1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
package ipam
import (
"context"
"fmt"
"math/rand"
"net"
"sort"
"sync"
"sync/atomic"
"testing"
"time"
"github.com/docker/docker/libnetwork/ipamapi"
"github.com/docker/docker/libnetwork/ipamutils"
"golang.org/x/sync/errgroup"
"golang.org/x/sync/semaphore"
"gotest.tools/v3/assert"
is "gotest.tools/v3/assert/cmp"
)
const (
all = iota
even
odd
)
type releaseMode uint
type testContext struct {
a *Allocator
opts map[string]string
ipList []*net.IPNet
ipMap map[string]bool
pid string
maxIP int
}
func newTestContext(t *testing.T, mask int, options map[string]string) *testContext {
a, err := NewAllocator(ipamutils.GetLocalScopeDefaultNetworks(), ipamutils.GetGlobalScopeDefaultNetworks())
if err != nil {
t.Fatal(err)
}
network := fmt.Sprintf("192.168.100.0/%d", mask)
// total ips 2^(32-mask) - 2 (network and broadcast)
totalIps := 1<<uint(32-mask) - 2
pid, _, _, err := a.RequestPool(localAddressSpace, network, "", nil, false)
if err != nil {
t.Fatal(err)
}
return &testContext{
a: a,
opts: options,
ipList: make([]*net.IPNet, 0, totalIps),
ipMap: make(map[string]bool),
pid: pid,
maxIP: totalIps,
}
}
func TestDebug(t *testing.T) {
tctx := newTestContext(t, 23, map[string]string{ipamapi.AllocSerialPrefix: "true"})
tctx.a.RequestAddress(tctx.pid, nil, map[string]string{ipamapi.AllocSerialPrefix: "true"})
tctx.a.RequestAddress(tctx.pid, nil, map[string]string{ipamapi.AllocSerialPrefix: "true"})
}
type op struct {
id int32
add bool
name string
}
func (o *op) String() string {
return fmt.Sprintf("%+v", *o)
}
func TestRequestPoolParallel(t *testing.T) {
a, err := NewAllocator(ipamutils.GetLocalScopeDefaultNetworks(), ipamutils.GetGlobalScopeDefaultNetworks())
if err != nil {
t.Fatal(err)
}
var operationIndex int32
ch := make(chan *op, 240)
group := new(errgroup.Group)
defer func() {
if err := group.Wait(); err != nil {
t.Fatal(err)
}
}()
for i := 0; i < 120; i++ {
group.Go(func() error {
name, _, _, err := a.RequestPool("GlobalDefault", "", "", nil, false)
if err != nil {
t.Log(err) // log so we can see the error in real time rather than at the end when we actually call "Wait".
return fmt.Errorf("request error %v", err)
}
idx := atomic.AddInt32(&operationIndex, 1)
ch <- &op{idx, true, name}
time.Sleep(time.Duration(rand.Intn(100)) * time.Millisecond)
idx = atomic.AddInt32(&operationIndex, 1)
err = a.ReleasePool(name)
if err != nil {
t.Log(err) // log so we can see the error in real time rather than at the end when we actually call "Wait".
return fmt.Errorf("release error %v", err)
}
ch <- &op{idx, false, name}
return nil
})
}
// map of events
m := make(map[string][]*op)
for i := 0; i < 240; i++ {
x := <-ch
ops, ok := m[x.name]
if !ok {
ops = make([]*op, 0, 10)
}
ops = append(ops, x)
m[x.name] = ops
}
// Post processing to avoid event reordering on the channel
for pool, ops := range m {
sort.Slice(ops[:], func(i, j int) bool {
return ops[i].id < ops[j].id
})
expected := true
for _, op := range ops {
if op.add != expected {
t.Fatalf("Operations for %v not valid %v, operations %v", pool, op, ops)
}
expected = !expected
}
}
}
func TestFullAllocateRelease(t *testing.T) {
for _, parallelism := range []int64{2, 4, 8} {
for _, mask := range []int{29, 25, 24, 21} {
tctx := newTestContext(t, mask, map[string]string{ipamapi.AllocSerialPrefix: "true"})
allocate(t, tctx, parallelism)
release(t, tctx, all, parallelism)
}
}
}
func TestOddAllocateRelease(t *testing.T) {
for _, parallelism := range []int64{2, 4, 8} {
for _, mask := range []int{29, 25, 24, 21} {
tctx := newTestContext(t, mask, map[string]string{ipamapi.AllocSerialPrefix: "true"})
allocate(t, tctx, parallelism)
release(t, tctx, odd, parallelism)
}
}
}
func TestFullAllocateSerialReleaseParallel(t *testing.T) {
for _, parallelism := range []int64{1, 4, 8} {
tctx := newTestContext(t, 23, map[string]string{ipamapi.AllocSerialPrefix: "true"})
allocate(t, tctx, 1)
release(t, tctx, all, parallelism)
}
}
func TestOddAllocateSerialReleaseParallel(t *testing.T) {
for _, parallelism := range []int64{1, 4, 8} {
tctx := newTestContext(t, 23, map[string]string{ipamapi.AllocSerialPrefix: "true"})
allocate(t, tctx, 1)
release(t, tctx, odd, parallelism)
}
}
func TestEvenAllocateSerialReleaseParallel(t *testing.T) {
for _, parallelism := range []int64{1, 4, 8} {
tctx := newTestContext(t, 23, map[string]string{ipamapi.AllocSerialPrefix: "true"})
allocate(t, tctx, 1)
release(t, tctx, even, parallelism)
}
}
func allocate(t *testing.T, tctx *testContext, parallel int64) {
// Allocate the whole space
parallelExec := semaphore.NewWeighted(parallel)
routineNum := tctx.maxIP + 10
ch := make(chan *net.IPNet, routineNum)
var id int
var wg sync.WaitGroup
// routine loop
for {
wg.Add(1)
go func(id int) {
parallelExec.Acquire(context.Background(), 1)
ip, _, _ := tctx.a.RequestAddress(tctx.pid, nil, tctx.opts)
ch <- ip
parallelExec.Release(1)
wg.Done()
}(id)
id++
if id == routineNum {
break
}
}
// give time to all the go routines to finish
wg.Wait()
// process results
for i := 0; i < routineNum; i++ {
ip := <-ch
if ip == nil {
continue
}
if there, ok := tctx.ipMap[ip.String()]; ok && there {
t.Fatalf("Got duplicate IP %s", ip.String())
}
tctx.ipList = append(tctx.ipList, ip)
tctx.ipMap[ip.String()] = true
}
assert.Assert(t, is.Len(tctx.ipList, tctx.maxIP))
}
func release(t *testing.T, tctx *testContext, mode releaseMode, parallel int64) {
var startIndex, increment, stopIndex, length int
switch mode {
case all:
startIndex = 0
increment = 1
stopIndex = tctx.maxIP - 1
length = tctx.maxIP
case odd, even:
if mode == odd {
startIndex = 1
}
increment = 2
stopIndex = tctx.maxIP - 1
length = tctx.maxIP / 2
if tctx.maxIP%2 > 0 {
length++
}
default:
t.Fatal("unsupported mode yet")
}
ipIndex := make([]int, 0, length)
// calculate the index to release from the ipList
for i := startIndex; ; i += increment {
ipIndex = append(ipIndex, i)
if i+increment > stopIndex {
break
}
}
var id int
parallelExec := semaphore.NewWeighted(parallel)
ch := make(chan *net.IPNet, len(ipIndex))
group := new(errgroup.Group)
for index := range ipIndex {
index := index
group.Go(func() error {
parallelExec.Acquire(context.Background(), 1)
err := tctx.a.ReleaseAddress(tctx.pid, tctx.ipList[index].IP)
if err != nil {
return fmt.Errorf("routine %d got %v", id, err)
}
ch <- tctx.ipList[index]
parallelExec.Release(1)
return nil
})
id++
}
if err := group.Wait(); err != nil {
t.Fatal(err)
}
for i := 0; i < len(ipIndex); i++ {
ip := <-ch
// check if it is really free
_, _, err := tctx.a.RequestAddress(tctx.pid, ip.IP, nil)
assert.Check(t, err, "ip %v not properly released", ip)
if err != nil {
t.Fatalf("ip %v not properly released, error:%v", ip, err)
}
err = tctx.a.ReleaseAddress(tctx.pid, ip.IP)
assert.NilError(t, err)
if there, ok := tctx.ipMap[ip.String()]; !ok || !there {
t.Fatalf("ip %v got double deallocated", ip)
}
tctx.ipMap[ip.String()] = false
for j, v := range tctx.ipList {
if v == ip {
tctx.ipList = append(tctx.ipList[:j], tctx.ipList[j+1:]...)
break
}
}
}
assert.Check(t, is.Len(tctx.ipList, tctx.maxIP-length))
}
|