summaryrefslogtreecommitdiff
path: root/src/coding.c
blob: 6e20b47ee348d6af0bae1f70f9b7e6241eca6110 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
/* Coding system handler (conversion, detection, and etc).
   Ver.1.0.
   Copyright (C) 1995 Free Software Foundation, Inc.
   Copyright (C) 1995 Electrotechnical Laboratory, JAPAN.

This file is part of GNU Emacs.

GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/*** TABLE OF CONTENTS ***

  1. Preamble
  2. Emacs' internal format handlers
  3. ISO2022 handlers
  4. Shift-JIS and BIG5 handlers
  5. End-of-line handlers
  6. C library functions
  7. Emacs Lisp library functions
  8. Post-amble

*/

/*** GENERAL NOTE on CODING SYSTEM ***

  Coding system is an encoding mechanism of one or more character
  sets.  Here's a list of coding systems which Emacs can handle.  When
  we say "decode", it means converting some other coding system to
  Emacs' internal format, and when we say "encode", it means
  converting Emacs' internal format to some other coding system.

  0. Emacs' internal format

  Emacs itself holds a multi-lingual character in a buffer and a string
  in a special format.  Details are described in the section 2.

  1. ISO2022

  The most famous coding system for multiple character sets.  X's
  Compound Text, various EUCs (Extended Unix Code), and such coding
  systems used in Internet communication as ISO-2022-JP are all
  variants of ISO2022.  Details are described in the section 3.

  2. SJIS (or Shift-JIS or MS-Kanji-Code)
   
  A coding system to encode character sets: ASCII, JISX0201, and
  JISX0208.  Widely used for PC's in Japan.  Details are described in
  the section 4.

  3. BIG5

  A coding system to encode character sets: ASCII and Big5.  Widely
  used by Chinese (mainly in Taiwan and Hong Kong).  Details are
  described in the section 4.  In this file, when written as "BIG5"
  (all uppercase), it means the coding system, and when written as
  "Big5" (capitalized), it means the character set.

  4. Else

  If a user want to read/write a text encoded in a coding system not
  listed above, he can supply a decoder and an encoder for it in CCL
  (Code Conversion Language) programs.  Emacs executes the CCL program
  while reading/writing.

  Emacs represent a coding-system by a Lisp symbol that has a property
  `coding-system'.  But, before actually using the coding-system, the
  information about it is set in a structure of type `struct
  coding_system' for rapid processing.  See the section 6 for more
  detail.

*/

/*** GENERAL NOTES on END-OF-LINE FORMAT ***

  How end-of-line of a text is encoded depends on a system.  For
  instance, Unix's format is just one byte of `line-feed' code,
  whereas DOS's format is two bytes sequence of `carriage-return' and
  `line-feed' codes.  MacOS's format is one byte of `carriage-return'.

  Since how characters in a text is encoded and how end-of-line is
  encoded is independent, any coding system described above can take
  any format of end-of-line.  So, Emacs has information of format of
  end-of-line in each coding-system.  See the section 6 for more
  detail.

*/

/*** GENERAL NOTES on `detect_coding_XXX ()' functions ***

  These functions check if a text between SRC and SRC_END is encoded
  in the coding system category XXX.  Each returns an integer value in
  which appropriate flag bits for the category XXX is set.  The flag
  bits are defined in macros CODING_CATEGORY_MASK_XXX.  Below is the
  template of these functions.  */
#if 0
int
detect_coding_internal (src, src_end)
     unsigned char *src, *src_end;
{
  ...
}
#endif

/*** GENERAL NOTES on `decode_coding_XXX ()' functions ***

  These functions decode SRC_BYTES length text at SOURCE encoded in
  CODING to Emacs' internal format.  The resulting text goes to a
  place pointed by DESTINATION, the length of which should not exceed
  DST_BYTES.  The bytes actually processed is returned as *CONSUMED.
  The return value is the length of the decoded text.  Below is a
  template of these functions.  */
#if 0
decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes, consumed)
     struct coding_system *coding;
     unsigned char *source, *destination;
     int src_bytes, dst_bytes;
     int *consumed;
{
  ...
}
#endif

/*** GENERAL NOTES on `encode_coding_XXX ()' functions ***

  These functions encode SRC_BYTES length text at SOURCE of Emacs
  internal format to CODING.  The resulting text goes to a place
  pointed by DESTINATION, the length of which should not exceed
  DST_BYTES.  The bytes actually processed is returned as *CONSUMED.
  The return value is the length of the encoded text.  Below is a
  template of these functions.  */
#if 0
encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes, consumed)
     struct coding_system *coding;
     unsigned char *source, *destination;
     int src_bytes, dst_bytes;
     int *consumed;
{
  ...
}
#endif

/*** COMMONLY USED MACROS ***/

/* The following three macros ONE_MORE_BYTE, TWO_MORE_BYTES, and
   THREE_MORE_BYTES safely get one, two, and three bytes from the
   source text respectively.  If there are not enough bytes in the
   source, they jump to `label_end_of_loop'.  The caller should set
   variables `src' and `src_end' to appropriate areas in advance.  */

#define ONE_MORE_BYTE(c1)   	\
  do {			     	\
    if (src < src_end)	     	\
      c1 = *src++;	     	\
    else		     	\
      goto label_end_of_loop;	\
  } while (0)

#define TWO_MORE_BYTES(c1, c2) 	\
  do {			       	\
    if (src + 1 < src_end)     	\
      c1 = *src++, c2 = *src++;	\
    else		       	\
      goto label_end_of_loop;  	\
  } while (0)

#define THREE_MORE_BYTES(c1, c2, c3)	    	\
  do {					    	\
    if (src + 2 < src_end)		    	\
      c1 = *src++, c2 = *src++, c3 = *src++;	\
    else				    	\
      goto label_end_of_loop;		    	\
  } while (0)

/* The following three macros DECODE_CHARACTER_ASCII,
   DECODE_CHARACTER_DIMENSION1, and DECODE_CHARACTER_DIMENSION2 put
   the multi-byte form of a character of each class at the place
   pointed by `dst'.  The caller should set the variable `dst' to
   point to an appropriate area and the variable `coding' to point to
   the coding-system of the currently decoding text in advance.  */

/* Decode one ASCII character C.  */

#define DECODE_CHARACTER_ASCII(c)				\
  do {								\
    if (COMPOSING_P (coding->composing))			\
      *dst++ = 0xA0, *dst++ = (c) | 0x80;			\
    else							\
      *dst++ = (c);						\
  } while (0)

/* Decode one DIMENSION1 character of which charset is CHARSET and
   position-code is C.  */

#define DECODE_CHARACTER_DIMENSION1(charset, c)				\
  do {									\
    unsigned char leading_code = CHARSET_LEADING_CODE_BASE (charset);	\
    if (COMPOSING_P (coding->composing))				\
      *dst++ = leading_code + 0x20;					\
    else								\
      *dst++ = leading_code;						\
    if (leading_code = CHARSET_LEADING_CODE_EXT (charset))		\
      *dst++ = leading_code;						\
    *dst++ = (c) | 0x80;						\
  } while (0)

/* Decode one DIMENSION2 character of which charset is CHARSET and
   position-codes are C1 and C2.  */

#define DECODE_CHARACTER_DIMENSION2(charset, c1, c2)	\
  do {							\
    DECODE_CHARACTER_DIMENSION1 (charset, c1);		\
    *dst++ = (c2) | 0x80;				\
  } while (0)


/*** 1. Preamble ***/

#include <stdio.h>

#ifdef emacs

#include <config.h>
#include "lisp.h"
#include "buffer.h"
#include "charset.h"
#include "ccl.h"
#include "coding.h"
#include "window.h"

#else  /* not emacs */

#include "mulelib.h"

#endif /* not emacs */

Lisp_Object Qcoding_system, Qeol_type;
Lisp_Object Qbuffer_file_coding_system;
Lisp_Object Qpost_read_conversion, Qpre_write_conversion;

extern Lisp_Object Qinsert_file_contents, Qwrite_region;
Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
Lisp_Object Qstart_process, Qopen_network_stream;
Lisp_Object Qtarget_idx;

/* Mnemonic character of each format of end-of-line.  */
int eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
/* Mnemonic character to indicate format of end-of-line is not yet
   decided.  */
int eol_mnemonic_undecided;

#ifdef emacs

Lisp_Object Qcoding_system_vector, Qcoding_system_p, Qcoding_system_error;

/* Coding-systems are handed between Emacs Lisp programs and C internal
   routines by the following three variables.  */
/* Coding-system for reading files and receiving data from process.  */
Lisp_Object Vcoding_system_for_read;
/* Coding-system for writing files and sending data to process.  */
Lisp_Object Vcoding_system_for_write;
/* Coding-system actually used in the latest I/O.  */
Lisp_Object Vlast_coding_system_used;

/* Coding-system of what terminal accept for displaying.  */
struct coding_system terminal_coding;

/* Coding-system of what is sent from terminal keyboard.  */
struct coding_system keyboard_coding;

Lisp_Object Vcoding_system_alist;

#endif /* emacs */

Lisp_Object Qcoding_category_index;

/* List of symbols `coding-category-xxx' ordered by priority.  */
Lisp_Object Vcoding_category_list;

/* Table of coding-systems currently assigned to each coding-category.  */
Lisp_Object coding_category_table[CODING_CATEGORY_IDX_MAX];

/* Table of names of symbol for each coding-category.  */
char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
  "coding-category-internal",
  "coding-category-sjis",
  "coding-category-iso-7",
  "coding-category-iso-8-1",
  "coding-category-iso-8-2",
  "coding-category-iso-else",
  "coding-category-big5",
  "coding-category-binary"
};

/* Alist of charsets vs the alternate charsets.  */
Lisp_Object Valternate_charset_table;

/* Alist of charsets vs revision number.  */
Lisp_Object Vcharset_revision_alist;


/*** 2. Emacs internal format handlers ***/

/* Emacs' internal format for encoding multiple character sets is a
   kind of multi-byte encoding, i.e. encoding a character by a sequence
   of one-byte codes of variable length.  ASCII characters and control
   characters (e.g. `tab', `newline') are represented by one-byte as
   is.  It takes the range 0x00 through 0x7F.  The other characters
   are represented by a sequence of `base leading-code', optional
   `extended leading-code', and one or two `position-code's.  Length
   of the sequence is decided by the base leading-code.  Leading-code
   takes the range 0x80 through 0x9F, whereas extended leading-code
   and position-code take the range 0xA0 through 0xFF.  See the
   document of `charset.h' for more detail about leading-code and
   position-code.

   There's one exception in this rule.  Special leading-code
   `leading-code-composition' denotes that the following several
   characters should be composed into one character.  Leading-codes of
   components (except for ASCII) are added 0x20.  An ASCII character
   component is represented by a 2-byte sequence of `0xA0' and
   `ASCII-code + 0x80'.  See also the document in `charset.h' for the
   detail of composite character.  Hence, we can summarize the code
   range as follows:

   --- CODE RANGE of Emacs' internal format ---
   (character set)	(range)
   ASCII		0x00 .. 0x7F
   ELSE (1st byte)	0x80 .. 0x9F
	(rest bytes)	0xA0 .. 0xFF
   ---------------------------------------------

  */

enum emacs_code_class_type emacs_code_class[256];

/* Go to the next statement only if *SRC is accessible and the code is
   greater than 0xA0.  */
#define CHECK_CODE_RANGE_A0_FF 	\
  do {			       	\
    if (src >= src_end)	       	\
      goto label_end_of_switch;	\
    else if (*src++ < 0xA0)    	\
      return 0;		       	\
  } while (0)

/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
   Check if a text is encoded in Emacs' internal format.  If it is,
   return CODING_CATEGORY_MASK_INTERNAL, else return 0.  */

int
detect_coding_internal (src, src_end)
     unsigned char *src, *src_end;
{
  unsigned char c;
  int composing = 0;

  while (src < src_end)
    {
      c = *src++;

      if (composing)
	{
	  if (c < 0xA0)
	    composing = 0;
	  else
	    c -= 0x20;
	}

      switch (emacs_code_class[c])
	{
	case EMACS_ascii_code:
	case EMACS_linefeed_code:
	  break;

	case EMACS_control_code:
	  if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
	    return 0;
	  break;

	case EMACS_invalid_code:
	  return 0;

	case EMACS_leading_code_composition: /* c == 0x80 */
	  if (composing)
	    CHECK_CODE_RANGE_A0_FF;
	  else
	    composing = 1;
	  break;

	case EMACS_leading_code_4:
	  CHECK_CODE_RANGE_A0_FF;
	  /* fall down to check it two more times ...  */

	case EMACS_leading_code_3:
	  CHECK_CODE_RANGE_A0_FF;
	  /* fall down to check it one more time ...  */

	case EMACS_leading_code_2:
	  CHECK_CODE_RANGE_A0_FF;
	  break;

	default:
	label_end_of_switch:
	  break;
	}
    }
  return CODING_CATEGORY_MASK_INTERNAL;
}


/*** 3. ISO2022 handlers ***/

/* The following note describes the coding system ISO2022 briefly.
   Since the intension of this note is to help understanding of the
   programs in this file, some parts are NOT ACCURATE or OVERLY
   SIMPLIFIED.  For the thorough understanding, please refer to the
   original document of ISO2022.

   ISO2022 provides many mechanisms to encode several character sets
   in 7-bit and 8-bit environment.  If one choose 7-bite environment,
   all text is encoded by codes of less than 128.  This may make the
   encoded text a little bit longer, but the text get more stability
   to pass through several gateways (some of them split MSB off).

   There are two kind of character set: control character set and
   graphic character set.  The former contains control characters such
   as `newline' and `escape' to provide control functions (control
   functions are provided also by escape sequence).  The latter
   contains graphic characters such as ' A' and '-'.  Emacs recognizes
   two control character sets and many graphic character sets.

   Graphic character sets are classified into one of the following
   four classes, DIMENSION1_CHARS94, DIMENSION1_CHARS96,
   DIMENSION2_CHARS94, DIMENSION2_CHARS96 according to the number of
   bytes (DIMENSION) and the number of characters in one dimension
   (CHARS) of the set.  In addition, each character set is assigned an
   identification tag (called "final character" and denoted as <F>
   here after) which is unique in each class.  <F> of each character
   set is decided by ECMA(*) when it is registered in ISO.  Code range
   of <F> is 0x30..0x7F (0x30..0x3F are for private use only).

   Note (*): ECMA = European Computer Manufacturers Association

   Here are examples of graphic character set [NAME(<F>)]:
	o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
	o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
	o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
	o DIMENSION2_CHARS96 -- none for the moment

   A code area (1byte=8bits) is divided into 4 areas, C0, GL, C1, and GR.
	C0 [0x00..0x1F] -- control character plane 0
	GL [0x20..0x7F] -- graphic character plane 0
	C1 [0x80..0x9F] -- control character plane 1
	GR [0xA0..0xFF] -- graphic character plane 1

   A control character set is directly designated and invoked to C0 or
   C1 by an escape sequence.  The most common case is that ISO646's
   control character set is designated/invoked to C0 and ISO6429's
   control character set is designated/invoked to C1, and usually
   these designations/invocations are omitted in a coded text.  With
   7-bit environment, only C0 can be used, and a control character for
   C1 is encoded by an appropriate escape sequence to fit in the
   environment.  All control characters for C1 are defined the
   corresponding escape sequences.

   A graphic character set is at first designated to one of four
   graphic registers (G0 through G3), then these graphic registers are
   invoked to GL or GR.  These designations and invocations can be
   done independently.  The most common case is that G0 is invoked to
   GL, G1 is invoked to GR, and ASCII is designated to G0, and usually
   these invocations and designations are omitted in a coded text.
   With 7-bit environment, only GL can be used.

   When a graphic character set of CHARS94 is invoked to GL, code 0x20
   and 0x7F of GL area work as control characters SPACE and DEL
   respectively, and code 0xA0 and 0xFF of GR area should not be used.

   There are two ways of invocation: locking-shift and single-shift.
   With locking-shift, the invocation lasts until the next different
   invocation, whereas with single-shift, the invocation works only
   for the following character and doesn't affect locking-shift.
   Invocations are done by the following control characters or escape
   sequences.

   ----------------------------------------------------------------------
   function		control char	escape sequence	description
   ----------------------------------------------------------------------
   SI  (shift-in)		0x0F	none		invoke G0 to GL
   SI  (shift-out)		0x0E	none		invoke G1 to GL
   LS2 (locking-shift-2)	none	ESC 'n'		invoke G2 into GL
   LS3 (locking-shift-3)	none	ESC 'o'		invoke G3 into GL
   SS2 (single-shift-2)		0x8E	ESC 'N'		invoke G2 into GL
   SS3 (single-shift-3)		0x8F	ESC 'O'		invoke G3 into GL
   ----------------------------------------------------------------------
   The first four are for locking-shift.  Control characters for these
   functions are defined by macros ISO_CODE_XXX in `coding.h'.

   Designations are done by the following escape sequences.
   ----------------------------------------------------------------------
   escape sequence	description
   ----------------------------------------------------------------------
   ESC '(' <F>		designate DIMENSION1_CHARS94<F> to G0
   ESC ')' <F>		designate DIMENSION1_CHARS94<F> to G1
   ESC '*' <F>		designate DIMENSION1_CHARS94<F> to G2
   ESC '+' <F>		designate DIMENSION1_CHARS94<F> to G3
   ESC ',' <F>		designate DIMENSION1_CHARS96<F> to G0 (*)
   ESC '-' <F>		designate DIMENSION1_CHARS96<F> to G1
   ESC '.' <F>		designate DIMENSION1_CHARS96<F> to G2
   ESC '/' <F>		designate DIMENSION1_CHARS96<F> to G3
   ESC '$' '(' <F>	designate DIMENSION2_CHARS94<F> to G0 (**)
   ESC '$' ')' <F>	designate DIMENSION2_CHARS94<F> to G1
   ESC '$' '*' <F>	designate DIMENSION2_CHARS94<F> to G2
   ESC '$' '+' <F>	designate DIMENSION2_CHARS94<F> to G3
   ESC '$' ',' <F>	designate DIMENSION2_CHARS96<F> to G0 (*)
   ESC '$' '-' <F>	designate DIMENSION2_CHARS96<F> to G1
   ESC '$' '.' <F>	designate DIMENSION2_CHARS96<F> to G2
   ESC '$' '/' <F>	designate DIMENSION2_CHARS96<F> to G3
   ----------------------------------------------------------------------

   In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
   of dimension 1, chars 94, and final character <F>, and etc.

   Note (*): Although these designations are not allowed in ISO2022,
   Emacs accepts them on decoding, and produces them on encoding
   CHARS96 character set in a coding system which is characterized as
   7-bit environment, non-locking-shift, and non-single-shift.

   Note (**): If <F> is '@', 'A', or 'B', the intermediate character
   '(' can be omitted.  We call this as "short-form" here after.

   Now you may notice that there are a lot of ways for encoding the
   same multilingual text in ISO2022.  Actually, there exist many
   coding systems such as Compound Text (used in X's inter client
   communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
   (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
   localized platforms), and all of these are variants of ISO2022.

   In addition to the above, Emacs handles two more kinds of escape
   sequences: ISO6429's direction specification and Emacs' private
   sequence for specifying character composition.

   ISO6429's direction specification takes the following format:
	o CSI ']'      -- end of the current direction
	o CSI '0' ']'  -- end of the current direction
	o CSI '1' ']'  -- start of left-to-right text
	o CSI '2' ']'  -- start of right-to-left text
   The control character CSI (0x9B: control sequence introducer) is
   abbreviated to the escape sequence ESC '[' in 7-bit environment.
   
   Character composition specification takes the following format:
	o ESC '0' -- start character composition
	o ESC '1' -- end character composition
   Since these are not standard escape sequences of any ISO, the use
   of them for these meaning is restricted to Emacs only.  */

enum iso_code_class_type iso_code_class[256];

/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
   Check if a text is encoded in ISO2022.  If it is, returns an
   integer in which appropriate flag bits any of:
	CODING_CATEGORY_MASK_ISO_7
	CODING_CATEGORY_MASK_ISO_8_1
	CODING_CATEGORY_MASK_ISO_8_2
	CODING_CATEGORY_MASK_ISO_ELSE
   are set.  If a code which should never appear in ISO2022 is found,
   returns 0.  */

int
detect_coding_iso2022 (src, src_end)
     unsigned char *src, *src_end;
{
  unsigned char c, g1 = 0;
  int mask = (CODING_CATEGORY_MASK_ISO_7
	      | CODING_CATEGORY_MASK_ISO_8_1
	      | CODING_CATEGORY_MASK_ISO_8_2);
  /* We may look ahead at most 4 bytes.  */
  unsigned char *adjusted_src_end = src_end - 4;
  int i;

  while (src < src_end)
    {
      c = *src++;
      switch (c)
	{
	case ISO_CODE_ESC:
	  if (src >= src_end)
	    break;
	  c = *src++;
	  if (src + 2 >= src_end
	      && ((c >= '(' && c <= '/')
		  || c == '$' && ((*src >= '(' && *src <= '/')
				  || (*src >= '@' && *src <= 'B'))))
	    {
	      /* Valid designation sequence.  */
	      if (c == ')' || (c == '$' && *src == ')'))
		g1 = 1;
	      src++;
	      break;
	    }
	  else if (c == 'N' || c == 'O' || c == 'n' || c == 'o')
	    return CODING_CATEGORY_MASK_ISO_ELSE;
	  break;

	case ISO_CODE_SO:
	  if (g1)
	    return CODING_CATEGORY_MASK_ISO_ELSE;
	  break;
	  
	case ISO_CODE_CSI:
	case ISO_CODE_SS2:
	case ISO_CODE_SS3:
	  mask &= ~CODING_CATEGORY_MASK_ISO_7;
	  break;

	default:
	  if (c < 0x80)
	    break;
	  else if (c < 0xA0)
	    return 0;
	  else
	    {
	      int count = 1;

	      mask &= ~CODING_CATEGORY_MASK_ISO_7;
	      while (src < src_end && *src >= 0xA0)
		count++, src++;
	      if (count & 1 && src < src_end)
		mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
	    }
	  break;
	}
    }

  return mask;
}

/* Decode a character of which charset is CHARSET and the 1st position
   code is C1.  If dimension of CHARSET 2, the 2nd position code is
   fetched from SRC and set to C2.  If CHARSET is negative, it means
   that we are decoding ill formed text, and what we can do is just to
   read C1 as is.  */

#define DECODE_ISO_CHARACTER(charset, c1)			\
  do {								\
    if ((charset) >= 0 && CHARSET_DIMENSION (charset) == 2)	\
      ONE_MORE_BYTE (c2);					\
    if (COMPOSING_HEAD_P (coding->composing))			\
      {								\
	*dst++ = LEADING_CODE_COMPOSITION;			\
	if (COMPOSING_WITH_RULE_P (coding->composing))		\
	  /* To tell composition rules are embeded.  */		\
	  *dst++ = 0xFF;					\
	coding->composing += 2;					\
      }								\
    if ((charset) < 0)						\
      *dst++ = c1;						\
    else if ((charset) == CHARSET_ASCII)			\
      DECODE_CHARACTER_ASCII (c1);				\
    else if (CHARSET_DIMENSION (charset) == 1)			\
      DECODE_CHARACTER_DIMENSION1 (charset, c1);		\
    else							\
      DECODE_CHARACTER_DIMENSION2 (charset, c1, c2);		\
    if (COMPOSING_WITH_RULE_P (coding->composing))		\
      /* To tell a composition rule follows.  */		\
      coding->composing = COMPOSING_WITH_RULE_RULE;		\
  } while (0)

/* Set designation state into CODING.  */
#define DECODE_DESIGNATION(reg, dimension, chars, final_char)		\
  do {							      		\
    int charset = ISO_CHARSET_TABLE (dimension, chars, final_char);	\
    Lisp_Object temp							\
      = Fassq (CHARSET_SYMBOL (charset), Valternate_charset_table);	\
    if (! NILP (temp))							\
      charset = get_charset_id (XCONS (temp)->cdr);			\
    if (charset >= 0)					      		\
      {					      				\
        if (coding->direction == 1					\
	    && CHARSET_REVERSE_CHARSET (charset) >= 0)      		\
          charset = CHARSET_REVERSE_CHARSET (charset);      		\
        CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset;		\
      }						      			\
  } while (0)

/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".  */

int
decode_coding_iso2022 (coding, source, destination,
		       src_bytes, dst_bytes, consumed)
     struct coding_system *coding;
     unsigned char *source, *destination;
     int src_bytes, dst_bytes;
     int *consumed;
{
  unsigned char *src = source;
  unsigned char *src_end = source + src_bytes;
  unsigned char *dst = destination;
  unsigned char *dst_end = destination + dst_bytes;
  /* Since the maximum bytes produced by each loop is 7, we subtract 6
     from DST_END to assure that overflow checking is necessary only
     at the head of loop.  */
  unsigned char *adjusted_dst_end = dst_end - 6;
  int charset;
  /* Charsets invoked to graphic plane 0 and 1 respectively.  */
  int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
  int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);

  while (src < src_end && dst < adjusted_dst_end)
    {
      /* SRC_BASE remembers the start position in source in each loop.
	 The loop will be exited when there's not enough source text
	 to analyze long escape sequence or 2-byte code (within macros
	 ONE_MORE_BYTE or TWO_MORE_BYTES).  In that case, SRC is reset
	 to SRC_BASE before exiting.  */
      unsigned char *src_base = src;
      unsigned char c1 = *src++, c2, cmprule;

      switch (iso_code_class [c1])
	{
	case ISO_0x20_or_0x7F:
	  if (!coding->composing
	      && (charset0 < 0 || CHARSET_CHARS (charset0) == 94))
	    {
	      /* This is SPACE or DEL.  */
	      *dst++ = c1;
	      break;
	    }
	  /* This is a graphic character, we fall down ...  */

	case ISO_graphic_plane_0:
	  if (coding->composing == COMPOSING_WITH_RULE_RULE)
	    {
	      /* This is a composition rule.  */
	      *dst++ = c1 | 0x80;
	      coding->composing = COMPOSING_WITH_RULE_TAIL;
	    }
	  else
	    DECODE_ISO_CHARACTER (charset0, c1);
	  break;

	case ISO_0xA0_or_0xFF:
	  if (charset1 < 0 || CHARSET_CHARS (charset1) == 94)
	    {
	      /* Invalid code.  */
	      *dst++ = c1;
	      break;
	    }
	  /* This is a graphic character, we fall down ... */

	case ISO_graphic_plane_1:
	  DECODE_ISO_CHARACTER (charset1, c1);
	  break;

	case ISO_control_code:
	  /* All ISO2022 control characters in this class have the
             same representation in Emacs internal format.  */
	  *dst++ = c1;
	  break;

	case ISO_carriage_return:
	  if (coding->eol_type == CODING_EOL_CR)
	    {
	      *dst++ = '\n';
	    }
	  else if (coding->eol_type == CODING_EOL_CRLF)
	    {
	      ONE_MORE_BYTE (c1);
	      if (c1 == ISO_CODE_LF)
		*dst++ = '\n';
	      else
		{
		  src--;
		  *dst++ = c1;
		}
	    }
	  else
	    {
	      *dst++ = c1;
	    }
	  break;

	case ISO_shift_out:
	  if (CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
	    goto label_invalid_escape_sequence;
	  CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
	  charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
	  break;

	case ISO_shift_in:
	  CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
	  charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
	  break;

	case ISO_single_shift_2_7:
	case ISO_single_shift_2:
	  /* SS2 is handled as an escape sequence of ESC 'N' */
	  c1 = 'N';
	  goto label_escape_sequence;

	case ISO_single_shift_3:
	  /* SS2 is handled as an escape sequence of ESC 'O' */
	  c1 = 'O';
	  goto label_escape_sequence;

	case ISO_control_sequence_introducer:
	  /* CSI is handled as an escape sequence of ESC '[' ...  */
	  c1 = '[';
	  goto label_escape_sequence;

	case ISO_escape:
	  ONE_MORE_BYTE (c1);
	label_escape_sequence:
	  /* Escape sequences handled by Emacs are invocation,
	     designation, direction specification, and character
	     composition specification.  */
	  switch (c1)
	    {
	    case '&':		/* revision of following character set */
	      ONE_MORE_BYTE (c1);
	      if (!(c1 >= '@' && c1 <= '~'))
		goto label_invalid_escape_sequence;
	      ONE_MORE_BYTE (c1);
	      if (c1 != ISO_CODE_ESC)
		goto label_invalid_escape_sequence;
	      ONE_MORE_BYTE (c1);
	      goto label_escape_sequence;

	    case '$':		/* designation of 2-byte character set */
	      ONE_MORE_BYTE (c1);
	      if (c1 >= '@' && c1 <= 'B')
		{	/* designation of JISX0208.1978, GB2312.1980,
				   or JISX0208.1980 */
		  DECODE_DESIGNATION (0, 2, 94, c1);
		}
	      else if (c1 >= 0x28 && c1 <= 0x2B)
		{	/* designation of DIMENSION2_CHARS94 character set */
		  ONE_MORE_BYTE (c2);
		  DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
		}
	      else if (c1 >= 0x2C && c1 <= 0x2F)
		{	/* designation of DIMENSION2_CHARS96 character set */
		  ONE_MORE_BYTE (c2);
		  DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
		}
	      else
		goto label_invalid_escape_sequence;
	      break;

	    case 'n':		/* invocation of locking-shift-2 */
	      if (CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
		goto label_invalid_escape_sequence;
	      CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
	      charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
	      break;

	    case 'o':		/* invocation of locking-shift-3 */
	      if (CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
		goto label_invalid_escape_sequence;
	      CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
	      charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
	      break;

	    case 'N':		/* invocation of single-shift-2 */
	      if (CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
		goto label_invalid_escape_sequence;
	      ONE_MORE_BYTE (c1);
	      charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
	      DECODE_ISO_CHARACTER (charset, c1);
	      break;

	    case 'O':		/* invocation of single-shift-3 */
	      if (CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
		goto label_invalid_escape_sequence;
	      ONE_MORE_BYTE (c1);
	      charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
	      DECODE_ISO_CHARACTER (charset, c1);
	      break;

	    case '0':		/* start composing without embeded rules */
	      coding->composing = COMPOSING_NO_RULE_HEAD;
	      break;

	    case '1':		/* end composing */
	      coding->composing = COMPOSING_NO;
	      break;

	    case '2':		/* start composing with embeded rules */
	      coding->composing = COMPOSING_WITH_RULE_HEAD;
	      break;

	    case '[':		/* specification of direction */
	      /* For the moment, nested direction is not supported.
		 So, the value of `coding->direction' is 0 or 1: 0
		 means left-to-right, 1 means right-to-left.  */
	      ONE_MORE_BYTE (c1);
	      switch (c1)
		{
		case ']':	/* end of the current direction */
		  coding->direction = 0;

		case '0':	/* end of the current direction */
		case '1':	/* start of left-to-right direction */
		  ONE_MORE_BYTE (c1);
		  if (c1 == ']')
		    coding->direction = 0;
		  else
		    goto label_invalid_escape_sequence;
		  break;

		case '2':	/* start of right-to-left direction */
		  ONE_MORE_BYTE (c1);
		  if (c1 == ']')
		    coding->direction= 1;
		  else
		    goto label_invalid_escape_sequence;
		  break;

		default:
		  goto label_invalid_escape_sequence;
		}
	      break;

	    default:
	      if (c1 >= 0x28 && c1 <= 0x2B)
		{	/* designation of DIMENSION1_CHARS94 character set */
		  ONE_MORE_BYTE (c2);
		  DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
		}
	      else if (c1 >= 0x2C && c1 <= 0x2F)
		{	/* designation of DIMENSION1_CHARS96 character set */
		  ONE_MORE_BYTE (c2);
		  DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
		}
	      else
		{
		  goto label_invalid_escape_sequence;
		}
	    }
	  /* We must update these variables now.  */
	  charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
	  charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
	  break;

	label_invalid_escape_sequence:
	  {
	    int length = src - src_base;

	    bcopy (src_base, dst, length);
	    dst += length;
	  }
	}
      continue;

    label_end_of_loop:
      coding->carryover_size = src - src_base;
      bcopy (src_base, coding->carryover, coding->carryover_size);
      src = src_base;
      break;
    }

  /* If this is the last block of the text to be decoded, we had
     better just flush out all remaining codes in the text although
     they are not valid characters.  */
  if (coding->last_block)
    {
      bcopy (src, dst, src_end - src);
      dst += (src_end - src);
      src = src_end;
    }
  *consumed = src - source;
  return dst - destination;
}

/* ISO2022 encoding staffs.  */

/*
   It is not enough to say just "ISO2022" on encoding, but we have to
   specify more details.  In Emacs, each coding-system of ISO2022
   variant has the following specifications:
	1. Initial designation to G0 thru G3.
	2. Allows short-form designation?
	3. ASCII should be designated to G0 before control characters?
	4. ASCII should be designated to G0 at end of line?
	5. 7-bit environment or 8-bit environment?
	6. Use locking-shift?
	7. Use Single-shift?
   And the following two are only for Japanese:
	8. Use ASCII in place of JIS0201-1976-Roman?
	9. Use JISX0208-1983 in place of JISX0208-1978?
   These specifications are encoded in `coding->flags' as flag bits
   defined by macros CODING_FLAG_ISO_XXX.  See `coding.h' for more
   detail.
*/

/* Produce codes (escape sequence) for designating CHARSET to graphic
   register REG.  If <final-char> of CHARSET is '@', 'A', or 'B' and
   the coding system CODING allows, produce designation sequence of
   short-form.  */

#define ENCODE_DESIGNATION(charset, reg, coding)			\
  do {									\
    unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset);	\
    char *intermediate_char_94 = "()*+";				\
    char *intermediate_char_96 = ",-./";				\
    Lisp_Object temp							\
      = Fassq (make_number (charset), Vcharset_revision_alist);		\
    if (! NILP (temp))							\
	{								\
	*dst++ = ISO_CODE_ESC;						\
	*dst++ = '&';							\
	*dst++ = XINT (XCONS (temp)->cdr) + '@';			\
      }									\
    *dst++ = ISO_CODE_ESC;				       		\
    if (CHARSET_DIMENSION (charset) == 1)				\
      {									\
	if (CHARSET_CHARS (charset) == 94)				\
	  *dst++ = (unsigned char) (intermediate_char_94[reg]);		\
	else								\
	  *dst++ = (unsigned char) (intermediate_char_96[reg]);		\
      }									\
    else								\
      {									\
	*dst++ = '$';							\
	if (CHARSET_CHARS (charset) == 94)				\
	  {								\
	    if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM)     	\
		|| reg != 0					       	\
		|| final_char < '@' || final_char > 'B')	       	\
	      *dst++ = (unsigned char) (intermediate_char_94[reg]);	\
	  }								\
	else								\
	  *dst++ = (unsigned char) (intermediate_char_96[reg]);  	\
      }									\
    *dst++ = final_char;				       		\
    CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset;		\
  } while (0)

/* The following two macros produce codes (control character or escape
   sequence) for ISO2022 single-shift functions (single-shift-2 and
   single-shift-3).  */

#define ENCODE_SINGLE_SHIFT_2				\
  do {							\
    if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)	\
      *dst++ = ISO_CODE_ESC, *dst++ = 'N';		\
    else						\
      *dst++ = ISO_CODE_SS2;				\
    CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1;	\
  } while (0)

#define ENCODE_SINGLE_SHIFT_3			   	\
  do {						   	\
    if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)	\
      *dst++ = ISO_CODE_ESC, *dst++ = 'O';	   	\
    else					   	\
      *dst++ = ISO_CODE_SS3;			   	\
    CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1;	\
  } while (0)

/* The following four macros produce codes (control character or
   escape sequence) for ISO2022 locking-shift functions (shift-in,
   shift-out, locking-shift-2, and locking-shift-3).  */

#define ENCODE_SHIFT_IN			  	\
  do {					  	\
    *dst++ = ISO_CODE_SI;		  	\
    CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;	\
  } while (0)

#define ENCODE_SHIFT_OUT		  	\
  do {					  	\
    *dst++ = ISO_CODE_SO;		  	\
    CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;	\
  } while (0)

#define ENCODE_LOCKING_SHIFT_2			\
  do {						\
    *dst++ = ISO_CODE_ESC, *dst++ = 'n';	\
    CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;	\
  } while (0)

#define ENCODE_LOCKING_SHIFT_3		  	\
  do {					  	\
    *dst++ = ISO_CODE_ESC, *dst++ = 'o';  	\
    CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;	\
  } while (0)

/* Produce codes for a DIMENSION1 character of which character set is
   CHARSET and position-code is C1.  Designation and invocation
   sequences are also produced in advance if necessary.  */


#define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1)			\
  do {									\
    if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding))			\
      {									\
	if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)			\
	  *dst++ = c1 & 0x7F;						\
	else								\
	  *dst++ = c1 | 0x80;						\
	CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;			\
	break;								\
      }									\
    else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0))	\
      {									\
	*dst++ = c1 & 0x7F;						\
	break;								\
      }									\
    else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1))	\
      {									\
	*dst++ = c1 | 0x80;						\
	break;								\
      }									\
    else								\
      /* Since CHARSET is not yet invoked to any graphic planes, we	\
	 must invoke it, or, at first, designate it to some graphic	\
	 register.  Then repeat the loop to actually produce the	\
	 character.  */							\
      dst = encode_invocation_designation (charset, coding, dst);	\
  } while (1)

/* Produce codes for a DIMENSION2 character of which character set is
   CHARSET and position-codes are C1 and C2.  Designation and
   invocation codes are also produced in advance if necessary.  */

#define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2)		\
  do {									\
    if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding))			\
      {									\
	if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)			\
	  *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F;			\
	else								\
	  *dst++ = c1 | 0x80, *dst++ = c2 | 0x80;			\
	CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;			\
	break;								\
      }									\
    else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0))	\
      {									\
	*dst++ = c1 & 0x7F, *dst++= c2 & 0x7F;				\
	break;								\
      }									\
    else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1))	\
      {									\
	*dst++ = c1 | 0x80, *dst++= c2 | 0x80;				\
	break;								\
      }									\
    else								\
      /* Since CHARSET is not yet invoked to any graphic planes, we	\
	 must invoke it, or, at first, designate it to some graphic	\
	 register.  Then repeat the loop to actually produce the	\
	 character.  */							\
      dst = encode_invocation_designation (charset, coding, dst);	\
  } while (1)

/* Produce designation and invocation codes at a place pointed by DST
   to use CHARSET.  The element `spec.iso2022' of *CODING is updated.
   Return new DST.  */

unsigned char *
encode_invocation_designation (charset, coding, dst)
     int charset;
     struct coding_system *coding;
     unsigned char *dst;
{
  int reg;			/* graphic register number */

  /* At first, check designations.  */
  for (reg = 0; reg < 4; reg++)
    if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
      break;

  if (reg >= 4)
    {
      /* CHARSET is not yet designated to any graphic registers.  */
      /* At first check the requested designation.  */
      reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
      if (reg < 0)
	/* Since CHARSET requests no special designation, designate to
	   graphic register 0.  */
	reg = 0;

      ENCODE_DESIGNATION (charset, reg, coding);
    }

  if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
      && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
    {
      /* Since the graphic register REG is not invoked to any graphic
	 planes, invoke it to graphic plane 0.  */
      switch (reg)
	{
	case 0:			/* graphic register 0 */
	  ENCODE_SHIFT_IN;
	  break;

	case 1:			/* graphic register 1 */
	  ENCODE_SHIFT_OUT;
	  break;

	case 2:			/* graphic register 2 */
	  if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
	    ENCODE_SINGLE_SHIFT_2;
	  else
	    ENCODE_LOCKING_SHIFT_2;
	  break;

	case 3:			/* graphic register 3 */
	  if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
	    ENCODE_SINGLE_SHIFT_3;
	  else
	    ENCODE_LOCKING_SHIFT_3;
	  break;
	}
    }
  return dst;
}

/* The following two macros produce codes for indicating composition.  */
#define ENCODE_COMPOSITION_NO_RULE_START  *dst++ = ISO_CODE_ESC, *dst++ = '0'
#define ENCODE_COMPOSITION_WITH_RULE_START  *dst++ = ISO_CODE_ESC, *dst++ = '2'
#define ENCODE_COMPOSITION_END    *dst++ = ISO_CODE_ESC, *dst++ = '1'

/* The following three macros produce codes for indicating direction
   of text.  */
#define ENCODE_CONTROL_SEQUENCE_INTRODUCER	    	\
  do {						    	\
    if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS)	\
      *dst++ = ISO_CODE_ESC, *dst++ = '[';	    	\
    else					    	\
      *dst++ = ISO_CODE_CSI;			    	\
  } while (0)

#define ENCODE_DIRECTION_R2L	\
  ENCODE_CONTROL_SEQUENCE_INTRODUCER, *dst++ = '2', *dst++ = ']'

#define ENCODE_DIRECTION_L2R	\
  ENCODE_CONTROL_SEQUENCE_INTRODUCER, *dst++ = '0', *dst++ = ']'

/* Produce codes for designation and invocation to reset the graphic
   planes and registers to initial state.  */
#define ENCODE_RESET_PLANE_AND_REGISTER					    \
  do {									    \
    int reg;								    \
    if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0)			    \
      ENCODE_SHIFT_IN;							    \
    for (reg = 0; reg < 4; reg++)					    \
      if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0	    \
	  && (CODING_SPEC_ISO_DESIGNATION (coding, reg)			    \
	      != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg)))	    \
	ENCODE_DESIGNATION						    \
	  (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
  } while (0)

int
encode_designation_at_bol (coding, src, src_end, dstp)
     struct coding_system *coding;
     unsigned char *src, *src_end, **dstp;
{
  int charset, reg, r[4];
  unsigned char *dst = *dstp, c;
  for (reg = 0; reg < 4; reg++) r[reg] = -1;
  while (src < src_end && (c = *src++) != '\n')
    {
      switch (emacs_code_class[c])
	{
	case EMACS_ascii_code:
	  charset = CHARSET_ASCII;
	  break;
	case EMACS_leading_code_2:
	  if (++src >= src_end) continue;
	  charset = c;
	  break;
	case EMACS_leading_code_3:
	  if ((src += 2) >= src_end) continue;
	  charset =  (c < LEADING_CODE_PRIVATE_11 ? c : *(src - 2));
	  break;
	case EMACS_leading_code_4:
	  if ((src += 3) >= src_end) continue;
	  charset = *(src - 3);
	  break;
	default:
	  continue;
	}
      reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
      if (r[reg] < 0
	  && CODING_SPEC_ISO_DESIGNATION (coding, reg) != charset)
	r[reg] = charset;
    }
  if (c != '\n' && !coding->last_block)
    return -1;
  for (reg = 0; reg < 4; reg++)
    if (r[reg] >= 0)
      ENCODE_DESIGNATION (r[reg], reg, coding);
  *dstp = dst;
  return 0;
}

/* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".  */

int
encode_coding_iso2022 (coding, source, destination,
		       src_bytes, dst_bytes, consumed)
     struct coding_system *coding;
     unsigned char *source, *destination;
     int src_bytes, dst_bytes;
     int *consumed;
{
  unsigned char *src = source;
  unsigned char *src_end = source + src_bytes;
  unsigned char *dst = destination;
  unsigned char *dst_end = destination + dst_bytes;
  /* Since the maximum bytes produced by each loop is 20, we subtract 19
     from DST_END to assure overflow checking is necessary only at the
     head of loop.  */
  unsigned char *adjusted_dst_end = dst_end - 19;

  while (src < src_end && dst < adjusted_dst_end)
    {
      /* SRC_BASE remembers the start position in source in each loop.
	 The loop will be exited when there's not enough source text
	 to analyze multi-byte codes (within macros ONE_MORE_BYTE,
	 TWO_MORE_BYTES, and THREE_MORE_BYTES).  In that case, SRC is
	 reset to SRC_BASE before exiting.  */
      unsigned char *src_base = src;
      unsigned char c1, c2, c3, c4;
      int charset;

      if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
	  && CODING_SPEC_ISO_BOL (coding))
	{
	  /* We have to produce destination sequences now.  */
	  if (encode_designation_at_bol (coding, src, src_end, &dst) < 0)
	    /* We can't find end of line in the current block.  Let's
	     repeat encoding starting from the current position
	     pointed by SRC.  */
	    break;
	  CODING_SPEC_ISO_BOL (coding) = 0;
	}

      c1 = *src++;
      /* If we are seeing a component of a composite character, we are
	 seeing a leading-code specially encoded for composition, or a
	 composition rule if composing with rule.  We must set C1
	 to a normal leading-code or an ASCII code.  If we are not at
	 a composed character, we must reset the composition state.  */
      if (COMPOSING_P (coding->composing))
	{
	  if (c1 < 0xA0)
	    {
	      /* We are not in a composite character any longer.  */
	      coding->composing = COMPOSING_NO;
	      ENCODE_COMPOSITION_END;
	    }
	  else
	    {
	      if (coding->composing == COMPOSING_WITH_RULE_RULE)
		{
		  *dst++ = c1 & 0x7F;
		  coding->composing = COMPOSING_WITH_RULE_HEAD;
		  continue;
		}
	      else if (coding->composing == COMPOSING_WITH_RULE_HEAD)
		coding->composing = COMPOSING_WITH_RULE_RULE;
	      if (c1 == 0xA0)
		{
		  /* This is an ASCII component.  */
		  ONE_MORE_BYTE (c1);
		  c1 &= 0x7F;
		}
	      else
		/* This is a leading-code of non ASCII component.  */
		c1 -= 0x20;
	    }
	}
	
      /* Now encode one character.  C1 is a control character, an
         ASCII character, or a leading-code of multi-byte character.  */
      switch (emacs_code_class[c1])
	{
	case EMACS_ascii_code:
	  ENCODE_ISO_CHARACTER_DIMENSION1 (CHARSET_ASCII, c1);
	  break;

	case EMACS_control_code:
	  if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
	    ENCODE_RESET_PLANE_AND_REGISTER;
	  *dst++ = c1;
	  break;

	case EMACS_carriage_return_code:
	  if (!coding->selective)
	    {
	      if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
		ENCODE_RESET_PLANE_AND_REGISTER;
	      *dst++ = c1;
	      break;
	    }
	  /* fall down to treat '\r' as '\n' ...  */

	case EMACS_linefeed_code:
	  if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
	    ENCODE_RESET_PLANE_AND_REGISTER;
	  if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
	    bcopy (coding->spec.iso2022.initial_designation,
		   coding->spec.iso2022.current_designation,
		   sizeof coding->spec.iso2022.initial_designation);
	  if (coding->eol_type == CODING_EOL_LF
	      || coding->eol_type == CODING_EOL_AUTOMATIC)
	    *dst++ = ISO_CODE_LF;
	  else if (coding->eol_type == CODING_EOL_CRLF)
	    *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
	  else
	    *dst++ = ISO_CODE_CR;
	  CODING_SPEC_ISO_BOL (coding) = 1;
	  break;

	case EMACS_leading_code_2:
	  ONE_MORE_BYTE (c2);
	  ENCODE_ISO_CHARACTER_DIMENSION1 (c1, c2);
	  break;

	case EMACS_leading_code_3:
	  TWO_MORE_BYTES (c2, c3);
	  if (c1 < LEADING_CODE_PRIVATE_11)
	    ENCODE_ISO_CHARACTER_DIMENSION2 (c1, c2, c3);
	  else
	    ENCODE_ISO_CHARACTER_DIMENSION1 (c2, c3);
	  break;

	case EMACS_leading_code_4:
	  THREE_MORE_BYTES (c2, c3, c4);
	  ENCODE_ISO_CHARACTER_DIMENSION2 (c2, c3, c4);
	  break;

	case EMACS_leading_code_composition:
	  ONE_MORE_BYTE (c1);
	  if (c1 == 0xFF)
	    {
	      coding->composing = COMPOSING_WITH_RULE_HEAD;
	      ENCODE_COMPOSITION_WITH_RULE_START;
	    }
	  else
	    {
	      /* Rewind one byte because it is a character code of
                 composition elements.  */
	      src--;
	      coding->composing = COMPOSING_NO_RULE_HEAD;
	      ENCODE_COMPOSITION_NO_RULE_START;
	    }
	  break;

	case EMACS_invalid_code:
	  *dst++ = c1;
	  break;
	}
      continue;
    label_end_of_loop:
      coding->carryover_size = src - src_base;
      bcopy (src_base, coding->carryover, coding->carryover_size);
      src = src_base;
      break;
    }

  /* If this is the last block of the text to be encoded, we must
     reset the state of graphic planes and registers to initial one.
     In addition, we had better just flush out all remaining codes in
     the text although they are not valid characters.  */
  if (coding->last_block)
    {
      ENCODE_RESET_PLANE_AND_REGISTER;
      bcopy(src, dst, src_end - src);
      dst += (src_end - src);
      src = src_end;
    }
  *consumed = src - source;
  return dst - destination;
}


/*** 4. SJIS and BIG5 handlers ***/

/* Although SJIS and BIG5 are not ISO's coding system, They are used
   quite widely.  So, for the moment, Emacs supports them in the bare
   C code.  But, in the future, they may be supported only by CCL.  */

/* SJIS is a coding system encoding three character sets: ASCII, right
   half of JISX0201-Kana, and JISX0208.  An ASCII character is encoded
   as is.  A character of charset katakana-jisx0201 is encoded by
   "position-code + 0x80".  A character of charset japanese-jisx0208
   is encoded in 2-byte but two position-codes are divided and shifted
   so that it fit in the range below.

   --- CODE RANGE of SJIS ---
   (character set)	(range)
   ASCII		0x00 .. 0x7F
   KATAKANA-JISX0201	0xA0 .. 0xDF
   JISX0208 (1st byte)	0x80 .. 0x9F and 0xE0 .. 0xFF
	    (2nd byte)	0x40 .. 0xFF
   -------------------------------

*/

/* BIG5 is a coding system encoding two character sets: ASCII and
   Big5.  An ASCII character is encoded as is.  Big5 is a two-byte
   character set and is encoded in two-byte.

   --- CODE RANGE of BIG5 ---
   (character set)	(range)
   ASCII		0x00 .. 0x7F
   Big5 (1st byte)	0xA1 .. 0xFE
	(2nd byte)	0x40 .. 0x7E and 0xA1 .. 0xFE
   --------------------------

   Since the number of characters in Big5 is larger than maximum
   characters in Emacs' charset (96x96), it can't be handled as one
   charset.  So, in Emacs, Big5 is divided into two: `charset-big5-1'
   and `charset-big5-2'.  Both are DIMENSION2 and CHARS94.  The former
   contains frequently used characters and the latter contains less
   frequently used characters.  */

/* Macros to decode or encode a character of Big5 in BIG5.  B1 and B2
   are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
   C1 and C2 are the 1st and 2nd position-codes of of Emacs' internal
   format.  CHARSET is `charset_big5_1' or `charset_big5_2'.  */

/* Number of Big5 characters which have the same code in 1st byte.  */
#define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)

#define DECODE_BIG5(b1, b2, charset, c1, c2)			     	\
  do {								     	\
    unsigned int temp						     	\
      = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62);	\
    if (b1 < 0xC9)						     	\
      charset = charset_big5_1;					     	\
    else							     	\
      {								     	\
	charset = charset_big5_2;				     	\
	temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW;			     	\
      }								     	\
    c1 = temp / (0xFF - 0xA1) + 0x21;				     	\
    c2 = temp % (0xFF - 0xA1) + 0x21;				     	\
  } while (0)

#define ENCODE_BIG5(charset, c1, c2, b1, b2)			  	\
  do {								  	\
    unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21);	\
    if (charset == charset_big5_2)				  	\
      temp += BIG5_SAME_ROW * (0xC9 - 0xA1);			  	\
    b1 = temp / BIG5_SAME_ROW + 0xA1;				  	\
    b2 = temp % BIG5_SAME_ROW;					  	\
    b2 += b2 < 0x3F ? 0x40 : 0x62;				  	\
  } while (0)

/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
   Check if a text is encoded in SJIS.  If it is, return
   CODING_CATEGORY_MASK_SJIS, else return 0.  */

int
detect_coding_sjis (src, src_end)
     unsigned char *src, *src_end;
{
  unsigned char c;

  while (src < src_end)
    {
      c = *src++;
      if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
	return 0;
      if ((c >= 0x80 && c < 0xA0) || c >= 0xE0)
	{
	  if (src < src_end && *src++ < 0x40)
	    return 0;
	}
    }
  return CODING_CATEGORY_MASK_SJIS;
}

/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
   Check if a text is encoded in BIG5.  If it is, return
   CODING_CATEGORY_MASK_BIG5, else return 0.  */

int
detect_coding_big5 (src, src_end)
     unsigned char *src, *src_end;
{
  unsigned char c;

  while (src < src_end)
    {
      c = *src++;
      if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
	return 0;
      if (c >= 0xA1)
	{
	  if (src >= src_end)
	    break;
	  c = *src++;
	  if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
	    return 0;
	}
    }
  return CODING_CATEGORY_MASK_BIG5;
}

/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
   If SJIS_P is 1, decode SJIS text, else decode BIG5 test.  */

int
decode_coding_sjis_big5 (coding, source, destination,
			 src_bytes, dst_bytes, consumed, sjis_p)
     struct coding_system *coding;
     unsigned char *source, *destination;
     int src_bytes, dst_bytes;
     int *consumed;
     int sjis_p;
{
  unsigned char *src = source;
  unsigned char *src_end = source + src_bytes;
  unsigned char *dst = destination;
  unsigned char *dst_end = destination + dst_bytes;
  /* Since the maximum bytes produced by each loop is 4, we subtract 3
     from DST_END to assure overflow checking is necessary only at the
     head of loop.  */
  unsigned char *adjusted_dst_end = dst_end - 3;

  while (src < src_end && dst < adjusted_dst_end)
    {
      /* SRC_BASE remembers the start position in source in each loop.
	 The loop will be exited when there's not enough source text
	 to analyze two-byte character (within macro ONE_MORE_BYTE).
	 In that case, SRC is reset to SRC_BASE before exiting.  */
      unsigned char *src_base = src;
      unsigned char c1 = *src++, c2, c3, c4;

      if (c1 == '\r')
	{
	  if (coding->eol_type == CODING_EOL_CRLF)
	    {
	      ONE_MORE_BYTE (c2);
	      if (c2 == '\n')
		*dst++ = c2;
	      else
		/* To process C2 again, SRC is subtracted by 1.  */
		*dst++ = c1, src--;
	    }
	  else
	    *dst++ = c1;
	}
      else if (c1 < 0x80)
	*dst++ = c1;
      else if (c1 < 0xA0 || c1 >= 0xE0)
	{
	  /* SJIS -> JISX0208, BIG5 -> Big5 (only if 0xE0 <= c1 < 0xFF) */
	  if (sjis_p)
	    {
	      ONE_MORE_BYTE (c2);
	      DECODE_SJIS (c1, c2, c3, c4);
	      DECODE_CHARACTER_DIMENSION2 (charset_jisx0208, c3, c4);
	    }
	  else if (c1 >= 0xE0 && c1 < 0xFF)
	    {
	      int charset;

	      ONE_MORE_BYTE (c2);
	      DECODE_BIG5 (c1, c2, charset, c3, c4);
	      DECODE_CHARACTER_DIMENSION2 (charset, c3, c4);
	    }
	  else			/* Invalid code */
	    *dst++ = c1;
	}
      else
	{
	  /* SJIS -> JISX0201-Kana, BIG5 -> Big5 */
	  if (sjis_p)
	    DECODE_CHARACTER_DIMENSION1 (charset_katakana_jisx0201, c1);
	  else
	    {
	      int charset;

	      ONE_MORE_BYTE (c2);
	      DECODE_BIG5 (c1, c2, charset, c3, c4);
	      DECODE_CHARACTER_DIMENSION2 (charset, c3, c4);
	    }
	}
      continue;

    label_end_of_loop:
      coding->carryover_size = src - src_base;
      bcopy (src_base, coding->carryover, coding->carryover_size);
      src = src_base;
      break;
    }

  *consumed = src - source;
  return dst - destination;
}

/* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
   This function can encode `charset_ascii', `charset_katakana_jisx0201',
   `charset_jisx0208', `charset_big5_1', and `charset_big5-2'.  We are
   sure that all these charsets are registered as official charset
   (i.e. do not have extended leading-codes).  Characters of other
   charsets are produced without any encoding.  If SJIS_P is 1, encode
   SJIS text, else encode BIG5 text.  */

int
encode_coding_sjis_big5 (coding, source, destination,
			 src_bytes, dst_bytes, consumed, sjis_p)
     struct coding_system *coding;
     unsigned char *source, *destination;
     int src_bytes, dst_bytes;
     int *consumed;
     int sjis_p;
{
  unsigned char *src = source;
  unsigned char *src_end = source + src_bytes;
  unsigned char *dst = destination;
  unsigned char *dst_end = destination + dst_bytes;
  /* Since the maximum bytes produced by each loop is 2, we subtract 1
     from DST_END to assure overflow checking is necessary only at the
     head of loop.  */
  unsigned char *adjusted_dst_end = dst_end - 1;

  while (src < src_end && dst < adjusted_dst_end)
    {
      /* SRC_BASE remembers the start position in source in each loop.
	 The loop will be exited when there's not enough source text
	 to analyze multi-byte codes (within macros ONE_MORE_BYTE and
	 TWO_MORE_BYTES).  In that case, SRC is reset to SRC_BASE
	 before exiting.  */
      unsigned char *src_base = src;
      unsigned char c1 = *src++, c2, c3, c4;

      if (coding->composing)
	{
	  if (c1 == 0xA0)
	    {
	      ONE_MORE_BYTE (c1);
	      c1 &= 0x7F;
	    }
	  else if (c1 >= 0xA0)
	    c1 -= 0x20;
	  else
	    coding->composing = 0;
	}

      switch (emacs_code_class[c1])
	{
	case EMACS_ascii_code:
	case EMACS_control_code:
	  *dst++ = c1;
	  break;

	case EMACS_carriage_return_code:
	  if (!coding->selective)
	    {
	      *dst++ = c1;
	      break;
	    }
	  /* fall down to treat '\r' as '\n' ...  */

	case EMACS_linefeed_code:
	  if (coding->eol_type == CODING_EOL_LF
	      || coding->eol_type == CODING_EOL_AUTOMATIC)
	    *dst++ = '\n';
	  else if (coding->eol_type == CODING_EOL_CRLF)
	    *dst++ = '\r', *dst++ = '\n';
	  else
	    *dst++ = '\r';
	  break;

	case EMACS_leading_code_2:
	  ONE_MORE_BYTE (c2);
	  if (sjis_p && c1 == charset_katakana_jisx0201)
	    *dst++ = c2;
	  else
	    *dst++ = c1, *dst++ = c2;
	  break;

	case EMACS_leading_code_3:
	  TWO_MORE_BYTES (c2, c3);
	  c2 &= 0x7F, c3 &= 0x7F;
	  if (sjis_p && c1 == charset_jisx0208)
	    {
	      unsigned char s1, s2;

	      ENCODE_SJIS (c2, c3, s1, s2);
	      *dst++ = s1, *dst++ = s2;
	    }
	  else if (!sjis_p && (c1 == charset_big5_1 || c1 == charset_big5_2))
	    {
	      unsigned char b1, b2;

	      ENCODE_BIG5 (c1, c2, c3, b1, b2);
	      *dst++ = b1, *dst++ = b2;
	    }
	  else
	    *dst++ = c1, *dst++ = c2, *dst++ = c3;
	  break;

	case EMACS_leading_code_4:
	  THREE_MORE_BYTES (c2, c3, c4);
	  *dst++ = c1, *dst++ = c2, *dst++ = c3, *dst++ = c4;
	  break;

	case EMACS_leading_code_composition:
	  coding->composing = 1;
	  break;

	default:		/* i.e. case EMACS_invalid_code: */
	  *dst++ = c1;
	}
      continue;

    label_end_of_loop:
      coding->carryover_size = src - src_base;
      bcopy (src_base, coding->carryover, coding->carryover_size);
      src = src_base;
      break;
    }

  *consumed = src - source;
  return dst - destination;
}


/*** 5. End-of-line handlers ***/

/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
   This function is called only when `coding->eol_type' is
   CODING_EOL_CRLF or CODING_EOL_CR.  */

decode_eol (coding, source, destination, src_bytes, dst_bytes, consumed)
     struct coding_system *coding;
     unsigned char *source, *destination;
     int src_bytes, dst_bytes;
     int *consumed;
{
  unsigned char *src = source;
  unsigned char *src_end = source + src_bytes;
  unsigned char *dst = destination;
  unsigned char *dst_end = destination + dst_bytes;
  int produced;

  switch (coding->eol_type)
    {
    case CODING_EOL_CRLF:
      {
	/* Since the maximum bytes produced by each loop is 2, we
	   subtract 1 from DST_END to assure overflow checking is
	   necessary only at the head of loop.  */
	unsigned char *adjusted_dst_end = dst_end - 1;

	while (src < src_end && dst < adjusted_dst_end)
	  {
	    unsigned char *src_base = src;
	    unsigned char c = *src++;
	    if (c == '\r')
	      {
		ONE_MORE_BYTE (c);
		if (c != '\n')
		  *dst++ = '\r';
		*dst++ = c;
	      }
	    else
	      *dst++ = c;
	    continue;

	  label_end_of_loop:
	    coding->carryover_size = src - src_base;
	    bcopy (src_base, coding->carryover, coding->carryover_size);
	    src = src_base;
	    break;
	  }
	*consumed = src - source;
	produced = dst - destination;
	break;
      }

    case CODING_EOL_CR:
      produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
      bcopy (source, destination, produced);
      dst_end = destination + produced;
      while (dst < dst_end)
	if (*dst++ == '\r') dst[-1] = '\n';
      *consumed = produced;
      break;

    default:			/* i.e. case: CODING_EOL_LF */
      produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
      bcopy (source, destination, produced);
      *consumed = produced;
      break;
    }

  return produced;
}

/* See "GENERAL NOTES about `encode_coding_XXX ()' functions".  Encode
   format of end-of-line according to `coding->eol_type'.  If
   `coding->selective' is 1, code '\r' in source text also means
   end-of-line.  */

encode_eol (coding, source, destination, src_bytes, dst_bytes, consumed)
     struct coding_system *coding;
     unsigned char *source, *destination;
     int src_bytes, dst_bytes;
     int *consumed;
{
  unsigned char *src = source;
  unsigned char *dst = destination;
  int produced;

  if (src_bytes <= 0)
    return 0;

  switch (coding->eol_type)
    {
    case CODING_EOL_LF:
    case CODING_EOL_AUTOMATIC:
      produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
      bcopy (source, destination, produced);
      if (coding->selective)
	{
	  int i = produced;
	  while (i--)
	    if (*dst++ == '\r') dst[-1] = '\n';
	}
      *consumed = produced;
      
    case CODING_EOL_CRLF:
      {
	unsigned char c;
	unsigned char *src_end = source + src_bytes;
	unsigned char *dst_end = destination + dst_bytes;
	/* Since the maximum bytes produced by each loop is 2, we
	   subtract 1 from DST_END to assure overflow checking is
	   necessary only at the head of loop.  */
	unsigned char *adjusted_dst_end = dst_end - 1;

	while (src < src_end && dst < adjusted_dst_end)
	  {
	    c = *src++;
	    if (c == '\n' || (c == '\r' && coding->selective))
	      *dst++ = '\r', *dst++ = '\n';
	    else
	      *dst++ = c;
	  }
	produced = dst - destination;
	*consumed = src - source;
	break;
      }

    default:			/* i.e. case CODING_EOL_CR: */
      produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
      bcopy (source, destination, produced);
      {
	int i = produced;
	while (i--)
	  if (*dst++ == '\n') dst[-1] = '\r';
      }
      *consumed = produced;
    }

  return produced;
}


/*** 6. C library functions ***/

/* In Emacs Lisp, coding system is represented by a Lisp symbol which
   has a property `coding-system'.  The value of this property is a
   vector of length 5 (called as coding-vector).  Among elements of
   this vector, the first (element[0]) and the fifth (element[4])
   carry important information for decoding/encoding.  Before
   decoding/encoding, this information should be set in fields of a
   structure of type `coding_system'.

   A value of property `coding-system' can be a symbol of another
   subsidiary coding-system.  In that case, Emacs gets coding-vector
   from that symbol.

   `element[0]' contains information to be set in `coding->type'.  The
   value and its meaning is as follows:

   0 -- coding_system_internal
   1 -- coding_system_sjis
   2 -- coding_system_iso2022
   3 -- coding_system_big5
   4 -- coding_system_ccl
   nil -- coding_system_no_conversion
   t -- coding_system_automatic

   `element[4]' contains information to be set in `coding->flags' and
   `coding->spec'.  The meaning varies by `coding->type'.

   If `coding->type' is `coding_type_iso2022', element[4] is a vector
   of length 32 (of which the first 13 sub-elements are used now).
   Meanings of these sub-elements are:

   sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
   	If the value is an integer of valid charset, the charset is
	assumed to be designated to graphic register N initially.

	If the value is minus, it is a minus value of charset which
	reserves graphic register N, which means that the charset is
	not designated initially but should be designated to graphic
	register N just before encoding a character in that charset.

	If the value is nil, graphic register N is never used on
	encoding.
   
   sub-element[N] where N is 4 through 11: to be set in `coding->flags'
   	Each value takes t or nil.  See the section ISO2022 of
	`coding.h' for more information.

   If `coding->type' is `coding_type_big5', element[4] is t to denote
   BIG5-ETen or nil to denote BIG5-HKU.

   If `coding->type' takes the other value, element[4] is ignored.

   Emacs Lisp's coding system also carries information about format of
   end-of-line in a value of property `eol-type'.  If the value is
   integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
   means CODING_EOL_CR.  If it is not integer, it should be a vector
   of subsidiary coding systems of which property `eol-type' has one
   of above values.

*/

/* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
   and set it in CODING.  If CODING_SYSTEM_SYMBOL is invalid, CODING
   is setup so that no conversion is necessary and return -1, else
   return 0.  */

int
setup_coding_system (coding_system, coding)
     Lisp_Object coding_system;
     struct coding_system *coding;
{
  Lisp_Object type, eol_type;

  /* At first, set several fields default values.  */
  coding->require_flushing = 0;
  coding->last_block = 0;
  coding->selective = 0;
  coding->composing = 0;
  coding->direction = 0;
  coding->carryover_size = 0;
  coding->post_read_conversion = coding->pre_write_conversion = Qnil;

  Vlast_coding_system_used = coding->symbol = coding_system;
  eol_type = Qnil;
  /* Get value of property `coding-system' until we get a vector.
     While doing that, also get values of properties
     `post-read-conversion', `pre-write-conversion', and `eol-type'.  */
  while (!NILP (coding_system) && SYMBOLP (coding_system))
    {
      if (NILP (coding->post_read_conversion))
	coding->post_read_conversion = Fget (coding_system,
					     Qpost_read_conversion);
      if (NILP (coding->pre_write_conversion))	
	coding->pre_write_conversion = Fget (coding_system,
					     Qpre_write_conversion);
      if (NILP (eol_type))
	eol_type = Fget (coding_system, Qeol_type);
      coding_system = Fget (coding_system, Qcoding_system);
    }
  if (!VECTORP (coding_system)
      || XVECTOR (coding_system)->size != 5)
    goto label_invalid_coding_system;

  if (VECTORP (eol_type))
    coding->eol_type = CODING_EOL_AUTOMATIC;
  else if (XFASTINT (eol_type) == 1)
    coding->eol_type = CODING_EOL_CRLF;
  else if (XFASTINT (eol_type) == 2)
    coding->eol_type = CODING_EOL_CR;
  else
    coding->eol_type = CODING_EOL_LF;

  type = XVECTOR (coding_system)->contents[0];
  switch (XFASTINT (type))
    {
    case 0:
      coding->type = coding_type_internal;
      break;

    case 1:
      coding->type = coding_type_sjis;
      break;

    case 2:
      coding->type = coding_type_iso2022;
      {
	Lisp_Object val = XVECTOR (coding_system)->contents[4];
	Lisp_Object *flags;
	int i, charset, default_reg_bits = 0;

	if (!VECTORP (val) || XVECTOR (val)->size != 32)
	  goto label_invalid_coding_system;

	flags = XVECTOR (val)->contents;
	coding->flags
	  = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
	     | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
	     | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
	     | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
	     | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
	     | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
	     | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
	     | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
	     | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
	     | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
	     | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL));

	/* Invoke graphic register 0 to plane 0.  */
	CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
	/* Invoke graphic register 1 to plane 1 if we can use full 8-bit.  */
	CODING_SPEC_ISO_INVOCATION (coding, 1)
	  = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
	/* Not single shifting at first.  */
	CODING_SPEC_ISO_SINGLE_SHIFTING(coding) = 0;
	/* Beginning of buffer should also be regarded as bol. */
	CODING_SPEC_ISO_BOL(coding) = 1;

	/* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
	   FLAGS[REG] can be one of below:
		integer CHARSET: CHARSET occupies register I,
		t: designate nothing to REG initially, but can be used
		  by any charsets,
		list of integer, nil, or t: designate the first
		  element (if integer) to REG initially, the remaining
		  elements (if integer) is designated to REG on request,
		  if an element is t, REG can be used by any charset,
		nil: REG is never used.  */
	for (charset = 0; charset <= MAX_CHARSET; charset++)
	  CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = -1;
	for (i = 0; i < 4; i++)
	  {
	    if (INTEGERP (flags[i])
		&& (charset = XINT (flags[i]), CHARSET_VALID_P (charset))
		|| (charset = get_charset_id (flags[i])) >= 0)
	      {
		CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
		CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
	      }
	    else if (EQ (flags[i], Qt))
	      {
		CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
		default_reg_bits |= 1 << i;
	      }
	    else if (CONSP (flags[i]))
	      {
		Lisp_Object tail = flags[i];

		if (INTEGERP (XCONS (tail)->car)
		    && (charset = XINT (XCONS (tail)->car),
			CHARSET_VALID_P (charset))
		    || (charset = get_charset_id (XCONS (tail)->car)) >= 0)
		  {
		    CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
		    CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
		  }
		else
		  CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
		tail = XCONS (tail)->cdr;
		while (CONSP (tail))
		  {
		    if (INTEGERP (XCONS (tail)->car)
			&& (charset = XINT (XCONS (tail)->car),
			    CHARSET_VALID_P (charset))
			|| (charset = get_charset_id (XCONS (tail)->car)) >= 0)
		      CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
			= i;
		    else if (EQ (XCONS (tail)->car, Qt))
		      default_reg_bits |= 1 << i;
		    tail = XCONS (tail)->cdr;
		  }
	      }
	    else
	      CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
	    
	    CODING_SPEC_ISO_DESIGNATION (coding, i)
	      = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
	  }

	if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
	  {
	    /* REG 1 can be used only by locking shift in 7-bit env.  */
	    if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
	      default_reg_bits &= ~2;
	    if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
	      /* Without any shifting, only REG 0 and 1 can be used.  */
	      default_reg_bits &= 3;
	  }

	for (charset = 0; charset <= MAX_CHARSET; charset++)
	  if (CHARSET_VALID_P (charset)
	      && CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) < 0)
	    {
	      /* We have not yet decided where to designate CHARSET.  */
	      int reg_bits = default_reg_bits;

	      if (CHARSET_CHARS (charset) == 96)
		/* A charset of CHARS96 can't be designated to REG 0.  */
		reg_bits &= ~1;

	      if (reg_bits)
		/* There exist some default graphic register.  */
		CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
		  = (reg_bits & 1
		     ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
	      else
		/* We anyway have to designate CHARSET to somewhere.  */
		CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
		  = (CHARSET_CHARS (charset) == 94
		     ? 0
		     : ((coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT
			 || ! coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
			? 1
			: (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT
			   ? 2 : 0)));
	    }
      }
      coding->require_flushing = 1;
      break;

    case 3:
      coding->type = coding_type_big5;
      coding->flags
	= (NILP (XVECTOR (coding_system)->contents[4])
	   ? CODING_FLAG_BIG5_HKU
	   : CODING_FLAG_BIG5_ETEN);
      break;

    case 4:
      coding->type = coding_type_ccl;
      {
	Lisp_Object val = XVECTOR (coding_system)->contents[4];
	if (CONSP  (val)
	    && VECTORP (XCONS (val)->car)
	    && VECTORP (XCONS (val)->cdr))
	  {
	    setup_ccl_program (&(coding->spec.ccl.decoder), XCONS (val)->car);
	    setup_ccl_program (&(coding->spec.ccl.encoder), XCONS (val)->cdr);
	  }
	else
	  goto label_invalid_coding_system;
      }
      coding->require_flushing = 1;
      break;

    default:
      if (EQ (type, Qt))
	coding->type = coding_type_automatic;
      else
	coding->type = coding_type_no_conversion;
      break;
    }
  return 0;

 label_invalid_coding_system:
  coding->type = coding_type_no_conversion;
  coding->symbol = coding->pre_write_conversion = coding->post_read_conversion
    = Qnil;
  return -1;
}

/* Emacs has a mechanism to automatically detect a coding system if it
   is one of Emacs' internal format, ISO2022, SJIS, and BIG5.  But,
   it's impossible to distinguish some coding systems accurately
   because they use the same range of codes.  So, at first, coding
   systems are categorized into 7, those are:

   o coding-category-internal

   	The category for a coding system which has the same code range
	as Emacs' internal format.  Assigned the coding-system (Lisp
	symbol) `internal' by default.

   o coding-category-sjis

	The category for a coding system which has the same code range
	as SJIS.  Assigned the coding-system (Lisp
	symbol) `shift-jis' by default.

   o coding-category-iso-7

   	The category for a coding system which has the same code range
	as ISO2022 of 7-bit environment.  Assigned the coding-system
	(Lisp symbol) `iso-2022-7' by default.

   o coding-category-iso-8-1

   	The category for a coding system which has the same code range
	as ISO2022 of 8-bit environment and graphic plane 1 used only
	for DIMENSION1 charset.  Assigned the coding-system (Lisp
	symbol) `iso-8859-1' by default.

   o coding-category-iso-8-2

   	The category for a coding system which has the same code range
	as ISO2022 of 8-bit environment and graphic plane 1 used only
	for DIMENSION2 charset.  Assigned the coding-system (Lisp
	symbol) `euc-japan' by default.

   o coding-category-iso-else

   	The category for a coding system which has the same code range
	as ISO2022 but not belongs to any of the above three
	categories.  Assigned the coding-system (Lisp symbol)
	`iso-2022-ss2-7' by default.

   o coding-category-big5

   	The category for a coding system which has the same code range
	as BIG5.  Assigned the coding-system (Lisp symbol)
	`cn-big5' by default.

   o coding-category-binary

   	The category for a coding system not categorized in any of the
	above.  Assigned the coding-system (Lisp symbol)
	`no-conversion' by default.

   Each of them is a Lisp symbol and the value is an actual
   `coding-system's (this is also a Lisp symbol) assigned by a user.
   What Emacs does actually is to detect a category of coding system.
   Then, it uses a `coding-system' assigned to it.  If Emacs can't
   decide only one possible category, it selects a category of the
   highest priority.  Priorities of categories are also specified by a
   user in a Lisp variable `coding-category-list'.

*/

/* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
   If it detects possible coding systems, return an integer in which
   appropriate flag bits are set.  Flag bits are defined by macros
   CODING_CATEGORY_MASK_XXX in `coding.h'.  */

int
detect_coding_mask (src, src_bytes)
     unsigned char *src;
     int src_bytes;
{
  register unsigned char c;
  unsigned char *src_end = src + src_bytes;
  int mask;

  /* At first, skip all ASCII characters and control characters except
     for three ISO2022 specific control characters.  */
  while (src < src_end)
    {
      c = *src;
      if (c >= 0x80
	  || (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO))
	break;
      src++;
    }

  if (src >= src_end)
    /* We found nothing other than ASCII.  There's nothing to do.  */
    return CODING_CATEGORY_MASK_ANY;

  /* The text seems to be encoded in some multilingual coding system.
     Now, try to find in which coding system the text is encoded.  */
  if (c < 0x80)
    /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
    /* C is an ISO2022 specific control code of C0.  */
    mask = detect_coding_iso2022 (src, src_end);

  else if (c == ISO_CODE_SS2 || c == ISO_CODE_SS3 || c == ISO_CODE_CSI)
    /* C is an ISO2022 specific control code of C1,
       or the first byte of SJIS's 2-byte character code,
       or a leading code of Emacs.  */
    mask = (detect_coding_iso2022 (src, src_end)
	    | detect_coding_sjis (src, src_end)
	    | detect_coding_internal (src, src_end));

  else if (c < 0xA0)
    /* C is the first byte of SJIS character code,
       or a leading-code of Emacs.  */
    mask = (detect_coding_sjis (src, src_end)
	    | detect_coding_internal (src, src_end));

  else
    /* C is a character of ISO2022 in graphic plane right,
       or a SJIS's 1-byte character code (i.e. JISX0201),
       or the first byte of BIG5's 2-byte code.  */
    mask = (detect_coding_iso2022 (src, src_end)
	    | detect_coding_sjis (src, src_end)
	    | detect_coding_big5 (src, src_end));

  return mask;
}

/* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
   The information of the detected coding system is set in CODING.  */

void
detect_coding (coding, src, src_bytes)
     struct coding_system *coding;
     unsigned char *src;
     int src_bytes;
{
  int mask = detect_coding_mask (src, src_bytes);
  int idx;

  if (mask == CODING_CATEGORY_MASK_ANY)
    /* We found nothing other than ASCII.  There's nothing to do.  */
    return;

  if (!mask)
    /* The source text seems to be encoded in unknown coding system.
       Emacs regards the category of such a kind of coding system as
       `coding-category-binary'.  We assume that a user has assigned
       an appropriate coding system for a `coding-category-binary'.  */
    idx = CODING_CATEGORY_IDX_BINARY;
  else
    {
      /* We found some plausible coding systems.  Let's use a coding
	 system of the highest priority.  */
      Lisp_Object val = Vcoding_category_list;

      if (CONSP (val))
	while (!NILP (val))
	  {
	    idx = XFASTINT (Fget (XCONS (val)->car, Qcoding_category_index));
	    if ((idx < CODING_CATEGORY_IDX_MAX) && (mask & (1 << idx)))
	      break;
	    val = XCONS (val)->cdr;
	  }
      else
	val = Qnil;

      if (NILP (val))
	{
	  /* For unknown reason, `Vcoding_category_list' contains none
	     of found categories.  Let's use any of them.  */
	  for (idx = 0; idx < CODING_CATEGORY_IDX_MAX; idx++)
	    if (mask & (1 << idx))
	      break;
	}
    }
  setup_coding_system (XSYMBOL (coding_category_table[idx])->value, coding);
}

/* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
   is encoded.  Return one of CODING_EOL_LF, CODING_EOL_CRLF,
   CODING_EOL_CR, and CODING_EOL_AUTOMATIC.  */

int
detect_eol_type (src, src_bytes)
     unsigned char *src;
     int src_bytes;
{
  unsigned char *src_end = src + src_bytes;
  unsigned char c;

  while (src < src_end)
    {
      c = *src++;
      if (c == '\n')
	return CODING_EOL_LF;
      else if (c == '\r')
	{
	  if (src < src_end && *src == '\n')
	    return CODING_EOL_CRLF;
	  else
	    return CODING_EOL_CR;
	}
    }
  return CODING_EOL_AUTOMATIC;
}

/* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
   is encoded.  If it detects an appropriate format of end-of-line, it
   sets the information in *CODING.  */

void
detect_eol (coding, src, src_bytes)
     struct coding_system *coding;
     unsigned char *src;
     int src_bytes;
{
  Lisp_Object val;
  int eol_type = detect_eol_type (src, src_bytes);

  if (eol_type == CODING_EOL_AUTOMATIC)
    /*  We found no end-of-line in the source text.  */
    return;

  val = Fget (coding->symbol, Qeol_type);
  if (VECTORP (val) && XVECTOR (val)->size == 3)
    setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
}

/* See "GENERAL NOTES about `decode_coding_XXX ()' functions".  Before
   decoding, it may detect coding system and format of end-of-line if
   those are not yet decided.  */

int
decode_coding (coding, source, destination, src_bytes, dst_bytes, consumed)
     struct coding_system *coding;
     unsigned char *source, *destination;
     int src_bytes, dst_bytes;
     int *consumed;
{
  int produced;

  if (src_bytes <= 0)
    {
      *consumed = 0;
      return 0;
    }

  if (coding->type == coding_type_automatic)
    detect_coding (coding, source, src_bytes);

  if (coding->eol_type == CODING_EOL_AUTOMATIC)
    detect_eol (coding, source, src_bytes);

  coding->carryover_size = 0;
  switch (coding->type)
    {
    case coding_type_no_conversion:
    label_no_conversion:
      produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
      bcopy (source, destination, produced);
      *consumed = produced;
      break;

    case coding_type_internal:
    case coding_type_automatic:
      if (coding->eol_type == CODING_EOL_LF
	  ||  coding->eol_type == CODING_EOL_AUTOMATIC)
	goto label_no_conversion;
      produced = decode_eol (coding, source, destination,
			     src_bytes, dst_bytes, consumed);
      break;

    case coding_type_sjis:
      produced = decode_coding_sjis_big5 (coding, source, destination,
					  src_bytes, dst_bytes, consumed,
					  1);
      break;

    case coding_type_iso2022:
      produced = decode_coding_iso2022 (coding, source, destination,
					src_bytes, dst_bytes, consumed);
      break;

    case coding_type_big5:
      produced = decode_coding_sjis_big5 (coding, source, destination,
					  src_bytes, dst_bytes, consumed,
					  0);
      break;

    case coding_type_ccl:
      produced = ccl_driver (&coding->spec.ccl.decoder, source, destination,
			     src_bytes, dst_bytes, consumed);
      break;
    }

  return produced;
}

/* See "GENERAL NOTES about `encode_coding_XXX ()' functions".  */

int
encode_coding (coding, source, destination, src_bytes, dst_bytes, consumed)
     struct coding_system *coding;
     unsigned char *source, *destination;
     int src_bytes, dst_bytes;
     int *consumed;
{
  int produced;

  coding->carryover_size = 0;
  switch (coding->type)
    {
    case coding_type_no_conversion:
    label_no_conversion:
      produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
      if (produced > 0)
	{
	  bcopy (source, destination, produced);
	  if (coding->selective)
	    {
	      unsigned char *p = destination, *pend = destination + produced;
	      while (p < pend)
		if (*p++ == '\015') p[-1] = '\n';
	    }
	}
      *consumed = produced;
      break;

    case coding_type_internal:
    case coding_type_automatic:
      if (coding->eol_type == CODING_EOL_LF
	  ||  coding->eol_type == CODING_EOL_AUTOMATIC)
	goto label_no_conversion;
      produced = encode_eol (coding, source, destination,
			     src_bytes, dst_bytes, consumed);
      break;

    case coding_type_sjis:
      produced = encode_coding_sjis_big5 (coding, source, destination,
					  src_bytes, dst_bytes, consumed,
					  1);
      break;

    case coding_type_iso2022:
      produced = encode_coding_iso2022 (coding, source, destination,
					src_bytes, dst_bytes, consumed);
      break;

    case coding_type_big5:
      produced = encode_coding_sjis_big5 (coding, source, destination,
					  src_bytes, dst_bytes, consumed,
					  0);
      break;

    case coding_type_ccl:
      produced = ccl_driver (&coding->spec.ccl.encoder, source, destination,
			     src_bytes, dst_bytes, consumed);
      break;
    }

  return produced;
}

#define CONVERSION_BUFFER_EXTRA_ROOM 256

/* Return maximum size (bytes) of a buffer enough for decoding
   SRC_BYTES of text encoded in CODING.  */

int
decoding_buffer_size (coding, src_bytes)
     struct coding_system *coding;
     int src_bytes;
{
  int magnification;

  if (coding->type == coding_type_iso2022)
    magnification = 3;
  else if (coding->type == coding_type_ccl)
    magnification = coding->spec.ccl.decoder.buf_magnification;
  else
    magnification = 2;

  return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
}

/* Return maximum size (bytes) of a buffer enough for encoding
   SRC_BYTES of text to CODING.  */

int
encoding_buffer_size (coding, src_bytes)
     struct coding_system *coding;
     int src_bytes;
{
  int magnification;

  if (coding->type == coding_type_ccl)
    magnification = coding->spec.ccl.encoder.buf_magnification;
  else
    magnification = 3;

  return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
}

#ifndef MINIMUM_CONVERSION_BUFFER_SIZE
#define MINIMUM_CONVERSION_BUFFER_SIZE 1024
#endif

char *conversion_buffer;
int conversion_buffer_size;

/* Return a pointer to a SIZE bytes of buffer to be used for encoding
   or decoding.  Sufficient memory is allocated automatically.  If we
   run out of memory, return NULL.  */

char *
get_conversion_buffer (size)
     int size;
{
  if (size > conversion_buffer_size)
    {
      char *buf;
      int real_size = conversion_buffer_size * 2;

      while (real_size < size) real_size *= 2;
      buf = (char *) xmalloc (real_size);
      xfree (conversion_buffer);
      conversion_buffer = buf;
      conversion_buffer_size = real_size;
    }
  return conversion_buffer;
}


#ifdef emacs
/*** 7. Emacs Lisp library functions ***/

DEFUN ("coding-system-vector", Fcoding_system_vector, Scoding_system_vector,
       1, 1, 0,
  "Return coding-vector of CODING-SYSTEM.\n\
If CODING-SYSTEM is not a valid coding-system, return nil.")
  (obj)
     Lisp_Object obj;
{
  while (SYMBOLP (obj) && !NILP (obj))
    obj = Fget (obj, Qcoding_system);
  return ((NILP (obj) || !VECTORP (obj) || XVECTOR (obj)->size != 5)
	  ? Qnil : obj);
}

DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
  "Return t if OBJECT is nil or a coding-system.\n\
See document of make-coding-system for coding-system object.")
  (obj)
     Lisp_Object obj;
{
  return ((NILP (obj) || !NILP (Fcoding_system_vector (obj))) ? Qt : Qnil);
}

DEFUN ("read-non-nil-coding-system",
       Fread_non_nil_coding_system, Sread_non_nil_coding_system, 1, 1, 0,
  "Read a coding system from the minibuffer, prompting with string PROMPT.")
  (prompt)
     Lisp_Object prompt;
{
  Lisp_Object val;
  do {
    val = Fcompleting_read (prompt, Vobarray, Qcoding_system_vector,
			    Qt, Qnil, Qnil);
  } while (XSTRING (val)->size == 0);
  return (Fintern (val, Qnil));
}

DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 1, 0,
  "Read a coding system or nil from the minibuffer, prompting with string PROMPT.")
  (prompt)
     Lisp_Object prompt;
{
  Lisp_Object val = Fcompleting_read (prompt, Vobarray, Qcoding_system_p,
				      Qt, Qnil, Qnil);
  return (XSTRING (val)->size == 0 ? Qnil : Fintern (val, Qnil));
}

DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
       1, 1, 0,
  "Check validity of CODING-SYSTEM.\n\
If valid, return CODING-SYSTEM, else `coding-system-error' is signaled.\n\
CODING-SYSTEM is valid if it is a symbol and has \"coding-system\" property.\n\
The value of property should be a vector of length 5.")
  (coding_system)
     Lisp_Object coding_system;
{
  CHECK_SYMBOL (coding_system, 0);
  if (!NILP (Fcoding_system_p (coding_system)))
    return coding_system;
  while (1)
    Fsignal (Qcoding_system_error, coding_system);
}

DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
       2, 2, 0,
  "Detect coding-system of the text in the region between START and END.\n\
Return a list of possible coding-systems ordered by priority.\n\
If only ASCII characters are found, it returns `automatic-conversion'\n\
 or its subsidiary coding-system according to a detected end-of-line format.")
  (b, e)
     Lisp_Object b, e;
{
  int coding_mask, eol_type;
  Lisp_Object val;
  int beg, end;

  validate_region (&b, &e);
  beg = XINT (b), end = XINT (e);
  if (beg < GPT && end >= GPT) move_gap (end);

  coding_mask = detect_coding_mask (POS_ADDR (beg), end - beg);
  eol_type  = detect_eol_type (POS_ADDR (beg), end - beg);

  if (coding_mask == CODING_CATEGORY_MASK_ANY)
    {
      val = intern ("automatic-conversion");
      if (eol_type != CODING_EOL_AUTOMATIC)
	{
	  Lisp_Object val2 = Fget (val, Qeol_type);
	  if (VECTORP (val2))
	    val = XVECTOR (val2)->contents[eol_type];
	}
    }
  else
    {
      Lisp_Object val2;

      /* At first, gather possible coding-systems in VAL in a reverse
	 order.  */
      val = Qnil;
      for (val2 = Vcoding_category_list;
	   !NILP (val2);
	   val2 = XCONS (val2)->cdr)
	{
	  int idx
	    = XFASTINT (Fget (XCONS (val2)->car, Qcoding_category_index));
	  if (coding_mask & (1 << idx))
	    val = Fcons (Fsymbol_value (XCONS (val2)->car), val);
	}

      /* Then, change the order of the list, while getting subsidiary
	 coding-systems.  */
      val2 = val;
      val = Qnil;
      for (; !NILP (val2); val2 = XCONS (val2)->cdr)
	{
	  if (eol_type == CODING_EOL_AUTOMATIC)
	    val = Fcons (XCONS (val2)->car, val);
	  else
	    {
	      Lisp_Object val3 = Fget (XCONS (val2)->car, Qeol_type);
	      if (VECTORP (val3))
		val = Fcons (XVECTOR (val3)->contents[eol_type], val);
	      else
		val = Fcons (XCONS (val2)->car, val);
	    }
	}
    }

  return val;
}

/* Scan text in the region between *BEGP and *ENDP, skip characters
   which we never have to encode to (iff ENCODEP is 1) or decode from
   coding system CODING at the head and tail, then set BEGP and ENDP
   to the addresses of start and end of the text we actually convert.  */

void
shrink_conversion_area (begp, endp, coding, encodep)
     unsigned char **begp, **endp;
     struct coding_system *coding;
     int encodep;
{
  register unsigned char *beg_addr = *begp, *end_addr = *endp;

  if (coding->eol_type != CODING_EOL_LF
      && coding->eol_type != CODING_EOL_AUTOMATIC)
    /* Since we anyway have to convert end-of-line format, it is not
       worth skipping at most 100 bytes or so.  */
    return;

  if (encodep)			/* for encoding */
    {
      switch (coding->type)
	{
	case coding_type_no_conversion:
	case coding_type_internal:
	case coding_type_automatic:
	  /* We need no conversion.  */
	  *begp = *endp;
	  return;
	case coding_type_ccl:
	  /* We can't skip any data.  */
	  return;
	case coding_type_iso2022:
	  if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
	    {
	      unsigned char *bol = beg_addr; 
	      while (beg_addr < end_addr && *beg_addr < 0x80)
		{
		  beg_addr++;
		  if (*(beg_addr - 1) == '\n')
		    bol = beg_addr;
		}
	      beg_addr = bol;
	      goto label_skip_tail;
	    }
	  /* fall down ... */
	default:
	  /* We can skip all ASCII characters at the head and tail.  */
	  while (beg_addr < end_addr && *beg_addr < 0x80) beg_addr++;
	label_skip_tail:
	  while (beg_addr < end_addr && *(end_addr - 1) < 0x80) end_addr--;
	  break;
	}
    }
  else				/* for decoding */
    {
      switch (coding->type)
	{
	case coding_type_no_conversion:
	  /* We need no conversion.  */
	  *begp = *endp;
	  return;
	case coding_type_internal:
	  if (coding->eol_type == CODING_EOL_LF)
	    {
	      /* We need no conversion.  */
	      *begp = *endp;
	      return;
	    }
	  /* We can skip all but carriage-return.  */
	  while (beg_addr < end_addr && *beg_addr != '\r') beg_addr++;
	  while (beg_addr < end_addr && *(end_addr - 1) != '\r') end_addr--;
	  break;
	case coding_type_sjis:
	case coding_type_big5:
	  /* We can skip all ASCII characters at the head.  */
	  while (beg_addr < end_addr && *beg_addr < 0x80) beg_addr++;
	  /* We can skip all ASCII characters at the tail except for
	     the second byte of SJIS or BIG5 code.  */
	  while (beg_addr < end_addr && *(end_addr - 1) < 0x80) end_addr--;
	  if (end_addr != *endp)
	    end_addr++;
	  break;
	case coding_type_ccl:
	  /* We can't skip any data.  */
	  return;
	default:		/* i.e. case coding_type_iso2022: */
	  {
	    unsigned char c;

	    /* We can skip all ASCII characters except for a few
	       control codes at the head.  */
	    while (beg_addr < end_addr && (c = *beg_addr) < 0x80
		   && c != ISO_CODE_CR && c != ISO_CODE_SO
		   && c != ISO_CODE_SI && c != ISO_CODE_ESC)
	      beg_addr++;
	  }
	  break;
	}
    }
  *begp = beg_addr;
  *endp = end_addr;
  return;
}

/* Encode to (iff ENCODEP is 1) or decode form coding system CODING a
   text between B and E.  B and E are buffer position.  */

Lisp_Object
code_convert_region (b, e, coding, encodep)
     Lisp_Object b, e;
     struct coding_system *coding;
     int encodep;
{
  int beg, end, len, consumed, produced;
  char *buf;
  unsigned char *begp, *endp;
  int pos = PT;

  validate_region (&b, &e);
  beg = XINT (b), end = XINT (e);
  if (beg < GPT && end >= GPT)
    move_gap (end);

  if (encodep && !NILP (coding->pre_write_conversion))
    {
      /* We must call a pre-conversion function which may put a new
	 text to be converted in a new buffer.  */
      struct buffer *old = current_buffer, *new;

      TEMP_SET_PT (beg);
      call2 (coding->pre_write_conversion, b, e);
      if (old != current_buffer)
	{
	  /* Replace the original text by the text just generated.  */
	  len = ZV - BEGV;
	  new = current_buffer;
	  set_buffer_internal (old);
	  del_range (beg, end);
	  insert_from_buffer (new, 1, len, 0);
	  end = beg + len;
	}
    }

  /* We may be able to shrink the conversion region.  */
  begp = POS_ADDR (beg); endp = begp + (end - beg);
  shrink_conversion_area (&begp, &endp, coding, encodep);

  if (begp == endp)
    /* We need no conversion.  */
    len = end - beg;
  else
    {
      beg += begp - POS_ADDR (beg);
      end =  beg + (endp - begp);

      if (encodep)
	len = encoding_buffer_size (coding, end - beg);
      else
	len = decoding_buffer_size (coding, end - beg);
      buf = get_conversion_buffer (len);

      coding->last_block = 1;
      produced = (encodep
		  ? encode_coding (coding, POS_ADDR (beg), buf, end - beg, len,
				   &consumed)
		  : decode_coding (coding, POS_ADDR (beg), buf, end - beg, len,
				   &consumed));

      len = produced + (beg - XINT (b)) + (XINT (e) - end);

      TEMP_SET_PT (beg);
      insert (buf, produced);
      del_range (PT, PT + end - beg);
      if (pos >= end)
	pos = PT + (pos - end);
      else if (pos > beg)
	pos = beg;
      TEMP_SET_PT (pos);
  }

  if (!encodep && !NILP (coding->post_read_conversion))
    {
      /* We must call a post-conversion function which may alter
	 the text just converted.  */
      Lisp_Object insval;

      beg = XINT (b);
      TEMP_SET_PT (beg);
      insval = call1 (coding->post_read_conversion, make_number (len));
      CHECK_NUMBER (insval, 0);
      len = XINT (insval);
    }

  return make_number (len);
}

Lisp_Object
code_convert_string (str, coding, encodep, nocopy)
     Lisp_Object str, nocopy;
     struct coding_system *coding;
     int encodep;
{
  int len, consumed, produced;
  char *buf;
  unsigned char *begp, *endp;
  int head_skip, tail_skip;
  struct gcpro gcpro1;

  if (encodep && !NILP (coding->pre_write_conversion)
      || !encodep && !NILP (coding->post_read_conversion))
    {
      /* Since we have to call Lisp functions which assume target text
         is in a buffer, after setting a temporary buffer, call
         code_convert_region.  */
      int count = specpdl_ptr - specpdl;
      int len = XSTRING (str)->size;
      Lisp_Object result;
      struct buffer *old = current_buffer;

      record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
      temp_output_buffer_setup (" *code-converting-work*");
      set_buffer_internal (XBUFFER (Vstandard_output));
      insert_from_string (str, 0, len, 0);
      code_convert_region (make_number (BEGV), make_number (ZV),
			   coding, encodep);
      result = make_buffer_string (BEGV, ZV, 0);
      set_buffer_internal (old);
      return unbind_to (count, result);
    }

  /* We may be able to shrink the conversion region.  */
  begp = XSTRING (str)->data;
  endp = begp + XSTRING (str)->size;
  shrink_conversion_area (&begp, &endp, coding, encodep);

  if (begp == endp)
    /* We need no conversion.  */
    return (NILP (nocopy) ? Fcopy_sequence (str) : str);

  head_skip = begp - XSTRING (str)->data;
  tail_skip = XSTRING (str)->size - head_skip - (endp - begp);

  GCPRO1 (str);

  if (encodep)
    len = encoding_buffer_size (coding, endp - begp);
  else
    len = decoding_buffer_size (coding, endp - begp);
  buf = get_conversion_buffer (len + head_skip + tail_skip);

  bcopy (XSTRING (str)->data, buf, head_skip);
  coding->last_block = 1;
  produced = (encodep
	      ? encode_coding (coding, XSTRING (str)->data + head_skip,
			       buf + head_skip, endp - begp, len, &consumed)
	      : decode_coding (coding, XSTRING (str)->data + head_skip,
			       buf + head_skip, endp - begp, len, &consumed));
  bcopy (XSTRING (str)->data + head_skip + (endp - begp),
	 buf + head_skip + produced,
	 tail_skip);

  UNGCPRO;

  return make_string (buf, head_skip + produced + tail_skip);
}

DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
       3, 3, "r\nzCoding system: ",
  "Decode current region by specified coding system.\n\
When called from a program, takes three arguments:\n\
START, END, and CODING-SYSTEM.  START END are buffer positions.\n\
Return length of decoded text.")
  (b, e, coding_system)
     Lisp_Object b, e, coding_system;
{
  struct coding_system coding;

  CHECK_NUMBER_COERCE_MARKER (b, 0);
  CHECK_NUMBER_COERCE_MARKER (e, 1);
  CHECK_SYMBOL (coding_system, 2);

  if (NILP (coding_system))
    return make_number (XFASTINT (e) - XFASTINT (b));
  if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
    error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data);

  return code_convert_region (b, e, &coding, 0);
}

DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
       3, 3, "r\nzCoding system: ",
  "Encode current region by specified coding system.\n\
When called from a program, takes three arguments:\n\
START, END, and CODING-SYSTEM.  START END are buffer positions.\n\
Return length of encoded text.")
  (b, e, coding_system)
     Lisp_Object b, e, coding_system;
{
  struct coding_system coding;

  CHECK_NUMBER_COERCE_MARKER (b, 0);
  CHECK_NUMBER_COERCE_MARKER (e, 1);
  CHECK_SYMBOL (coding_system, 2);

  if (NILP (coding_system))
    return make_number (XFASTINT (e) - XFASTINT (b));
  if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
    error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data);

  return code_convert_region (b, e, &coding, 1);
}

DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
       2, 3, 0,
  "Decode STRING which is encoded in CODING-SYSTEM, and return the result.\n\
Optional arg NOCOPY non-nil means return STRING itself if there's no need\n\
of decoding.")
  (string, coding_system, nocopy)
     Lisp_Object string, coding_system, nocopy;
{
  struct coding_system coding;

  CHECK_STRING (string, 0);
  CHECK_SYMBOL (coding_system, 1);

  if (NILP (coding_system))
    return (NILP (nocopy) ? Fcopy_sequence (string) : string);
  if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
    error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data);

  return code_convert_string (string, &coding, 0, nocopy);
}

DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
       2, 3, 0,
  "Encode STRING to CODING-SYSTEM, and return the result.\n\
Optional arg NOCOPY non-nil means return STRING itself if there's no need\n\
of encoding.")
  (string, coding_system, nocopy)
     Lisp_Object string, coding_system, nocopy;
{
  struct coding_system coding;

  CHECK_STRING (string, 0);
  CHECK_SYMBOL (coding_system, 1);

  if (NILP (coding_system))
    return (NILP (nocopy) ? Fcopy_sequence (string) : string);
  if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
    error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data);

  return code_convert_string (string, &coding, 1, nocopy);
}

DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
  "Decode a JISX0208 character of shift-jis encoding.\n\
CODE is the character code in SJIS.\n\
Return the corresponding character.")
  (code)
     Lisp_Object code;
{
  unsigned char c1, c2, s1, s2;
  Lisp_Object val;

  CHECK_NUMBER (code, 0);
  s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
  DECODE_SJIS (s1, s2, c1, c2);
  XSETFASTINT (val, MAKE_NON_ASCII_CHAR (charset_jisx0208, c1, c2));
  return val;
}

DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
  "Encode a JISX0208 character CHAR to SJIS coding-system.\n\
Return the corresponding character code in SJIS.")
  (ch)
     Lisp_Object ch;
{
  int charset;
  unsigned char c1, c2, s1, s2;
  Lisp_Object val;

  CHECK_NUMBER (ch, 0);
  SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
  if (charset == charset_jisx0208)
    {
      ENCODE_SJIS (c1, c2, s1, s2);
      XSETFASTINT (val, ((int)s1 << 8) | s2);
    }
  else
    XSETFASTINT (val, 0);
  return val;
}

DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
  "Decode a Big5 character CODE of BIG5 coding-system.\n\
CODE is the character code in BIG5.\n\
Return the corresponding character.")
  (code)
     Lisp_Object code;
{
  int charset;
  unsigned char b1, b2, c1, c2;
  Lisp_Object val;

  CHECK_NUMBER (code, 0);
  b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
  DECODE_BIG5 (b1, b2, charset, c1, c2);
  XSETFASTINT (val, MAKE_NON_ASCII_CHAR (charset, c1, c2));
  return val;
}

DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
  "Encode the Big5 character CHAR to BIG5 coding-system.\n\
Return the corresponding character code in Big5.")
  (ch)
     Lisp_Object ch;
{
  int charset;
  unsigned char c1, c2, b1, b2;
  Lisp_Object val;

  CHECK_NUMBER (ch, 0);
  SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
  if (charset == charset_big5_1 || charset == charset_big5_2)
    {
      ENCODE_BIG5 (charset, c1, c2, b1, b2);
      XSETFASTINT (val, ((int)b1 << 8) | b2);
    }
  else
    XSETFASTINT (val, 0);
  return val;
}

DEFUN ("set-terminal-coding-system",
       Fset_terminal_coding_system, Sset_terminal_coding_system, 1, 1,
       "zCoding-system for terminal display: ",
  "Set coding-system of your terminal to CODING-SYSTEM.\n\
All outputs to terminal are encoded to this coding-system.")
  (coding_system)
     Lisp_Object coding_system;
{
  CHECK_SYMBOL (coding_system, 0);
  setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
  update_mode_lines++;
  if (!NILP (Finteractive_p ()))
    Fredraw_display ();
  return Qnil;
}

DEFUN ("terminal-coding-system",
       Fterminal_coding_system, Sterminal_coding_system, 0, 0, 0,
  "Return coding-system of your terminal.")
  ()
{
  return terminal_coding.symbol;
}

DEFUN ("set-keyboard-coding-system",
       Fset_keyboard_coding_system, Sset_keyboard_coding_system, 1, 1,
       "zCoding-system for keyboard input: ",
  "Set coding-system of what is sent from terminal keyboard to CODING-SYSTEM.\n\
All inputs from terminal are decoded from this coding-system.")
  (coding_system)
     Lisp_Object coding_system;
{
  CHECK_SYMBOL (coding_system, 0);
  setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
  return Qnil;
}

DEFUN ("keyboard-coding-system",
       Fkeyboard_coding_system, Skeyboard_coding_system, 0, 0, 0,
  "Return coding-system of what is sent from terminal keyboard.")
  ()
{
  return keyboard_coding.symbol;
}


DEFUN ("find-coding-system", Ffind_coding_system, Sfind_coding_system,
       1, MANY, 0,
  "Return a cons of coding systems for I/O primitive OPERATION.\n\
Remaining arguments are for OPERATION.\n\
OPERATION is one of the following Emacs I/O primitives:\n\
  For file I/O, insert-file-contents or write-region.\n\
  For process I/O, call-process, call-process-region, or start-process.\n\
  For network I/O, open-network-stream.\n\
For each OPERATION, TARGET is selected from the arguments as below:\n\
  For file I/O, TARGET is a file name.\n\
  For process I/O, TARGET is a process name.\n\
  For network I/O, TARGET is a service name or a port number\n\
\n\
The return value is a cons of coding systems for decoding and encoding\n\
registered in nested alist `coding-system-alist' (which see) at a slot\n\
corresponding to OPERATION and TARGET.\n\
If a function symbol is at the slot, return a result of the function call.\n\
The function is called with one argument, a list of all the arguments.")
  (nargs, args)
     int nargs;
     Lisp_Object *args;
{
  Lisp_Object operation, target_idx, target, val;
  register Lisp_Object chain;

  if (nargs < 2)
    error ("Too few arguments");
  operation = args[0];
  if (!SYMBOLP (operation)
      || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
    error ("Invalid first arguement");
  if (nargs < 1 + XINT (target_idx))
    error ("Too few arguments for operation: %s",
	   XSYMBOL (operation)->name->data);
  target = args[XINT (target_idx) + 1];
  if (!(STRINGP (target)
	|| (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
    error ("Invalid %dth argument", XINT (target_idx) + 1);

  chain = Fassq (operation, Vcoding_system_alist);
  if (NILP (chain))
    return Qnil;

  for (chain = XCONS (chain)->cdr; CONSP (chain); chain = XCONS (chain)->cdr)
    {
      Lisp_Object elt = XCONS (chain)->car;

      if (CONSP (elt)
	  && ((STRINGP (target)
	       && STRINGP (XCONS (elt)->car)
	       && fast_string_match (XCONS (elt)->car, target) >= 0)
	      || (INTEGERP (target) && EQ (target, XCONS (elt)->car))))
	return (CONSP (val = XCONS (elt)->cdr)
		? val
		: ((SYMBOLP (val) && Fboundp (val)
		    ? call2 (val, Flist (nargs, args))
		    : Qnil)));
    }
  return Qnil;
}

#endif /* emacs */


/*** 8. Post-amble ***/

init_coding_once ()
{
  int i;

  /* Emacs internal format specific initialize routine.  */ 
  for (i = 0; i <= 0x20; i++)
    emacs_code_class[i] = EMACS_control_code;
  emacs_code_class[0x0A] = EMACS_linefeed_code;
  emacs_code_class[0x0D] = EMACS_carriage_return_code;
  for (i = 0x21 ; i < 0x7F; i++)
    emacs_code_class[i] = EMACS_ascii_code;
  emacs_code_class[0x7F] = EMACS_control_code;
  emacs_code_class[0x80] = EMACS_leading_code_composition;
  for (i = 0x81; i < 0xFF; i++)
    emacs_code_class[i] = EMACS_invalid_code;
  emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
  emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
  emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
  emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;

  /* ISO2022 specific initialize routine.  */
  for (i = 0; i < 0x20; i++)
    iso_code_class[i] = ISO_control_code;
  for (i = 0x21; i < 0x7F; i++)
    iso_code_class[i] = ISO_graphic_plane_0;
  for (i = 0x80; i < 0xA0; i++)
    iso_code_class[i] = ISO_control_code;
  for (i = 0xA1; i < 0xFF; i++)
    iso_code_class[i] = ISO_graphic_plane_1;
  iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
  iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
  iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
  iso_code_class[ISO_CODE_SO] = ISO_shift_out;
  iso_code_class[ISO_CODE_SI] = ISO_shift_in;
  iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
  iso_code_class[ISO_CODE_ESC] = ISO_escape;
  iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
  iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
  iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;

  conversion_buffer_size = MINIMUM_CONVERSION_BUFFER_SIZE;
  conversion_buffer = (char *) xmalloc (MINIMUM_CONVERSION_BUFFER_SIZE);

  setup_coding_system (Qnil, &keyboard_coding);
  setup_coding_system (Qnil, &terminal_coding);
}

#ifdef emacs

syms_of_coding ()
{
  Qtarget_idx = intern ("target-idx");
  staticpro (&Qtarget_idx);

  Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
  Fput (Qwrite_region, Qtarget_idx, make_number (2));

  Qcall_process = intern ("call-process");
  staticpro (&Qcall_process);
  Fput (Qcall_process, Qtarget_idx, make_number (0));

  Qcall_process_region = intern ("call-process-region");
  staticpro (&Qcall_process_region);
  Fput (Qcall_process_region, Qtarget_idx, make_number (2));

  Qstart_process = intern ("start-process");
  staticpro (&Qstart_process);
  Fput (Qstart_process, Qtarget_idx, make_number (2));

  Qopen_network_stream = intern ("open-network-stream");
  staticpro (&Qopen_network_stream);
  Fput (Qopen_network_stream, Qtarget_idx, make_number (3));

  Qcoding_system = intern ("coding-system");
  staticpro (&Qcoding_system);

  Qeol_type = intern ("eol-type");
  staticpro (&Qeol_type);

  Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
  staticpro (&Qbuffer_file_coding_system);

  Qpost_read_conversion = intern ("post-read-conversion");
  staticpro (&Qpost_read_conversion);

  Qpre_write_conversion = intern ("pre-write-conversion");
  staticpro (&Qpre_write_conversion);

  Qcoding_system_vector = intern ("coding-system-vector");
  staticpro (&Qcoding_system_vector);

  Qcoding_system_p = intern ("coding-system-p");
  staticpro (&Qcoding_system_p);

  Qcoding_system_error = intern ("coding-system-error");
  staticpro (&Qcoding_system_error);

  Fput (Qcoding_system_error, Qerror_conditions,
	Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
  Fput (Qcoding_system_error, Qerror_message,
	build_string ("Coding-system error"));

  Qcoding_category_index = intern ("coding-category-index");
  staticpro (&Qcoding_category_index);

  {
    int i;
    for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
      {
	coding_category_table[i] = intern (coding_category_name[i]);
	staticpro (&coding_category_table[i]);
	Fput (coding_category_table[i], Qcoding_category_index,
	      make_number (i));
      }
  }

  defsubr (&Scoding_system_vector);
  defsubr (&Scoding_system_p);
  defsubr (&Sread_coding_system);
  defsubr (&Sread_non_nil_coding_system);
  defsubr (&Scheck_coding_system);
  defsubr (&Sdetect_coding_region);
  defsubr (&Sdecode_coding_region);
  defsubr (&Sencode_coding_region);
  defsubr (&Sdecode_coding_string);
  defsubr (&Sencode_coding_string);
  defsubr (&Sdecode_sjis_char);
  defsubr (&Sencode_sjis_char);
  defsubr (&Sdecode_big5_char);
  defsubr (&Sencode_big5_char);
  defsubr (&Sset_terminal_coding_system);
  defsubr (&Sterminal_coding_system);
  defsubr (&Sset_keyboard_coding_system);
  defsubr (&Skeyboard_coding_system);
  defsubr (&Sfind_coding_system);

  DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
    "List of coding-categories (symbols) ordered by priority.");
  {
    int i;

    Vcoding_category_list = Qnil;
    for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
      Vcoding_category_list
	= Fcons (coding_category_table[i], Vcoding_category_list);
  }

  DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
    "A variable of internal use only.\n\
If the value is a coding system, it is used for decoding on read operation.\n\
If not, an appropriate element in `coding-system-alist' (which see) is used.");
  Vcoding_system_for_read = Qnil;

  DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
    "A variable of internal use only.\n\
If the value is a coding system, it is used for encoding on write operation.\n\
If not, an appropriate element in `coding-system-alist' (which see) is used.");
  Vcoding_system_for_write = Qnil;

  DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
    "Coding-system used in the latest file or process I/O.");
  Vlast_coding_system_used = Qnil;

  DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
    "Nested alist to decide a coding system for a specific I/O operation.\n\
The format is ((OPERATION . ((REGEXP . CODING-SYSTEMS) ...)) ...).\n\
\n\
OPERATION is one of the following Emacs I/O primitives:\n\
  For file I/O, insert-file-contents and write-region.\n\
  For process I/O, call-process, call-process-region, and start-process.\n\
  For network I/O, open-network-stream.\n\
In addition, for process I/O, `process-argument' can be specified for\n\
encoding arguments of the process.\n\
\n\
REGEXP is a regular expression matching a target of OPERATION, where\n\
target is a file name for file I/O operations, a process name for\n\
process I/O operations, or a service name for network I/O\n\
operations.  REGEXP might be a port number for network I/O operation.\n\
\n\
CODING-SYSTEMS is a cons of coding systems to encode and decode\n\
character code on OPERATION, or a function symbol returning the cons.\n\
See the documentation of `find-coding-system' for more detail.");
  Vcoding_system_alist = Qnil;

  DEFVAR_INT ("eol-mnemonic-unix", &eol_mnemonic_unix,
    "Mnemonic character indicating UNIX-like end-of-line format (i.e. LF) .");
  eol_mnemonic_unix = '.';

  DEFVAR_INT ("eol-mnemonic-dos", &eol_mnemonic_dos,
    "Mnemonic character indicating DOS-like end-of-line format (i.e. CRLF).");
  eol_mnemonic_dos = ':';

  DEFVAR_INT ("eol-mnemonic-mac", &eol_mnemonic_mac,
    "Mnemonic character indicating MAC-like end-of-line format (i.e. CR).");
  eol_mnemonic_mac = '\'';

  DEFVAR_INT ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
    "Mnemonic character indicating end-of-line format is not yet decided.");
  eol_mnemonic_undecided = '-';

  DEFVAR_LISP ("alternate-charset-table", &Valternate_charset_table,
    "Alist of charsets vs the alternate charsets.\n\
While decoding, if a charset (car part of an element) is found,\n\
decode it as the alternate charset (cdr part of the element).");
  Valternate_charset_table = Qnil;

  DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
    "Alist of charsets vs revision numbers.\n\
While encoding, if a charset (car part of an element) is found,\n\
designate it with the escape sequence identifing revision (cdr part of the element).");
  Vcharset_revision_alist = Qnil;
}

#endif /* emacs */