summaryrefslogtreecommitdiff
path: root/src/sort.c
blob: 706c057dab0e4aa000f2f1ae98fe99264c48a0e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
/* Timsort for sequences.

Copyright (C) 2022-2023 Free Software Foundation, Inc.

This file is part of GNU Emacs.

GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Emacs.  If not, see <https://www.gnu.org/licenses/>.  */

/* This is a version of the cpython code implementing the TIMSORT
   sorting algorithm described in
   https://github.com/python/cpython/blob/main/Objects/listsort.txt.
   This algorithm identifies and pushes naturally ordered sublists of
   the original list, or "runs", onto a stack, and merges them
   periodically according to a merge strategy called "powersort".
   State is maintained during the sort in a merge_state structure,
   which is passed around as an argument to all the subroutines.  A
   "stretch" structure includes a pointer to the run BASE of length
   LEN along with its POWER (a computed integer used by the powersort
   merge strategy that depends on this run and the succeeding run.)  */


#include <config.h>
#include "lisp.h"


/* MAX_MERGE_PENDING is the maximum number of entries in merge_state's
   pending-stretch stack.  For a list with n elements, this needs at most
   floor(log2(n)) + 1 entries even if we didn't force runs to a
   minimal length.  So the number of bits in a ptrdiff_t is plenty large
   enough for all cases.  */

#define MAX_MERGE_PENDING PTRDIFF_WIDTH

/* Once we get into galloping mode, we stay there as long as both runs
   win at least GALLOP_WIN_MIN consecutive times.  */

#define GALLOP_WIN_MIN 7

/* A small temp array of size MERGESTATE_TEMP_SIZE is used to avoid
   malloc when merging small lists.  */

#define MERGESTATE_TEMP_SIZE 256

struct stretch
{
  Lisp_Object *base;
  ptrdiff_t len;
  int power;
};

struct reloc
{
  Lisp_Object **src;
  Lisp_Object **dst;
  ptrdiff_t *size;
  int order; /* -1 while in merge_lo; +1 while in merg_hi; 0 otherwise.  */
};


typedef struct
{
  Lisp_Object *listbase;
  ptrdiff_t listlen;

  /* PENDING is a stack of N pending stretches yet to be merged.
     Stretch #i starts at address base[i] and extends for len[i]
     elements.  */

  int n;
  struct stretch pending[MAX_MERGE_PENDING];

  /* The variable MIN_GALLOP, initialized to GALLOP_WIN_MIN, controls
     when we get *into* galloping mode.  merge_lo and merge_hi tend to
     nudge it higher for random data, and lower for highly structured
     data.  */

  ptrdiff_t min_gallop;

  /* 'A' is temporary storage, able to hold ALLOCED elements, to help
     with merges.  'A' initially points to TEMPARRAY, and subsequently
     to newly allocated memory if needed.  */

  Lisp_Object *a;
  ptrdiff_t alloced;
  specpdl_ref count;
  Lisp_Object temparray[MERGESTATE_TEMP_SIZE];

  /* If an exception is thrown while merging we might have to relocate
     some list elements from temporary storage back into the list.
     RELOC keeps track of the information needed to do this.  */

  struct reloc reloc;

  /* PREDICATE is the lisp comparison predicate for the sort.  */

  Lisp_Object predicate;
} merge_state;


/* Return true iff (PREDICATE A B) is non-nil.  */

static inline bool
inorder (const Lisp_Object predicate, const Lisp_Object a, const Lisp_Object b)
{
  return !NILP (call2 (predicate, a, b));
}


/* Sort the list starting at LO and ending at HI using a stable binary
   insertion sort algorithm. On entry the sublist [LO, START) (with
   START between LO and HIGH) is known to be sorted (pass START == LO
   if you are unsure).  Even in case of error, the output will be some
   permutation of the input (nothing is lost or duplicated).  */

static void
binarysort (merge_state *ms, Lisp_Object *lo, const Lisp_Object *hi,
	    Lisp_Object *start)
{
  Lisp_Object pred = ms->predicate;

  eassume (lo <= start && start <= hi);
  if (lo == start)
    ++start;
  for (; start < hi; ++start)
    {
      Lisp_Object *l = lo;
      Lisp_Object *r = start;
      Lisp_Object pivot = *r;

      eassume (l < r);
      do {
	Lisp_Object *p = l + ((r - l) >> 1);
	if (inorder (pred, pivot, *p))
	  r = p;
	else
	  l = p + 1;
      } while (l < r);
      eassume (l == r);
      for (Lisp_Object *p = start; p > l; --p)
	p[0] = p[-1];
      *l = pivot;
    }
}


/*  Find and return the length of the "run" (the longest
    non-decreasing sequence or the longest strictly decreasing
    sequence, with the Boolean *DESCENDING set to 0 in the former
    case, or to 1 in the latter) beginning at LO, in the slice [LO,
    HI) with LO < HI.  The strictness of the definition of
    "descending" ensures there are no equal elements to get out of
    order so the caller can safely reverse a descending sequence
    without violating stability.  */

static ptrdiff_t
count_run (merge_state *ms, Lisp_Object *lo, const Lisp_Object *hi,
	   bool *descending)
{
  Lisp_Object pred = ms->predicate;

  eassume (lo < hi);
  *descending = 0;
  ++lo;
  ptrdiff_t n = 1;
  if (lo == hi)
    return n;

  n = 2;
  if (inorder (pred, lo[0], lo[-1]))
    {
      *descending = 1;
      for (lo = lo + 1; lo < hi; ++lo, ++n)
	{
	  if (!inorder (pred, lo[0], lo[-1]))
	    break;
	}
    }
  else
    {
      for (lo = lo + 1; lo < hi; ++lo, ++n)
	{
	  if (inorder (pred, lo[0], lo[-1]))
	    break;
	}
    }

  return n;
}


/*  Locate and return the proper insertion position of KEY in a sorted
    vector: if the vector contains an element equal to KEY, return the
    position immediately to the left of the leftmost equal element.
    [GALLOP_RIGHT does the same except it returns the position to the
    right of the rightmost equal element (if any).]

    'A' is a sorted vector of N elements. N must be > 0.

    Elements preceding HINT, a non-negative index less than N, are
    skipped.  The closer HINT is to the final result, the faster this
    runs.

    The return value is the int k in [0, N] such that

    A[k-1] < KEY <= a[k]

    pretending that *(A-1) precedes all values and *(A+N) succeeds all
    values.  In other words, the first k elements of A should precede
    KEY, and the last N-k should follow KEY.  */

static ptrdiff_t
gallop_left (merge_state *ms, const Lisp_Object key, Lisp_Object *a,
	     const ptrdiff_t n, const ptrdiff_t hint)
{
  Lisp_Object pred = ms->predicate;

  eassume (a && n > 0 && hint >= 0 && hint < n);

  a += hint;
  ptrdiff_t lastofs = 0;
  ptrdiff_t ofs = 1;
  if (inorder (pred, *a, key))
    {
      /* When a[hint] < key, gallop right until
	 a[hint + lastofs] < key <= a[hint + ofs].  */
      const ptrdiff_t maxofs = n - hint; /* This is one after the end of a.  */
      while (ofs < maxofs)
	{
	  if (inorder (pred, a[ofs], key))
	    {
	      lastofs = ofs;
	      eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
	      ofs = (ofs << 1) + 1;
	    }
	  else
	    break; /* Here key <= a[hint+ofs].  */
	}
      if (ofs > maxofs)
	ofs = maxofs;
      /* Translate back to offsets relative to &a[0].  */
      lastofs += hint;
      ofs += hint;
    }
  else
    {
      /* When key <= a[hint], gallop left, until
	 a[hint - ofs] < key <= a[hint - lastofs].  */
      const ptrdiff_t maxofs = hint + 1;        /* Here &a[0] is lowest.  */
      while (ofs < maxofs)
	{
	  if (inorder (pred, a[-ofs], key))
	    break;
	  /* Here key <= a[hint - ofs].  */
	  lastofs = ofs;
	  eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
	  ofs = (ofs << 1) + 1;
	}
      if (ofs > maxofs)
	ofs = maxofs;
      /* Translate back to use positive offsets relative to &a[0].  */
      ptrdiff_t k = lastofs;
      lastofs = hint - ofs;
      ofs = hint - k;
    }
  a -= hint;

  eassume (-1 <= lastofs && lastofs < ofs && ofs <= n);
  /* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
     right of lastofs but no farther right than ofs.  Do a binary
     search, with invariant a[lastofs-1] < key <= a[ofs].  */
  ++lastofs;
  while (lastofs < ofs)
    {
      ptrdiff_t m = lastofs + ((ofs - lastofs) >> 1);

      if (inorder (pred, a[m], key))
	lastofs = m + 1;            /* Here a[m] < key.  */
      else
	ofs = m;                    /* Here key <= a[m].  */
    }
  eassume (lastofs == ofs);         /* Then a[ofs-1] < key <= a[ofs].  */
  return ofs;
}


/*  Locate and return the proper position of KEY in a sorted vector
    exactly like GALLOP_LEFT, except that if KEY already exists in
    A[0:N] find the position immediately to the right of the rightmost
    equal value.

    The return value is the int k in [0, N] such that

    A[k-1] <= KEY < A[k].  */

static ptrdiff_t
gallop_right (merge_state *ms, const Lisp_Object key, Lisp_Object *a,
	      const ptrdiff_t n, const ptrdiff_t hint)
{
  Lisp_Object pred = ms->predicate;

  eassume (a && n > 0 && hint >= 0 && hint < n);

  a += hint;
  ptrdiff_t lastofs = 0;
  ptrdiff_t ofs = 1;
  if (inorder (pred, key, *a))
    {
      /* When key < a[hint], gallop left until
	 a[hint - ofs] <= key < a[hint - lastofs].  */
      const ptrdiff_t maxofs = hint + 1;        /* Here &a[0] is lowest.  */
      while (ofs < maxofs)
	{
	  if (inorder (pred, key, a[-ofs]))
	    {
	      lastofs = ofs;
	      eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
	      ofs = (ofs << 1) + 1;
	    }
	  else                /* Here a[hint - ofs] <= key.  */
	    break;
	}
      if (ofs > maxofs)
	ofs = maxofs;
      /* Translate back to use positive offsets relative to &a[0].  */
      ptrdiff_t k = lastofs;
      lastofs = hint - ofs;
      ofs = hint - k;
    }
  else
    {
      /* When a[hint] <= key, gallop right, until
	 a[hint + lastofs] <= key < a[hint + ofs].  */
      const ptrdiff_t maxofs = n - hint;        /* Here &a[n-1] is highest.  */
      while (ofs < maxofs)
	{
	  if (inorder (pred, key, a[ofs]))
	    break;
	  /* Here a[hint + ofs] <= key.  */
	  lastofs = ofs;
	  eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
	  ofs = (ofs << 1) + 1;
	}
      if (ofs > maxofs)
	ofs = maxofs;
      /* Translate back to use offsets relative to &a[0].  */
      lastofs += hint;
      ofs += hint;
    }
  a -= hint;

  eassume (-1 <= lastofs && lastofs < ofs && ofs <= n);
  /* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
     right of lastofs but no farther right than ofs.  Do a binary
     search, with invariant a[lastofs-1] <= key < a[ofs].  */
  ++lastofs;
  while (lastofs < ofs)
    {
      ptrdiff_t m = lastofs + ((ofs - lastofs) >> 1);

      if (inorder (pred, key, a[m]))
	ofs = m;                    /* Here key < a[m].  */
      else
	lastofs = m + 1;            /* Here a[m] <= key.  */
    }
  eassume (lastofs == ofs);         /* Now  a[ofs-1] <= key < a[ofs].  */
  return ofs;
}


static void
merge_init (merge_state *ms, const ptrdiff_t list_size, Lisp_Object *lo,
	    const Lisp_Object predicate)
{
  eassume (ms != NULL);

  ms->a = ms->temparray;
  ms->alloced = MERGESTATE_TEMP_SIZE;

  ms->n = 0;
  ms->min_gallop = GALLOP_WIN_MIN;
  ms->listlen = list_size;
  ms->listbase = lo;
  ms->predicate = predicate;
  ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
}


/* The dynamically allocated memory may hold lisp objects during
   merging.  MERGE_MARKMEM marks them so they aren't reaped during
   GC.  */

static void
merge_markmem (void *arg)
{
  merge_state *ms = arg;
  eassume (ms != NULL);

  if (ms->reloc.size != NULL && *ms->reloc.size > 0)
    {
      eassume (ms->reloc.src != NULL);
      mark_objects (*ms->reloc.src, *ms->reloc.size);
    }
}


/* Free all temp storage.  If an exception occurs while merging,
   relocate any lisp elements in temp storage back to the original
   array.  */

static void
cleanup_mem (void *arg)
{
  merge_state *ms = arg;
  eassume (ms != NULL);

  /* If we have an exception while merging, some of the list elements
     might only live in temp storage; we copy everything remaining in
     the temp storage back into the original list.  This ensures that
     the original list has all of the original elements, although
     their order is unpredictable.  */

  if (ms->reloc.order != 0 && *ms->reloc.size > 0)
    {
      eassume (*ms->reloc.src != NULL && *ms->reloc.dst != NULL);
      ptrdiff_t n = *ms->reloc.size;
      ptrdiff_t shift = ms->reloc.order == -1 ? 0 : n - 1;
      memcpy (*ms->reloc.dst - shift, *ms->reloc.src, n * word_size);
    }

  /* Free any remaining temp storage.  */
  xfree (ms->a);
}


/* Allocate enough temp memory for NEED array slots.  Any previously
   allocated memory is first freed, and a cleanup routine is
   registered to free memory at the very end of the sort, or on
   exception.  */

static void
merge_getmem (merge_state *ms, const ptrdiff_t need)
{
  eassume (ms != NULL);

  if (ms->a == ms->temparray)
    {
      /* We only get here if alloc is needed and this is the first
	 time, so we set up the unwind protection.  */
      specpdl_ref count = SPECPDL_INDEX ();
      record_unwind_protect_ptr_mark (cleanup_mem, ms, merge_markmem);
      ms->count = count;
    }
  else
    {
      /* We have previously alloced storage.  Since we don't care
         what's in the block we don't use realloc which would waste
         cycles copying the old data.  We just free and alloc
         again.  */
      xfree (ms->a);
    }
  ms->a = xmalloc (need * word_size);
  ms->alloced = need;
}


static inline void
needmem (merge_state *ms, ptrdiff_t na)
{
  if (na > ms->alloced)
    merge_getmem (ms, na);
}


/* Stably merge (in-place) the NA elements starting at SSA with the NB
   elements starting at SSB = SSA + NA.  NA and NB must be positive.
   Require that SSA[NA-1] belongs at the end of the merge, and NA <=
   NB.  */

static void
merge_lo (merge_state *ms, Lisp_Object *ssa, ptrdiff_t na, Lisp_Object *ssb,
	  ptrdiff_t nb)
{
  Lisp_Object pred = ms->predicate;

  eassume (ms && ssa && ssb && na > 0 && nb > 0);
  eassume (ssa + na == ssb);
  needmem (ms, na);
  memcpy (ms->a, ssa, na * word_size);
  Lisp_Object *dest = ssa;
  ssa = ms->a;

  ms->reloc = (struct reloc){&ssa, &dest, &na, -1};

  *dest++ = *ssb++;
  --nb;
  if (nb == 0)
    goto Succeed;
  if (na == 1)
    goto CopyB;

  ptrdiff_t min_gallop = ms->min_gallop;
  for (;;)
    {
      ptrdiff_t acount = 0;   /* The # of consecutive times A won.  */

      ptrdiff_t bcount = 0;   /* The # of consecutive times B won.  */

      for (;;)
	{
	  eassume (na > 1 && nb > 0);
	  if (inorder (pred, *ssb, *ssa))
	    {
	      *dest++ = *ssb++ ;
	      ++bcount;
	      acount = 0;
	      --nb;
	      if (nb == 0)
		goto Succeed;
	      if (bcount >= min_gallop)
		break;
	    }
	  else
	    {
	      *dest++ = *ssa++;
	      ++acount;
	      bcount = 0;
	      --na;
	      if (na == 1)
		goto CopyB;
	      if (acount >= min_gallop)
		break;
	    }
	}

      /* One run is winning so consistently that galloping may be a
	 huge speedup.  We try that, and continue galloping until (if
	 ever) neither run appears to be winning consistently
	 anymore.  */
      ++min_gallop;
      do {
	eassume (na > 1 && nb > 0);
	min_gallop -= min_gallop > 1;
	ms->min_gallop = min_gallop;
	ptrdiff_t k = gallop_right (ms, ssb[0], ssa, na, 0);
	acount = k;
	if (k)
	  {
	    memcpy (dest, ssa, k * word_size);
	    dest += k;
	    ssa += k;
	    na -= k;
	    if (na == 1)
	      goto CopyB;
	    /* While na==0 is impossible for a consistent comparison
	       function, we shouldn't assume that it is.  */
	    if (na == 0)
	      goto Succeed;
	  }
	*dest++ = *ssb++ ;
	--nb;
	if (nb == 0)
	  goto Succeed;

	k = gallop_left (ms, ssa[0], ssb, nb, 0);
	bcount = k;
	if (k)
	  {
	    memmove (dest, ssb, k * word_size);
	    dest += k;
	    ssb += k;
	    nb -= k;
	    if (nb == 0)
	      goto Succeed;
	  }
	*dest++ = *ssa++;
	--na;
	if (na == 1)
	  goto CopyB;
      } while (acount >= GALLOP_WIN_MIN || bcount >= GALLOP_WIN_MIN);
      ++min_gallop;   /* Apply a penalty for leaving galloping mode.  */
      ms->min_gallop = min_gallop;
    }
 Succeed:
  ms->reloc = (struct reloc){NULL, NULL, NULL, 0};

  if (na)
    memcpy (dest, ssa, na * word_size);
  return;
 CopyB:
  eassume (na == 1 && nb > 0);
  ms->reloc = (struct reloc){NULL, NULL, NULL, 0};

  /* The last element of ssa belongs at the end of the merge.  */
  memmove (dest, ssb, nb * word_size);
  dest[nb] = ssa[0];
}


/* Stably merge (in-place) the NA elements starting at SSA with the NB
   elements starting at SSB = SSA + NA.  NA and NB must be positive.
   Require that SSA[NA-1] belongs at the end of the merge, and NA >=
   NB.  */

static void
merge_hi (merge_state *ms, Lisp_Object *ssa, ptrdiff_t na,
	  Lisp_Object *ssb, ptrdiff_t nb)
{
  Lisp_Object pred = ms->predicate;

  eassume (ms && ssa && ssb && na > 0 && nb > 0);
  eassume (ssa + na == ssb);
  needmem (ms, nb);
  Lisp_Object *dest = ssb;
  dest += nb - 1;
  memcpy(ms->a, ssb, nb * word_size);
  Lisp_Object *basea = ssa;
  Lisp_Object *baseb = ms->a;
  ssb = ms->a + nb - 1;
  ssa += na - 1;

  ms->reloc = (struct reloc){&baseb, &dest, &nb, 1};

  *dest-- = *ssa--;
  --na;
  if (na == 0)
    goto Succeed;
  if (nb == 1)
    goto CopyA;

  ptrdiff_t min_gallop = ms->min_gallop;
  for (;;) {
    ptrdiff_t acount = 0;   /* The # of consecutive times A won.  */
    ptrdiff_t bcount = 0;   /* The # of consecutive times B won.  */

    for (;;) {
      eassume (na > 0 && nb > 1);
      if (inorder (pred, *ssb, *ssa))
	{
	  *dest-- = *ssa--;
	  ++acount;
	  bcount = 0;
	  --na;
	  if (na == 0)
	    goto Succeed;
	  if (acount >= min_gallop)
	    break;
	}
      else
	{
	  *dest-- = *ssb--;
	  ++bcount;
	  acount = 0;
	  --nb;
	  if (nb == 1)
	    goto CopyA;
	  if (bcount >= min_gallop)
	    break;
	}
    }

    /* One run is winning so consistently that galloping may be a huge
       speedup.  Try that, and continue galloping until (if ever)
       neither run appears to be winning consistently anymore.  */
    ++min_gallop;
    do {
      eassume (na > 0 && nb > 1);
      min_gallop -= min_gallop > 1;
      ms->min_gallop = min_gallop;
      ptrdiff_t k = gallop_right (ms, ssb[0], basea, na, na - 1);
      k = na - k;
      acount = k;
      if (k)
	{
	  dest += -k;
	  ssa += -k;
	  memmove(dest + 1, ssa + 1, k * word_size);
	  na -= k;
	  if (na == 0)
	    goto Succeed;
	}
      *dest-- = *ssb--;
      --nb;
      if (nb == 1)
	goto CopyA;

      k = gallop_left (ms, ssa[0], baseb, nb, nb - 1);
      k = nb - k;
      bcount = k;
      if (k)
	{
	  dest += -k;
	  ssb += -k;
	  memcpy(dest + 1, ssb + 1, k * word_size);
	  nb -= k;
	  if (nb == 1)
	    goto CopyA;
	  /* While nb==0 is impossible for a consistent comparison
	      function we shouldn't assume that it is.  */
	  if (nb == 0)
	    goto Succeed;
	}
      *dest-- = *ssa--;
      --na;
      if (na == 0)
	goto Succeed;
    } while (acount >= GALLOP_WIN_MIN || bcount >= GALLOP_WIN_MIN);
    ++min_gallop;      /* Apply a penalty for leaving galloping mode.  */
    ms->min_gallop = min_gallop;
  }
 Succeed:
  ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
  if (nb)
    memcpy (dest - nb + 1, baseb, nb * word_size);
  return;
 CopyA:
  eassume (nb == 1 && na > 0);
  ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
  /* The first element of ssb belongs at the front of the merge.  */
  memmove (dest + 1 - na, ssa + 1 - na, na * word_size);
  dest += -na;
  ssa += -na;
  dest[0] = ssb[0];
}


/* Merge the two runs at stack indices I and I+1.  */

static void
merge_at (merge_state *ms, const ptrdiff_t i)
{
  eassume (ms != NULL);
  eassume (ms->n >= 2);
  eassume (i >= 0);
  eassume (i == ms->n - 2 || i == ms->n - 3);

  Lisp_Object *ssa = ms->pending[i].base;
  ptrdiff_t na = ms->pending[i].len;
  Lisp_Object *ssb = ms->pending[i + 1].base;
  ptrdiff_t nb = ms->pending[i + 1].len;
  eassume (na > 0 && nb > 0);
  eassume (ssa + na == ssb);

  /* Record the length of the combined runs. The current run i+1 goes
     away after the merge.  If i is the 3rd-last run now, slide the
     last run (which isn't involved in this merge) over to i+1.  */
  ms->pending[i].len = na + nb;
  if (i == ms->n - 3)
    ms->pending[i + 1] = ms->pending[i + 2];
  --ms->n;

  /* Where does b start in a?  Elements in a before that can be
     ignored (they are already in place).  */
  ptrdiff_t k = gallop_right (ms, *ssb, ssa, na, 0);
  eassume (k >= 0);
  ssa += k;
  na -= k;
  if (na == 0)
    return;

  /* Where does a end in b?  Elements in b after that can be ignored
     (they are already in place).  */
  nb = gallop_left (ms, ssa[na - 1], ssb, nb, nb - 1);
  if (nb == 0)
    return;
  eassume (nb > 0);
  /* Merge what remains of the runs using a temp array with size
     min(na, nb) elements.  */
  if (na <= nb)
    merge_lo (ms, ssa, na, ssb, nb);
  else
    merge_hi (ms, ssa, na, ssb, nb);
}


/* Compute the "power" of the first of two adjacent runs beginning at
   index S1, with the first having length N1 and the second (starting
   at index S1+N1) having length N2.  The run has total length N.  */

static int
powerloop (const ptrdiff_t s1, const ptrdiff_t n1, const ptrdiff_t n2,
	   const ptrdiff_t n)
{
  eassume (s1 >= 0);
  eassume (n1 > 0 && n2 > 0);
  eassume (s1 + n1 + n2 <= n);
  /* The midpoints a and b are
     a = s1 + n1/2
     b = s1 + n1 + n2/2 = a + (n1 + n2)/2

     These may not be integers because of the "/2", so we work with
     2*a and 2*b instead.  It makes no difference to the outcome,
     since the bits in the expansion of (2*i)/n are merely shifted one
     position from those of i/n.  */
  ptrdiff_t a = 2 * s1 + n1;
  ptrdiff_t b = a + n1 + n2;
  int result = 0;
  /* Emulate a/n and b/n one bit a time, until their bits differ.  */
  for (;;)
    {
      ++result;
      if (a >= n)
	{  /* Both quotient bits are now 1.  */
	  eassume (b >= a);
	  a -= n;
	  b -= n;
	}
      else if (b >= n)
	{  /* a/n bit is 0 and b/n bit is 1.  */
	  break;
	} /* Otherwise both quotient bits are 0.  */
      eassume (a < b && b < n);
      a <<= 1;
      b <<= 1;
    }
  return result;
}


/* Update the state upon identifying a run of length N2.  If there's
   already a stretch on the stack, apply the "powersort" merge
   strategy: compute the topmost stretch's "power" (depth in a
   conceptual binary merge tree) and merge adjacent runs on the stack
   with greater power.  */

static void
found_new_run (merge_state *ms, const ptrdiff_t n2)
{
  eassume (ms != NULL);
  if (ms->n)
    {
      eassume (ms->n > 0);
      struct stretch *p = ms->pending;
      ptrdiff_t s1 = p[ms->n - 1].base - ms->listbase;
      ptrdiff_t n1 = p[ms->n - 1].len;
      int power = powerloop (s1, n1, n2, ms->listlen);
      while (ms->n > 1 && p[ms->n - 2].power > power)
	{
	  merge_at (ms, ms->n - 2);
	}
      eassume (ms->n < 2 || p[ms->n - 2].power < power);
      p[ms->n - 1].power = power;
    }
}


/* Unconditionally merge all stretches on the stack until only one
   remains.  */

static void
merge_force_collapse (merge_state *ms)
{
  struct stretch *p = ms->pending;

  eassume (ms != NULL);
  while (ms->n > 1)
    {
      ptrdiff_t n = ms->n - 2;
      if (n > 0 && p[n - 1].len < p[n + 1].len)
	--n;
      merge_at (ms, n);
    }
}


/* Compute a good value for the minimum run length; natural runs
   shorter than this are boosted artificially via binary insertion.

   If N < 64, return N (it's too small to bother with fancy stuff).
   Otherwise if N is an exact power of 2, return 32.  Finally, return
   an int k, 32 <= k <= 64, such that N/k is close to, but strictly
   less than, an exact power of 2.  */

static ptrdiff_t
merge_compute_minrun (ptrdiff_t n)
{
  ptrdiff_t r = 0;           /* r will become 1 if any non-zero bits are
				shifted off.  */

  eassume (n >= 0);
  while (n >= 64)
    {
      r |= n & 1;
      n >>= 1;
    }
  return n + r;
}


static void
reverse_vector (Lisp_Object *s, const ptrdiff_t n)
{
  for (ptrdiff_t i = 0; i < n >> 1; i++)
    {
      Lisp_Object tem = s[i];
      s[i] =  s[n - i - 1];
      s[n - i - 1] = tem;
    }
}

/* Sort the array SEQ with LENGTH elements in the order determined by
   PREDICATE.  */

void
tim_sort (Lisp_Object predicate, Lisp_Object *seq, const ptrdiff_t length)
{
  if (SYMBOLP (predicate))
    {
      /* Attempt to resolve the function as far as possible ahead of time,
	 to avoid having to do it for each call.  */
      Lisp_Object fun = XSYMBOL (predicate)->u.s.function;
      if (SYMBOLP (fun))
	/* Function was an alias; use slow-path resolution.  */
	fun = indirect_function (fun);
      /* Don't resolve to an autoload spec; that would be very slow.  */
      if (!NILP (fun) && !(CONSP (fun) && EQ (XCAR (fun), Qautoload)))
	predicate = fun;
    }

  merge_state ms;
  Lisp_Object *lo = seq;

  merge_init (&ms, length, lo, predicate);

  /* March over the array once, left to right, finding natural runs,
     and extending short natural runs to minrun elements.  */
  const ptrdiff_t minrun = merge_compute_minrun (length);
  ptrdiff_t nremaining = length;
  do {
    bool descending;

    /* Identify the next run.  */
    ptrdiff_t n = count_run (&ms, lo, lo + nremaining, &descending);
    if (descending)
      reverse_vector (lo, n);
    /* If the run is short, extend it to min(minrun, nremaining).  */
    if (n < minrun)
      {
	const ptrdiff_t force = nremaining <= minrun ?
	  nremaining : minrun;
	binarysort (&ms, lo, lo + force, lo + n);
	n = force;
      }
    eassume (ms.n == 0 || ms.pending[ms.n - 1].base +
	     ms.pending[ms.n - 1].len == lo);
    found_new_run (&ms, n);
    /* Push the new run on to the stack.  */
    eassume (ms.n < MAX_MERGE_PENDING);
    ms.pending[ms.n].base = lo;
    ms.pending[ms.n].len = n;
    ++ms.n;
    /* Advance to find the next run.  */
    lo += n;
    nremaining -= n;
  } while (nremaining);

  merge_force_collapse (&ms);
  eassume (ms.n == 1);
  eassume (ms.pending[0].len == length);
  lo = ms.pending[0].base;

  if (ms.a != ms.temparray)
    unbind_to (ms.count, Qnil);
}