diff options
author | joseph <joseph@7b3dc134-2b1b-0410-93df-9e9f96275f8d> | 2011-10-25 16:50:31 +0000 |
---|---|---|
committer | joseph <joseph@7b3dc134-2b1b-0410-93df-9e9f96275f8d> | 2011-10-25 16:50:31 +0000 |
commit | c86ab84d63b20aff7cf391414009a38477fe7137 (patch) | |
tree | eb92a78a0fd85b83317300f94a1dbed8ca414fb9 /libc/sysdeps/ieee754/dbl-64/s_sin.c | |
parent | 4bbe4e2185c5484328182720ff7b3bb4f9593bff (diff) | |
download | eglibc2-c86ab84d63b20aff7cf391414009a38477fe7137.tar.gz |
Merge changes between r15532 and r15557 from /fsf/trunk.
git-svn-id: svn://svn.eglibc.org/trunk@15558 7b3dc134-2b1b-0410-93df-9e9f96275f8d
Diffstat (limited to 'libc/sysdeps/ieee754/dbl-64/s_sin.c')
-rw-r--r-- | libc/sysdeps/ieee754/dbl-64/s_sin.c | 274 |
1 files changed, 159 insertions, 115 deletions
diff --git a/libc/sysdeps/ieee754/dbl-64/s_sin.c b/libc/sysdeps/ieee754/dbl-64/s_sin.c index b40776f5e..6f19f158f 100644 --- a/libc/sysdeps/ieee754/dbl-64/s_sin.c +++ b/libc/sysdeps/ieee754/dbl-64/s_sin.c @@ -1,7 +1,7 @@ /* * IBM Accurate Mathematical Library * written by International Business Machines Corp. - * Copyright (C) 2001, 2009 Free Software Foundation + * Copyright (C) 2001, 2009, 2011 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by @@ -53,15 +53,24 @@ #include "mydefs.h" #include "usncs.h" #include "MathLib.h" -#include "sincos.tbl" #include "math_private.h" +#ifndef SECTION +# define SECTION +#endif + +extern const union +{ + int4 i[880]; + double x[440]; +} __sincostab attribute_hidden; + static const double - sn3 = -1.66666666666664880952546298448555E-01, - sn5 = 8.33333214285722277379541354343671E-03, - cs2 = 4.99999999999999999999950396842453E-01, - cs4 = -4.16666666666664434524222570944589E-02, - cs6 = 1.38888874007937613028114285595617E-03; + sn3 = -1.66666666666664880952546298448555E-01, + sn5 = 8.33333214285722277379541354343671E-03, + cs2 = 4.99999999999999999999950396842453E-01, + cs4 = -4.16666666666664434524222570944589E-02, + cs6 = 1.38888874007937613028114285595617E-03; void __dubsin(double x, double dx, double w[]); void __docos(double x, double dx, double w[]); @@ -87,7 +96,9 @@ static double csloww2(double x, double dx, double orig, int n); /* An ultimate sin routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of sin(x) */ /*******************************************************************/ -double __sin(double x){ +double +SECTION +__sin(double x){ double xx,res,t,cor,y,s,c,sn,ssn,cs,ccs,xn,a,da,db,eps,xn1,xn2; #if 0 double w[2]; @@ -120,10 +131,10 @@ double __sin(double x){ s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=(m>0)?sincos.x[k]:-sincos.x[k]; - ssn=(m>0)?sincos.x[k+1]:-sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=(m>0)?__sincostab.x[k]:-__sincostab.x[k]; + ssn=(m>0)?__sincostab.x[k+1]:-__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; cor=(ssn+s*ccs-sn*c)+cs*s; res=sn+cor; cor=(sn-res)+cor; @@ -146,10 +157,10 @@ double __sin(double x){ s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; cor=(ccs-s*ssn-cs*c)-sn*s; res=cs+cor; cor=(cs-res)+cor; @@ -174,7 +185,7 @@ double __sin(double x){ xx = a*a; if (n) {a=-a;da=-da;} if (xx < 0.01588) { - /*Taylor series */ + /*Taylor series */ t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da; res = a+t; cor = (a-res)+t; @@ -192,10 +203,10 @@ double __sin(double x){ s = y + (db+y*xx*(sn3 +xx*sn5)); c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; cor=(ssn+s*ccs-sn*c)+cs*s; res=sn+cor; cor=(sn-res)+cor; @@ -212,10 +223,10 @@ double __sin(double x){ y=a-(u.x-big.x)+da; xx=y*y; k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); cor=(ccs-s*ssn-cs*c)-sn*s; @@ -253,7 +264,7 @@ double __sin(double x){ xx = a*a; if (n) {a=-a;da=-da;} if (xx < 0.01588) { - /* Taylor series */ + /* Taylor series */ t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da; res = a+t; cor = (a-res)+t; @@ -269,10 +280,10 @@ double __sin(double x){ s = y + (db+y*xx*(sn3 +xx*sn5)); c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; cor=(ssn+s*ccs-sn*c)+cs*s; res=sn+cor; cor=(sn-res)+cor; @@ -289,10 +300,10 @@ double __sin(double x){ y=a-(u.x-big.x)+da; xx=y*y; k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); cor=(ccs-s*ssn-cs*c)-sn*s; @@ -344,7 +355,9 @@ double __sin(double x){ /* it computes the correctly rounded (to nearest) value of cos(x) */ /*******************************************************************/ -double __cos(double x) +double +SECTION +__cos(double x) { double y,xx,res,t,cor,s,c,sn,ssn,cs,ccs,xn,a,da,db,eps,xn1,xn2; mynumber u,v; @@ -364,10 +377,10 @@ double __cos(double x) s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; cor=(ccs-s*ssn-cs*c)-sn*s; res=cs+cor; cor=(cs-res)+cor; @@ -396,10 +409,10 @@ double __cos(double x) s = y + (db+y*xx*(sn3 +xx*sn5)); c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; cor=(ssn+s*ccs-sn*c)+cs*s; res=sn+cor; cor=(sn-res)+cor; @@ -442,10 +455,10 @@ double __cos(double x) s = y + (db+y*xx*(sn3 +xx*sn5)); c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; cor=(ssn+s*ccs-sn*c)+cs*s; res=sn+cor; cor=(sn-res)+cor; @@ -461,10 +474,10 @@ double __cos(double x) y=a-(u.x-big.x)+da; xx=y*y; k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); cor=(ccs-s*ssn-cs*c)-sn*s; @@ -473,7 +486,7 @@ double __cos(double x) cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps; return (res==res+cor)? ((n)?-res:res) : csloww2(a,da,x,n); - break; + break; } @@ -517,10 +530,10 @@ double __cos(double x) s = y + (db+y*xx*(sn3 +xx*sn5)); c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; cor=(ssn+s*ccs-sn*c)+cs*s; res=sn+cor; cor=(sn-res)+cor; @@ -536,10 +549,10 @@ double __cos(double x) y=a-(u.x-big.x)+da; xx=y*y; k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); cor=(ccs-s*ssn-cs*c)-sn*s; @@ -591,7 +604,9 @@ double __cos(double x) /* precision and if still doesn't accurate enough by mpsin or dubsin */ /************************************************************************/ -static double slow(double x) { +static double +SECTION +slow(double x) { static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y,x1,x2,xx,r,t,res,cor,w[2]; x1=(x+th2_36)-th2_36; @@ -611,11 +626,13 @@ static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ } } /*******************************************************************************/ -/* Routine compute sin(x) for 0.25<|x|< 0.855469 by sincos.tbl and Taylor */ +/* Routine compute sin(x) for 0.25<|x|< 0.855469 by __sincostab.tbl and Taylor */ /* and if result still doesn't accurate enough by mpsin or dubsin */ /*******************************************************************************/ -static double slow1(double x) { +static double +SECTION +slow1(double x) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res; static const double t22 = 6291456.0; @@ -627,10 +644,10 @@ static double slow1(double x) { s = y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; /* Data */ - ssn=sincos.x[k+1]; /* from */ - cs=sincos.x[k+2]; /* tables */ - ccs=sincos.x[k+3]; /* sincos.tbl */ + sn=__sincostab.x[k]; /* Data */ + ssn=__sincostab.x[k+1]; /* from */ + cs=__sincostab.x[k+2]; /* tables */ + ccs=__sincostab.x[k+3]; /* __sincostab.tbl */ y1 = (y+t22)-t22; y2 = y - y1; c1 = (cs+t22)-t22; @@ -648,10 +665,12 @@ static double slow1(double x) { } } /**************************************************************************/ -/* Routine compute sin(x) for 0.855469 <|x|<2.426265 by sincos.tbl */ +/* Routine compute sin(x) for 0.855469 <|x|<2.426265 by __sincostab.tbl */ /* and if result still doesn't accurate enough by mpsin or dubsin */ /**************************************************************************/ -static double slow2(double x) { +static double +SECTION +slow2(double x) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res,del; static const double t22 = 6291456.0; @@ -672,10 +691,10 @@ static double slow2(double x) { s = y*xx*(sn3 +xx*sn5); c = y*del+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+del; e1 = (sn+t22)-t22; @@ -703,7 +722,9 @@ static double slow2(double x) { /* result.And if result not accurate enough routine calls mpsin1 or dubsin */ /***************************************************************************/ -static double sloww(double x,double dx, double orig) { +static double +SECTION +sloww(double x,double dx, double orig) { static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y,x1,x2,xx,r,t,res,cor,w[2],a,da,xn; union {int4 i[2]; double x;} v; @@ -750,7 +771,9 @@ static double sloww(double x,double dx, double orig) { /* accurate enough routine calls mpsin1 or dubsin */ /***************************************************************************/ -static double sloww1(double x, double dx, double orig) { +static double +SECTION +sloww1(double x, double dx, double orig) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res; static const double t22 = 6291456.0; @@ -763,10 +786,10 @@ static double sloww1(double x, double dx, double orig) { s = y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; c1 = (cs+t22)-t22; @@ -792,7 +815,9 @@ static double sloww1(double x, double dx, double orig) { /* accurate enough routine calls mpsin1 or dubsin */ /***************************************************************************/ -static double sloww2(double x, double dx, double orig, int n) { +static double +SECTION +sloww2(double x, double dx, double orig, int n) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res; static const double t22 = 6291456.0; @@ -805,10 +830,10 @@ static double sloww2(double x, double dx, double orig, int n) { s = y*xx*(sn3 +xx*sn5); c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; @@ -836,7 +861,9 @@ static double sloww2(double x, double dx, double orig, int n) { /* result.And if result not accurate enough routine calls other routines */ /***************************************************************************/ -static double bsloww(double x,double dx, double orig,int n) { +static double +SECTION +bsloww(double x,double dx, double orig,int n) { static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y,x1,x2,xx,r,t,res,cor,w[2]; #if 0 @@ -869,7 +896,9 @@ static double bsloww(double x,double dx, double orig,int n) { /* And if result not accurate enough routine calls other routines */ /***************************************************************************/ -static double bsloww1(double x, double dx, double orig,int n) { +static double +SECTION +bsloww1(double x, double dx, double orig,int n) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res; static const double t22 = 6291456.0; @@ -882,10 +911,10 @@ mynumber u; s = y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; c1 = (cs+t22)-t22; @@ -912,7 +941,9 @@ mynumber u; /* And if result not accurate enough routine calls other routines */ /***************************************************************************/ -static double bsloww2(double x, double dx, double orig, int n) { +static double +SECTION +bsloww2(double x, double dx, double orig, int n) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res; static const double t22 = 6291456.0; @@ -925,10 +956,10 @@ mynumber u; s = y*xx*(sn3 +xx*sn5); c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; @@ -954,7 +985,9 @@ mynumber u; /* precision and if still doesn't accurate enough by mpcos or docos */ /************************************************************************/ -static double cslow2(double x) { +static double +SECTION +cslow2(double x) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res; static const double t22 = 6291456.0; @@ -966,10 +999,10 @@ static double cslow2(double x) { s = y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; y1 = (y+t22)-t22; y2 = y - y1; e1 = (sn+t22)-t22; @@ -997,7 +1030,9 @@ static double cslow2(double x) { /***************************************************************************/ -static double csloww(double x,double dx, double orig) { +static double +SECTION +csloww(double x,double dx, double orig) { static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y,x1,x2,xx,r,t,res,cor,w[2],a,da,xn; union {int4 i[2]; double x;} v; @@ -1046,7 +1081,9 @@ static double csloww(double x,double dx, double orig) { /* accurate enough routine calls other routines */ /***************************************************************************/ -static double csloww1(double x, double dx, double orig) { +static double +SECTION +csloww1(double x, double dx, double orig) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res; static const double t22 = 6291456.0; @@ -1059,10 +1096,10 @@ static double csloww1(double x, double dx, double orig) { s = y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; c1 = (cs+t22)-t22; @@ -1090,7 +1127,9 @@ static double csloww1(double x, double dx, double orig) { /* accurate enough routine calls other routines */ /***************************************************************************/ -static double csloww2(double x, double dx, double orig, int n) { +static double +SECTION +csloww2(double x, double dx, double orig, int n) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res; static const double t22 = 6291456.0; @@ -1103,10 +1142,10 @@ static double csloww2(double x, double dx, double orig, int n) { s = y*xx*(sn3 +xx*sn5); c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; - sn=sincos.x[k]; - ssn=sincos.x[k+1]; - cs=sincos.x[k+2]; - ccs=sincos.x[k+3]; + sn=__sincostab.x[k]; + ssn=__sincostab.x[k+1]; + cs=__sincostab.x[k+2]; + ccs=__sincostab.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; @@ -1127,12 +1166,17 @@ static double csloww2(double x, double dx, double orig, int n) { } } +#ifndef __cos weak_alias (__cos, cos) +# ifdef NO_LONG_DOUBLE +strong_alias (__cos, __cosl) +weak_alias (__cos, cosl) +# endif +#endif +#ifndef __sin weak_alias (__sin, sin) - -#ifdef NO_LONG_DOUBLE +# ifdef NO_LONG_DOUBLE strong_alias (__sin, __sinl) weak_alias (__sin, sinl) -strong_alias (__cos, __cosl) -weak_alias (__cos, cosl) +# endif #endif |