summaryrefslogtreecommitdiff
path: root/salsa.cpp
blob: 4781218a3b2be88058ad1f4774f1b6ba2f3a6244 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// salsa.cpp - written and placed in the public domain by Wei Dai

#include "pch.h"
#include "salsa.h"
#include "misc.h"
#include "argnames.h"
#include "cpu.h"

#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
#include <emmintrin.h>
#endif

NAMESPACE_BEGIN(CryptoPP)

void Salsa20_TestInstantiations()
{
	Salsa20::Encryption x;
}

void Salsa20_Policy::CipherGetNextIV(byte *IV)
{
	word32 j6, j7;

	j6 = m_state[14] + 1;
	j7 = m_state[11] + (j6 == 0);

	PutWord(false, LITTLE_ENDIAN_ORDER, IV, j6);
	PutWord(false, LITTLE_ENDIAN_ORDER, IV+4, j7);
}

void Salsa20_Policy::CipherSetKey(const NameValuePairs &params, const byte *key, size_t length)
{
	m_rounds = params.GetIntValueWithDefault(Name::Rounds(), 20);

	if (!(m_rounds == 8 || m_rounds == 12 || m_rounds == 20))
		throw InvalidRounds(StaticAlgorithmName(), m_rounds);

	// m_state is reordered for SSE2
	GetBlock<word32, LittleEndian, false> get1(key);
	get1(m_state[13])(m_state[10])(m_state[7])(m_state[4]);
	GetBlock<word32, LittleEndian, false> get2(key + length - 16);
	get2(m_state[15])(m_state[12])(m_state[9])(m_state[6]);

	// "expand 16-byte k" or "expand 32-byte k"
	m_state[0] = 0x61707865;
	m_state[1] = (length == 16) ? 0x3120646e : 0x3320646e;
	m_state[2] = (length == 16) ? 0x79622d36 : 0x79622d32;
	m_state[3] = 0x6b206574;
}

void Salsa20_Policy::CipherResynchronize(byte *keystreamBuffer, const byte *IV)
{
	GetBlock<word32, LittleEndian, false> get(IV);
	get(m_state[14])(m_state[11]);
	m_state[8] = m_state[5] = 0;
}

void Salsa20_Policy::SeekToIteration(lword iterationCount)
{
	m_state[8] = (word32)iterationCount;
	m_state[5] = (word32)SafeRightShift<32>(iterationCount);
}

#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X64
unsigned int Salsa20_Policy::GetAlignment() const
{
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
	if (HasSSE2())
		return 16;
	else
#endif
		return 1;
}

unsigned int Salsa20_Policy::GetOptimalBlockSize() const
{
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
	if (HasSSE2())
		return 4*BYTES_PER_ITERATION;
	else
#endif
		return BYTES_PER_ITERATION;
}
#endif

void Salsa20_Policy::OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount)
{
	int i;
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
	if (HasSSE2())
	{
		__m128i *s = (__m128i *)m_state.data();

		if (iterationCount >= 4)
		{
			__m128i ss[16];
			ss[0] = _mm_shuffle_epi32(s[0], _MM_SHUFFLE(0, 0, 0, 0));
			ss[1] = _mm_shuffle_epi32(s[0], _MM_SHUFFLE(1, 1, 1, 1));
			ss[2] = _mm_shuffle_epi32(s[0], _MM_SHUFFLE(2, 2, 2, 2));
			ss[3] = _mm_shuffle_epi32(s[0], _MM_SHUFFLE(3, 3, 3, 3));
			ss[4] = _mm_shuffle_epi32(s[1], _MM_SHUFFLE(0, 0, 0, 0));
			ss[6] = _mm_shuffle_epi32(s[1], _MM_SHUFFLE(2, 2, 2, 2));
			ss[7] = _mm_shuffle_epi32(s[1], _MM_SHUFFLE(3, 3, 3, 3));
			ss[9] = _mm_shuffle_epi32(s[2], _MM_SHUFFLE(1, 1, 1, 1));
			ss[10] = _mm_shuffle_epi32(s[2], _MM_SHUFFLE(2, 2, 2, 2));
			ss[11] = _mm_shuffle_epi32(s[2], _MM_SHUFFLE(3, 3, 3, 3));
			ss[12] = _mm_shuffle_epi32(s[3], _MM_SHUFFLE(0, 0, 0, 0));
			ss[13] = _mm_shuffle_epi32(s[3], _MM_SHUFFLE(1, 1, 1, 1));
			ss[14] = _mm_shuffle_epi32(s[3], _MM_SHUFFLE(2, 2, 2, 2));
			ss[15] = _mm_shuffle_epi32(s[3], _MM_SHUFFLE(3, 3, 3, 3));

			do
			{
				word32 *countersLo = (word32*)&(ss[8]), *countersHi = (word32*)&(ss[5]);
				for (i=0; i<4; i++)
				{
					countersLo[i] = m_state[8];
					countersHi[i] = m_state[5];
					if (++m_state[8] == 0)
						++m_state[5];
				}

				__m128i x0 = ss[0];
				__m128i x1 = ss[1];
				__m128i x2 = ss[2];
				__m128i x3 = ss[3];
				__m128i x4 = ss[4];
				__m128i x5 = ss[5];
				__m128i x6 = ss[6];
				__m128i x7 = ss[7];
				__m128i x8 = ss[8];
				__m128i x9 = ss[9];
				__m128i x10 = ss[10];
				__m128i x11 = ss[11];
				__m128i x12 = ss[12];
				__m128i x13 = ss[13];
				__m128i x14 = ss[14];
				__m128i x15 = ss[15];

				for (i=m_rounds; i>0; i-=2)
				{
					#define SSE2_QUARTER_ROUND(a, b, d, i)				{\
						__m128i t = _mm_add_epi32(a, d);				\
						b = _mm_xor_si128(b, _mm_slli_epi32(t, i));		\
						b = _mm_xor_si128(b, _mm_srli_epi32(t, 32-i));}

					#define QUARTER_ROUND(a, b, c, d)	\
						SSE2_QUARTER_ROUND(a, b, d, 7)	\
						SSE2_QUARTER_ROUND(b, c, a, 9)	\
						SSE2_QUARTER_ROUND(c, d, b, 13)	\
						SSE2_QUARTER_ROUND(d, a, c, 18)	

					QUARTER_ROUND(x0, x4, x8, x12)
					QUARTER_ROUND(x1, x5, x9, x13)
					QUARTER_ROUND(x2, x6, x10, x14)
					QUARTER_ROUND(x3, x7, x11, x15)

					QUARTER_ROUND(x0, x13, x10, x7)
					QUARTER_ROUND(x1, x14, x11, x4)
					QUARTER_ROUND(x2, x15, x8, x5)
					QUARTER_ROUND(x3, x12, x9, x6)

					#undef QUARTER_ROUND
				}

				x0 = _mm_add_epi32(x0, ss[0]);
				x1 = _mm_add_epi32(x1, ss[1]);
				x2 = _mm_add_epi32(x2, ss[2]);
				x3 = _mm_add_epi32(x3, ss[3]);
				x4 = _mm_add_epi32(x4, ss[4]);
				x5 = _mm_add_epi32(x5, ss[5]);
				x6 = _mm_add_epi32(x6, ss[6]);
				x7 = _mm_add_epi32(x7, ss[7]);
				x8 = _mm_add_epi32(x8, ss[8]);
				x9 = _mm_add_epi32(x9, ss[9]);
				x10 = _mm_add_epi32(x10, ss[10]);
				x11 = _mm_add_epi32(x11, ss[11]);
				x12 = _mm_add_epi32(x12, ss[12]);
				x13 = _mm_add_epi32(x13, ss[13]);
				x14 = _mm_add_epi32(x14, ss[14]);
				x15 = _mm_add_epi32(x15, ss[15]);

				#define OUTPUT_4(x, a, b, c, d, e, f, g, h)	{\
					__m128i t0 = _mm_unpacklo_epi32(a, b);\
					__m128i t1 = _mm_unpacklo_epi32(c, d);\
					__m128i t2 = _mm_unpacklo_epi64(t0, t1);\
					CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, e, t2)\
					t2 = _mm_unpackhi_epi64(t0, t1);\
					CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, f, t2)\
					t0 = _mm_unpackhi_epi32(a, b);\
					t1 = _mm_unpackhi_epi32(c, d);\
					t2 = _mm_unpacklo_epi64(t0, t1);\
					CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, g, t2)\
					t2 = _mm_unpackhi_epi64(t0, t1);\
					CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, h, t2)}

				#define SALSA_OUTPUT(x)		\
					OUTPUT_4(x, x0, x13, x10, x7, 0, 4, 8, 12)\
					OUTPUT_4(x, x4, x1, x14, x11, 1, 5, 9, 13)\
					OUTPUT_4(x, x8, x5, x2, x15, 2, 6, 10, 14)\
					OUTPUT_4(x, x12, x9, x6, x3, 3, 7, 11, 15)

				CRYPTOPP_KEYSTREAM_OUTPUT_SWITCH(SALSA_OUTPUT, 4*BYTES_PER_ITERATION)

				#undef SALSA_OUTPUT
			} while ((iterationCount-=4) >= 4);
		}

		if (!IsP4()) while (iterationCount)
		{
			--iterationCount;
			__m128i x0 = s[0];
			__m128i x1 = s[1];
			__m128i x2 = s[2];
			__m128i x3 = s[3];

			for (i=m_rounds; i>0; i-=2)
			{
				SSE2_QUARTER_ROUND(x0, x1, x3, 7)
				SSE2_QUARTER_ROUND(x1, x2, x0, 9)
				SSE2_QUARTER_ROUND(x2, x3, x1, 13)
				SSE2_QUARTER_ROUND(x3, x0, x2, 18)

				x1 = _mm_shuffle_epi32(x1, _MM_SHUFFLE(2, 1, 0, 3));
				x2 = _mm_shuffle_epi32(x2, _MM_SHUFFLE(1, 0, 3, 2));
				x3 = _mm_shuffle_epi32(x3, _MM_SHUFFLE(0, 3, 2, 1));

				SSE2_QUARTER_ROUND(x0, x3, x1, 7)
				SSE2_QUARTER_ROUND(x3, x2, x0, 9)
				SSE2_QUARTER_ROUND(x2, x1, x3, 13)
				SSE2_QUARTER_ROUND(x1, x0, x2, 18)

				x1 = _mm_shuffle_epi32(x1, _MM_SHUFFLE(0, 3, 2, 1));
				x2 = _mm_shuffle_epi32(x2, _MM_SHUFFLE(1, 0, 3, 2));
				x3 = _mm_shuffle_epi32(x3, _MM_SHUFFLE(2, 1, 0, 3));
			}

			x0 = _mm_add_epi32(x0, s[0]);
			x1 = _mm_add_epi32(x1, s[1]);
			x2 = _mm_add_epi32(x2, s[2]);
			x3 = _mm_add_epi32(x3, s[3]);

			if (++m_state[8] == 0)
				++m_state[5];

			CRYPTOPP_ALIGN_DATA(16) static const word32 masks[8] CRYPTOPP_SECTION_ALIGN16 = 
				{0, 0xffffffff, 0, 0xffffffff, 0xffffffff, 0, 0xffffffff, 0};

			__m128i k02 = _mm_or_si128(_mm_slli_epi64(x0, 32), _mm_srli_epi64(x3, 32));
			k02 = _mm_shuffle_epi32(k02, _MM_SHUFFLE(0, 1, 2, 3));
			__m128i k13 = _mm_or_si128(_mm_slli_epi64(x1, 32), _mm_srli_epi64(x0, 32));
			k13 = _mm_shuffle_epi32(k13, _MM_SHUFFLE(0, 1, 2, 3));
			__m128i maskLo32 = ((__m128i*)masks)[1], maskHi32 = ((__m128i*)masks)[0];
			__m128i k20 = _mm_or_si128(_mm_and_si128(x2, maskLo32), _mm_and_si128(x1, maskHi32));
			__m128i k31 = _mm_or_si128(_mm_and_si128(x3, maskLo32), _mm_and_si128(x2, maskHi32));

			__m128i k0 = _mm_unpackhi_epi64(k02, k20);
			__m128i k1 = _mm_unpackhi_epi64(k13, k31);
			__m128i k2 = _mm_unpacklo_epi64(k20, k02);
			__m128i k3 = _mm_unpacklo_epi64(k31, k13);

			#define SSE2_OUTPUT(x)	{\
				CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, 0, k0)\
				CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, 1, k1)\
				CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, 2, k2)\
				CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, 3, k3)}

			CRYPTOPP_KEYSTREAM_OUTPUT_SWITCH(SSE2_OUTPUT, BYTES_PER_ITERATION);
		}
	}
#endif

	word32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;

	while (iterationCount--)
	{
		x0 = m_state[0];
		x1 = m_state[1];
		x2 = m_state[2];
		x3 = m_state[3];
		x4 = m_state[4];
		x5 = m_state[5];
		x6 = m_state[6];
		x7 = m_state[7];
		x8 = m_state[8];
		x9 = m_state[9];
		x10 = m_state[10];
		x11 = m_state[11];
		x12 = m_state[12];
		x13 = m_state[13];
		x14 = m_state[14];
		x15 = m_state[15];

		for (i=m_rounds; i>0; i-=2)
		{
			#define QUARTER_ROUND(a, b, c, d)	\
				b = b ^ rotlFixed(a + d, 7);	\
				c = c ^ rotlFixed(b + a, 9);	\
				d = d ^ rotlFixed(c + b, 13);	\
				a = a ^ rotlFixed(d + c, 18);

			QUARTER_ROUND(x0, x4, x8, x12)
			QUARTER_ROUND(x1, x5, x9, x13)
			QUARTER_ROUND(x2, x6, x10, x14)
			QUARTER_ROUND(x3, x7, x11, x15)

			QUARTER_ROUND(x0, x13, x10, x7)
			QUARTER_ROUND(x1, x14, x11, x4)
			QUARTER_ROUND(x2, x15, x8, x5)
			QUARTER_ROUND(x3, x12, x9, x6)
		}

		#define SALSA_OUTPUT(x)	{\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 0, x0 + m_state[0]);\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 1, x13 + m_state[13]);\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 2, x10 + m_state[10]);\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 3, x7 + m_state[7]);\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 4, x4 + m_state[4]);\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 5, x1 + m_state[1]);\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 6, x14 + m_state[14]);\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 7, x11 + m_state[11]);\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 8, x8 + m_state[8]);\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 9, x5 + m_state[5]);\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 10, x2 + m_state[2]);\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 11, x15 + m_state[15]);\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 12, x12 + m_state[12]);\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 13, x9 + m_state[9]);\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 14, x6 + m_state[6]);\
			CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 15, x3 + m_state[3]);}

		CRYPTOPP_KEYSTREAM_OUTPUT_SWITCH(SALSA_OUTPUT, BYTES_PER_ITERATION);

		if (++m_state[8] == 0)
			++m_state[5];
	}
}

NAMESPACE_END