summaryrefslogtreecommitdiff
path: root/lib/snmp/doc/src/snmp_instr_functions.xml
blob: 38512b72d021d93abf92883b36fc6b9d5236813f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">

<chapter>
  <header>
    <copyright>
      <year>1997</year><year>2016</year>
      <holder>Ericsson AB. All Rights Reserved.</holder>
    </copyright>
    <legalnotice>
      Licensed under the Apache License, Version 2.0 (the "License");
      you may not use this file except in compliance with the License.
      You may obtain a copy of the License at
 
          http://www.apache.org/licenses/LICENSE-2.0

      Unless required by applicable law or agreed to in writing, software
      distributed under the License is distributed on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      See the License for the specific language governing permissions and
      limitations under the License.
    
    </legalnotice>

    <title>Instrumentation Functions</title>
    <prepared></prepared>
    <responsible></responsible>
    <docno></docno>
    <approved></approved>
    <checked></checked>
    <date></date>
    <rev></rev>
    <file>snmp_instr_functions.xml</file>
  </header>
  <p>A user-defined instrumentation function for each object attaches
    the managed objects to real resources. This function is called by
    the agent on a <c>get</c> or <c>set</c> operation. The function
    could read some hardware register, perform a calculation, or
    whatever is necessary to implement the semantics associated with the
    conceptual variable. These functions must be written both for scalar
    variables and for tables. They are specified in the association
    file, which is a text file. In this file, the <c>OBJECT IDENTIFIER</c>, or symbolic name for each managed object, is
    associated with an Erlang tuple <c>{Module,</c><c>Function</c>,
    <c>ListOfExtraArguments}</c>.
    </p>
  <p>When a managed object is referenced in an SNMP operation, the
    associated <c>{Module, Function, ListOfExtraArguments}</c> is
    called. The function is applied to some standard arguments (for
    example, the operation type) and the extra arguments supplied by the
    user.
    </p>
  <p>Instrumentation functions must be written for <c>get</c> and
    <c>set</c> for scalar variables and tables, and for <c>get-next</c>
    for tables only.  The <c>get-bulk</c> operation is translated into a
    series of calls to <c>get-next</c>.
    </p>

  <section>
    <title>Instrumentation Functions</title>
    <p>The following sections describe how the instrumentation
      functions should be defined in Erlang for the different
      operations. In the following, <c>RowIndex</c> is a list of key
      values for the table, and <c>Column</c> is a column number.
      </p>
    <p>These functions are described in detail in 
      <seealso marker="snmp_def_instr_functions">Definition of Instrumentation Functions</seealso>.
      </p>

    <section>
      <title>New / Delete Operations</title>
      <p>For scalar variables:
        </p>
      <code type="none">
variable_access(new [, ExtraArg1, ...])
variable_access(delete [, ExtraArg1, ...])
      </code>
      <p>For tables:
        </p>
      <code type="none">
table_access(new [, ExtraArg1, ...])
table_access(delete [, ExtraArg1, ...])
      </code>
      <p>These functions are called for each object in an MIB when the
        MIB is unloaded or loaded, respectively.</p>
    </section>

    <section>
      <title>Get Operation</title>
      <p>For scalar variables:
        </p>
      <code type="none">
variable_access(get [, ExtraArg1, ...])
      </code>
      <p>For tables:
        </p>
      <code type="none">
table_access(get,RowIndex,Cols [,ExtraArg1, ...])
      </code>
      <p><c>Cols</c> is a list of <c>Column</c>. The agent will sort
        incoming variables so that all operations on one row (same
        index) will be supplied at the same time. The reason for this is
        that a database normally retrieves information row by row.
        </p>
      <p>These functions must return the current values of the
        associated variables.</p>
    </section>

    <section>
      <title>Set Operation</title>
      <p>For scalar variables:
        </p>
      <code type="none">
variable_access(set, NewValue [, ExtraArg1, ...])
      </code>
      <p>For tables:
        </p>
      <code type="none">
table_access(set, RowIndex, Cols [, ExtraArg1,..])
      </code>
      <p><c>Cols</c> is a list of tuples <c>{Column, NewValue}</c>.
        </p>
      <p>These functions returns <c>noError</c> if the assignment was
        successful, otherwise an error code.</p>
    </section>

    <section>
      <title>Is-set-ok Operation</title>
      <p>As a complement to the <c>set</c> operation, it is possible
        to specify a test function. This function has the same syntax as
        the set operation above, except that the first argument is
        <c>is_set_ok</c> instead of <c>set</c>. This function is called
        before the variable is set. Its purpose is to ensure that it is
        permissible to set the variable to the new value.</p>
      <code type="none">
variable_access(is_set_ok, NewValue [, ExtraArg1, ...])
      </code>
      <p>For tables:
        </p>
      <code type="none">
table_access(set, RowIndex, Cols [, ExtraArg1,..])
      </code>
      <p><c>Cols</c> is a list of tuples <c>{Column, NewValue}</c>.
        </p>
    </section>

    <section>
      <title>Undo Operation</title>
      <p>A function which has been called with <c>is_set_ok</c> will
        be called again, either with <c>set</c> if there was no error,
        or with <c>undo</c>, if an error occurred. In this way,
        resources can be reserved in the <c>is_set_ok</c> operation,
        released in the <c>undo</c> operation, or made permanent in the
        <c>set</c> operation.</p>
      <code type="none">
variable_access(undo, NewValue [, ExtraArg1, ...])
      </code>
      <p>For tables:
        </p>
      <code type="none">
table_access(set, RowIndex, Cols [, ExtraArg1,..])
      </code>
      <p><c>Cols</c> is a list of tuples <c>{Column, NewValue}</c>.
        </p>
    </section>

    <section>
      <title>GetNext Operation</title>
      <p>The GetNext Operation operation should only be defined for 
        tables since the
        agent can find the next instance of plain variables in the MIB
        and call the instrumentation with the <c>get</c> operation.
        </p>
      <code type="none">
table_access(get_next, RowIndex, Cols [, ExtraArg1, ...])
      </code>
      <p><c>Cols</c> is a list of integers, all greater than or equal
        to zero. This indicates that the instrumentation should find the
        next accessible instance. This function returns the tuple
        <c>{NextOid, NextValue}</c>, or
        <c>endOfTable</c>. <c>NextOid</c> should be the
        lexicographically next accessible instance of a managed object
        in the table. It should be a list of integers, where the first
        integer is the column, and the rest of the list is the indices
        for the next row. If <c>endOfTable</c> is returned, the agent
        continues to search for the next instance among the other
        variables and tables.
        </p>
      <p><c>RowIndex</c> may be an empty list, an incompletely
        specified row index, or the index for an unspecified row.
        </p>
      <p>This operation is best described with an example.
        </p>

      <section>
        <title>GetNext Example</title>
        <p>A table called <c>myTable</c> has five columns. The first
          two are keys (not accessible), and the table has three
          rows. The instrumentation function for this table is called
          <c>my_table</c>.</p>
        <marker id="getnext1"></marker>
        <image file="getnext1.gif">
          <icaption>Contents of my_table</icaption>
        </image>
        <note>
          <p>N/A means not accessible.</p>
        </note>
        <p>The manager issues the following <c>getNext</c> request:
          </p>
        <code type="none">
getNext{ myTable.myTableEntry.3.1.1,
         myTable.myTableEntry.5.1.1 } 
        </code>
        <p>Since both operations involve the 1.1 index, this is
          transformed into one call to <c>my_table</c>:
          </p>
        <code type="none">
my_table(get_next, [1, 1], [3, 5])
        </code>
        <p>In this call, <c>[1, 1]</c> is the <c>RowIndex</c>, where
          key 1 has value 1, and key 2 has value 1, and <c>[3, 5]</c> is
          the list of requested columns. The function should now return
          the lexicographically next elements:
          </p>
        <code type="none">
[{[3, 1, 2], d}, {[5, 1, 2], f}]
        </code>
        <p>This is illustrated in the following table:
          </p>
        <p></p>
        <marker id="getnext2"></marker>
        <image file="getnext2.gif">
          <icaption>GetNext from [3,1,1] and [5,1,1].</icaption>
        </image>
        <p>The manager now issues the following <c>getNext</c> request:
          </p>
        <code type="none">
getNext{ myTable.myTableEntry.3.2.1,
         myTable.myTableEntry.5.2.1 } 
        </code>
        <p>This is transformed into one call to <c>my_table</c>:
          </p>
        <code type="none">
my_table(get_next, [2, 1], [3, 5])
        </code>
        <p>The function should now return:
          </p>
        <code type="none">
[{[4, 1, 1], b}, endOfTable]
        </code>
        <p>This is illustrated in the following table:
          </p>
        <p></p>
        <marker id="getnext3"></marker>
        <image file="getnext3.gif">
          <icaption>GetNext from [3,2,1] and [5,2,1].</icaption>
        </image>
        <p>The manager now issues the following <c>getNext</c> request:
          </p>
        <code type="none">
getNext{ myTable.myTableEntry.3.1.2,
         myTable.myTableEntry.4.1.2 } 
        </code>
        <p>This will be transform into one call to <c>my_table</c>:
          </p>
        <code type="none">
my_table(get_next, [1, 2], [3, 4])
        </code>
        <p>The function should now return:
          </p>
        <code type="none">
[{[3, 2, 1], g}, {[5, 1, 1], c}]
        </code>
        <p>This is illustrated in the following table:
          </p>
        <p></p>
        <marker id="getnext4"></marker>
        <image file="getnext4.gif">
          <icaption>GetNext from [3,1,2] and [4,1,2].</icaption>
        </image>
        <p>The manager now issues the following <c>getNext</c> request:
          </p>
        <code type="none">
getNext{ myTable.myTableEntry,
         myTable.myTableEntry.1.3.2 } 
        </code>
        <p>This will be transform into two calls to <c>my_table</c>:
          </p>
        <code type="none">
my_table(get_next, [], [0]) and
my_table(get_next, [3, 2], [1])
        </code>
        <p>The function should now return:
          </p>
        <code type="none">
[{[3, 1, 1], a}] and
[{[3, 1, 1], a}]
        </code>
        <p>In both cases, the first accessible element in the table
          should be returned. As the key columns are not accessible,
          this means that the third column is the first row.</p>
        <note>
          <p>Normally, the functions described above behave exactly as
            shown, but they are free to perform other actions. For
            example, a get-request may have side effects such as setting
            some other variable, perhaps a global <c>lastAccessed</c>
            variable.</p>
        </note>
      </section>
    </section>
  </section>

  <section>
    <title>Using the ExtraArgument</title>
    <p>The <c>ListOfExtraArguments</c> can be used to write generic
      functions. This list is appended to the standard arguments for
      each function. Consider two read-only variables for a device,
      <c>ipAdr</c> and <c>name</c> with object identifiers 1.1.23.4 and
      1.1.7 respectively. To access these variables, one could implement
      the two Erlang functions <c>ip_access</c> and <c>name_access</c>,
      which will be in the MIB. The functions could be specified in a
      text file as follows:
      </p>
    <p></p>
    <code type="none">
{ipAdr, {my_module, ip_access, []}}.
% Or using the oid syntax for 'name'
{[1,1,7], {my_module, name_access, []}}.
    </code>
    <p>The <c>ExtraArgument</c> parameter is the empty list. For
      example, when the agent receives a get-request for the
      <c>ipAdr</c> variable, a call will be made to
      <c>ip_access(get)</c>. The value returned by this function is the
      answer to the get-request.
      </p>
    <p>If <c>ip_access</c> and <c>name_access</c> are implemented
      similarly, we could write a <c>generic_access</c> function using
      the <c>ListOfExtraArguments</c>:
      </p>
    <code type="none">
{ipAdr, {my_module, generic_access, ['IPADR']}}.
% The mnemonic 'name' is more convenient than 1.1.7
{name, {my_module, generic_access, ['NAME']}}.
    </code>
    <p>When the agent receives the same get-request as above, a call
      will be made to <c>generic_access(get, </c>'<c>IPADR')</c>.
      </p>
    <p>Yet another possibility, closer to the hardware, could be:
      </p>
    <code type="none">
{ipAdr, {my_module, generic_access, [16#2543]}}.
{name, {my_module, generic_access, [16#A2B3]}}.
    </code>
  </section>

  <section>
    <title>Default Instrumentation</title>
    <marker id="snmp_3"></marker>
    <p>When the MIB definition work is finished, there are two major
      issues left.
      </p>
    <list type="bulleted">
      <item>Implementing the MIB
      </item>
      <item>Implementing a Manager Application.</item>
    </list>
    <p>Implementing an MIB can be a tedious task. Most probably, there
      is a need to test the agent before all tables and variables are
      implemented. In this case, the default instrumentation functions
      are useful. The toolkit can generate default instrumentation
      functions for variables as well as for tables. Consequently, a
      running prototype agent, which can handle <c>set</c>, <c>get</c>,
      <c>get-next</c> and table operations, is generated without any
      programming.
      </p>
    <p>The agent stores the values in an internal volatile database,
      which is based on the standard module <c>ets</c>. However, it is
      possible to let the MIB compiler generate functions which use an
      internal, persistent database, or the Mnesia DBMS. Refer to the
      Mnesia User Guide and the Reference Manual, section SNMP, module
      <c>snmp_generic</c> for more information.
      </p>
    <p>When parts of the MIB are implemented, you recompile it and
      continue on by using default functions. With this approach, the
      SNMP agent can be developed incrementally.
      </p>
    <p>The default instrumentation allows the application on the
      manager side to be developed and tested simultaneously with the
      agent. As soon as the ASN.1 file is completed, let the MIB
      compiler generate a default implementation and develop the
      management application from this.
      </p>

    <section>
      <title>Table Operations</title>
      <p>The generation of default functions for tables works for
        tables which use the <c>RowStatus</c> textual convention from
        SNMPv2, defined in STANDARD-MIB and SNMPv2-TC.
        </p>
      <note>
        <p>We strongly encourage the use of the <c>RowStatus</c>
          convention for every table that can be modified from the
          manager, even for newly designed SNMPv1 MIBs. In SNMPv1,
          everybody has invented their own scheme for emulating table
          operations, which has led to numerous inconsistencies. The
          convention in SNMPv2 is flexible and powerful and has been
          tested successfully. If the table is read only, no RowStatus
          column should be used.
          </p>
      </note>
    </section>
  </section>

  <section>
    <title>Atomic Set</title>
    <p>In SNMP, the <c>set</c> operation is atomic. Either all
      variables which are specified in a <c>set</c> operation are
      changed, or none are changed. Therefore, the <c>set</c> operation
      is divided into two phases. In the first phase, the new value of
      each variable is checked against the definition of the variable in
      the MIB. The following definitions are checked:
      </p>
    <list type="bulleted">
      <item>the type</item>
      <item>the length</item>
      <item>the range</item>
      <item>the variable is writable and within the MIB view.
      </item>
    </list>
    <p>At
      the end of phase one, the user defined <c>is_set_ok</c> functions
      are called for each scalar variable, and for each group of table
      operations.
      </p>
    <p>If no error occurs, the second phase is performed. This phase
      calls the user defined <c>set</c> function for all variables.
      </p>
    <p>If an error occurs, either in the <c>is_set_ok</c> phase, or in
      the <c>set</c> phase, all functions which were called with
      <c>is_set_ok</c> but not <c>set</c>, are called with <c>undo</c>.
      </p>
    <p>There are limitations with this transaction mechanism. If
      complex dependencies exist between variables, for example between
      <c>month</c> and <c>day</c>, another mechanism is needed. Setting
      the date to 'Feb 31' can be avoided by a somewhat more generic
      transaction mechanism. You can continue and find more and more
      complex situations and construct an N-phase set-mechanism. This
      toolkit only contains a trivial mechanism.
      </p>
    <p>The most common application of transaction mechanisms is to
      keep row operations together. Since our agent sorts row
      operations, the mechanism implemented in combination with the
      RowStatus (particularly 'createAndWait' value) solve most
      problems elegantly.
      </p>
  </section>
</chapter>