summaryrefslogtreecommitdiff
path: root/xts.h
blob: c6bbc7474ffb2cf6c2311efd6bcb61a5f51d7e26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// xts.h - written and placed in the public domain by Jeffrey Walton

/// \file xts.h
/// \brief Classes for XTS block cipher mode of operation
/// \details XTS mode is a wide block mode defined by IEEE P1619-2008. NIST
///  SP-800-38E approves the mode for storage devices citing IEEE 1619-2007.
///  IEEE 1619-2007 provides both a reference implementation and test vectors.
///  The IEEE reference implementation fails to arrive at the expected result
///  for some test vectors.
/// \sa <A HREF="http://www.cryptopp.com/wiki/Modes_of_Operation">Modes of
///  Operation</A> on the Crypto++ wiki, <A
///  HREF="https://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf"> Evaluation of Some
///  Blockcipher Modes of Operation</A>, <A
///  HREF="https://csrc.nist.gov/publications/detail/sp/800-38e/final">Recommendation
///  for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on
///  Storage Devices</A>, <A
///  HREF="http://libeccio.di.unisa.it/Crypto14/Lab/p1619.pdf">IEEE P1619-2007</A>
///  and <A HREF="https://crypto.stackexchange.com/q/74925/10496">IEEE P1619/XTS,
///  inconsistent reference implementation and test vectors</A>.
/// \since Crypto++ 8.3

#ifndef CRYPTOPP_XTS_MODE_H
#define CRYPTOPP_XTS_MODE_H

#include "cryptlib.h"
#include "secblock.h"
#include "modes.h"
#include "misc.h"

/// \brief Enable XTS for wide block ciphers
/// \details XTS is only defined for AES. The library can support wide
///  block ciphers like Kaylna and Threefish since we know the polynomials.
///  To enable wide block ciphers define <tt>CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS</tt>
///  to non-zero. Note this is a library compile time define.
/// \details There is risk involved with using XTS with wider block ciphers.
///  According to Phillip Rogaway, "The narrow width of the underlying PRP and
///  the poor treatment of fractional final blocks are problems."
/// \sa <A HREF="https://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf">Evaluation
///  of Some Blockcipher Modes of Operation</A>
/// \since Crypto++ 8.3
#ifndef CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS
# define CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS 0
#endif  // CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS

NAMESPACE_BEGIN(CryptoPP)

/// \brief XTS block cipher mode of operation default implementation
/// \since Crypto++ 8.3
class CRYPTOPP_NO_VTABLE XTS_ModeBase : public BlockOrientedCipherModeBase
{
public:
    /// \brief The algorithm name
    /// \returns the algorithm name
    /// \details StaticAlgorithmName returns the algorithm's name as a static
    ///   member function.
    CRYPTOPP_STATIC_CONSTEXPR const char* StaticAlgorithmName()
        {return "XTS";}

    virtual ~XTS_ModeBase() {}

    std::string AlgorithmName() const
        {return GetBlockCipher().AlgorithmName() + "/XTS";}
    std::string AlgorithmProvider() const
        {return GetBlockCipher().AlgorithmProvider();}

    size_t MinKeyLength() const
        {return GetBlockCipher().MinKeyLength()*2;}
    size_t MaxKeyLength() const
        {return GetBlockCipher().MaxKeyLength()*2;}
    size_t DefaultKeyLength() const
        {return GetBlockCipher().DefaultKeyLength()*2;}
    size_t GetValidKeyLength(size_t n) const
        {return 2*GetBlockCipher().GetValidKeyLength((n+1)/2);}
    bool IsValidKeyLength(size_t keylength) const
        {return keylength == GetValidKeyLength(keylength);}

    /// \brief Validates the key length
    /// \param length the size of the keying material, in bytes
    /// \throws InvalidKeyLength if the key length is invalid
    void ThrowIfInvalidKeyLength(size_t length);

    /// Provides the block size of the cipher
    /// \return the block size of the cipher, in bytes
    unsigned int BlockSize() const
        {return GetBlockCipher().BlockSize();}

    /// \brief Provides the input block size most efficient for this cipher
    /// \return The input block size that is most efficient for the cipher
    /// \details The base class implementation returns MandatoryBlockSize().
    /// \note Optimal input length is
    ///  <tt>n * OptimalBlockSize() - GetOptimalBlockSizeUsed()</tt> for
    ///  any <tt>n \> 0</tt>.
    unsigned int GetOptimalBlockSize() const
        {return GetBlockCipher().BlockSize()*ParallelBlocks;}
    unsigned int MinLastBlockSize() const
        {return GetBlockCipher().BlockSize()+1;}
    unsigned int OptimalDataAlignment() const
        {return GetBlockCipher().OptimalDataAlignment();}

    /// \brief Validates the block size
    /// \param length the block size of the cipher, in bytes
    /// \throws InvalidArgument if the block size is invalid
    /// \details If <tt>CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS</tt> is 0,
    ///  then CIPHER must be a 16-byte block cipher. If
    ///  <tt>CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS</tt> is non-zero then
    ///  CIPHER can be 16, 32, 64, or 128-byte block cipher.
    void ThrowIfInvalidBlockSize(size_t length);

    void SetKey(const byte *key, size_t length, const NameValuePairs &params = g_nullNameValuePairs);
    IV_Requirement IVRequirement() const {return UNIQUE_IV;}
    void Resynchronize(const byte *iv, int ivLength=-1);
    void ProcessData(byte *outString, const byte *inString, size_t length);
    size_t ProcessLastBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength);

    /// \brief Resynchronize the cipher
    /// \param sector a 64-bit sector number
    /// \param order the endian order the word should be written
    /// \details The Resynchronize() overload was provided for API
    ///  compatibility with the IEEE P1619 paper.
    void Resynchronize(word64 sector, ByteOrder order=BIG_ENDIAN_ORDER);

protected:
    virtual void ResizeBuffers();

    inline size_t ProcessLastPlainBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength);
    inline size_t ProcessLastCipherBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength);

    virtual BlockCipher& AccessBlockCipher() = 0;
    virtual BlockCipher& AccessTweakCipher() = 0;

    const BlockCipher& GetBlockCipher() const
        {return const_cast<XTS_ModeBase*>(this)->AccessBlockCipher();}
    const BlockCipher& GetTweakCipher() const
        {return const_cast<XTS_ModeBase*>(this)->AccessTweakCipher();}

    // Buffers are sized based on ParallelBlocks
    AlignedSecByteBlock m_xregister;
    AlignedSecByteBlock m_xworkspace;

    // Intel lacks the SSE registers to run 8 or 12 parallel blocks.
    // Do not change this value after compiling. It has no effect.
#if CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X86
    enum {ParallelBlocks = 4};
#else
    enum {ParallelBlocks = 12};
#endif
};

/// \brief XTS block cipher mode of operation implementation
/// \tparam CIPHER BlockCipher derived class or type
/// \details XTS_Final() provides access to CIPHER in base class XTS_ModeBase()
///  through an interface. AccessBlockCipher() and AccessTweakCipher() allow
///  the XTS_ModeBase() base class to access the user's block cipher without
///  recompiling the library.
/// \details If <tt>CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS</tt> is 0, then CIPHER must
///  be a 16-byte block cipher. If <tt>CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS</tt> is
///  non-zero then CIPHER can be 16, 32, 64, or 128-byte block cipher.
///  There is risk involved with using XTS with wider block ciphers.
///  According to Phillip Rogaway, "The narrow width of the underlying PRP and
///  the poor treatment of fractional final blocks are problems." To enable
///  wide block cipher support define <tt>CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS</tt> to
///  non-zero.
/// \sa <A HREF="http://www.cryptopp.com/wiki/Modes_of_Operation">Modes of
///  Operation</A> on the Crypto++ wiki, <A
///  HREF="https://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf"> Evaluation of Some
///  Blockcipher Modes of Operation</A>, <A
///  HREF="https://csrc.nist.gov/publications/detail/sp/800-38e/final">Recommendation
///  for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on
///  Storage Devices</A>, <A
///  HREF="http://libeccio.di.unisa.it/Crypto14/Lab/p1619.pdf">IEEE P1619-2007</A>
///  and <A HREF="https://crypto.stackexchange.com/q/74925/10496">IEEE P1619/XTS,
///  inconsistent reference implementation and test vectors</A>.
/// \since Crypto++ 8.3
template <class CIPHER>
class CRYPTOPP_NO_VTABLE XTS_Final : public XTS_ModeBase
{
protected:
    BlockCipher& AccessBlockCipher()
        {return *m_cipher;}
    BlockCipher& AccessTweakCipher()
        {return m_tweaker;}

protected:
    typename CIPHER::Encryption m_tweaker;
};

/// \brief XTS block cipher mode of operation
/// \tparam CIPHER BlockCipher derived class or type
/// \details XTS mode is a wide block mode defined by IEEE P1619-2008. NIST
///  SP-800-38E approves the mode for storage devices citing IEEE 1619-2007.
///  IEEE 1619-2007 provides both a reference implementation and test vectors.
///  The IEEE reference implementation fails to arrive at the expected result
///  for some test vectors.
/// \details XTS is only defined for AES. The library can support wide
///  block ciphers like Kaylna and Threefish since we know the polynomials.
///  There is risk involved with using XTS with wider block ciphers.
///  According to Phillip Rogaway, "The narrow width of the underlying PRP and
///  the poor treatment of fractional final blocks are problems." To enable
///  wide block cipher support define <tt>CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS</tt> to
///  non-zero.
/// \sa <A HREF="http://www.cryptopp.com/wiki/Modes_of_Operation">Modes of
///  Operation</A> on the Crypto++ wiki, <A
///  HREF="https://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf"> Evaluation of Some
///  Blockcipher Modes of Operation</A>, <A
///  HREF="https://csrc.nist.gov/publications/detail/sp/800-38e/final">Recommendation
///  for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on
///  Storage Devices</A>, <A
///  HREF="http://libeccio.di.unisa.it/Crypto14/Lab/p1619.pdf">IEEE P1619-2007</A>
///  and <A HREF="https://crypto.stackexchange.com/q/74925/10496">IEEE P1619/XTS,
///  inconsistent reference implementation and test vectors</A>.
/// \since Crypto++ 8.3
template <class CIPHER>
struct XTS : public CipherModeDocumentation
{
    typedef CipherModeFinalTemplate_CipherHolder<typename CIPHER::Encryption, XTS_Final<CIPHER> > Encryption;
    typedef CipherModeFinalTemplate_CipherHolder<typename CIPHER::Decryption, XTS_Final<CIPHER> > Decryption;
};

// C++03 lacks the mechanics to typedef a template
#define XTS_Mode XTS

NAMESPACE_END

#endif  // CRYPTOPP_XTS_MODE_H