1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1999-2018. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose: Partition BEAM instructions into basic blocks.
-module(beam_block).
-export([module/2]).
-import(lists, [keysort/2,reverse/1,reverse/2,splitwith/2]).
-spec module(beam_utils:module_code(), [compile:option()]) ->
{'ok',beam_utils:module_code()}.
module({Mod,Exp,Attr,Fs0,Lc}, _Opts) ->
Fs = [function(F) || F <- Fs0],
{ok,{Mod,Exp,Attr,Fs,Lc}}.
function({function,Name,Arity,CLabel,Is0}) ->
try
Is1 = swap_opt(Is0),
Is2 = blockify(Is1),
Is = embed_lines(Is2),
{function,Name,Arity,CLabel,Is}
catch
Class:Error:Stack ->
io:fwrite("Function: ~w/~w\n", [Name,Arity]),
erlang:raise(Class, Error, Stack)
end.
%%%
%%% Try to use a `swap` instruction instead of a sequence of moves.
%%%
%%% Note that beam_ssa_codegen generates `swap` instructions only for
%%% the moves within a single SSA instruction (such as `call`), not
%%% for the moves generated by a sequence of SSA instructions.
%%% Therefore, this optimization is needed.
%%%
%%% We'll need to handle non-consecutive sequences of moves, such
%%% as the following instruction sequence:
%%%
%%% move y2, x2
%%% move x0, y2
%%% move y1, x1
%%% init_yregs [y1]
%%% move x2, x0
%%%
%%% The first two `move` instructions and the last `move` instruction
%%% should be combined to a `swap` instruction:
%%%
%%% swap y2, x0
%%% move y1, x1
%%% init_yregs [y1]
%%%
%%% (Provided that x2 is killed in the code that follows.)
%%%
swap_opt([{move,Reg1,{x,_}=Temp}=Move1,
{move,Reg2,Reg1}=Move2|Is0]) when Reg1 =/= Temp ->
case swap_opt_end(Is0, Temp, Reg2, []) of
{yes,Is} ->
[{swap,Reg1,Reg2}|swap_opt(Is)];
no ->
[Move1|swap_opt([Move2|Is0])]
end;
swap_opt([I|Is]) ->
[I|swap_opt(Is)];
swap_opt([]) -> [].
swap_opt_end([{move,S,D}=I|Is], Temp, Dst, Acc) ->
case {S,D} of
{Temp,Dst} ->
{x,X} = Temp,
case is_unused(X, Is) of
true -> {yes,reverse(Acc, Is)};
false -> no
end;
{Temp,_} -> no;
{Dst,_} -> no;
{_,Temp} -> no;
{_,Dst} -> no;
{_,_} -> swap_opt_end(Is, Temp, Dst, [I|Acc])
end;
swap_opt_end([{init_yregs,_}=I|Is], Temp, Dst, Acc) ->
swap_opt_end(Is, Temp, Dst, [I|Acc]);
swap_opt_end(_, _, _, _) -> no.
is_unused(X, [{call,A,_}|_]) when A =< X -> true;
is_unused(X, [{call_ext,A,_}|_]) when A =< X -> true;
is_unused(X, [{make_fun2,_,_,_,A}|_]) when A =< X -> true;
is_unused(X, [{move,Src,Dst}|Is]) ->
case {Src,Dst} of
{{x,X},_} -> false;
{_,{x,X}} -> true;
{_,_} -> is_unused(X, Is)
end;
is_unused(X, [{line,_}|Is]) -> is_unused(X, Is);
is_unused(_, _) -> false.
%% blockify(Instructions0) -> Instructions
%% Collect sequences of instructions to basic blocks.
%% Also do some simple optimations on instructions outside the blocks.
blockify(Is) ->
blockify(Is, []).
blockify([I|Is0]=IsAll, Acc) ->
case collect(I) of
error -> blockify(Is0, [I|Acc]);
Instr when is_tuple(Instr) ->
{Block0,Is} = collect_block(IsAll),
Block = sort_moves(Block0),
blockify(Is, [{block,Block}|Acc])
end;
blockify([], Acc) -> reverse(Acc).
collect_block(Is) ->
collect_block(Is, []).
collect_block([{allocate,N,R}|Is0], Acc) ->
{Inits,Is} = splitwith(fun ({init,{y,_}}) -> true;
(_) -> false
end, Is0),
collect_block(Is, [{set,[],[],{alloc,R,{nozero,N,0,Inits}}}|Acc]);
collect_block([I|Is]=Is0, Acc) ->
case collect(I) of
error -> {reverse(Acc),Is0};
Instr -> collect_block(Is, [Instr|Acc])
end;
collect_block([], Acc) ->
{reverse(Acc),[]}.
collect({allocate,N,R}) -> {set,[],[],{alloc,R,{nozero,N,0,[]}}};
collect({allocate_heap,Ns,Nh,R}) -> {set,[],[],{alloc,R,{nozero,Ns,Nh,[]}}};
collect({test_heap,N,R}) -> {set,[],[],{alloc,R,{nozero,nostack,N,[]}}};
collect({bif,N,{f,0},As,D}) -> {set,[D],As,{bif,N,{f,0}}};
collect({gc_bif,N,{f,0},R,As,D}) -> {set,[D],As,{alloc,R,{gc_bif,N,{f,0}}}};
collect({move,S,D}) -> {set,[D],[S],move};
collect({put_list,S1,S2,D}) -> {set,[D],[S1,S2],put_list};
collect({put_tuple,A,D}) -> {set,[D],[],{put_tuple,A}};
collect({put,S}) -> {set,[],[S],put};
collect({put_tuple2,D,{list,Els}}) -> {set,[D],Els,put_tuple2};
collect({get_tuple_element,S,I,D}) -> {set,[D],[S],{get_tuple_element,I}};
collect({set_tuple_element,S,D,I}) -> {set,[],[S,D],{set_tuple_element,I}};
collect({get_hd,S,D}) -> {set,[D],[S],get_hd};
collect({get_tl,S,D}) -> {set,[D],[S],get_tl};
collect(remove_message) -> {set,[],[],remove_message};
collect({put_map,{f,0},Op,S,D,R,{list,Puts}}) ->
{set,[D],[S|Puts],{alloc,R,{put_map,Op,{f,0}}}};
collect({fmove,S,D}) -> {set,[D],[S],fmove};
collect({fconv,S,D}) -> {set,[D],[S],fconv};
collect(_) -> error.
%% embed_lines([Instruction]) -> [Instruction]
%% Combine blocks that would be split by line/1 instructions.
%% Also move a line instruction before a block into the block,
%% but leave the line/1 instruction after a block outside.
embed_lines(Is) ->
embed_lines(reverse(Is), []).
embed_lines([{block,B2},{line,_}=Line,{block,B1}|T], Acc) ->
B = {block,B1++[{set,[],[],Line}]++B2},
embed_lines([B|T], Acc);
embed_lines([{block,B1},{line,_}=Line|T], Acc) ->
B = {block,[{set,[],[],Line}|B1]},
embed_lines([B|T], Acc);
embed_lines([I|Is], Acc) ->
embed_lines(Is, [I|Acc]);
embed_lines([], Acc) -> Acc.
%% sort_moves([Instruction]) -> [Instruction].
%% Sort move instructions on the Y register to give the loader
%% more opportunities for combining instructions.
sort_moves([{set,[{x,_}],[{y,_}],move}=I|Is0]) ->
{Moves,Is} = sort_moves_1(Is0, x, y, [I]),
Moves ++ sort_moves(Is);
sort_moves([{set,[{y,_}],[{x,_}],move}=I|Is0]) ->
{Moves,Is} = sort_moves_1(Is0, y, x, [I]),
Moves ++ sort_moves(Is);
sort_moves([I|Is]) ->
[I|sort_moves(Is)];
sort_moves([]) -> [].
sort_moves_1([{set,[{x,0}],[_],move}=I|Is], _DTag, _STag, Acc) ->
%% The loader sometimes combines a move to x0 with the
%% instruction that follows, producing, for example, a move_call
%% instruction. Therefore, we don't want include this move
%% instruction in the sorting.
{sort_on_yreg(Acc)++[I],Is};
sort_moves_1([{set,[{DTag,_}],[{STag,_}],move}=I|Is], DTag, STag, Acc) ->
sort_moves_1(Is, DTag, STag, [I|Acc]);
sort_moves_1(Is, _DTag, _STag, Acc) ->
{sort_on_yreg(Acc),Is}.
sort_on_yreg([{set,[Dst],[Src],move}|_]=Moves) ->
case {Dst,Src} of
{{y,_},{x,_}} ->
keysort(2, Moves);
{{x,_},{y,_}} ->
keysort(3, Moves)
end.
|