1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
// modes.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#include "modes.h"
#include "des.h"
#include "strciphr.cpp"
NAMESPACE_BEGIN(CryptoPP)
void Modes_TestInstantiations()
{
CFB_Mode<DES>::Encryption m0;
CFB_Mode<DES>::Decryption m1;
OFB_Mode<DES>::Encryption m2;
CTR_Mode<DES>::Encryption m3;
ECB_Mode<DES>::Encryption m4;
CBC_Mode<DES>::Encryption m5;
}
// explicit instantiations for Darwin gcc-932.1
template class CFB_CipherTemplate<AbstractPolicyHolder<CFB_CipherAbstractPolicy, SymmetricCipher> >;
template class CFB_EncryptionTemplate<>;
template class CFB_DecryptionTemplate<>;
template class AdditiveCipherTemplate<>;
template class CFB_CipherTemplate<AbstractPolicyHolder<CFB_CipherAbstractPolicy, CFB_ModePolicy> >;
template class CFB_EncryptionTemplate<AbstractPolicyHolder<CFB_CipherAbstractPolicy, CFB_ModePolicy> >;
template class CFB_DecryptionTemplate<AbstractPolicyHolder<CFB_CipherAbstractPolicy, CFB_ModePolicy> >;
template class AdditiveCipherTemplate<AbstractPolicyHolder<AdditiveCipherAbstractPolicy, OFB_ModePolicy> >;
template class AdditiveCipherTemplate<AbstractPolicyHolder<AdditiveCipherAbstractPolicy, CTR_ModePolicy> >;
void CipherModeBase::SetKey(const byte *key, unsigned int length, const NameValuePairs ¶ms)
{
UncheckedSetKey(params, key, length); // the underlying cipher will check the key length
}
void CipherModeBase::GetNextIV(byte *IV)
{
if (!IsForwardTransformation())
throw NotImplemented("CipherModeBase: GetNextIV() must be called on an encryption object");
m_cipher->ProcessBlock(m_register);
memcpy(IV, m_register, BlockSize());
}
void CipherModeBase::SetIV(const byte *iv)
{
if (iv)
Resynchronize(iv);
else if (IsResynchronizable())
{
if (!CanUseStructuredIVs())
throw InvalidArgument("CipherModeBase: this cipher mode cannot use a null IV");
// use all zeros as default IV
SecByteBlock iv(BlockSize());
memset(iv, 0, iv.size());
Resynchronize(iv);
}
}
void CTR_ModePolicy::SeekToIteration(dword iterationCount)
{
int carry=0;
for (int i=BlockSize()-1; i>=0; i--)
{
unsigned int sum = m_register[i] + byte(iterationCount) + carry;
m_counterArray[i] = (byte) sum;
carry = sum >> 8;
iterationCount >>= 8;
}
}
static inline void IncrementCounterByOne(byte *inout, unsigned int s)
{
for (int i=s-1, carry=1; i>=0 && carry; i--)
carry = !++inout[i];
}
static inline void IncrementCounterByOne(byte *output, const byte *input, unsigned int s)
{
for (int i=s-1, carry=1; i>=0; i--)
carry = !(output[i] = input[i]+carry) && carry;
}
inline void CTR_ModePolicy::ProcessMultipleBlocks(byte *output, const byte *input, unsigned int n)
{
unsigned int s = BlockSize(), j = 0;
for (unsigned int i=1; i<n; i++, j+=s)
IncrementCounterByOne(m_counterArray + j + s, m_counterArray + j, s);
m_cipher->ProcessAndXorMultipleBlocks(m_counterArray, input, output, n);
IncrementCounterByOne(m_counterArray, m_counterArray + s*(n-1), s);
}
void CTR_ModePolicy::OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, unsigned int iterationCount)
{
unsigned int maxBlocks = m_cipher->OptimalNumberOfParallelBlocks();
if (maxBlocks == 1)
{
unsigned int sizeIncrement = BlockSize();
while (iterationCount)
{
m_cipher->ProcessAndXorBlock(m_counterArray, input, output);
IncrementCounterByOne(m_counterArray, sizeIncrement);
output += sizeIncrement;
input += sizeIncrement;
iterationCount -= 1;
}
}
else
{
unsigned int sizeIncrement = maxBlocks * BlockSize();
while (iterationCount >= maxBlocks)
{
ProcessMultipleBlocks(output, input, maxBlocks);
output += sizeIncrement;
input += sizeIncrement;
iterationCount -= maxBlocks;
}
if (iterationCount > 0)
ProcessMultipleBlocks(output, input, iterationCount);
}
}
void CTR_ModePolicy::CipherResynchronize(byte *keystreamBuffer, const byte *iv)
{
unsigned int s = BlockSize();
memcpy(m_register, iv, s);
m_counterArray.New(s * m_cipher->OptimalNumberOfParallelBlocks());
memcpy(m_counterArray, iv, s);
}
void BlockOrientedCipherModeBase::UncheckedSetKey(const NameValuePairs ¶ms, const byte *key, unsigned int length)
{
m_cipher->SetKey(key, length, params);
ResizeBuffers();
const byte *iv = params.GetValueWithDefault(Name::IV(), (const byte *)NULL);
SetIV(iv);
}
void BlockOrientedCipherModeBase::ProcessData(byte *outString, const byte *inString, unsigned int length)
{
unsigned int s = BlockSize();
assert(length % s == 0);
unsigned int alignment = m_cipher->BlockAlignment();
bool inputAlignmentOk = !RequireAlignedInput() || IsAlignedOn(inString, alignment);
if (IsAlignedOn(outString, alignment))
{
if (inputAlignmentOk)
ProcessBlocks(outString, inString, length / s);
else
{
memcpy(outString, inString, length);
ProcessBlocks(outString, outString, length / s);
}
}
else
{
while (length)
{
if (inputAlignmentOk)
ProcessBlocks(m_buffer, inString, 1);
else
{
memcpy(m_buffer, inString, s);
ProcessBlocks(m_buffer, m_buffer, 1);
}
memcpy(outString, m_buffer, s);
inString += s;
outString += s;
length -= s;
}
}
}
void CBC_Encryption::ProcessBlocks(byte *outString, const byte *inString, unsigned int numberOfBlocks)
{
unsigned int blockSize = BlockSize();
while (numberOfBlocks--)
{
xorbuf(m_register, inString, blockSize);
m_cipher->ProcessBlock(m_register);
memcpy(outString, m_register, blockSize);
inString += blockSize;
outString += blockSize;
}
}
void CBC_CTS_Encryption::ProcessLastBlock(byte *outString, const byte *inString, unsigned int length)
{
if (length <= BlockSize())
{
if (!m_stolenIV)
throw InvalidArgument("CBC_Encryption: message is too short for ciphertext stealing");
// steal from IV
memcpy(outString, m_register, length);
outString = m_stolenIV;
}
else
{
// steal from next to last block
xorbuf(m_register, inString, BlockSize());
m_cipher->ProcessBlock(m_register);
inString += BlockSize();
length -= BlockSize();
memcpy(outString+BlockSize(), m_register, length);
}
// output last full ciphertext block
xorbuf(m_register, inString, length);
m_cipher->ProcessBlock(m_register);
memcpy(outString, m_register, BlockSize());
}
void CBC_Decryption::ProcessBlocks(byte *outString, const byte *inString, unsigned int numberOfBlocks)
{
unsigned int blockSize = BlockSize();
while (numberOfBlocks--)
{
memcpy(m_temp, inString, blockSize);
m_cipher->ProcessBlock(m_temp, outString);
xorbuf(outString, m_register, blockSize);
m_register.swap(m_temp);
inString += blockSize;
outString += blockSize;
}
}
void CBC_CTS_Decryption::ProcessLastBlock(byte *outString, const byte *inString, unsigned int length)
{
const byte *pn, *pn1;
bool stealIV = length <= BlockSize();
if (stealIV)
{
pn = inString;
pn1 = m_register;
}
else
{
pn = inString + BlockSize();
pn1 = inString;
length -= BlockSize();
}
// decrypt last partial plaintext block
memcpy(m_temp, pn1, BlockSize());
m_cipher->ProcessBlock(m_temp);
xorbuf(m_temp, pn, length);
if (stealIV)
memcpy(outString, m_temp, length);
else
{
memcpy(outString+BlockSize(), m_temp, length);
// decrypt next to last plaintext block
memcpy(m_temp, pn, length);
m_cipher->ProcessBlock(m_temp);
xorbuf(outString, m_temp, m_register, BlockSize());
}
}
NAMESPACE_END
|