost as efficient as Okasaki's queues, except for len/1 that
%% is O(n) in this implementation instead of O(1).
%%
%% The new representation in this module again adds length field and
%% fixes this, but it is not yet default.
%%
%% The implementation keeps at least one element in both the forward
%% and the reversed lists to ensure that i.e head/1 or last/1 will
%% not have to reverse a list to find the element.
%%
%% To be compatible with the old version of this module, as much data as
%% possible is moved to the receiving side using lists:reverse/2 when data
%% is needed, except for two elements (when possible). These two elements
%% are kept to prevent alternating tail/1 and init/1 operations from
%% moving data back and forth between the sides.
%%
%% An alternative would be to balance for equal list length when one side
%% is exhausted. Although this could be better for a general double
%% ended queue, it would more han double the amortized cost for
%% the normal case (one way queue).
%% Cons to head
%%
-spec cons(Item :: term(), Q1 :: queue()) -> Q2 :: queue().
cons(X, Q) ->
in_r(X, Q).
%% Return head element
%%
%% Return the first element in the queue
%%
%% O(1) since the queue is supposed to be well formed
-spec head(Q :: queue()) -> Item :: term().
head({[],[]}=Q) ->
erlang:error(empty, [Q]);
head({R,F}) when is_list(R), is_list(F) ->
get(R, F);
head(Q) ->
erlang:error(badarg, [Q]).
%% Remove head element and return resulting queue
%%
-spec tail(Q1 :: queue()) -> Q2 :: queue().
tail(Q) ->
drop(Q).
%% Functions operating on the other end of the queue
%% Cons to tail
%%
-spec snoc(Q1 :: queue(), Item :: term()) -> Q2 :: queue().
snoc(Q, X) ->
in(X, Q).
%% Return last element
-spec daeh(Q :: queue()) -> Item :: term().
daeh(Q) -> get_r(Q).
-spec last(Q :: queue()) -> Item :: term().
last(Q) -> get_r(Q).
%% Remove last element and return resulting queue
-spec liat(Q1 :: queue()) -> Q2 :: queue().
liat(Q) -> drop_r(Q).
-spec lait(Q1 :: queue()) -> Q2 :: queue().
lait(Q) -> drop_r(Q). %% Oops, mis-spelled 'tail' reversed. Forget this one.
-spec init(Q1 :: queue()) -> Q2 :: queue().
init(Q) -> drop_r(Q).
%%--------------------------------------------------------------------------
%% Internal workers
-compile({inline, [{r2f,1},{f2r,1}]}).
%% Move half of elements from R to F, if there are at least three
r2f([]) ->
{[],[]};
r2f([_]=R) ->
{[],R};
r2f([X,Y]) ->
{[X],[Y]};
r2f(List) ->
{FF,RR} = lists:split(length(List) div 2 + 1, List),
{FF,lists:reverse(RR, [])}.
%% Move half of elements from F to R, if there are enough
f2r([]) ->
{[],[]};
f2r([_]=F) ->
{F,[]};
f2r([X,Y]) ->
{[Y],[X]};
f2r(List) ->
{FF,RR} = lists:split(length(List) div 2 + 1, List),
{lists:reverse(RR, []),FF}.
|