summaryrefslogtreecommitdiff
path: root/lib/stdlib/doc/src/gb_sets.xml
blob: 03397b45032df6997339113d5d25f74e983b29db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE erlref SYSTEM "erlref.dtd">

<erlref>
  <header>
    <copyright>
      <year>2001</year><year>2018</year>
      <holder>Ericsson AB. All Rights Reserved.</holder>
    </copyright>
    <legalnotice>
      Licensed under the Apache License, Version 2.0 (the "License");
      you may not use this file except in compliance with the License.
      You may obtain a copy of the License at
 
          http://www.apache.org/licenses/LICENSE-2.0

      Unless required by applicable law or agreed to in writing, software
      distributed under the License is distributed on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      See the License for the specific language governing permissions and
      limitations under the License.

    </legalnotice>

    <title>gb_sets</title>
    <prepared></prepared>
    <docno></docno>
    <date></date>
    <rev></rev>
  </header>
  <module>gb_sets</module>
  <modulesummary>General balanced trees.</modulesummary>
  <description>
    <p>This module provides ordered sets using Prof. Arne Andersson's
      General Balanced Trees. Ordered sets can be much more efficient than
      using ordered lists, for larger sets, but depends on the
      application.</p>

    <p>This module considers two elements as different if and only if
      they do not compare equal (<c>==</c>).</p>
  </description>

  <section>
    <title>Complexity Note</title>
    <p>The complexity on set operations is bounded by either <em>O(|S|)</em> or
      <em>O(|T| * log(|S|))</em>, where S is the largest given set, depending
      on which is fastest for any particular function call. For
      operating on sets of almost equal size, this implementation is
      about 3 times slower than using ordered-list sets directly. For
      sets of very different sizes, however, this solution can be
      arbitrarily much faster; in practical cases, often
      10-100 times. This implementation is particularly suited for
      accumulating elements a few at a time, building up a large set
      (&gt; 100-200 elements), and repeatedly testing for
      membership in the current set.</p>

    <p>As with normal tree structures, lookup (membership testing),
      insertion, and deletion have logarithmic complexity.</p>
  </section>

  <section>
    <title>Compatibility</title>
    <p>The following functions in this module also exist and provides
      the same functionality in the
      <seealso marker="sets"><c>sets(3)</c></seealso> and
      <seealso marker="ordsets"><c>ordsets(3)</c></seealso>
      modules. That is, by only changing the module name for each call,
      you can try out different set representations.</p>
    <list type="bulleted">
      <item><seealso marker="#add_element/2"><c>add_element/2</c></seealso>
      </item>
      <item><seealso marker="#del_element/2"><c>del_element/2</c></seealso>
      </item>
      <item><seealso marker="#filter/2"><c>filter/2</c></seealso>
      </item>
      <item><seealso marker="#fold/3"><c>fold/3</c></seealso>
      </item>
      <item><seealso marker="#from_list/1"><c>from_list/1</c></seealso>
      </item>
      <item><seealso marker="#intersection/1"><c>intersection/1</c></seealso>
      </item>
      <item><seealso marker="#intersection/2"><c>intersection/2</c></seealso>
      </item>
      <item><seealso marker="#is_element/2"><c>is_element/2</c></seealso>
      </item>
      <item><seealso marker="#is_empty/1"><c>is_empty/1</c></seealso>
      </item>
      <item><seealso marker="#is_set/1"><c>is_set/1</c></seealso>
      </item>
      <item><seealso marker="#is_subset/2"><c>is_subset/2</c></seealso>
      </item>
      <item><seealso marker="#new/0"><c>new/0</c></seealso>
      </item>
      <item><seealso marker="#size/1"><c>size/1</c></seealso>
      </item>
      <item><seealso marker="#subtract/2"><c>subtract/2</c></seealso>
      </item>
      <item><seealso marker="#to_list/1"><c>to_list/1</c></seealso>
      </item>
      <item><seealso marker="#union/1"><c>union/1</c></seealso>
      </item>
      <item><seealso marker="#union/2"><c>union/2</c></seealso>
      </item>
    </list>
  </section>

  <datatypes>
    <datatype>
      <name name="set" n_vars="1"/>
      <desc><p>A general balanced set.</p></desc>
    </datatype>
    <datatype>
      <name name="set" n_vars="0"/>
    </datatype>
    <datatype>
      <name name="iter" n_vars="1"/>
      <desc><p>A general balanced set iterator.</p></desc>
    </datatype>
    <datatype>
      <name name="iter" n_vars="0"/>
    </datatype>
  </datatypes>

  <funcs>
    <func>
      <name name="add" arity="2"/>
      <name name="add_element" arity="2"/>
      <fsummary>Add a (possibly existing) element to a set.</fsummary>
      <desc>
        <p>Returns a new set formed from <c><anno>Set1</anno></c> with
          <c><anno>Element</anno></c> inserted. If <c><anno>Element</anno></c>
          is already an
          element in <c><anno>Set1</anno></c>, nothing is changed.</p>
      </desc>
    </func>

    <func>
      <name name="balance" arity="1"/>
      <fsummary>Rebalance tree representation of a set.</fsummary>
      <desc>
        <p>Rebalances the tree representation of <c><anno>Set1</anno></c>.
          Notice that
          this is rarely necessary, but can be motivated when a large
          number of elements have been deleted from the tree without
          further insertions. Rebalancing can then be forced
          to minimise lookup times, as deletion does not
          rebalance the tree.</p>
      </desc>
    </func>

    <func>
      <name name="del_element" arity="2"/>
      <fsummary>Remove a (possibly non-existing) element from a set.</fsummary>
      <desc>
        <p>Returns a new set formed from <c><anno>Set1</anno></c> with
          <c><anno>Element</anno></c> removed. If <c><anno>Element</anno></c>
          is not an element
          in <c><anno>Set1</anno></c>, nothing is changed.</p>
      </desc>
    </func>

    <func>
      <name name="delete" arity="2"/>
      <fsummary>Remove an element from a set.</fsummary>
      <desc>
        <p>Returns a new set formed from <c><anno>Set1</anno></c> with
          <c><anno>Element</anno></c> removed. Assumes that
          <c><anno>Element</anno></c> is present
          in <c><anno>Set1</anno></c>.</p>
      </desc>
    </func>

    <func>
      <name name="delete_any" arity="2"/>
      <fsummary>Remove a (possibly non-existing) element from a set.</fsummary>
      <desc>
        <p>Returns a new set formed from <c><anno>Set1</anno></c> with
          <c><anno>Element</anno></c> removed. If <c><anno>Element</anno></c>
          is not an element
          in <c><anno>Set1</anno></c>, nothing is changed.</p>
      </desc>
    </func>

    <func>
      <name name="difference" arity="2"/>
      <fsummary>Return the difference of two sets.</fsummary>
      <desc>
        <p>Returns only the elements of <c><anno>Set1</anno></c> that are not
          also elements of <c><anno>Set2</anno></c>.</p>
      </desc>
    </func>

    <func>
      <name name="empty" arity="0"/>
      <fsummary>Return an empty set.</fsummary>
      <desc>
        <p>Returns a new empty set.</p>
      </desc>
    </func>

    <func>
      <name name="filter" arity="2"/>
      <fsummary>Filter set elements.</fsummary>
      <desc>
        <p>Filters elements in <c><anno>Set1</anno></c> using predicate function
          <c><anno>Pred</anno></c>.</p>
      </desc>
    </func>

    <func>
      <name name="fold" arity="3"/>
      <fsummary>Fold over set elements.</fsummary>
      <desc>
        <p>Folds <c><anno>Function</anno></c> over every element in
          <c><anno>Set</anno></c>
          returning the final value of the accumulator.</p>
      </desc>
    </func>

    <func>
      <name name="from_list" arity="1"/>
      <fsummary>Convert a list into a set.</fsummary>
      <desc>
        <p>Returns a set of the elements in <c><anno>List</anno></c>, where
          <c><anno>List</anno></c> can be unordered and contain duplicates.</p>
      </desc>
    </func>

    <func>
      <name name="from_ordset" arity="1"/>
      <fsummary>Make a set from an ordset list.</fsummary>
      <desc>
        <p>Turns an ordered-set list <c><anno>List</anno></c> into a set.
          The list must not contain duplicates.</p>
      </desc>
    </func>

    <func>
      <name name="insert" arity="2"/>
      <fsummary>Add a new element to a set.</fsummary>
      <desc>
        <p>Returns a new set formed from <c><anno>Set1</anno></c> with
          <c><anno>Element</anno></c> inserted. Assumes that
          <c><anno>Element</anno></c> is not
          present in <c><anno>Set1</anno></c>.</p>
      </desc>
    </func>

    <func>
      <name name="intersection" arity="1"/>
      <fsummary>Return the intersection of a list of sets.</fsummary>
      <desc>
        <p>Returns the intersection of the non-empty list of sets.</p>
      </desc>
    </func>

    <func>
      <name name="intersection" arity="2"/>
      <fsummary>Return the intersection of two sets.</fsummary>
      <desc>
        <p>Returns the intersection of <c><anno>Set1</anno></c> and
          <c><anno>Set2</anno></c>.</p>
      </desc>
    </func>

    <func>
      <name name="is_disjoint" arity="2"/>
      <fsummary>Check whether two sets are disjoint.</fsummary>
      <desc>
        <p>Returns <c>true</c> if <c><anno>Set1</anno></c> and
          <c><anno>Set2</anno></c> are disjoint (have no elements in common),
	  otherwise <c>false</c>.</p>
      </desc>
    </func>

    <func>
      <name name="is_element" arity="2"/>
      <fsummary>Test for membership of a set.</fsummary>
      <desc>
        <p>Returns <c>true</c> if <c><anno>Element</anno></c> is an element of
          <c><anno>Set</anno></c>, otherwise <c>false</c>.</p>
      </desc>
    </func>

    <func>
      <name name="is_empty" arity="1"/>
      <fsummary>Test for empty set.</fsummary>
      <desc>
        <p>Returns <c>true</c> if <c><anno>Set</anno></c> is an empty set,
          otherwise <c>false</c>.</p>
      </desc>
    </func>

    <func>
      <name name="is_member" arity="2"/>
      <fsummary>Test for membership of a set.</fsummary>
      <desc>
        <p>Returns <c>true</c> if <c><anno>Element</anno></c> is an element of
          <c><anno>Set</anno></c>, otherwise <c>false</c>.</p>
      </desc>
    </func>

    <func>
      <name name="is_set" arity="1"/>
      <fsummary>Test for a set.</fsummary>
      <desc>
        <p>Returns <c>true</c> if <c><anno>Term</anno></c> appears to be a set,
          otherwise <c>false</c>.</p>
      </desc>
    </func>

    <func>
      <name name="is_subset" arity="2"/>
      <fsummary>Test for subset.</fsummary>
      <desc>
        <p>Returns <c>true</c> when every element of <c><anno>Set1</anno></c> is
          also a member of <c><anno>Set2</anno></c>, otherwise <c>false</c>.</p>
      </desc>
    </func>

    <func>
      <name name="iterator" arity="1"/>
      <fsummary>Return an iterator for a set.</fsummary>
      <desc>
        <p>Returns an iterator that can be used for traversing the entries of
          <c><anno>Set</anno></c>; see
          <seealso marker="#next/1"><c>next/1</c></seealso>. The implementation
          of this is very efficient; traversing the whole set using
          <c>next/1</c> is only slightly slower than getting the list of all
          elements using <seealso marker="#to_list/1"><c>to_list/1</c></seealso>
          and traversing that.
          The main advantage of the iterator approach is that it does
          not require the complete list of all elements to be built in
          memory at one time.</p>
      </desc>
    </func>

    <func>
      <name name="iterator_from" arity="2"/>
      <fsummary>Return an iterator for a set starting from a specified element.
      </fsummary>
      <desc>
        <p>Returns an iterator that can be used for traversing the
          entries of <c><anno>Set</anno></c>; see
          <seealso marker="#next/1"><c>next/1</c></seealso>.
          The difference as compared to the iterator returned by
          <seealso marker="#iterator/1"><c>iterator/1</c></seealso>
          is that the first element greater than
          or equal to <c><anno>Element</anno></c> is returned.</p>
      </desc>
    </func>

    <func>
      <name name="largest" arity="1"/>
      <fsummary>Return largest element.</fsummary>
      <desc>
        <p>Returns the largest element in <c><anno>Set</anno></c>. Assumes that
          <c><anno>Set</anno></c> is not empty.</p>
      </desc>
    </func>

    <func>
      <name name="new" arity="0"/>
      <fsummary>Return an empty set.</fsummary>
      <desc>
        <p>Returns a new empty set.</p>
      </desc>
    </func>

    <func>
      <name name="next" arity="1"/>
      <fsummary>Traverse a set with an iterator.</fsummary>
      <desc>
        <p>Returns <c>{<anno>Element</anno>, <anno>Iter2</anno>}</c>, where
          <c><anno>Element</anno></c> is the smallest element referred to by
          iterator <c><anno>Iter1</anno></c>,
          and <c><anno>Iter2</anno></c> is the new iterator to be used for
          traversing the remaining elements, or the atom <c>none</c> if
          no elements remain.</p>
      </desc>
    </func>

    <func>
      <name name="singleton" arity="1"/>
      <fsummary>Return a set with one element.</fsummary>
      <desc>
        <p>Returns a set containing only element <c><anno>Element</anno></c>.
        </p>
      </desc>
    </func>

    <func>
      <name name="size" arity="1"/>
      <fsummary>Return the number of elements in a set.</fsummary>
      <desc>
        <p>Returns the number of elements in <c><anno>Set</anno></c>.</p>
      </desc>
    </func>

    <func>
      <name name="smallest" arity="1"/>
      <fsummary>Return smallest element.</fsummary>
      <desc>
        <p>Returns the smallest element in <c><anno>Set</anno></c>. Assumes that
          <c><anno>Set</anno></c> is not empty.</p>
      </desc>
    </func>

    <func>
      <name  name="subtract" arity="2"/>
      <fsummary>Return the difference of two sets.</fsummary>
      <desc>
        <p>Returns only the elements of <c><anno>Set1</anno></c> that are not
          also elements of <c><anno>Set2</anno></c>.</p>
      </desc>
    </func>

    <func>
      <name name="take_largest" arity="1"/>
      <fsummary>Extract largest element.</fsummary>
      <desc>
        <p>Returns <c>{<anno>Element</anno>, <anno>Set2</anno>}</c>, where
          <c><anno>Element</anno></c> is the largest element in
          <c><anno>Set1</anno></c>, and <c><anno>Set2</anno></c> is this set
          with <c><anno>Element</anno></c> deleted. Assumes that
          <c><anno>Set1</anno></c> is not empty.</p>
      </desc>
    </func>

    <func>
      <name name="take_smallest" arity="1"/>
      <fsummary>Extract smallest element.</fsummary>
      <desc>
        <p>Returns <c>{<anno>Element</anno>, <anno>Set2</anno>}</c>, where
          <c><anno>Element</anno></c> is the smallest element in
          <c><anno>Set1</anno></c>, and <c><anno>Set2</anno></c> is this set
          with <c><anno>Element</anno></c> deleted. Assumes that
          <c><anno>Set1</anno></c> is not empty.</p>
      </desc>
    </func>

    <func>
      <name name="to_list" arity="1"/>
      <fsummary>Convert a set into a list.</fsummary>
      <desc>
        <p>Returns the elements of <c><anno>Set</anno></c> as a list.</p>
      </desc>
    </func>

    <func>
      <name name="union" arity="1"/>
      <fsummary>Return the union of a list of sets.</fsummary>
      <desc>
        <p>Returns the merged (union) set of the list of sets.</p>
      </desc>
    </func>

    <func>
      <name name="union" arity="2"/>
      <fsummary>Return the union of two sets.</fsummary>
      <desc>
        <p>Returns the merged (union) set of <c><anno>Set1</anno></c> and
          <c><anno>Set2</anno></c>.</p>
      </desc>
    </func>
  </funcs>

  <section>
    <title>See Also</title>
    <p><seealso marker="gb_trees"><c>gb_trees(3)</c></seealso>,
      <seealso marker="ordsets"><c>ordsets(3)</c></seealso>,
      <seealso marker="sets"><c>sets(3)</c></seealso></p>
  </section>
</erlref>