summaryrefslogtreecommitdiff
path: root/lib/hipe/cerl/cerl_closurean.erl
diff options
context:
space:
mode:
authorLukas Larsson <lukas@erlang.org>2020-07-08 17:18:53 +0200
committerLukas Larsson <lukas@erlang.org>2020-09-21 16:40:30 +0200
commit5ac3338b895bc8a7c07d722b637e6b5bab830172 (patch)
tree3187242eee32dab893f22fa2e6f3ebb165b9ce45 /lib/hipe/cerl/cerl_closurean.erl
parent2340ac403aba8942334c9fcbefe7aa5bf58f2363 (diff)
downloaderlang-5ac3338b895bc8a7c07d722b637e6b5bab830172.tar.gz
dialyzer: Move code in hipe that is used by dialyzer to dialyzer
HiPE may no longer always be compiled when dialyzer is needed so we move the files in hipe to dialyzer. Co-authored-by: John Högberg <john@erlang.org>
Diffstat (limited to 'lib/hipe/cerl/cerl_closurean.erl')
-rw-r--r--lib/hipe/cerl/cerl_closurean.erl856
1 files changed, 0 insertions, 856 deletions
diff --git a/lib/hipe/cerl/cerl_closurean.erl b/lib/hipe/cerl/cerl_closurean.erl
deleted file mode 100644
index 583c5d624a..0000000000
--- a/lib/hipe/cerl/cerl_closurean.erl
+++ /dev/null
@@ -1,856 +0,0 @@
-%% Licensed under the Apache License, Version 2.0 (the "License");
-%% you may not use this file except in compliance with the License.
-%% You may obtain a copy of the License at
-%%
-%% http://www.apache.org/licenses/LICENSE-2.0
-%%
-%% Unless required by applicable law or agreed to in writing, software
-%% distributed under the License is distributed on an "AS IS" BASIS,
-%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-%% See the License for the specific language governing permissions and
-%% limitations under the License.
-%%
-%% @copyright 2001-2002 Richard Carlsson
-%% @author Richard Carlsson <carlsson.richard@gmail.com>
-%% @doc Closure analysis of Core Erlang programs.
-
-%% TODO: might need a "top" (`any') element for any-length value lists.
-
--module(cerl_closurean).
-
--export([analyze/1, annotate/1]).
-%% The following functions are exported from this module since they
-%% are also used by Dialyzer (file dialyzer/src/dialyzer_dep.erl)
--export([is_escape_op/2, is_escape_op/3, is_literal_op/2, is_literal_op/3]).
-
--import(cerl, [ann_c_apply/3, ann_c_fun/3, ann_c_var/2, apply_args/1,
- apply_op/1, atom_val/1, bitstr_size/1, bitstr_val/1,
- binary_segments/1, c_letrec/2, c_seq/2, c_tuple/1,
- c_nil/0, call_args/1, call_module/1, call_name/1,
- case_arg/1, case_clauses/1, catch_body/1, clause_body/1,
- clause_guard/1, clause_pats/1, cons_hd/1, cons_tl/1,
- fun_body/1, fun_vars/1, get_ann/1, is_c_atom/1,
- let_arg/1, let_body/1, let_vars/1, letrec_body/1,
- letrec_defs/1, module_defs/1, module_defs/1,
- module_exports/1, pat_vars/1, primop_args/1,
- primop_name/1, receive_action/1, receive_clauses/1,
- receive_timeout/1, seq_arg/1, seq_body/1, set_ann/2,
- try_arg/1, try_body/1, try_vars/1, try_evars/1,
- try_handler/1, tuple_es/1, type/1, values_es/1]).
-
--import(cerl_trees, [get_label/1]).
-
-%% ===========================================================================
-
--type label() :: integer() | 'top' | 'external' | 'external_call'.
--type ordset(X) :: [X]. % XXX: TAKE ME OUT
--type labelset() :: ordset(label()).
--type outlist() :: [labelset()] | 'none'.
--type escapes() :: labelset().
-
-%% ===========================================================================
-%% annotate(Tree) -> {Tree1, OutList, Outputs, Escapes, Dependencies, Parents}
-%%
-%% Tree = cerl:cerl()
-%%
-%% Analyzes `Tree' (see `analyze') and appends terms `{callers,
-%% Labels}' and `{calls, Labels}' to the annotation list of each
-%% fun-expression node and apply-expression node of `Tree',
-%% respectively, where `Labels' is an ordered-set list of labels of
-%% fun-expressions in `Tree', possibly also containing the atom
-%% `external', corresponding to the dependency information derived
-%% by the analysis. Any previous such annotations are removed from
-%% `Tree'. `Tree1' is the modified tree; for details on `OutList',
-%% `Outputs' , `Dependencies', `Escapes' and `Parents', see
-%% `analyze'.
-%%
-%% Note: `Tree' must be annotated with labels in order to use this
-%% function; see `analyze' for details.
-
--spec annotate(cerl:cerl()) ->
- {cerl:cerl(), outlist(), dict:dict(),
- escapes(), dict:dict(), dict:dict()}.
-
-annotate(Tree) ->
- {Xs, Out, Esc, Deps, Par} = analyze(Tree),
- F = fun (T) ->
- case type(T) of
- 'fun' ->
- L = get_label(T),
- X = case dict:find(L, Deps) of
- {ok, X1} -> X1;
- error -> set__new()
- end,
- set_ann(T, append_ann(callers,
- set__to_list(X),
- get_ann(T)));
- apply ->
- L = get_label(T),
- X = case dict:find(L, Deps) of
- {ok, X1} -> X1;
- error -> set__new()
- end,
- set_ann(T, append_ann(calls,
- set__to_list(X),
- get_ann(T)));
- _ ->
-%%% set_ann(T, []) % debug
- T
- end
- end,
- {cerl_trees:map(F, Tree), Xs, Out, Esc, Deps, Par}.
-
-append_ann(Tag, Val, [X | Xs]) ->
- if tuple_size(X) >= 1, element(1, X) =:= Tag ->
- append_ann(Tag, Val, Xs);
- true ->
- [X | append_ann(Tag, Val, Xs)]
- end;
-append_ann(Tag, Val, []) ->
- [{Tag, Val}].
-
-%% =====================================================================
-%% analyze(Tree) -> {OutList, Outputs, Escapes, Dependencies, Parents}
-%%
-%% Tree = cerl()
-%% OutList = [LabelSet] | none
-%% Outputs = dict(Label, OutList)
-%% Escapes = LabelSet
-%% Dependencies = dict(Label, LabelSet)
-%% LabelSet = ordset(Label)
-%% Label = integer() | top | external | external_call
-%% Parents = dict(Label, Label)
-%%
-%% Analyzes a module or an expression represented by `Tree'.
-%%
-%% The returned `OutList' is a list of sets of labels of
-%% fun-expressions which correspond to the possible closures in the
-%% value list produced by `Tree' (viewed as an expression; the
-%% "value" of a module contains its exported functions). The atom
-%% `none' denotes missing or conflicting information.
-%%
-%% The atom `external' in any label set denotes any possible
-%% function outside `Tree', including those in `Escapes'. The atom
-%% `top' denotes the top-level expression `Tree'.
-%%
-%% `Outputs' is a mapping from the labels of fun-expressions in
-%% `Tree' to corresponding lists of sets of labels of
-%% fun-expressions (or the atom `none'), representing the possible
-%% closures in the value lists returned by the respective
-%% functions.
-%%
-%% `Dependencies' is a similar mapping from the labels of
-%% fun-expressions and apply-expressions in `Tree' to sets of
-%% labels of corresponding fun-expressions which may contain call
-%% sites of the functions or be called from the call sites,
-%% respectively. Any such label not defined in `Dependencies'
-%% represents an unreachable function or a dead or faulty
-%% application.
-%%
-%% `Escapes' is the set of labels of fun-expressions in `Tree' such
-%% that corresponding closures may be accessed from outside `Tree'.
-%%
-%% `Parents' is a mapping from labels of fun-expressions in `Tree'
-%% to the corresponding label of the nearest containing
-%% fun-expression or top-level expression. This can be used to
-%% extend the dependency graph, for certain analyses.
-%%
-%% Note: `Tree' must be annotated with labels (as done by the
-%% function `cerl_trees:label/1') in order to use this function.
-%% The label annotation `{label, L}' (where L should be an integer)
-%% must be the first element of the annotation list of each node in
-%% the tree. Instances of variables bound in `Tree' which denote
-%% the same variable must have the same label; apart from this,
-%% labels should be unique. Constant literals do not need to be
-%% labeled.
-
--record(state, {vars, out, dep, work, funs, par}).
-
-%% Note: In order to keep our domain simple, we assume that all remote
-%% calls and primops return a single value, if any.
-
-%% We use the terms `closure', `label', `lambda' and `fun-expression'
-%% interchangeably. The exact meaning in each case can be grasped from
-%% the context.
-%%
-%% Rules:
-%% 1) The implicit top level lambda escapes.
-%% 2) A lambda returned by an escaped lambda also escapes.
-%% 3) An escaped lambda can be passed an external lambda as argument.
-%% 4) A lambda passed as argument to an external lambda also escapes.
-%% 5) An argument passed to an unknown operation escapes.
-%% 6) A call to an unknown operation can return an external lambda.
-%%
-%% Escaped lambdas become part of the set of external lambdas, but this
-%% does not need to be represented explicitly.
-
-%% We wrap the given syntax tree T in a fun-expression labeled `top',
-%% which is initially in the set of escaped labels. `top' will be
-%% visited at least once.
-%%
-%% We create a separate function labeled `external', defined as:
-%% "'external'/1 = fun (Escape) -> do apply 'external'/1(apply Escape())
-%% 'external'/1", which will represent any and all functions outside T,
-%% and which returns itself, and contains a recursive call; this models
-%% rules 2 and 4 above. It will be revisited if the set of escaped
-%% labels changes, or at least once. Its parameter `Escape' is a
-%% variable labeled `escape', which will hold the set of escaped labels.
-%% initially it contains `top' and `external'.
-
--spec analyze(cerl:cerl()) ->
- {outlist(), dict:dict(), escapes(), dict:dict(), dict:dict()}.
-
-analyze(Tree) ->
- %% Note that we use different name spaces for variable labels and
- %% function/call site labels, so we can reuse some names here. We
- %% assume that the labeling of Tree only uses integers, not atoms.
- External = ann_c_var([{label, external}], {external, 1}),
- Escape = ann_c_var([{label, escape}], 'Escape'),
- ExtBody = c_seq(ann_c_apply([{label, loop}], External,
- [ann_c_apply([{label, external_call}],
- Escape, [])]),
- External),
- ExtFun = ann_c_fun([{label, external}], [Escape], ExtBody),
-%%% io:fwrite("external fun:\n~s.\n",
-%%% [cerl_prettypr:format(ExtFun, [noann])]),
- Top = ann_c_var([{label, top}], {top, 0}),
- TopFun = ann_c_fun([{label, top}], [], Tree),
-
- %% The "start fun" just makes the initialisation easier. It will not
- %% be marked as escaped, and thus cannot be called.
- StartFun = ann_c_fun([{label, start}], [],
- c_letrec([{External, ExtFun}, {Top, TopFun}],
- c_nil())),
-%%% io:fwrite("start fun:\n~s.\n",
-%%% [cerl_prettypr:format(StartFun, [noann])]),
-
- %% Gather a database of all fun-expressions in Tree and initialise
- %% all their outputs and parameter variables. Bind all module- and
- %% letrec-defined variables to their corresponding labels.
- Funs0 = dict:new(),
- Vars0 = dict:new(),
- Out0 = dict:new(),
- Empty = empty(),
- F = fun (T, S = {Fs, Vs, Os}) ->
- case type(T) of
- 'fun' ->
- L = get_label(T),
- As = fun_vars(T),
- {dict:store(L, T, Fs),
- bind_vars_single(As, Empty, Vs),
- dict:store(L, none, Os)};
- letrec ->
- {Fs, bind_defs(letrec_defs(T), Vs), Os};
- module ->
- {Fs, bind_defs(module_defs(T), Vs), Os};
- _ ->
- S
- end
- end,
- {Funs, Vars, Out} = cerl_trees:fold(F, {Funs0, Vars0, Out0},
- StartFun),
-
- %% Initialise Escape to the minimal set of escaped labels.
- Vars1 = dict:store(escape, from_label_list([top, external]), Vars),
-
- %% Enter the fixpoint iteration at the StartFun.
- St = loop(StartFun, start, #state{vars = Vars1,
- out = Out,
- dep = dict:new(),
- work = init_work(),
- funs = Funs,
- par = dict:new()}),
-%%% io:fwrite("dependencies: ~p.\n",
-%%% [[{X, set__to_list(Y)}
-%%% || {X, Y} <- dict:to_list(St#state.dep)]]),
- {dict:fetch(top, St#state.out),
- tidy_dict([start, top, external], St#state.out),
- dict:fetch(escape, St#state.vars),
- tidy_dict([loop], St#state.dep),
- St#state.par}.
-
-tidy_dict([X | Xs], D) ->
- tidy_dict(Xs, dict:erase(X, D));
-tidy_dict([], D) ->
- D.
-
-loop(T, L, St0) ->
-%%% io:fwrite("analyzing: ~w.\n", [L]),
-%%% io:fwrite("work: ~w.\n", [St0#state.work]),
- Xs0 = dict:fetch(L, St0#state.out),
- {Xs, St1} = visit(fun_body(T), L, St0),
- {W, M} = case equal(Xs0, Xs) of
- true ->
- {St1#state.work, St1#state.out};
- false ->
-%%% io:fwrite("out (~w) changed: ~w <- ~w.\n",
-%%% [L, Xs, Xs0]),
- M1 = dict:store(L, Xs, St1#state.out),
- case dict:find(L, St1#state.dep) of
- {ok, S} ->
- {add_work(set__to_list(S), St1#state.work),
- M1};
- error ->
- {St1#state.work, M1}
- end
- end,
- St2 = St1#state{out = M},
- case take_work(W) of
- {ok, L1, W1} ->
- T1 = dict:fetch(L1, St2#state.funs),
- loop(T1, L1, St2#state{work = W1});
- none ->
- St2
- end.
-
-visit(T, L, St) ->
- case type(T) of
- literal ->
- {[empty()], St};
- var ->
- %% If a variable is not already in the store here, we
- %% initialize it to empty().
- L1 = get_label(T),
- Vars = St#state.vars,
- case dict:find(L1, Vars) of
- {ok, X} ->
- {[X], St};
- error ->
- X = empty(),
- St1 = St#state{vars = dict:store(L1, X, Vars)},
- {[X], St1}
- end;
- 'fun' ->
- %% Must revisit the fun also, because its environment might
- %% have changed. (We don't keep track of such dependencies.)
- L1 = get_label(T),
- St1 = St#state{work = add_work([L1], St#state.work),
- par = set_parent([L1], L, St#state.par)},
- {[singleton(L1)], St1};
- values ->
- visit_list(values_es(T), L, St);
- cons ->
- {Xs, St1} = visit_list([cons_hd(T), cons_tl(T)], L, St),
- {[join_single_list(Xs)], St1};
- tuple ->
- {Xs, St1} = visit_list(tuple_es(T), L, St),
- {[join_single_list(Xs)], St1};
- 'let' ->
- {Xs, St1} = visit(let_arg(T), L, St),
- Vars = bind_vars(let_vars(T), Xs, St1#state.vars),
- visit(let_body(T), L, St1#state{vars = Vars});
- seq ->
- {_, St1} = visit(seq_arg(T), L, St),
- visit(seq_body(T), L, St1);
- apply ->
- {Xs, St1} = visit(apply_op(T), L, St),
- {As, St2} = visit_list(apply_args(T), L, St1),
- case Xs of
- [X] ->
- %% We store the dependency from the call site to the
- %% called functions
- Ls = set__to_list(X),
- Out = St2#state.out,
- Xs1 = join_list([dict:fetch(Lx, Out) || Lx <- Ls]),
- St3 = call_site(Ls, L, As, St2),
- L1 = get_label(T),
- D = dict:store(L1, X, St3#state.dep),
- {Xs1, St3#state{dep = D}};
- none ->
- {none, St2}
- end;
- call ->
- M = call_module(T),
- F = call_name(T),
- {_, St1} = visit(M, L, St),
- {_, St2} = visit(F, L, St1),
- {Xs, St3} = visit_list(call_args(T), L, St2),
- remote_call(M, F, Xs, St3);
- primop ->
- As = primop_args(T),
- {Xs, St1} = visit_list(As, L, St),
- primop_call(atom_val(primop_name(T)), length(Xs), Xs, St1);
- 'case' ->
- {Xs, St1} = visit(case_arg(T), L, St),
- visit_clauses(Xs, case_clauses(T), L, St1);
- 'receive' ->
- X = singleton(external),
- {Xs1, St1} = visit_clauses([X], receive_clauses(T), L, St),
- {_, St2} = visit(receive_timeout(T), L, St1),
- {Xs2, St3} = visit(receive_action(T), L, St2),
- {join(Xs1, Xs2), St3};
- 'try' ->
- {Xs1, St1} = visit(try_arg(T), L, St),
- X = singleton(external),
- Vars = bind_vars(try_vars(T), [X], St1#state.vars),
- {Xs2, St2} = visit(try_body(T), L, St1#state{vars = Vars}),
- Evars = bind_vars(try_evars(T), [X, X, X], St2#state.vars),
- {Xs3, St3} = visit(try_handler(T), L, St2#state{vars = Evars}),
- {join(join(Xs1, Xs2), Xs3), St3};
- 'catch' ->
- {_, St1} = visit(catch_body(T), L, St),
- {[singleton(external)], St1};
- binary ->
- {_, St1} = visit_list(binary_segments(T), L, St),
- {[empty()], St1};
- bitstr ->
- %% The other fields are constant literals.
- {_, St1} = visit(bitstr_val(T), L, St),
- {_, St2} = visit(bitstr_size(T), L, St1),
- {none, St2};
- letrec ->
- %% All the bound funs should be revisited, because the
- %% environment might have changed.
- Ls = [get_label(F) || {_, F} <- letrec_defs(T)],
- St1 = St#state{work = add_work(Ls, St#state.work),
- par = set_parent(Ls, L, St#state.par)},
- visit(letrec_body(T), L, St1);
- module ->
- %% All the exported functions escape, and can thus be passed
- %% any external closures as arguments. We regard a module as
- %% a tuple of function variables in the body of a `letrec'.
- visit(c_letrec(module_defs(T), c_tuple(module_exports(T))),
- L, St)
- end.
-
-visit_clause(T, Xs, L, St) ->
- Vars = bind_pats(clause_pats(T), Xs, St#state.vars),
- {_, St1} = visit(clause_guard(T), L, St#state{vars = Vars}),
- visit(clause_body(T), L, St1).
-
-%% We assume correct value-list typing.
-
-visit_list([T | Ts], L, St) ->
- {Xs, St1} = visit(T, L, St),
- {Xs1, St2} = visit_list(Ts, L, St1),
- X = case Xs of
- [X1] -> X1;
- none -> none
- end,
- {[X | Xs1], St2};
-visit_list([], _L, St) ->
- {[], St}.
-
-visit_clauses(Xs, [T | Ts], L, St) ->
- {Xs1, St1} = visit_clause(T, Xs, L, St),
- {Xs2, St2} = visit_clauses(Xs, Ts, L, St1),
- {join(Xs1, Xs2), St2};
-visit_clauses(_, [], _L, St) ->
- {none, St}.
-
-bind_defs([{V, F} | Ds], Vars) ->
- bind_defs(Ds, dict:store(get_label(V), singleton(get_label(F)),
- Vars));
-bind_defs([], Vars) ->
- Vars.
-
-bind_pats(Ps, none, Vars) ->
- bind_pats_single(Ps, empty(), Vars);
-bind_pats(Ps, Xs, Vars) ->
- if length(Xs) =:= length(Ps) ->
- bind_pats_list(Ps, Xs, Vars);
- true ->
- bind_pats_single(Ps, empty(), Vars)
- end.
-
-bind_pats_list([P | Ps], [X | Xs], Vars) ->
- bind_pats_list(Ps, Xs, bind_vars_single(pat_vars(P), X, Vars));
-bind_pats_list([], [], Vars) ->
- Vars.
-
-bind_pats_single([P | Ps], X, Vars) ->
- bind_pats_single(Ps, X, bind_vars_single(pat_vars(P), X, Vars));
-bind_pats_single([], _X, Vars) ->
- Vars.
-
-bind_vars(Vs, none, Vars) ->
- bind_vars_single(Vs, empty(), Vars);
-bind_vars(Vs, Xs, Vars) ->
- if length(Vs) =:= length(Xs) ->
- bind_vars_list(Vs, Xs, Vars);
- true ->
- bind_vars_single(Vs, empty(), Vars)
- end.
-
-bind_vars_list([V | Vs], [X | Xs], Vars) ->
- bind_vars_list(Vs, Xs, dict:store(get_label(V), X, Vars));
-bind_vars_list([], [], Vars) ->
- Vars.
-
-bind_vars_single([V | Vs], X, Vars) ->
- bind_vars_single(Vs, X, dict:store(get_label(V), X, Vars));
-bind_vars_single([], _X, Vars) ->
- Vars.
-
-%% This handles a call site - adding dependencies and updating parameter
-%% variables with respect to the actual parameters. The 'external'
-%% function is handled specially, since it can get an arbitrary number
-%% of arguments, which must be unified into a single argument.
-
-call_site(Ls, L, Xs, St) ->
-%%% io:fwrite("call site: ~w -> ~w (~w).\n", [L, Ls, Xs]),
- {D, W, V} = call_site(Ls, L, Xs, St#state.dep, St#state.work,
- St#state.vars, St#state.funs),
- St#state{dep = D, work = W, vars = V}.
-
-call_site([external | Ls], T, Xs, D, W, V, Fs) ->
- D1 = add_dep(external, T, D),
- X = join_single_list(Xs),
- case bind_arg(escape, X, V) of
- {V1, true} ->
-%%% io:fwrite("escape changed: ~w <- ~w + ~w.\n",
-%%% [dict:fetch(escape, V1), dict:fetch(escape, V),
-%%% X]),
- {W1, V2} = update_esc(set__to_list(X), W, V1, Fs),
- call_site(Ls, T, Xs, D1, add_work([external], W1), V2, Fs);
- {V1, false} ->
- call_site(Ls, T, Xs, D1, W, V1, Fs)
- end;
-call_site([L | Ls], T, Xs, D, W, V, Fs) ->
- D1 = add_dep(L, T, D),
- Vs = fun_vars(dict:fetch(L, Fs)),
- case bind_args(Vs, Xs, V) of
- {V1, true} ->
- call_site(Ls, T, Xs, D1, add_work([L], W), V1, Fs);
- {V1, false} ->
- call_site(Ls, T, Xs, D1, W, V1, Fs)
- end;
-call_site([], _, _, D, W, V, _) ->
- {D, W, V}.
-
-%% Note that `visit' makes sure all lambdas are visited at least once.
-%% For every called function, we add a dependency from the *called*
-%% function to the function containing the call site.
-
-add_dep(Source, Target, Deps) ->
- case dict:find(Source, Deps) of
- {ok, X} ->
- case set__is_member(Target, X) of
- true ->
- Deps;
- false ->
-%%% io:fwrite("new dep: ~w <- ~w.\n", [Target, Source]),
- dict:store(Source, set__add(Target, X), Deps)
- end;
- error ->
-%%% io:fwrite("new dep: ~w <- ~w.\n", [Target, Source]),
- dict:store(Source, set__singleton(Target), Deps)
- end.
-
-%% If the arity does not match the call, nothing is done here.
-
-bind_args(Vs, Xs, Vars) ->
- if length(Vs) =:= length(Xs) ->
- bind_args(Vs, Xs, Vars, false);
- true ->
- {Vars, false}
- end.
-
-bind_args([V | Vs], [X | Xs], Vars, Ch) ->
- L = get_label(V),
- {Vars1, Ch1} = bind_arg(L, X, Vars, Ch),
- bind_args(Vs, Xs, Vars1, Ch1);
-bind_args([], [], Vars, Ch) ->
- {Vars, Ch}.
-
-bind_args_single(Vs, X, Vars) ->
- bind_args_single(Vs, X, Vars, false).
-
-bind_args_single([V | Vs], X, Vars, Ch) ->
- L = get_label(V),
- {Vars1, Ch1} = bind_arg(L, X, Vars, Ch),
- bind_args_single(Vs, X, Vars1, Ch1);
-bind_args_single([], _, Vars, Ch) ->
- {Vars, Ch}.
-
-bind_arg(L, X, Vars) ->
- bind_arg(L, X, Vars, false).
-
-bind_arg(L, X, Vars, Ch) ->
- X0 = dict:fetch(L, Vars),
- X1 = join_single(X, X0),
- case equal_single(X0, X1) of
- true ->
- {Vars, Ch};
- false ->
-%%% io:fwrite("arg (~w) changed: ~w <- ~w + ~w.\n",
-%%% [L, X1, X0, X]),
- {dict:store(L, X1, Vars), true}
- end.
-
-%% This handles escapes from things like primops and remote calls.
-
-%% escape(none, St) ->
-%% St;
-escape([X], St) ->
- Vars = St#state.vars,
- X0 = dict:fetch(escape, Vars),
- X1 = join_single(X, X0),
- case equal_single(X0, X1) of
- true ->
- St;
- false ->
-%%% io:fwrite("escape changed: ~w <- ~w + ~w.\n", [X1, X0, X]),
-%%% io:fwrite("updating escaping funs: ~w.\n", [set__to_list(X)]),
- Vars1 = dict:store(escape, X1, Vars),
- {W, Vars2} = update_esc(set__to_list(set__subtract(X, X0)),
- St#state.work, Vars1,
- St#state.funs),
- St#state{work = add_work([external], W), vars = Vars2}
- end.
-
-%% For all escaping lambdas, since they might be called from outside the
-%% program, all their arguments may be an external lambda. (Note that we
-%% only have to include the `external' label once per escaping lambda.)
-%% If the escape set has changed, we need to revisit the `external' fun.
-
-update_esc(Ls, W, V, Fs) ->
- update_esc(Ls, singleton(external), W, V, Fs).
-
-%% The external lambda is skipped here - the Escape variable is known to
-%% contain `external' from the start.
-
-update_esc([external | Ls], X, W, V, Fs) ->
- update_esc(Ls, X, W, V, Fs);
-update_esc([L | Ls], X, W, V, Fs) ->
- Vs = fun_vars(dict:fetch(L, Fs)),
- case bind_args_single(Vs, X, V) of
- {V1, true} ->
- update_esc(Ls, X, add_work([L], W), V1, Fs);
- {V1, false} ->
- update_esc(Ls, X, W, V1, Fs)
- end;
-update_esc([], _, W, V, _) ->
- {W, V}.
-
-set_parent([L | Ls], L1, D) ->
- set_parent(Ls, L1, dict:store(L, L1, D));
-set_parent([], _L1, D) ->
- D.
-
-%% Handle primop calls: (At present, we assume that all unknown primops
-%% yield exactly one value. This might have to be changed.)
-
-primop_call(F, A, Xs, St0) ->
- case is_pure_op(F, A) of
- %% XXX: this case is currently not possible -- commented out.
- %% true ->
- %% case is_literal_op(F, A) of
- %% true -> {[empty()], St0};
- %% false -> {[join_single_list(Xs)], St0}
- %% end;
- false ->
- St1 = case is_escape_op(F, A) of
- true -> escape([join_single_list(Xs)], St0);
- false -> St0
- end,
- case is_literal_op(F, A) of
- true -> {none, St1};
- false -> {[singleton(external)], St1}
- end
- end.
-
-%% Handle remote-calls: (At present, we assume that all unknown calls
-%% yield exactly one value. This might have to be changed.)
-
-remote_call(M, F, Xs, St) ->
- case is_c_atom(M) andalso is_c_atom(F) of
- true ->
- remote_call_1(atom_val(M), atom_val(F), length(Xs), Xs, St);
- false ->
- %% Unknown function
- {[singleton(external)], escape([join_single_list(Xs)], St)}
- end.
-
-remote_call_1(M, F, A, Xs, St0) ->
- case is_pure_op(M, F, A) of
- true ->
- case is_literal_op(M, F, A) of
- true -> {[empty()], St0};
- false -> {[join_single_list(Xs)], St0}
- end;
- false ->
- St1 = case is_escape_op(M, F, A) of
- true -> escape([join_single_list(Xs)], St0);
- false -> St0
- end,
- case is_literal_op(M, F, A) of
- true -> {[empty()], St1};
- false -> {[singleton(external)], St1}
- end
- end.
-
-%% Domain: none | [Vs], where Vs = set(integer()).
-
-join(none, Xs2) -> Xs2;
-join(Xs1, none) -> Xs1;
-join(Xs1, Xs2) ->
- if length(Xs1) =:= length(Xs2) ->
- join_1(Xs1, Xs2);
- true ->
- none
- end.
-
-join_1([X1 | Xs1], [X2 | Xs2]) ->
- [join_single(X1, X2) | join_1(Xs1, Xs2)];
-join_1([], []) ->
- [].
-
-empty() -> set__new().
-
-singleton(X) -> set__singleton(X).
-
-from_label_list(X) -> set__from_list(X).
-
-join_single(none, Y) -> Y;
-join_single(X, none) -> X;
-join_single(X, Y) -> set__union(X, Y).
-
-join_list([Xs | Xss]) ->
- join(Xs, join_list(Xss));
-join_list([]) ->
- none.
-
-join_single_list([X | Xs]) ->
- join_single(X, join_single_list(Xs));
-join_single_list([]) ->
- empty().
-
-equal(none, none) -> true;
-equal(none, _) -> false;
-equal(_, none) -> false;
-equal(X1, X2) -> equal_1(X1, X2).
-
-equal_1([X1 | Xs1], [X2 | Xs2]) ->
- equal_single(X1, X2) andalso equal_1(Xs1, Xs2);
-equal_1([], []) -> true;
-equal_1(_, _) -> false.
-
-equal_single(X, Y) -> set__equal(X, Y).
-
-%% Set abstraction for label sets in the domain.
-
-set__new() -> [].
-
-set__singleton(X) -> [X].
-
-set__to_list(S) -> S.
-
-set__from_list(S) -> ordsets:from_list(S).
-
-set__union(X, Y) -> ordsets:union(X, Y).
-
-set__add(X, S) -> ordsets:add_element(X, S).
-
-set__is_member(X, S) -> ordsets:is_element(X, S).
-
-set__subtract(X, Y) -> ordsets:subtract(X, Y).
-
-set__equal(X, Y) -> X =:= Y.
-
-%% A simple but efficient functional queue.
-
-queue__new() -> {[], []}.
-
-queue__put(X, {In, Out}) -> {[X | In], Out}.
-
-queue__get({In, [X | Out]}) -> {ok, X, {In, Out}};
-queue__get({[], _}) -> empty;
-queue__get({In, _}) ->
- [X | In1] = lists:reverse(In),
- {ok, X, {[], In1}}.
-
-%% The work list - a queue without repeated elements.
-
-init_work() ->
- {queue__new(), sets:new()}.
-
-add_work(Ls, {Q, Set}) ->
- add_work(Ls, Q, Set).
-
-%% Note that the elements are enqueued in order.
-
-add_work([L | Ls], Q, Set) ->
- case sets:is_element(L, Set) of
- true ->
- add_work(Ls, Q, Set);
- false ->
- add_work(Ls, queue__put(L, Q), sets:add_element(L, Set))
- end;
-add_work([], Q, Set) ->
- {Q, Set}.
-
-take_work({Queue0, Set0}) ->
- case queue__get(Queue0) of
- {ok, L, Queue1} ->
- Set1 = sets:del_element(L, Set0),
- {ok, L, {Queue1, Set1}};
- empty ->
- none
- end.
-
-%% Escape operators may let their arguments escape. Unless we know
-%% otherwise, and the function is not pure, we assume this is the case.
-%% Error-raising functions (fault/match_fail) are not considered as
-%% escapes (but throw/exit are). Zero-argument functions need not be
-%% listed.
-
--spec is_escape_op(atom(), arity()) -> boolean().
-
-is_escape_op(match_fail, 1) -> false;
-is_escape_op(recv_wait_timeout, 1) -> false;
-is_escape_op(F, A) when is_atom(F), is_integer(A) -> true.
-
--spec is_escape_op(atom(), atom(), arity()) -> boolean().
-
-is_escape_op(erlang, error, 1) -> false;
-is_escape_op(erlang, error, 2) -> false;
-is_escape_op(M, F, A) when is_atom(M), is_atom(F), is_integer(A) -> true.
-
-%% "Literal" operators will never return functional values even when
-%% found in their arguments. Unless we know otherwise, we assume this is
-%% not the case. (More functions can be added to this list, if needed
-%% for better precision. Note that the result of `term_to_binary' still
-%% contains an encoding of the closure.)
-
--spec is_literal_op(atom(), arity()) -> boolean().
-
-is_literal_op(recv_wait_timeout, 1) -> true;
-is_literal_op(match_fail, 1) -> true;
-is_literal_op(F, A) when is_atom(F), is_integer(A) -> false.
-
--spec is_literal_op(atom(), atom(), arity()) -> boolean().
-
-is_literal_op(erlang, '+', 2) -> true;
-is_literal_op(erlang, '-', 2) -> true;
-is_literal_op(erlang, '*', 2) -> true;
-is_literal_op(erlang, '/', 2) -> true;
-is_literal_op(erlang, '=:=', 2) -> true;
-is_literal_op(erlang, '==', 2) -> true;
-is_literal_op(erlang, '=/=', 2) -> true;
-is_literal_op(erlang, '/=', 2) -> true;
-is_literal_op(erlang, '<', 2) -> true;
-is_literal_op(erlang, '=<', 2) -> true;
-is_literal_op(erlang, '>', 2) -> true;
-is_literal_op(erlang, '>=', 2) -> true;
-is_literal_op(erlang, 'and', 2) -> true;
-is_literal_op(erlang, 'or', 2) -> true;
-is_literal_op(erlang, 'not', 1) -> true;
-is_literal_op(erlang, length, 1) -> true;
-is_literal_op(erlang, size, 1) -> true;
-is_literal_op(erlang, fun_info, 1) -> true;
-is_literal_op(erlang, fun_info, 2) -> true;
-is_literal_op(erlang, fun_to_list, 1) -> true;
-is_literal_op(erlang, throw, 1) -> true;
-is_literal_op(erlang, exit, 1) -> true;
-is_literal_op(erlang, error, 1) -> true;
-is_literal_op(erlang, error, 2) -> true;
-is_literal_op(M, F, A) when is_atom(M), is_atom(F), is_integer(A) -> false.
-
-%% Pure functions neither affect the state, nor depend on it.
-
-is_pure_op(F, A) when is_atom(F), is_integer(A) -> false.
-
-is_pure_op(M, F, A) -> erl_bifs:is_pure(M, F, A).
-
-%% =====================================================================