summaryrefslogtreecommitdiff
path: root/erts/emulator/beam/ops.tab
blob: 1d336e4b7b0cde033af0b48313870d17bf1dbed2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
#
# %CopyrightBegin%
#
# Copyright Ericsson AB 1997-2019. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# %CopyrightEnd%
#

#
# The instructions that follows are only known by the loader and the emulator.
# They can be changed without recompiling old Beam files.
#
# Instructions starting with a "i_" prefix are instructions produced by
# instruction transformations; thus, they never occur in BEAM files.
#

# The too_old_compiler/0 instruction is specially handled in beam_load.c
# to produce a user-friendly message informing the user that the module
# needs to be re-compiled with a modern compiler.

too_old_compiler/0
too_old_compiler | never() =>

# In R9C and earlier, the loader used to insert special instructions inside
# the module_info/0,1 functions. (In R10B and later, the compiler inserts
# an explicit call to an undocumented BIF, so that no loader trickery is
# necessary.) Since the instructions don't work correctly in R12B, simply
# refuse to load the module.

func_info M=a a==am_module_info A=u==0 | label L | move n x==0 => too_old_compiler
func_info M=a a==am_module_info A=u==1 | label L | move n x==0 => too_old_compiler

# The undocumented and unsupported guard BIF is_constant/1 was removed
# in R13. The is_constant/2 operation is marked as obsolete in genop.tab,
# so the loader will automatically generate a too_old_compiler message
# it is used, but we need to handle the is_constant/1 BIF specially here.

bif1 Fail u$func:erlang:is_constant/1 Src Dst => too_old_compiler

# Since the constant pool was introduced in R12B, empty tuples ({})
# are literals. Therefore we no longer need to allow put_tuple/2
# with a tuple size of zero.

put_tuple u==0 d => too_old_compiler

#
# All the other instructions.
#

%cold
label L
i_func_info I a a I
int_code_end

i_generic_breakpoint
i_debug_breakpoint
i_return_time_trace
i_return_to_trace
i_yield
trace_jump W
%hot

return

# To ensure that a "move Src x(0)" instruction can be combined with
# the following call instruction, we need to make sure that there is
# no line/1 instruction between the move and the call.

move S X0=x==0 | line Loc | call Ar Func => \
     line Loc | move S X0 | call Ar Func

move S X0=x==0 | line Loc | call_ext Ar Func => \
     line Loc | move S X0 | call_ext Ar Func

#
# A tail call will not refer to the current function on error unless it's a
# BIF, so we can omit the line instruction for non-BIFs.
#

move S X0=x==0 | line Loc | call_ext_last Ar Func=u$is_bif D => \
     line Loc | move S X0 | call_ext_last Ar Func D
move S X0=x==0 | line Loc | call_ext_only Ar Func=u$is_bif => \
     line Loc | move S X0 | call_ext_only Ar Func

move S X0=x==0 | line Loc | call_ext_last Ar Func D => \
     move S X0 | call_ext_last Ar Func D
move S X0=x==0 | line Loc | call_ext_only Ar Func => \
     move S X0 | call_ext_only Ar Func

move S X0=x==0 | line Loc | call_last Ar Func D => \
     move S X0 | call_last Ar Func D
move S X0=x==0 | line Loc | call_only Ar Func => \
     move S X0 | call_only Ar Func

line Loc | func_info M F A => func_info M F A | line Loc

line I

allocate t t?
allocate_heap t I t?

# This instruction when a BIF is called tail-recursively when
# ther is stack frame.
deallocate Q

init y
allocate_zero t t?
allocate_heap_zero t I t?

move Src=y Dst=x | trim N Remaining => move_trim Src Dst N
trim N Remaining => i_trim N

move_trim y x t
i_trim t

test_heap I t?

allocate_heap S u==0 R => allocate S R
allocate_heap_zero S u==0 R => allocate_zero S R

init Y1 | init Y2 | init Y3 | succ(Y1,Y2) | succ(Y2,Y3) => init_seq3 Y1
init_seq3 Y1 | init Y4 | succ3(Y1,Y4) => init_seq4 Y1
init_seq4 Y1 | init Y5 | succ4(Y1,Y5) => init_seq5 Y1

init_seq3 y
init_seq4 y
init_seq5 y

init Y1 | init Y2 | init Y3 => init3 Y1 Y2 Y3
init Y1 | init Y2 => init2 Y1 Y2

init2 y y
init3 y y y


# Selecting values

select_val S=aiq Fail=f Size=u Rest=* => const_select_val(S, Fail, Size, Rest)

select_val S=s Fail=f Size=u Rest=* | use_jump_tab(Size, Rest) => \
  gen_jump_tab(S, Fail, Size, Rest)

is_integer Fail=f S | select_val S=s Fail=f Size=u Rest=* | use_jump_tab(Size, Rest) => \
  gen_jump_tab(S, Fail, Size, Rest)

is_integer TypeFail=f S | select_val S=s Fail=f Size=u Rest=* | \
	   mixed_types(Size, Rest) => \
  gen_split_values(S, TypeFail, Fail, Size, Rest)

select_val S=s Fail=f Size=u Rest=* | mixed_types(Size, Rest) => \
  gen_split_values(S, Fail, Fail, Size, Rest)

is_integer Fail=f S | select_val S=d Fail=f Size=u Rest=* | \
  fixed_size_values(Size, Rest) => gen_select_val(S, Fail, Size, Rest)

is_atom Fail=f S | select_val S=d Fail=f Size=u Rest=* | \
  fixed_size_values(Size, Rest) => gen_select_val(S, Fail, Size, Rest)

select_val S=s Fail=f Size=u Rest=* | floats_or_bignums(Size, Rest) => \
  gen_select_literals(S, Fail, Size, Rest)

select_val S=d Fail=f Size=u Rest=* | fixed_size_values(Size, Rest) => \
  gen_select_val(S, Fail, Size, Rest)

is_tuple Fail=f S | select_tuple_arity S=d Fail=f Size=u Rest=* => \
  gen_select_tuple_arity(S, Fail, Size, Rest)

select_tuple_arity S=d Fail=f Size=u Rest=* => \
  gen_select_tuple_arity(S, Fail, Size, Rest)

i_select_val_bins xy f? I

i_select_val_lins xy f? I

i_select_val2 xy f? c c

i_select_tuple_arity xy f? I

i_select_tuple_arity2 xy f? A A

i_jump_on_val_zero xy f? I

i_jump_on_val xy f? I W

get_list xy xy xy

# The following get_list instructions using x(0) are frequently used.
get_list r x x
get_list r r y
get_list x r x
get_list r x y
get_list r y r
get_list r x r

get_hd xy xy
get_tl xy xy

# Old-style catch.
catch y f
catch_end y

# Try/catch.
try Y F => catch Y F

try_case y
try_end y

%cold
try_case_end s
%hot

# Destructive set tuple element

set_tuple_element s S P

# Get tuple element

i_get_tuple_element xy P xy

i_get_tuple_element2 x P x
i_get_tuple_element2_dst x P x x
i_get_tuple_element2_dst x P y y

i_get_tuple_element3 x P x

%cold
is_number f? xy
%hot

is_number Fail=f i =>
is_number Fail=f na => jump Fail
is_number Fail Literal=q => move Literal x | is_number Fail x

jump f

#
# Expection rasing instructions. Infrequently executed.
#

%cold
case_end NotInX=cy => move NotInX x | case_end x
badmatch NotInX=cy => move NotInX x | badmatch x

case_end x

badmatch x

if_end

# Operands for raise/2 are almost always in x(2) and x(1).
# Optimize for that case.
raise x==2 x==1 => i_raise
raise Trace=y Value=y => move Trace x=2 | move Value x=1 | i_raise
raise Trace Value => move Trace x | move Value x=1 | move x x=2 | i_raise

i_raise

# Internal now, but could be useful to make known to the compiler.
badarg j
system_limit j

%hot

#
# Move instructions.
#

move Src=cxy Dst=xy | jump Lbl => move_jump Lbl Src Dst

move_jump f cxy xy
move_jump f c r


# Movement to and from the stack is common.
# Try to pack as much as we can into one instruction.

# Window move
move_window/5
move_window/6

# x -> y

move X1=x Y1=y | move X2=x Y2=y | move X3=x Y3=y | succ(Y1,Y2) | succ(Y2,Y3) => \
    move_window X1 X2 X3 Y1 Y3

move X1=x Y1=y | move X2=x Y2=y | succ(Y1,Y2) => \
    move_window2 X1 X2 Y1

move_window X1=x X2=x X3=x Y1=y Y3=y | move X4=x Y4=y | succ(Y3,Y4) => \
    move_window X1 X2 X3 X4 Y1 Y4

move_window X1=x X2=x X3=x X4=x Y1=y Y4=y | move X5=x Y5=y | succ(Y4,Y5) => \
    move_window5 X1 X2 X3 X4 X5 Y1

move_window X1=x X2=x X3=x Y1=y Y3=y => move_window3 X1 X2 X3 Y1
move_window X1=x X2=x X3=x X4=x Y1=y Y4=y => move_window4 X1 X2 X3 X4 Y1

move_window2 x x y
move_window3 x x x y
move_window4 x x x x y
move_window5 x x x x x y

# y -> x

move_src_window/4
move_src_window/5

move Y1=y X1=x | move Y2=y X2=x | succ(Y1, Y2) => \
    move_src_window Y1 Y2 X1 X2

move_src_window Y1 Y2 X1 X2 | move Y3=y X3=x | succ(Y2, Y3) => \
    move_src_window Y1 Y3 X1 X2 X3
move_src_window Y1 Y2 X1 X2 | move Y3=y X3=x | move Y4=y X4=x | succ(Y3, Y4) => \
    move_src_window2 Y1 X1 X2 | move_src_window Y3 Y4 X3 X4
move_src_window Y1 Y2 X1 X2 | move Y3=y X3=x => \
    move3 Y1 X1 Y2 X2 Y3 X3

move_src_window Y1 Y3 X1 X2 X3 | move Y4=y X4=x | succ(Y3, Y4) => \
    move_src_window4 Y1 X1 X2 X3 X4

move_src_window Y1 y X1 X2    => move_src_window2 Y1 X1 X2
move_src_window Y1 y X1 X2 X3 => move_src_window3 Y1 X1 X2 X3

move_src_window2 y x x
move_src_window3 y x x x
move_src_window4 y x x x x

swap R1=x R2=y => swap R2 R1

swap xy x
swap y y

swap R1=x R2=x | swap R3=x R1 => swap2 R1 R2 R3

swap2 x x x

# move_shift

move SD=x    D=x | move Src=cxy SD=x  | distinct(D, Src) => move_shift Src SD D
move SD=y    D=x | move Src=x  SD=y   | distinct(D, Src) => move_shift Src SD D
move SD=y    D=x | init SD            |                  => move_shift n   SD D
move SD=x    D=y | move Src=x  SD=x   | distinct(D, Src) => move_shift Src SD D
move SD=x==0 D=y | move Src=y SD=x==0 | distinct(D, Src) => move_shift Src SD D

move_shift cxy x x
move_shift nx y x
move_shift x x y
move_shift y r y

# move2_par x x x x

move X1=x X2=x | move X3=x X4=x | independent_moves(X1, X2, X3, X4) => \
     move2_par X1 X2 X3 X4
move2_par x x x x

# move2_par x x x y

move X1=x X2=x | move X3=x Y1=y | independent_moves(X1, X2, X3, Y1) => \
     move2_par X1 X2 X3 Y1
move X3=x Y1=y | move X1=x X2=x | independent_moves(X3, Y1, X1, X2) => \
     move2_par X1 X2 X3 Y1
move2_par x x x y

# move2_par y x y x

move Y1=y X1=x | move Y2=y X2=x => move2_par Y1 X1 Y2 X2
move2_par y x y x

# move2_par y x x y

move S1=y S2=x | move X1=x Y1=y | independent_moves(S1, S2, X1, Y1) => \
     move2_par S1 S2 X1 Y1
move X1=x Y1=y | move S1=y S2=x | independent_moves(S1, S2, X1, Y1) => \
     move2_par S1 S2 X1 Y1
move2_par y x x y

# move2_par y x x x

move Y1=y X1=x | move S1=x D1=x | independent_moves(Y1, X1, S1, D1) => \
     move2_par Y1 X1 S1 D1
move S1=x D1=x | move Y1=y X1=x | independent_moves(Y1, X1, S1, D1) => \
     move2_par Y1 X1 S1 D1
move2_par y x x x

# move3

move2_par Y1=y X1=x Y2=y X2=x | move Y3=y X3=x => move3 Y1 X1 Y2 X2 Y3 X3
move2_par X1=x X2=x X3=x X4=x | move X5=x X6=x => move3 X1 X2 X3 X4 X5 X6

move3 y x y x y x
move3 x x x x x x

# move_x1, move_x2

move C=aiq X=x==1 => move_x1 C
move C=aiq X=x==2 => move_x2 C

move n D=y => init D

move_x1 c
move_x2 c

move xy xy
move c xy
move n x

# The following move instructions using x(0) are frequently used.

move x r
move r x
move y r
move c r
move r y

# Receive operations.

loop_rec Fail x==0 | smp_mark_target_label(Fail) => i_loop_rec Fail

label L | wait_timeout Fail Src | smp_already_locked(L) => \
    label L | wait_timeout_locked Src Fail
wait_timeout Fail Src => wait_timeout_unlocked Src Fail

wait_timeout_unlocked Src=aiq Fail => gen_literal_timeout(Fail, Src)
wait_timeout_locked Src=aiq Fail => gen_literal_timeout_locked(Fail, Src)

label L | wait Fail | smp_already_locked(L) => label L | wait_locked Fail
wait Fail => wait_unlocked Fail

label L | timeout | smp_already_locked(L) => label L | timeout_locked

remove_message
timeout
timeout_locked
i_loop_rec f
loop_rec_end f
wait_locked f
wait_unlocked f

# Note that a timeout value must fit in 32 bits.
wait_timeout_unlocked_int I f
wait_timeout_unlocked s f
wait_timeout_locked_int I f
wait_timeout_locked s f

%cold
i_wait_error
i_wait_error_locked
%hot

send

#
# Optimized comparisons with one immediate/literal operand.
#

is_eq_exact Lbl S S =>
is_eq_exact Lbl C1=c C2=c => move C1 x | is_eq_exact Lbl x C2
is_eq_exact Lbl C=c R=xy => is_eq_exact Lbl R C

is_eq_exact Lbl R=xy n => is_nil Lbl R
is_eq_exact Lbl R=xy C=ia => i_is_eq_exact_immed Lbl R C
is_eq_exact Lbl R=xy C=q => i_is_eq_exact_literal Lbl R C

is_ne_exact Lbl S S => jump Lbl
is_ne_exact Lbl C1=c C2=c => move C1 x | is_ne_exact Lbl x C2
is_ne_exact Lbl C=c R=xy => is_ne_exact Lbl R C

is_ne_exact Lbl R=xy C=ian => i_is_ne_exact_immed Lbl R C
is_ne_exact Lbl R=xy C=q => i_is_ne_exact_literal Lbl R C

i_is_eq_exact_immed f? rxy c

i_is_eq_exact_literal f? xy c

i_is_ne_exact_immed f? xy c

i_is_ne_exact_literal f? xy c

is_eq_exact Lbl Y=y X=x => is_eq_exact Lbl X Y
is_eq_exact f? x xy
is_eq_exact f? y y

is_ne_exact f? S S

is_lt f? x x
is_lt f? x c
is_lt f? c x
%cold
is_lt f? s s
%hot

is_ge f? x x
is_ge f? x c
is_ge f? c x
%cold
is_ge f? s s
%hot

is_eq Fail=f Const=c Reg=xy => is_eq Fail Reg Const
is_eq Fail=f C1=c C2=c => move C1 x | is_eq Fail x C2
is_eq f? S s

is_ne Fail=f Const=c Reg=xy => is_ne Fail Reg Const
is_ne Fail=f C1=c C2=c => move C1 x | is_ne Fail x C2
is_ne f? S s

#
# Putting tuples.
#
# Code compiled with OTP 22 and later uses put_tuple2 to
# to construct a tuple.
#
# Code compiled before OTP 22 uses put_tuple + one put instruction
# per element. Translate to put_tuple2.
#

i_put_tuple/2
put_tuple Arity Dst => i_put_tuple Dst u

i_put_tuple Dst Arity Puts=* | put S1 | put S2 | \
  put S3 | put S4 | put S5 => \
	    tuple_append_put5(Arity, Dst, Puts, S1, S2, S3, S4, S5)

i_put_tuple Dst Arity Puts=* | put S => \
	    tuple_append_put(Arity, Dst, Puts, S)

i_put_tuple Dst Arity Puts=* => put_tuple2 Dst Arity Puts

put_tuple2 xy I

#
# Putting lists.
#
# The instruction "put_list Const [] Dst" were generated in rare
# circumstances up to and including OTP 18. Starting with OTP 19,
# AFAIK, it should never be generated.
#
put_list Const=c n Dst => move Const x | put_list x n Dst

put_list Src Dst=x Dst => update_list Src Dst

update_list xyc x

# put_list SrcReg1 SrcReg2 => Dst

put_list xy xy x

# put_list SrcReg [] => Dst

put_list xy n xy

# put_list SrcReg Constant => x

put_list xy c x

# put_list Constant SrcReg => Dst

put_list c xy x

# The following put_list instructions using x(0) are frequently used.

put_list r n rx
put_list r x rx
put_list x x r

%cold
put_list s s d
%hot


#
# Some more only used by the emulator
#

%cold
normal_exit
continue_exit
call_bif W
call_nif W W W
call_error_handler
error_action_code
return_trace
%hot

#
# Instruction transformations & folded instructions.
#

# Note: There is no 'move_return y r', since there never are any y registers
# when we do move_return (if we have y registers, we must do move_deallocate_return).

move S x==0 | return => move_return S

move_return xcn

move S x==0 | deallocate D | return => move_deallocate_return S D

move_deallocate_return xycn Q

deallocate u==0 | return => deallocate_return0
deallocate u==1 | return => deallocate_return1
deallocate u==2 | return => deallocate_return2
deallocate u==3 | return => deallocate_return3
deallocate u==4 | return => deallocate_return4

deallocate D | return => deallocate_return D

deallocate_return0
deallocate_return1
deallocate_return2
deallocate_return3
deallocate_return4

deallocate_return Q

test_heap Need u==1 | put_list Y=y x==0 x==0 => test_heap_1_put_list Need Y

test_heap_1_put_list I y

#
# is_tagged_tuple Fail=f Src=rxy Arity Atom=a
#

is_tagged_tuple Fail Literal=q Arity Atom => \
    move Literal x | is_tagged_tuple Fail x Arity Atom
is_tagged_tuple Fail=f c Arity Atom  => jump Fail

is_tagged_tuple f? rxy A a

# Test tuple & arity (head)

is_tuple Fail Literal=q => move Literal x | is_tuple Fail x
is_tuple Fail=f c => jump Fail
is_tuple Fail=f S=xy | test_arity Fail=f S=xy Arity => is_tuple_of_arity Fail S Arity

is_tuple_of_arity f? rxy A

is_tuple f? rxy

test_arity Fail Literal=q Arity => move Literal x | test_arity Fail x Arity
test_arity Fail=f c Arity => jump Fail
test_arity Fail Tuple=x Arity | get_tuple_element Tuple Pos Dst=x => \
   test_arity_get_tuple_element Fail Tuple Arity Pos Dst

test_arity f? xy A

test_arity_get_tuple_element f? x A P x

is_tuple NotTupleFail Tuple=x | is_tagged_tuple WrongRecordFail Tuple Arity Atom => \
   is_tagged_tuple_ff NotTupleFail WrongRecordFail Tuple Arity Atom

is_tagged_tuple_ff f? f? rx A a

get_tuple_element Reg=x P1 D1=x | \
   get_tuple_element Reg=x P2 D2=x | \
   get_tuple_element Reg=x P3 D3=x | \
   succ(P1, P2) | succ(P2, P3) | succ(D1, D2) | succ(D2, D3) | \
   distinct(D1, Reg) | distinct(D2, Reg) => \
      i_get_tuple_element3 Reg P1 D1

get_tuple_element Reg=x P1 D1=x | \
   get_tuple_element Reg=x P2 D2=x | \
   succ(P1, P2) | succ(D1, D2) | \
   distinct(D1, Reg) => \
      i_get_tuple_element2 Reg P1 D1

get_tuple_element Reg=x P1 D1=x | get_tuple_element Reg=x P2 D2=x | \
   succ(P1, P2) | distinct(D1, Reg) => i_get_tuple_element2_dst Reg P1 D1 D2

get_tuple_element Reg=x P1 D1=y | get_tuple_element Reg=x P2 D2=y | \
   succ(P1, P2) => i_get_tuple_element2_dst Reg P1 D1 D2

get_tuple_element Reg P Dst => i_get_tuple_element Reg P Dst

is_integer Fail=f i =>
is_integer Fail=f an => jump Fail
is_integer Fail Literal=q => move Literal x | is_integer Fail x

is_integer Fail=f S=x | allocate Need Regs => is_integer_allocate Fail S Need Regs

is_integer_allocate f? x t t

is_integer f? xy

is_list Fail=f n =>
is_list Fail Literal=q => move Literal x | is_list Fail x
is_list Fail=f c => jump Fail
is_list f? x
%cold
is_list f? y
%hot

is_nonempty_list Fail=f S=x | allocate Need Rs => is_nonempty_list_allocate Fail S Need Rs

is_nonempty_list Fail=f S=x | get_list S D1=x D2=x => \
  is_nonempty_list_get_list Fail S D1 D2

is_nonempty_list Fail=f S=x | get_hd S Dst=x => \
  is_nonempty_list_get_hd Fail S Dst

is_nonempty_list Fail=f S=x | get_tl S Dst=x => \
  is_nonempty_list_get_tl Fail S Dst

is_nonempty_list_allocate f? rx t t

is_nonempty_list_get_list f? rx x x
is_nonempty_list_get_hd f? x x
is_nonempty_list_get_tl f? x x

is_nonempty_list f? xy

is_atom f? x
%cold
is_atom f? y
%hot
is_atom Fail=f a =>
is_atom Fail=f niq => jump Fail

is_float f? x
%cold
is_float f? y
%hot
is_float Fail=f nai => jump Fail
is_float Fail Literal=q => move Literal x | is_float Fail x

is_nil Fail=f n =>
is_nil Fail=f qia => jump Fail

is_nil f? xy

is_binary Fail Literal=q => move Literal x | is_binary Fail x
is_binary Fail=f c => jump Fail
is_binary f? x
%cold
is_binary f? y
%hot

# XXX Deprecated.
is_bitstr Fail Term => is_bitstring Fail Term

is_bitstring Fail Literal=q => move Literal x | is_bitstring Fail x
is_bitstring Fail=f c => jump Fail
is_bitstring f? x
%cold
is_bitstring f? y
%hot

is_reference Fail=f cq => jump Fail
is_reference f? x
%cold
is_reference f? y
%hot

is_pid Fail=f cq => jump Fail
is_pid f? x
%cold
is_pid f? y
%hot

is_port Fail=f cq => jump Fail
is_port f? x
%cold
is_port f? y
%hot

is_boolean Fail=f a==am_true =>
is_boolean Fail=f a==am_false =>
is_boolean Fail=f ac => jump Fail

%cold
is_boolean f? xy
%hot

is_function2 Fail=f Fun Arity => gen_is_function2(Fail, Fun, Arity)

%cold
cold_is_function2 f? x x
%hot
hot_is_function2 f? S t

# Allocating & initializing.
allocate Need Regs | init Y => allocate_init Need Regs Y
init Y1 | init Y2 => init2 Y1 Y2

allocate_init t t? y

#################################################################
# External function and bif calls.
#################################################################

# Expands into call_light_bif(_only)/2
call_light_bif/1
call_light_bif_only/1
call_light_bif_last/2

#
# The load_nif/2 BIF is an instruction.
#

call_ext u==2 u$func:erlang:load_nif/2 => i_load_nif
call_ext_last u==2 u$func:erlang:load_nif/2 D => i_load_nif | deallocate_return D
call_ext_only u==2 u$func:erlang:load_nif/2 => i_load_nif | return

%cold
i_load_nif
%hot

#
# apply/2 is an instruction, not a BIF.
#

call_ext u==2 u$func:erlang:apply/2 => i_apply_fun
call_ext_last u==2 u$func:erlang:apply/2 D => i_apply_fun_last D
call_ext_only u==2 u$func:erlang:apply/2 => i_apply_fun_only

#
# The apply/3 BIF is an instruction.
#

call_ext u==3 u$bif:erlang:apply/3 => i_apply
call_ext_last u==3 u$bif:erlang:apply/3 D => i_apply_last D
call_ext_only u==3 u$bif:erlang:apply/3 => i_apply_only

#
# The yield/0 BIF is an instruction
#

call_ext u==0 u$func:erlang:yield/0 => i_yield
call_ext_last u==0 u$func:erlang:yield/0 D => i_yield | deallocate_return D
call_ext_only u==0 u$func:erlang:yield/0 => i_yield | return

#
# The hibernate/3 BIF is an instruction.
#
call_ext u==3 u$func:erlang:hibernate/3 => i_hibernate
call_ext_last u==3 u$func:erlang:hibernate/3 D => i_hibernate
call_ext_only u==3 u$func:erlang:hibernate/3 => i_hibernate

#
# If VM probes are not enabled, we want to short-circult calls to
# the dt tag BIFs to make them as cheap as possible.
#

%unless USE_VM_PROBES

call_ext Arity u$func:erlang:dt_get_tag/0 => \
    move a=am_undefined x=0
call_ext_last Arity u$func:erlang:dt_get_tag/0 D => \
    move a=am_undefined x=0 | deallocate D | return
call_ext_only Arity u$func:erlang:dt_get_tag/0 => \
    move a=am_undefined x=0 | return

move Any x==0 | call_ext Arity u$func:erlang:dt_put_tag/1 => \
    move a=am_undefined x=0
move Any x==0 | call_ext_last Arity u$func:erlang:dt_put_tag/1 D => \
    move a=am_undefined x=0 | deallocate D | return
move Any x==0 | call_ext_only Arity u$func:erlang:dt_put_tag/1 => \
    move a=am_undefined x=0 | return
call_ext Arity u$func:erlang:dt_put_tag/1 => \
    move a=am_undefined x=0
call_ext_last Arity u$func:erlang:dt_put_tag/1 D => \
    move a=am_undefined x=0 | deallocate D | return
call_ext_only Arity u$func:erlang:dt_put_tag/1 => \
    move a=am_undefined x=0 | return

call_ext Arity u$func:erlang:dt_get_tag_data/0 => \
    move a=am_undefined x=0
call_ext_last Arity u$func:erlang:dt_get_tag_data/0 D => \
    move a=am_undefined x=0 | deallocate D | return
call_ext_only Arity u$func:erlang:dt_get_tag_data/0 => \
    move a=am_undefined x=0 | return

move Any x==0 | call_ext Arity u$func:erlang:dt_spread_tag/1 => \
    move a=am_true x=0
move Any x==0 | call_ext_last Arity u$func:erlang:dt_spread_tag/1 D => \
    move a=am_true x=0 | deallocate D | return
move Any x==0 | call_ext_only Arity u$func:erlang:dt_spread_tag/1 => \
    move a=am_true x=0 | return
call_ext Arity u$func:erlang:dt_spread_tag/1 => \
    move a=am_true x=0
call_ext_last Arity u$func:erlang:dt_spread_tag/1 D => \
    move a=am_true x=0 | deallocate D | return
call_ext_only Arity u$func:erlang:dt_spread_tag/1 => \
    move a=am_true x=0 | return

move Any x==0 | call_ext Arity u$func:erlang:dt_restore_tag/1 => \
    move a=am_true x=0
move Any x==0 | call_ext_last Arity u$func:erlang:dt_restore_tag/1 D => \
    move a=am_true x=0 | deallocate D | return
move Any x==0 | call_ext_only Arity u$func:erlang:dt_restore_tag/1 => \
    move a=am_true x=0 | return
call_ext Arity u$func:erlang:dt_restore_tag/1 => \
    move a=am_true x=0
call_ext_last Arity u$func:erlang:dt_restore_tag/1 D => \
    move a=am_true x=0 | deallocate D | return
call_ext_only Arity u$func:erlang:dt_restore_tag/1 => \
    move a=am_true x=0 | return

move Any x==0 | call_ext Arity u$func:erlang:dt_prepend_vm_tag_data/1 => \
    move Any x=0
move Any x==0 | call_ext_last Arity u$func:erlang:dt_prepend_vm_tag_data/1 D => \
    move Any x=0 | deallocate D | return
move Any x==0 | call_ext_only Arity u$func:erlang:dt_prepend_vm_tag_data/1 => \
    move Any x=0 | return
call_ext Arity u$func:erlang:dt_prepend_vm_tag_data/1 =>
call_ext_last Arity u$func:erlang:dt_prepend_vm_tag_data/1 D => \
    deallocate D | return
call_ext_only Arity u$func:erlang:dt_prepend_vm_tag_data/1 => \
    return

move Any x==0 | call_ext Arity u$func:erlang:dt_append_vm_tag_data/1 => \
    move Any x=0
move Any x==0 | call_ext_last Arity u$func:erlang:dt_append_vm_tag_data/1 D => \
    move Any x=0 | deallocate D | return
move Any x==0 | call_ext_only Arity u$func:erlang:dt_append_vm_tag_data/1 => \
    move Any x=0 | return
call_ext Arity u$func:erlang:dt_append_vm_tag_data/1 =>
call_ext_last Arity u$func:erlang:dt_append_vm_tag_data/1 D => \
    deallocate D | return
call_ext_only Arity u$func:erlang:dt_append_vm_tag_data/1 => \
    return

# Can happen after one of the transformations above.
move Discarded x==0 | move Something x==0 => move Something x=0

%endif

call_ext u==0 u$func:os:perf_counter/0 => \
    i_perf_counter
call_ext_last u==0 u$func:os:perf_counter/0 D => \
    i_perf_counter | deallocate_return D
call_ext_only u==0 u$func:os:perf_counter/0 => \
    i_perf_counter | return

#
# BIFs like process_info/1,2 require up-to-date information about the current
# emulator state, which the ordinary call_light_bif instruction doesn't save.
#

call_ext u Bif=u$is_bif | is_heavy_bif(Bif) => \
    i_call_ext Bif
call_ext_last u Bif=u$is_bif D | is_heavy_bif(Bif) => \
    i_call_ext Bif | deallocate_return D
call_ext_only Ar=u Bif=u$is_bif | is_heavy_bif(Bif) => \
    allocate u Ar | i_call_ext Bif | deallocate_return u

#
# The general case for BIFs that have no special requirements.
#

call_ext u Bif=u$is_bif => call_light_bif Bif
call_ext_last u Bif=u$is_bif D => call_light_bif_last Bif D
call_ext_only Ar=u Bif=u$is_bif => call_light_bif_only Bif

#
# Any remaining calls are calls to Erlang functions, not BIFs.
# We rename the instructions to internal names.  This is necessary,
# to avoid an end-less loop, because we want to call a few BIFs
# with call instructions.
#

move S=c x==0 | call_ext Ar=u Func=u$is_not_bif => i_move_call_ext S Func
move S=c x==0 | call_ext_last Ar=u Func=u$is_not_bif D => i_move_call_ext_last Func D S
move S=c x==0 | call_ext_only Ar=u Func=u$is_not_bif => i_move_call_ext_only Func S

call_ext Ar Func        => i_call_ext Func
call_ext_last Ar Func D => i_call_ext_last Func D
call_ext_only Ar Func   => i_call_ext_only Func

i_apply
i_apply_last Q
i_apply_only

i_apply_fun
i_apply_fun_last Q
i_apply_fun_only

#
# When a BIF is traced, these instructions make a body call through the export
# entry instead of calling the BIF directly (setting up a temporary stack frame
# if needed). We therefore retain the stack frame in call_light_bif_last, and
# add a deallocate_return after call_light_bif_only to remove the temporary
# stack frame before returning.
#

call_light_bif Bif=u$is_bif => \
    call_light_bif Bif Bif

call_light_bif_last Bif=u$is_bif D => \
    call_light_bif Bif Bif | deallocate_return D

call_light_bif_only Bif=u$is_bif => \
    call_light_bif_only Bif Bif | deallocate_return u

call_light_bif b e
call_light_bif_only b e

%cold

i_hibernate
i_perf_counter

%hot

#
# Calls to non-building and guard BIFs.
#

bif0 u$bif:erlang:self/0 Dst=d => self Dst
bif0 u$bif:erlang:node/0 Dst=d => node Dst

bif1 Fail=f Bif=u$bif:erlang:hd/1 Src=x Dst=x => is_nonempty_list_get_hd Fail Src Dst
bif1 Fail=f Bif=u$bif:erlang:tl/1 Src=x Dst=x => is_nonempty_list_get_tl Fail Src Dst

bif1 Fail Bif=u$bif:erlang:get/1 Src=s Dst=d => gen_get(Src, Dst)

bif2 Jump=j u$bif:erlang:element/2 S1=s S2=xy Dst=d => gen_element(Jump, S1, S2, Dst)

bif1 p Bif S1 Dst         => i_bif1_body S1 Bif Dst
bif1 Fail=f Bif S1 Dst    => i_bif1 S1 Fail Bif Dst

bif2 p Bif S1 S2 Dst      => i_bif2_body S2 S1 Bif Dst
bif2 Fail=f Bif S1 S2 Dst => i_bif2 S2 S1 Fail Bif Dst

i_get_hash c I d
i_get s d

self xy

node x
%cold
node y
%hot

# Note: 'I' is sufficient because this instruction will only be used
# if the arity fits in 24 bits.
i_fast_element xy j? I d

i_element xy j? s d

i_bif1 s f? b d
i_bif1_body s b d
i_bif2 s s f? b d
i_bif2_body s s b d
i_bif3 s s s f? b d
i_bif3_body s s s b d

#
# Internal calls.
#

move S=cxy x==0 | call Ar P=f => move_call S P

move_call/2
move_call cxy f

move S x==0 | call_last Ar P=f D => move_call_last S P D

move_call_last/3
move_call_last cxy f Q

move S=cx x==0 | call_only Ar P=f => move_call_only S P

move_call_only/2
move_call_only cx f

call Ar Func        => i_call Func
call_last Ar Func D => i_call_last Func D
call_only Ar Func   => i_call_only Func

i_call f
i_call_last f Q
i_call_only f

i_call_ext e
i_call_ext_last e Q
i_call_ext_only e

i_move_call_ext c e
i_move_call_ext_last e Q c
i_move_call_ext_only e c

# Fun calls.

call_fun Arity | deallocate D | return => i_call_fun_last Arity D
call_fun Arity => i_call_fun Arity

i_call_fun t
i_call_fun_last t Q


#
# A fun with an empty environment can be converted to a literal.
# As a further optimization, the we try to move the fun to its
# final destination directly.

make_fun2 OldIndex=u => gen_make_fun2(OldIndex)

move_fun/2
move_fun Fun X0 | move X0 Dst | move Src X0 => move Fun Dst | move Src X0
move_fun Fun X0 | move A B | move X0 Dst | move Src X0 | \
  independent_moves(Fun, X0, A, B) | distinct(Dst, A) => \
    move Fun Dst | move A B | move Src X0
move_fun Fun X0 | move X0 Dst | make_fun2 OldIndex | \
  is_killed_by_make_fun(X0, OldIndex)=> \
    move Fun Dst | make_fun2 OldIndex

move_fun Fun Dst => move Fun Dst

%cold
i_make_fun W t
%hot

is_function f? xy
is_function Fail=f c => jump Fail

func_info M F A => i_func_info u M F A

# ================================================================
# Bit syntax matching obsoleted in OTP 22.
# ================================================================

%cold
bs_start_match2 Fail=f ica X Y D => jump Fail
bs_start_match2 Fail Bin X Y D => i_bs_start_match2 Bin Fail X Y D
i_bs_start_match2 xy f t t d

bs_save2 Y=y Index => move Y x | bs_save2 x Index
bs_save2 Reg Index => gen_bs_save(Reg, Index)
i_bs_save2 x t

bs_restore2 Y=y Index => move Y x | bs_restore2 x Index
bs_restore2 Reg Index => gen_bs_restore(Reg, Index)
i_bs_restore2 x t

bs_context_to_binary Y=y | line L | badmatch Y => \
    move Y x | bs_context_to_binary x | line L | badmatch x
bs_context_to_binary Y=y => move Y x | bs_context_to_binary x
bs_context_to_binary x
%warm

# ================================================================
# New bit syntax matching (R11B).
# ================================================================

%warm

# Matching integers
bs_match_string Fail Ms Bits Val => i_bs_match_string Ms Fail Bits Val

i_bs_match_string xy f W W

# Fetching integers from binaries.
bs_get_integer2 Fail=f Ms=xy Live=u Sz=sq Unit=u Flags=u Dst=d => \
			gen_get_integer2(Fail, Ms, Live, Sz, Unit, Flags, Dst)

i_bs_get_integer_small_imm Ms Bits Fail Flags Y=y => \
   i_bs_get_integer_small_imm Ms Bits Fail Flags x | move x Y

i_bs_get_integer_imm Ms Bits Live Fail Flags Y=y => \
   i_bs_get_integer_imm Ms Bits Live Fail Flags x | move x Y

i_bs_get_integer_small_imm xy W f? t x
i_bs_get_integer_imm xy W t f? t x
i_bs_get_integer xy f? t t s d
i_bs_get_integer_8 xy f? d
i_bs_get_integer_16 xy f? d

%if ARCH_64
i_bs_get_integer_32 xy f? d
%endif

# Fetching binaries from binaries.
bs_get_binary2 Fail=f Ms=xy Live=u Sz=sq Unit=u Flags=u Dst=d => \
			gen_get_binary2(Fail, Ms, Live, Sz, Unit, Flags, Dst)

i_bs_get_binary_imm2 xy f? t W t d
i_bs_get_binary2 xy f t? s t d
i_bs_get_binary_all2 xy f? t t d

# Fetching float from binaries.
bs_get_float2 Fail=f Ms=xy Live=u Sz=s Unit=u Flags=u Dst=d => \
		gen_get_float2(Fail, Ms, Live, Sz, Unit, Flags, Dst)

bs_get_float2 Fail=f Ms=x Live=u Sz=q Unit=u Flags=u Dst=d => jump Fail

i_bs_get_float2 xy f? t s t d

# Miscellanous

bs_skip_bits2 Fail=f Ms=xy Sz=sq Unit=u Flags=u => \
			gen_skip_bits2(Fail, Ms, Sz, Unit, Flags)

i_bs_skip_bits_imm2 f? xy W
i_bs_skip_bits2 xy xy f? t

bs_test_tail2 Fail=f Ms=xy Bits=u==0 => bs_test_zero_tail2 Fail Ms
bs_test_tail2 Fail=f Ms=xy Bits=u => bs_test_tail_imm2 Fail Ms Bits
bs_test_zero_tail2 f? xy
bs_test_tail_imm2 f? xy W

bs_test_unit F Ms Unit=u==8 => bs_test_unit8 F Ms
bs_test_unit f? xy t
bs_test_unit8 f? xy

# Gets a bitstring from the tail of a context.
bs_get_tail xy d t

# New bs_start_match variant for contexts with external position storage.
#
# bs_get/set_position is used to save positions into registers instead of
# "slots" in the context itself, which lets us continue matching even after
# we've passed it off to another function.

%if ARCH_64
bs_start_match3 Fail Bin Live Ctx | bs_get_position Ctx Pos=x Ignored => \
    i_bs_start_match3_gp Bin Live Fail Ctx Pos
i_bs_start_match3_gp xy t f d x
%endif

bs_start_match3 Fail=f ica Live Dst => jump Fail
bs_start_match3 Fail Bin Live Dst => i_bs_start_match3 Bin Live Fail Dst

i_bs_start_match3 xy t f d

# Match context position instructions. 64-bit assumes that all positions can
# fit into an unsigned small.

%if ARCH_64
    bs_get_position Src Dst Live => i_bs_get_position Src Dst
    i_bs_get_position xy xy
    bs_set_position xy xy
%else
    bs_get_position xy d t?
    bs_set_position xy xy
%endif

#
# Utf8/utf16/utf32 support. (R12B-5)
#
bs_get_utf8 Fail=f Ms=xy u u Dst=d => i_bs_get_utf8 Ms Fail Dst
i_bs_get_utf8 xy f? d

bs_skip_utf8 Fail=f Ms=xy u u => i_bs_get_utf8 Ms Fail x

bs_get_utf16 Fail=f Ms=xy u Flags=u Dst=d => i_bs_get_utf16 Ms Fail Flags Dst
bs_skip_utf16 Fail=f Ms=xy u Flags=u => i_bs_get_utf16 Ms Fail Flags x

i_bs_get_utf16 xy f? t d

bs_get_utf32 Fail=f Ms=xy Live=u Flags=u Dst=d => \
	bs_get_integer2 Fail Ms Live i=32 u=1 Flags Dst | \
	i_bs_validate_unicode_retract Fail Dst Ms
bs_skip_utf32 Fail=f Ms=xy Live=u Flags=u => \
	bs_get_integer2 Fail Ms Live i=32 u=1 Flags x | \
	i_bs_validate_unicode_retract Fail x Ms

i_bs_validate_unicode_retract j s S
%hot

#
# Constructing binaries
#
%warm

bs_init2 Fail Sz Words Regs Flags Dst | binary_too_big(Sz) => system_limit Fail

bs_init2 Fail Sz Words Regs Flags Dst=y => \
   bs_init2 Fail Sz Words Regs Flags x | move x Dst

bs_init2 Fail Sz=u Words=u==0 Regs Flags Dst => i_bs_init Sz Regs Dst

bs_init2 Fail Sz=u Words Regs Flags Dst => \
   i_bs_init_heap Sz Words Regs Dst

bs_init2 Fail Sz Words=u==0 Regs Flags Dst => \
  i_bs_init_fail Sz Fail Regs Dst
bs_init2 Fail Sz Words Regs Flags Dst => \
  i_bs_init_fail_heap Sz Words Fail Regs Dst

i_bs_init_fail xy j? t? x

i_bs_init_fail_heap s I j? t? x

i_bs_init W t? x

i_bs_init_heap W I t? x


bs_init_bits Fail Sz=o Words Regs Flags Dst => system_limit Fail
bs_init_bits Fail Sz Words Regs Flags Dst=y => \
   bs_init_bits Fail Sz Words Regs Flags x | move x Dst

bs_init_bits Fail Sz=u Words=u==0 Regs Flags Dst => i_bs_init_bits Sz Regs Dst
bs_init_bits Fail Sz=u Words Regs Flags Dst =>  i_bs_init_bits_heap Sz Words Regs Dst

bs_init_bits Fail Sz Words=u==0 Regs Flags Dst => \
  i_bs_init_bits_fail Sz Fail Regs Dst
bs_init_bits Fail Sz Words Regs Flags Dst => \
  i_bs_init_bits_fail_heap Sz Words Fail Regs Dst

i_bs_init_bits_fail xy j? t? x

i_bs_init_bits_fail_heap s I j? t? x

i_bs_init_bits W t? x
i_bs_init_bits_heap W I t? x

bs_add Fail S1=i==0 S2 Unit=u==1 D => move S2 D

bs_add j? s s t? x

bs_append Fail Size Extra Live Unit Bin Flags Dst => \
  move Bin x | i_bs_append Fail Extra Live Unit Size Dst

bs_private_append Fail Size Unit Bin Flags Dst => \
  i_bs_private_append Fail Unit Size Bin Dst

bs_init_writable

i_bs_append j? I t? t s xy
i_bs_private_append j? t s S x

#
# Storing integers into binaries.
#

bs_put_integer Fail=j Sz=sq Unit=u Flags=u Src=s => \
			gen_put_integer(Fail, Sz, Unit, Flags, Src)

i_new_bs_put_integer j? S t s
i_new_bs_put_integer_imm xyc j? W t

#
# Utf8/utf16/utf32 support. (R12B-5)
#

bs_utf8_size j Src Dst=d => i_bs_utf8_size Src Dst
bs_utf16_size j Src Dst=d => i_bs_utf16_size Src Dst

bs_put_utf8 Fail u Src => i_bs_put_utf8 Fail Src

bs_put_utf32 Fail=j Flags=u Src=s => \
   i_bs_validate_unicode Fail Src | bs_put_integer Fail i=32 u=1 Flags Src

i_bs_utf8_size S x
i_bs_utf16_size S x

i_bs_put_utf8 j? S
bs_put_utf16 j? t S

i_bs_validate_unicode j? S

# Handle unoptimized code.
i_bs_utf8_size Src=c Dst => move Src x | i_bs_utf8_size x Dst
i_bs_utf16_size Src=c Dst => move Src x | i_bs_utf16_size x Dst
i_bs_put_utf8 Fail Src=c => move Src x | i_bs_put_utf8 Fail x
bs_put_utf16 Fail Flags Src=c => move Src x | bs_put_utf16 Fail Flags x
i_bs_validate_unicode Fail Src=c => move Src x | i_bs_validate_unicode Fail x

#
# Storing floats into binaries.
#
bs_put_float Fail Sz=q Unit Flags Val => badarg Fail

bs_put_float Fail=j Sz=s Unit=u Flags=u Src=s => \
			gen_put_float(Fail, Sz, Unit, Flags, Src)

i_new_bs_put_float j? S t s
i_new_bs_put_float_imm j? W t s

#
# Storing binaries into binaries.
#

bs_put_binary Fail=j Sz=s Unit=u Flags=u Src=s => \
			gen_put_binary(Fail, Sz, Unit, Flags, Src)

# In unoptimized code, the binary argument could be a literal. (In optimized code,
# there would be a bs_put_string instruction.)
i_new_bs_put_binary Fail Size Unit Lit=c => \
   move Lit x | i_new_bs_put_binary Fail Size Unit x
i_new_bs_put_binary_imm Fail Size Lit=c => \
   move Lit x | i_new_bs_put_binary_imm Fail Size x
i_new_bs_put_binary_all Lit=c Fail Unit => \
   move Lit x | i_new_bs_put_binary_all x Fail Unit

i_new_bs_put_binary j? S t S
i_new_bs_put_binary_imm j? W S
i_new_bs_put_binary_all xy j? t

#
# Warning: The i_bs_put_string and i_new_bs_put_string instructions
# are specially treated in the loader.
# Don't change the instruction format unless you change the loader too.
#

bs_put_string W W

#
# New floating point instructions (R8).
#

fadd p FR1 FR2 FR3 => i_fadd FR1 FR2 FR3
fsub p FR1 FR2 FR3 => i_fsub FR1 FR2 FR3
fmul p FR1 FR2 FR3 => i_fmul FR1 FR2 FR3
fdiv p FR1 FR2 FR3 => i_fdiv FR1 FR2 FR3
fnegate p FR1 FR2 => i_fnegate FR1 FR2

fconv Arg=iqan Dst=l => move Arg x | fconv x Dst

fmove Arg=l Dst=d => fstore Arg Dst
fmove Arg=dq Dst=l => fload Arg Dst

fstore l d
fload Sq l

fconv S l

i_fadd l l l
i_fsub l l l
i_fmul l l l
i_fdiv l l l
i_fnegate l l

fclearerror | no_fpe_signals() =>
fcheckerror p | no_fpe_signals() =>

%unless NO_FPE_SIGNALS
fcheckerror p => i_fcheckerror

i_fcheckerror
fclearerror
%endif

%hot

#
# New apply instructions in R10B.
#

apply t
apply_last t Q

#
# Handle compatibility with OTP 17 here.
#

i_put_map_assoc/4

# We KNOW that in OTP 20 (actually OTP 18 and higher), a put_map_assoc instruction
# is always preceded by an is_map test. That means that put_map_assoc can never
# fail and does not need any failure label.

put_map_assoc Fail Map Dst Live Size Rest=* | compiled_with_otp_20_or_higher() => \
	      i_put_map_assoc Map Dst Live Size Rest

# Translate the put_map_assoc instruction if the module was compiled by a compiler
# before 20. This is only necessary if the OTP 17 compiler was used, but we
# have no safe and relatively easy way to know whether OTP 18/19 was used.

put_map_assoc Fail=p Map Dst Live Size Rest=* => \
	      ensure_map Map | i_put_map_assoc Map Dst Live Size Rest
put_map_assoc Fail=f Map Dst Live Size Rest=* => \
	      is_map Fail Map | i_put_map_assoc Map Dst Live Size Rest

ensure_map Lit=q | literal_is_map(Lit) =>
ensure_map Src=cqy => move Src x | ensure_map x

%cold
ensure_map x
%hot

#
# Map instructions. First introduced in R17.
#

sorted_put_map_assoc/4
i_put_map_assoc Map Dst Live Size Rest=* | map_key_sort(Size, Rest) => \
  sorted_put_map_assoc Map Dst Live Size Rest

sorted_put_map_exact/5
put_map_exact F Map Dst Live Size Rest=* | map_key_sort(Size, Rest) => \
  sorted_put_map_exact F Map Dst Live Size Rest

sorted_put_map_assoc Map Dst Live Size Rest=* | is_empty_map(Map) => \
   new_map Dst Live Size Rest
sorted_put_map_assoc Src=xyc Dst Live Size Rest=* => \
   update_map_assoc Src Dst Live Size Rest

sorted_put_map_exact Fail Src=xy Dst Live Size Rest=* => \
   update_map_exact Src Fail Dst Live Size Rest
# Literal map arguments for an exact update operation are extremely rare.
sorted_put_map_exact Fail Src Dst Live Size Rest=* => \
   move Src x | update_map_exact x Fail Dst Live Size Rest

new_map Dst Live Size Rest=* | is_small_map_literal_keys(Size, Rest) => \
   gen_new_small_map_lit(Dst, Live, Size, Rest)

new_map d t I
i_new_small_map_lit d t q
update_map_assoc xyc d t I
update_map_exact xy j? d t I

is_map Fail Lit=q | literal_is_map(Lit) =>
is_map Fail cq => jump Fail

is_map f? xy

## Transform has_map_fields #{ K1 := _, K2 := _ } to has_map_elements

has_map_fields Fail Src Size Rest=* => \
   gen_has_map_fields(Fail, Src, Size, Rest)

## Transform get_map_elements(s) #{ K1 := V1, K2 := V2 }

get_map_elements Fail Src Size=u==2 Rest=* => \
    gen_get_map_element(Fail, Src, Size, Rest)
get_map_elements Fail Src Size Rest=* | map_key_sort(Size, Rest) => \
   gen_get_map_elements(Fail, Src, Size, Rest)

i_get_map_elements f? s I

i_get_map_element_hash Fail Src=c Key Hash Dst => \
    move Src x | i_get_map_element_hash Fail x Key Hash Dst
i_get_map_element_hash f? xy c I xy

i_get_map_element Fail Src=c Key Dst => \
    move Src x | i_get_map_element Fail x Key Dst
i_get_map_element f? xy xy xy

#
# Convert the plus operations to a generic plus instruction.
#
gen_plus/5
gen_minus/5

gc_bif1 Fail Live u$bif:erlang:splus/1 Src Dst => \
   gen_plus Fail Live Src i Dst
gc_bif2 Fail Live u$bif:erlang:splus/2 S1 S2 Dst => \
   gen_plus Fail Live S1 S2 Dst

gc_bif1 Fail Live u$bif:erlang:sminus/1 Src Dst => \
   gen_minus Fail Live i Src Dst
gc_bif2 Fail Live u$bif:erlang:sminus/2 S1 S2 Dst => \
   gen_minus Fail Live S1 S2 Dst

#
# Optimize addition and subtraction of small literals using
# the i_increment/3 instruction (in bodies, not in guards).
#

gen_plus p Live Int=i Reg=d Dst => \
	gen_increment(Reg, Int, Dst)
gen_plus p Live Reg=d Int=i Dst => \
	gen_increment(Reg, Int, Dst)

gen_minus p Live Reg=d Int=i Dst | negation_is_small(Int) => \
	gen_increment_from_minus(Reg, Int, Dst)

#
# Arithmetic instructions.
#

# It is OK to swap arguments for '+' in a guard. It is also
# OK to turn minus into plus in a guard.
gen_plus Fail=f Live S1=c S2 Dst => i_plus S2 S1 Fail Dst
gen_minus Fail=f Live S1 S2=i Dst => gen_plus_from_minus(Fail, Live, S1, S2, Dst)

gen_plus Fail Live S1 S2 Dst => i_plus S1 S2 Fail Dst

gen_minus Fail Live S1 S2 Dst => i_minus S1 S2 Fail Dst

gc_bif2 Fail Live u$bif:erlang:stimes/2 S1 S2 Dst => \
  i_times Fail S1 S2 Dst

gc_bif2 Fail Live u$bif:erlang:div/2 S1 S2 Dst => \
  i_m_div Fail S1 S2 Dst
gc_bif2 Fail Live u$bif:erlang:intdiv/2 S1 S2 Dst => \
  i_int_div Fail S1 S2 Dst

gc_bif2 Fail Live u$bif:erlang:rem/2 S1 S2 Dst => \
  i_rem S1 S2 Fail Dst

gc_bif2 Fail Live u$bif:erlang:bsl/2 S1 S2 Dst => \
  i_bsl S1 S2 Fail Dst
gc_bif2 Fail Live u$bif:erlang:bsr/2 S1 S2 Dst => \
  i_bsr S1 S2 Fail Dst

gc_bif2 Fail Live u$bif:erlang:band/2 S1 S2 Dst => \
  i_band S1 S2 Fail Dst

gc_bif2 Fail Live u$bif:erlang:bor/2 S1 S2 Dst => \
  i_bor Fail S1 S2 Dst

gc_bif2 Fail Live u$bif:erlang:bxor/2 S1 S2 Dst => \
  i_bxor Fail S1 S2 Dst

gc_bif1 Fail Live u$bif:erlang:bnot/1 Src Dst=d => i_int_bnot Fail Src Dst

i_increment rxy W d

# Handle unoptimized code.
i_plus S1=c S2=c Fail Dst => move S1 x | i_plus x S2 Fail Dst
i_plus S1=c S2=xy Fail Dst => i_plus S2 S1 Fail Dst

i_plus xy xyc j? d

# A minus instruction with a constant right operand will be
# converted to an i_increment instruction, except in guards or
# when the negated value of the constant won't fit in a guard.
# Therefore, it very rare.
i_minus S1 S2=c Fail Dst => move S2 x | i_minus S1 x Fail Dst

i_minus xy xy j? d
i_minus c xy j? d

i_times j? s s d

i_m_div j? s s d
i_int_div j? s s d

i_rem x x j? d
i_rem s s j? d

i_bsl s s j? d
i_bsr s s j? d

i_band x c j? d
i_band s s j? d

i_bor j? s s d
i_bxor j? s s d

i_int_bnot Fail Src=c Dst => move Src x | i_int_bnot Fail x Dst

i_int_bnot j? S d

#
# Old guard BIFs that creates heap fragments are no longer allowed.
#
bif1 Fail u$bif:erlang:length/1 s d => too_old_compiler
bif1 Fail u$bif:erlang:size/1 s d => too_old_compiler
bif1 Fail u$bif:erlang:abs/1 s d => too_old_compiler
bif1 Fail u$bif:erlang:float/1 s d => too_old_compiler
bif1 Fail u$bif:erlang:round/1 s d => too_old_compiler
bif1 Fail u$bif:erlang:trunc/1 s d => too_old_compiler

#
# Handle the length/1 guard BIF specially to make it trappable.
#

gc_bif1 Fail=j Live u$bif:erlang:length/1 Src Dst => \
   i_length_setup Live Src | i_length Fail Live Dst

i_length_setup Live Src=c => move Src x | i_length_setup Live x

i_length_setup t xy
i_length j? t d

#
# Guard BIFs.
#
gc_bif1 p Live Bif Src Dst           => i_bif1_body Src Bif Dst
gc_bif1 Fail=f Live Bif Src Dst      => i_bif1 Src Fail Bif Dst

gc_bif2 p Live Bif S1 S2 Dst         => i_bif2_body S2 S1 Bif Dst
gc_bif2 Fail=f Live Bif S1 S2 Dst    => i_bif2 S2 S1 Fail Bif Dst

gc_bif3 p Live Bif S1 S2 S3 Dst      => i_bif3_body S3 S2 S1 Bif Dst
gc_bif3 Fail=f Live Bif S1 S2 S3 Dst => i_bif3 S3 S2 S1 Fail Bif Dst

#
# The following instruction is specially handled in beam_load.c
# to produce a user-friendly message if an unsupported guard BIF is
# encountered.
#
unsupported_guard_bif/3
unsupported_guard_bif A B C | never() =>

#
# R13B03
#
on_load

#
# R14A.
#
# Modified in OTP 21 because it turns out that we don't need the
# label after all.
#

recv_mark f => i_recv_mark
i_recv_mark

recv_set Fail | label Lbl | loop_rec Lf Reg => \
   i_recv_set | label Lbl | loop_rec Lf Reg
i_recv_set

#
# OTP 21.
#

build_stacktrace
raw_raise